Residual stress behavior and physical properties of transparent polyimide/surface-modified CaCO3 nanocomposite films

A series of polyimide (PI) nanocomposite films with various surface-modified colloidal calcium carbonate (SCaCO 3 ) contents were prepared and their physical properties were investigated to understand their possible use as polymer substrates. The morphology, thermal stability, residual stress behavi...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular research Vol. 22; no. 6; pp. 669 - 677
Main Authors Nam, Ki-Ho, Seo, Jongchul, Seo, Kwangwon, Jang, Wonbong, Han, Haksoo
Format Journal Article
LanguageEnglish
Published Heidelberg The Polymer Society of Korea 01.06.2014
한국고분자학회
Subjects
Online AccessGet full text
ISSN1598-5032
2092-7673
DOI10.1007/s13233-014-2100-3

Cover

Loading…
Abstract A series of polyimide (PI) nanocomposite films with various surface-modified colloidal calcium carbonate (SCaCO 3 ) contents were prepared and their physical properties were investigated to understand their possible use as polymer substrates. The morphology, thermal stability, residual stress behavior, moisture barrier and optical properties of nanocomposite films were investigated as a function of the SCaCO 3 content and were found to be strongly dependent upon the chemical and morphological structures. With the addition of up to 0.5 wt% SCaCO 3 in the PI matrix, resultant nanocomposite films exhibit not only enhanced thermal properties, but also minimized residual stress and excellent optical properties, simultaneously. With increasing SCaCO 3 content, the water vapor transmission rate (WVTR) is greatly decreased from 630.76 to 484.22 g/m 2 /day. The residual stress was in the range of 26.0 to 12.1 MPa and is highly dependent on both temperature variation and SCaCO 3 content. Although the residual stress becomes lower at 0.5 wt% SCaCO 3 content, it increases at relatively high SCaCO 3 loadings due to inadequate dispersion of the SCaCO 3 and low interfacial interactions between the polymer and filler surfaces. Therefore, further studies are needed to maximize the performance of nanocomposite films by enhancing the compatibility of the polymer matrix and fillers.
AbstractList A series of polyimide (PI) nanocomposite films with various surface-modified colloidal calcium carbonate (SCaCO 3 ) contents were prepared and their physical properties were investigated to understand their possible use as polymer substrates. The morphology, thermal stability, residual stress behavior, moisture barrier and optical properties of nanocomposite films were investigated as a function of the SCaCO 3 content and were found to be strongly dependent upon the chemical and morphological structures. With the addition of up to 0.5 wt% SCaCO 3 in the PI matrix, resultant nanocomposite films exhibit not only enhanced thermal properties, but also minimized residual stress and excellent optical properties, simultaneously. With increasing SCaCO 3 content, the water vapor transmission rate (WVTR) is greatly decreased from 630.76 to 484.22 g/m 2 /day. The residual stress was in the range of 26.0 to 12.1 MPa and is highly dependent on both temperature variation and SCaCO 3 content. Although the residual stress becomes lower at 0.5 wt% SCaCO 3 content, it increases at relatively high SCaCO 3 loadings due to inadequate dispersion of the SCaCO 3 and low interfacial interactions between the polymer and filler surfaces. Therefore, further studies are needed to maximize the performance of nanocomposite films by enhancing the compatibility of the polymer matrix and fillers.
A series of polyimide (PI) nanocomposite films with various surface-modified colloidal calcium carbonate(SCaCO3) contents were prepared and their physical properties were investigated to understand their possible useas polymer substrates. The morphology, thermal stability, residual stress behavior, moisture barrier and optical propertiesof nanocomposite films were investigated as a function of the SCaCO3 content and were found to be stronglydependent upon the chemical and morphological structures. With the addition of up to 0.5 wt% SCaCO3 in the PImatrix, resultant nanocomposite films exhibit not only enhanced thermal properties, but also minimized residualstress and excellent optical properties, simultaneously. With increasing SCaCO3 content, the water vapor transmissionrate (WVTR) is greatly decreased from 630.76 to 484.22 g/m2/day. The residual stress was in the range of 26.0to 12.1 MPa and is highly dependent on both temperature variation and SCaCO3 content. Although the residual stressbecomes lower at 0.5 wt% SCaCO3 content, it increases at relatively high SCaCO3 loadings due to inadequate dispersionof the SCaCO3 and low interfacial interactions between the polymer and filler surfaces. Therefore, furtherstudies are needed to maximize the performance of nanocomposite films by enhancing the compatibility of the polymermatrix and fillers. KCI Citation Count: 13
Author Seo, Jongchul
Seo, Kwangwon
Nam, Ki-Ho
Jang, Wonbong
Han, Haksoo
Author_xml – sequence: 1
  givenname: Ki-Ho
  surname: Nam
  fullname: Nam, Ki-Ho
  organization: Department of Chemical and Biomolecular Engineering, Yonsei University
– sequence: 2
  givenname: Jongchul
  surname: Seo
  fullname: Seo, Jongchul
  organization: Department of Packaging, Yonsei University
– sequence: 3
  givenname: Kwangwon
  surname: Seo
  fullname: Seo, Kwangwon
  organization: Department of Chemical and Biomolecular Engineering, Yonsei University
– sequence: 4
  givenname: Wonbong
  surname: Jang
  fullname: Jang, Wonbong
  organization: Department of R&D, LG Display
– sequence: 5
  givenname: Haksoo
  surname: Han
  fullname: Han, Haksoo
  email: hshan@yonsei.ac.kr
  organization: Department of Chemical and Biomolecular Engineering, Yonsei University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001887122$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE1LJDEQhsOisKPuD9hbjnuJ5qN7enKUQV1BEETPoTofGu1OmlRGmH9v3NmTB08FVe9TVD0n5Cjl5An5Lfi54Hy4QKGkUoyLjsnWYOoHWUmuJRvWgzoiK9HrDeu5kj_JCeIr52uhhFiR-uAxuh1MFGvxiHT0L_Aec6GQHF1e9hhtGy4lL77U6JHmQGuBhAsUnypd8rSPc3T-AnclgPVszi6G6B3dwvZe0QQp2zwvGWP1NMRpxjNyHGBC_-t_PSVP11eP27_s7v7mdnt5x6ySojI1atmuH6V1SoaxHd95GIde905rWIMCpwfbAdhRtW_6XoSN5qPrrNUD9Fadkj-HvakE82ajyRD_1eds3oq5fHi8NcOmk5K36HCI2pIRiw_Gxgo15tSejZMR3Hx6NgfPpnk2n56NaqT4Qi4lzlD23zLywGDLpmdfzGveldRcfAN9ALCVlCE
CitedBy_id crossref_primary_10_1038_s41378_024_00762_w
crossref_primary_10_1016_j_compositesb_2020_108451
crossref_primary_10_1039_D4RA06342B
crossref_primary_10_1007_s13233_016_2021_9
crossref_primary_10_1021_acs_jpcc_7b09395
crossref_primary_10_1016_j_porgcoat_2014_12_004
crossref_primary_10_1007_s11814_017_0289_5
crossref_primary_10_1016_j_polymer_2024_126691
crossref_primary_10_1016_j_cej_2022_140888
crossref_primary_10_1002_app_51786
crossref_primary_10_1016_j_jiec_2022_07_034
crossref_primary_10_1016_j_mtcomm_2019_100562
crossref_primary_10_1080_01694243_2023_2240550
crossref_primary_10_2139_ssrn_4185642
Cites_doi 10.1016/j.polymer.2004.03.010
10.1002/(SICI)1099-0488(199806)36:8<1261::AID-POLB1>3.0.CO;2-V
10.1016/j.msea.2008.12.025
10.1016/j.partic.2012.11.005
10.1007/s10854-010-0137-4
10.1016/j.polymer.2012.11.051
10.1016/j.matlet.2005.10.035
10.1039/b518034a
10.1177/0892705711433351
10.1016/S0025-5408(99)00183-X
10.1007/s00396-011-2469-x
10.1016/j.matchemphys.2012.06.061
10.1002/pola.21358
10.1016/j.matchemphys.2007.03.025
10.1016/j.compositesa.2011.10.008
10.1021/cm000827s
10.1002/pen.21562
10.1016/j.eurpolymj.2012.03.004
10.1007/s10973-005-0624-7
10.1016/j.porgcoat.2010.03.002
10.1016/j.progpolymsci.2012.02.005
10.1016/j.powtec.2005.03.013
10.1016/j.matdes.2011.05.028
10.1002/1521-3935(20020401)203:5/6<801::AID-MACP801>3.0.CO;2-E
10.1007/s11426-009-0125-9
10.1007/s13233-012-0182-3
10.1016/S0032-3861(01)00287-7
10.1016/S0141-3910(02)00105-2
10.1002/pc.20915
10.1016/j.polymer.2007.02.023
10.1002/1521-3935(20010601)202:9<1483::AID-MACP1483>3.0.CO;2-#
10.1007/s13233-013-1124-4
10.1016/j.porgcoat.2012.01.007
10.1016/j.polymer.2007.11.001
10.1016/j.msea.2008.09.061
10.1002/app.20084
10.1016/j.compscitech.2012.12.007
10.1080/03602550902824705
10.1039/JM9920200679
10.1063/1.1713863
10.1016/S0032-3861(01)00012-X
10.1002/app.29558
10.1002/app.34248
ContentType Journal Article
Copyright The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2014
Copyright_xml – notice: The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2014
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s13233-014-2100-3
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2092-7673
EndPage 677
ExternalDocumentID oai_kci_go_kr_ARTI_784220
10_1007_s13233_014_2100_3
GroupedDBID -EM
.UV
06D
0R~
0VY
1N0
203
2JY
2KG
2VQ
3-Y
30V
4.4
406
408
40D
53G
5GY
67Z
8N-
8UJ
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BGNMA
CAG
COF
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GW5
H13
HF~
HMJXF
HRMNR
HZ~
I0C
IAO
IHR
IKXTQ
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PT4
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TDB
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7U
Z7V
Z7X
Z7Y
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
85H
AAFGU
AAPBV
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
SQXTU
Z5O
Z7R
Z7S
ID FETCH-LOGICAL-c321t-3b92673b2cd32fb0324eab7595d99a6a3ad97c4aacb3131551f890bd4cc97a5c3
IEDL.DBID AGYKE
ISSN 1598-5032
IngestDate Tue Nov 21 21:35:42 EST 2023
Thu Apr 24 22:53:17 EDT 2025
Tue Jul 29 01:58:46 EDT 2025
Fri Feb 21 02:31:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords interfacial interaction
residual stress behavior
polyimide (PI)
nanocomposite film
barrier properties
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-3b92673b2cd32fb0324eab7595d99a6a3ad97c4aacb3131551f890bd4cc97a5c3
Notes G704-000117.2014.22.6.004
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_784220
crossref_citationtrail_10_1007_s13233_014_2100_3
crossref_primary_10_1007_s13233_014_2100_3
springer_journals_10_1007_s13233_014_2100_3
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Macromolecular research
PublicationTitleAbbrev Macromol. Res
PublicationYear 2014
Publisher The Polymer Society of Korea
한국고분자학회
Publisher_xml – name: The Polymer Society of Korea
– name: 한국고분자학회
References BaoCGuoYSongLHuYJ. Mater. Chem.20112113924
LiawD -JHsuP-NChenW-HLiawB-YMacromol. Chem. Phys.200120214831:CAS:528:DC%2BD3MXlsFGms7o%3D10.1002/1521-3935(20010601)202:9<1483::AID-MACP1483>3.0.CO;2-
AvellaMCoscoSDi LorenzoMLDi PaceEErricoM EJ. Therm. Anal. Calorim.2005801311:CAS:528:DC%2BD2MXktl2ks7s%3D10.1007/s10973-005-0624-7
LiawD -JLiawB-YHsuP-NHwangC-YChem. Mater.201113181110.1021/cm000827s
MyungB YAhnC JYoonT HPolymer20044531851:CAS:528:DC%2BD2cXjt1altb8%3D10.1016/j.polymer.2004.03.010
EdrissiMNorouzbeigiRJ. Mater. Sci. Mater. Electron.2011223281:CAS:528:DC%2BC3MXivVCqsbY%3D10.1007/s10854-010-0137-4
HamciucEHamciucCOlariuMPolym Eng. Sci.2010505201:CAS:528:DC%2BC3cXhvFensbk%3D10.1002/pen.21562
KimYChangJ-HKimJ-CMacromol. Res.20122012571:CAS:528:DC%2BC38Xht1Ggsb3E10.1007/s13233-012-0182-3
KovalevMKKalininaFAndrosovD AChoCPolymer2013541271:CAS:528:DC%2BC38XhvVWjurrL10.1016/j.polymer.2012.11.051
ZengAZhengYGuoYQiuSChengLMater. Des.2012346911:CAS:528:DC%2BC3MXhtlGksr%2FM10.1016/j.matdes.2011.05.028
LiawD -JHsuC-YLiawB-YPolymer20014279931:CAS:528:DC%2BD3MXksVers7c%3D10.1016/S0032-3861(01)00287-7
OhWShinT JReeMJinM YCharKMacromol. Chem. Phys.20022038011:CAS:528:DC%2BD38XjtFWgsbs%3D10.1002/1521-3935(20020401)203:5/6<801::AID-MACP801>3.0.CO;2-E
WangCShengYZhaoXPanYHari-BalaWangZMater. Lett.2006608541:CAS:528:DC%2BD2MXhtlWqt7vM10.1016/j.matlet.2005.10.035
ReeMShinT JParkY-HKimS IWooS HChoC KParkC EJ. Polym. Sci. Part B: Polym. Phys.19983612611:CAS:528:DyaK1cXivF2htLo%3D10.1002/(SICI)1099-0488(199806)36:8<1261::AID-POLB1>3.0.CO;2-V
MorelFBounor-LegareVEspucheEPersynOLacroixMEur. Polym. J.2012489191:CAS:528:DC%2BC38XkvVKjurg%3D10.1016/j.eurpolymj.2012.03.004
TsengI-HLiaoY-FChiangJ-CTsaiM-HMater. Chem. Phys.20121362471:CAS:528:DC%2BC38XhtVOgtbfJ10.1016/j.matchemphys.2012.06.061
ZhaLFangZPolym. Composite.20103112581:CAS:528:DC%2BC3cXnvFWlsrc%3D
WortmanJ JEvansR AJ. Appl. Phys.1965361531:CAS:528:DyaF2MXis1Cqtw%3D%3D10.1063/1.1713863
ZamanH UHunP DKhanR AYoonK-BJ. Thermoplast. Compos. Mater.201326105710.1177/0892705711433351
KooMBaeJ-SShimS EKimDNamD-GLeeJ-WLeeG-WYeumJ HOhWColloid Polym. Sci.201128915031:CAS:528:DC%2BC3MXnvVKmtbw%3D10.1007/s00396-011-2469-x
LeeT -HKimJ HBaeB-SJ. Mater. Chem.20061616571:CAS:528:DC%2BD28XjsFWis7o%3D10.1039/b518034a
ZhangZWangCMengYMaiKCompos. Part AAppl Sci. Manuf.20124318910.1016/j.compositesa.2011.10.008
ChatterjeeAMishraSParticuology2013117601:CAS:528:DC%2BC3sXktlGktrY%3D10.1016/j.partic.2012.11.005
ZhaoLFengJWangZSci. China Chem.2009529241:CAS:528:DC%2BD1MXnslSru7Y%3D10.1007/s11426-009-0125-9
ChengLJianX GJ. Appl. Polym. Sci.20049215161:CAS:528:DC%2BD2cXislCitL0%3D10.1002/app.20084
JangWShinDChoiSParkSHanHPolymer20074821301:CAS:528:DC%2BD2sXjtVars70%3D10.1016/j.polymer.2007.02.023
HuGMaYWangBMater. Sci. Eng. A: Struct. Mater.2009504810.1016/j.msea.2008.12.025
KimDJangMSeoJNamK-HHanHKhanS BCompos. Sci. Technol.201375841:CAS:528:DC%2BC3sXht1Glsrk%3D10.1016/j.compscitech.2012.12.007
KimDJeonKSeoJSeoKHanHKhanSProg. Org. Coat.2012744351:CAS:528:DC%2BC38Xms1eltLc%3D10.1016/j.porgcoat.2012.01.007
JangWSeoJLeeCPaekS-HHanHJ. Appl. Polym. Sci.20091139761:CAS:528:DC%2BD1MXltl2qtLY%3D10.1002/app.29558
YinC -LLiuZ-YYangWFengJ-MYangM-BPolym. Plast. Technol. Eng.2009487881:CAS:528:DC%2BD1MXhtFyrtbbE10.1080/03602550902824705
WangYShiJHanLXiangFMater. Sci. Eng. A: Struct. Mater.200950122010.1016/j.msea.2008.09.061
ZhouZDengHYiJLiuSMater. Res. Bull.19993415631:CAS:528:DC%2BD3cXpvFaq10.1016/S0025-5408(99)00183-X
LiawD -JWangK-LHuangY-CLeeK-RLaiJ-YHaC-SProg. Polym. Sci.2012379071:CAS:528:DC%2BC38XltVamu70%3D10.1016/j.progpolymsci.2012.02.005
JeongK UKimJ-JYoonT-HPolymer20014260191:CAS:528:DC%2BD3MXisF2nsr0%3D10.1016/S0032-3861(01)00012-X
MorikawaAIyokuYKakimotoM-AImaiYJ. Mater. Chem.199226791:CAS:528:DyaK3sXhtVegt7w%3D10.1039/jm9920200679
GaiG-SYangY-FFanS-MCaiZ-FPowder Technol.20051531531:CAS:528:DC%2BD2MXltVOhtLo%3D10.1016/j.powtec.2005.03.013
JiangLZhangJWolcottM PPolymer20074876321:CAS:528:DC%2BD2sXhsVSktbnO10.1016/j.polymer.2007.11.001
SeoJHanHPolym. Degrad. Stab.2002774771:CAS:528:DC%2BD38XmvFWhtb0%3D10.1016/S0141-3910(02)00105-2
HedrickJ LChaH-JMillerR DYoonD YBrownH RSrinivasanSMacromolecules199730512
LiouG-SYangY I-LSuY OJ. Polym. Sci. Part A: Polym. Chem.20064425871:CAS:528:DC%2BD28XjsVyqs7s%3D10.1002/pola.21358
SeoJJeonGJangE SKhanS BHanHJ. Appl. Polym. Sci.201112211011:CAS:528:DC%2BC3MXosFClsr8%3D10.1002/app.34248
KwonHKimDSeoJHanHMacromol. Res.2013219871:CAS:528:DC%2BC3sXksFeku70%3D10.1007/s13233-013-1124-4
BaoFShiWProg. Org. Coat.2010683341:CAS:528:DC%2BC3cXmslCrs7o%3D10.1016/j.porgcoat.2010.03.002
JangWLeeH-SLeeSChoiSShinDHanHMater. Chem. Phys.20071043421:CAS:528:DC%2BD2sXnvF2gtLc%3D10.1016/j.matchemphys.2007.03.025
M Avella (2100_CR40) 2005; 80
M Koo (2100_CR43) 2011; 289
D -J Liaw (2100_CR6) 2011; 13
G-S Liou (2100_CR3) 2006; 44
Z Zhang (2100_CR16) 2012; 43
D Kim (2100_CR20) 2012; 74
T -H Lee (2100_CR9) 2006; 16
Z Zhou (2100_CR37) 1999; 34
H U Zaman (2100_CR30) 2013; 26
D -J Liaw (2100_CR13) 2012; 37
J Seo (2100_CR45) 2002; 77
A Zeng (2100_CR44) 2012; 34
C -L Yin (2100_CR29) 2009; 48
C Wang (2100_CR36) 2006; 60
D Kim (2100_CR41) 2013; 75
MK Kovalev (2100_CR2) 2013; 54
W Jang (2100_CR34) 2007; 104
L Zha (2100_CR31) 2010; 31
A Chatterjee (2100_CR23) 2013; 11
F Morel (2100_CR24) 2012; 48
A Morikawa (2100_CR10) 1992; 2
J Seo (2100_CR27) 2011; 122
Y Wang (2100_CR26) 2009; 501
L Jiang (2100_CR17) 2007; 48
J L Hedrick (2100_CR11) 1997; 30
I-H Tseng (2100_CR1) 2012; 136
M Ree (2100_CR15) 1998; 36
K U Jeong (2100_CR12) 2001; 42
W Jang (2100_CR21) 2009; 113
G Hu (2100_CR28) 2009; 504
M Edrissi (2100_CR33) 2011; 22
F Bao (2100_CR32) 2010; 68
L Cheng (2100_CR4) 2004; 92
D -J Liaw (2100_CR5) 2001; 202
D -J Liaw (2100_CR7) 2001; 42
Y Kim (2100_CR42) 2012; 20
E Hamciuc (2100_CR25) 2010; 50
W Oh (2100_CR14) 2002; 203
J J Wortman (2100_CR22) 1965; 36
W Jang (2100_CR35) 2007; 48
C Bao (2100_CR38) 2011; 21
B Y Myung (2100_CR8) 2004; 45
L Zhao (2100_CR18) 2009; 52
H Kwon (2100_CR39) 2013; 21
G-S Gai (2100_CR19) 2005; 153
References_xml – reference: LiawD -JLiawB-YHsuP-NHwangC-YChem. Mater.201113181110.1021/cm000827s
– reference: SeoJJeonGJangE SKhanS BHanHJ. Appl. Polym. Sci.201112211011:CAS:528:DC%2BC3MXosFClsr8%3D10.1002/app.34248
– reference: ZhouZDengHYiJLiuSMater. Res. Bull.19993415631:CAS:528:DC%2BD3cXpvFaq10.1016/S0025-5408(99)00183-X
– reference: OhWShinT JReeMJinM YCharKMacromol. Chem. Phys.20022038011:CAS:528:DC%2BD38XjtFWgsbs%3D10.1002/1521-3935(20020401)203:5/6<801::AID-MACP801>3.0.CO;2-E
– reference: HuGMaYWangBMater. Sci. Eng. A: Struct. Mater.2009504810.1016/j.msea.2008.12.025
– reference: ZhaLFangZPolym. Composite.20103112581:CAS:528:DC%2BC3cXnvFWlsrc%3D
– reference: KimDJangMSeoJNamK-HHanHKhanS BCompos. Sci. Technol.201375841:CAS:528:DC%2BC3sXht1Glsrk%3D10.1016/j.compscitech.2012.12.007
– reference: ZhangZWangCMengYMaiKCompos. Part AAppl Sci. Manuf.20124318910.1016/j.compositesa.2011.10.008
– reference: ZengAZhengYGuoYQiuSChengLMater. Des.2012346911:CAS:528:DC%2BC3MXhtlGksr%2FM10.1016/j.matdes.2011.05.028
– reference: WangYShiJHanLXiangFMater. Sci. Eng. A: Struct. Mater.200950122010.1016/j.msea.2008.09.061
– reference: ChengLJianX GJ. Appl. Polym. Sci.20049215161:CAS:528:DC%2BD2cXislCitL0%3D10.1002/app.20084
– reference: EdrissiMNorouzbeigiRJ. Mater. Sci. Mater. Electron.2011223281:CAS:528:DC%2BC3MXivVCqsbY%3D10.1007/s10854-010-0137-4
– reference: ChatterjeeAMishraSParticuology2013117601:CAS:528:DC%2BC3sXktlGktrY%3D10.1016/j.partic.2012.11.005
– reference: KimYChangJ-HKimJ-CMacromol. Res.20122012571:CAS:528:DC%2BC38Xht1Ggsb3E10.1007/s13233-012-0182-3
– reference: HedrickJ LChaH-JMillerR DYoonD YBrownH RSrinivasanSMacromolecules199730512
– reference: WortmanJ JEvansR AJ. Appl. Phys.1965361531:CAS:528:DyaF2MXis1Cqtw%3D%3D10.1063/1.1713863
– reference: ZamanH UHunP DKhanR AYoonK-BJ. Thermoplast. Compos. Mater.201326105710.1177/0892705711433351
– reference: MorelFBounor-LegareVEspucheEPersynOLacroixMEur. Polym. J.2012489191:CAS:528:DC%2BC38XkvVKjurg%3D10.1016/j.eurpolymj.2012.03.004
– reference: SeoJHanHPolym. Degrad. Stab.2002774771:CAS:528:DC%2BD38XmvFWhtb0%3D10.1016/S0141-3910(02)00105-2
– reference: GaiG-SYangY-FFanS-MCaiZ-FPowder Technol.20051531531:CAS:528:DC%2BD2MXltVOhtLo%3D10.1016/j.powtec.2005.03.013
– reference: JangWSeoJLeeCPaekS-HHanHJ. Appl. Polym. Sci.20091139761:CAS:528:DC%2BD1MXltl2qtLY%3D10.1002/app.29558
– reference: HamciucEHamciucCOlariuMPolym Eng. Sci.2010505201:CAS:528:DC%2BC3cXhvFensbk%3D10.1002/pen.21562
– reference: JangWShinDChoiSParkSHanHPolymer20074821301:CAS:528:DC%2BD2sXjtVars70%3D10.1016/j.polymer.2007.02.023
– reference: LiawD -JWangK-LHuangY-CLeeK-RLaiJ-YHaC-SProg. Polym. Sci.2012379071:CAS:528:DC%2BC38XltVamu70%3D10.1016/j.progpolymsci.2012.02.005
– reference: BaoCGuoYSongLHuYJ. Mater. Chem.20112113924
– reference: JeongK UKimJ-JYoonT-HPolymer20014260191:CAS:528:DC%2BD3MXisF2nsr0%3D10.1016/S0032-3861(01)00012-X
– reference: JangWLeeH-SLeeSChoiSShinDHanHMater. Chem. Phys.20071043421:CAS:528:DC%2BD2sXnvF2gtLc%3D10.1016/j.matchemphys.2007.03.025
– reference: WangCShengYZhaoXPanYHari-BalaWangZMater. Lett.2006608541:CAS:528:DC%2BD2MXhtlWqt7vM10.1016/j.matlet.2005.10.035
– reference: LeeT -HKimJ HBaeB-SJ. Mater. Chem.20061616571:CAS:528:DC%2BD28XjsFWis7o%3D10.1039/b518034a
– reference: BaoFShiWProg. Org. Coat.2010683341:CAS:528:DC%2BC3cXmslCrs7o%3D10.1016/j.porgcoat.2010.03.002
– reference: KooMBaeJ-SShimS EKimDNamD-GLeeJ-WLeeG-WYeumJ HOhWColloid Polym. Sci.201128915031:CAS:528:DC%2BC3MXnvVKmtbw%3D10.1007/s00396-011-2469-x
– reference: LiouG-SYangY I-LSuY OJ. Polym. Sci. Part A: Polym. Chem.20064425871:CAS:528:DC%2BD28XjsVyqs7s%3D10.1002/pola.21358
– reference: LiawD -JHsuP-NChenW-HLiawB-YMacromol. Chem. Phys.200120214831:CAS:528:DC%2BD3MXlsFGms7o%3D10.1002/1521-3935(20010601)202:9<1483::AID-MACP1483>3.0.CO;2-#
– reference: MyungB YAhnC JYoonT HPolymer20044531851:CAS:528:DC%2BD2cXjt1altb8%3D10.1016/j.polymer.2004.03.010
– reference: MorikawaAIyokuYKakimotoM-AImaiYJ. Mater. Chem.199226791:CAS:528:DyaK3sXhtVegt7w%3D10.1039/jm9920200679
– reference: JiangLZhangJWolcottM PPolymer20074876321:CAS:528:DC%2BD2sXhsVSktbnO10.1016/j.polymer.2007.11.001
– reference: YinC -LLiuZ-YYangWFengJ-MYangM-BPolym. Plast. Technol. Eng.2009487881:CAS:528:DC%2BD1MXhtFyrtbbE10.1080/03602550902824705
– reference: KovalevMKKalininaFAndrosovD AChoCPolymer2013541271:CAS:528:DC%2BC38XhvVWjurrL10.1016/j.polymer.2012.11.051
– reference: TsengI-HLiaoY-FChiangJ-CTsaiM-HMater. Chem. Phys.20121362471:CAS:528:DC%2BC38XhtVOgtbfJ10.1016/j.matchemphys.2012.06.061
– reference: KimDJeonKSeoJSeoKHanHKhanSProg. Org. Coat.2012744351:CAS:528:DC%2BC38Xms1eltLc%3D10.1016/j.porgcoat.2012.01.007
– reference: AvellaMCoscoSDi LorenzoMLDi PaceEErricoM EJ. Therm. Anal. Calorim.2005801311:CAS:528:DC%2BD2MXktl2ks7s%3D10.1007/s10973-005-0624-7
– reference: ZhaoLFengJWangZSci. China Chem.2009529241:CAS:528:DC%2BD1MXnslSru7Y%3D10.1007/s11426-009-0125-9
– reference: ReeMShinT JParkY-HKimS IWooS HChoC KParkC EJ. Polym. Sci. Part B: Polym. Phys.19983612611:CAS:528:DyaK1cXivF2htLo%3D10.1002/(SICI)1099-0488(199806)36:8<1261::AID-POLB1>3.0.CO;2-V
– reference: LiawD -JHsuC-YLiawB-YPolymer20014279931:CAS:528:DC%2BD3MXksVers7c%3D10.1016/S0032-3861(01)00287-7
– reference: KwonHKimDSeoJHanHMacromol. Res.2013219871:CAS:528:DC%2BC3sXksFeku70%3D10.1007/s13233-013-1124-4
– volume: 45
  start-page: 3185
  year: 2004
  ident: 2100_CR8
  publication-title: Polymer
  doi: 10.1016/j.polymer.2004.03.010
– volume: 30
  start-page: 512
  year: 1997
  ident: 2100_CR11
  publication-title: Macromolecules
– volume: 36
  start-page: 1261
  year: 1998
  ident: 2100_CR15
  publication-title: J. Polym. Sci. Part B: Polym. Phys.
  doi: 10.1002/(SICI)1099-0488(199806)36:8<1261::AID-POLB1>3.0.CO;2-V
– volume: 504
  start-page: 8
  year: 2009
  ident: 2100_CR28
  publication-title: Mater. Sci. Eng. A: Struct. Mater.
  doi: 10.1016/j.msea.2008.12.025
– volume: 11
  start-page: 760
  year: 2013
  ident: 2100_CR23
  publication-title: Particuology
  doi: 10.1016/j.partic.2012.11.005
– volume: 22
  start-page: 328
  year: 2011
  ident: 2100_CR33
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-010-0137-4
– volume: 54
  start-page: 127
  year: 2013
  ident: 2100_CR2
  publication-title: Polymer
  doi: 10.1016/j.polymer.2012.11.051
– volume: 60
  start-page: 854
  year: 2006
  ident: 2100_CR36
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2005.10.035
– volume: 16
  start-page: 1657
  year: 2006
  ident: 2100_CR9
  publication-title: J. Mater. Chem.
  doi: 10.1039/b518034a
– volume: 26
  start-page: 1057
  year: 2013
  ident: 2100_CR30
  publication-title: J. Thermoplast. Compos. Mater.
  doi: 10.1177/0892705711433351
– volume: 34
  start-page: 1563
  year: 1999
  ident: 2100_CR37
  publication-title: Mater. Res. Bull.
  doi: 10.1016/S0025-5408(99)00183-X
– volume: 289
  start-page: 1503
  year: 2011
  ident: 2100_CR43
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-011-2469-x
– volume: 136
  start-page: 247
  year: 2012
  ident: 2100_CR1
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2012.06.061
– volume: 44
  start-page: 2587
  year: 2006
  ident: 2100_CR3
  publication-title: J. Polym. Sci. Part A: Polym. Chem.
  doi: 10.1002/pola.21358
– volume: 104
  start-page: 342
  year: 2007
  ident: 2100_CR34
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2007.03.025
– volume: 43
  start-page: 189
  year: 2012
  ident: 2100_CR16
  publication-title: Compos. Part AAppl Sci. Manuf.
  doi: 10.1016/j.compositesa.2011.10.008
– volume: 13
  start-page: 1811
  year: 2011
  ident: 2100_CR6
  publication-title: Chem. Mater.
  doi: 10.1021/cm000827s
– volume: 50
  start-page: 520
  year: 2010
  ident: 2100_CR25
  publication-title: Polym Eng. Sci.
  doi: 10.1002/pen.21562
– volume: 48
  start-page: 919
  year: 2012
  ident: 2100_CR24
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2012.03.004
– volume: 80
  start-page: 131
  year: 2005
  ident: 2100_CR40
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-005-0624-7
– volume: 21
  start-page: 13924
  year: 2011
  ident: 2100_CR38
  publication-title: J. Mater. Chem.
– volume: 68
  start-page: 334
  year: 2010
  ident: 2100_CR32
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2010.03.002
– volume: 37
  start-page: 907
  year: 2012
  ident: 2100_CR13
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2012.02.005
– volume: 153
  start-page: 153
  year: 2005
  ident: 2100_CR19
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2005.03.013
– volume: 34
  start-page: 691
  year: 2012
  ident: 2100_CR44
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2011.05.028
– volume: 203
  start-page: 801
  year: 2002
  ident: 2100_CR14
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/1521-3935(20020401)203:5/6<801::AID-MACP801>3.0.CO;2-E
– volume: 52
  start-page: 924
  year: 2009
  ident: 2100_CR18
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-009-0125-9
– volume: 20
  start-page: 1257
  year: 2012
  ident: 2100_CR42
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-012-0182-3
– volume: 42
  start-page: 7993
  year: 2001
  ident: 2100_CR7
  publication-title: Polymer
  doi: 10.1016/S0032-3861(01)00287-7
– volume: 77
  start-page: 477
  year: 2002
  ident: 2100_CR45
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/S0141-3910(02)00105-2
– volume: 31
  start-page: 1258
  year: 2010
  ident: 2100_CR31
  publication-title: Polym. Composite.
  doi: 10.1002/pc.20915
– volume: 48
  start-page: 2130
  year: 2007
  ident: 2100_CR35
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.02.023
– volume: 202
  start-page: 1483
  year: 2001
  ident: 2100_CR5
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/1521-3935(20010601)202:9<1483::AID-MACP1483>3.0.CO;2-#
– volume: 21
  start-page: 987
  year: 2013
  ident: 2100_CR39
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-013-1124-4
– volume: 74
  start-page: 435
  year: 2012
  ident: 2100_CR20
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2012.01.007
– volume: 48
  start-page: 7632
  year: 2007
  ident: 2100_CR17
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.11.001
– volume: 501
  start-page: 220
  year: 2009
  ident: 2100_CR26
  publication-title: Mater. Sci. Eng. A: Struct. Mater.
  doi: 10.1016/j.msea.2008.09.061
– volume: 92
  start-page: 1516
  year: 2004
  ident: 2100_CR4
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.20084
– volume: 75
  start-page: 84
  year: 2013
  ident: 2100_CR41
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2012.12.007
– volume: 48
  start-page: 788
  year: 2009
  ident: 2100_CR29
  publication-title: Polym. Plast. Technol. Eng.
  doi: 10.1080/03602550902824705
– volume: 2
  start-page: 679
  year: 1992
  ident: 2100_CR10
  publication-title: J. Mater. Chem.
  doi: 10.1039/JM9920200679
– volume: 36
  start-page: 153
  year: 1965
  ident: 2100_CR22
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1713863
– volume: 42
  start-page: 6019
  year: 2001
  ident: 2100_CR12
  publication-title: Polymer
  doi: 10.1016/S0032-3861(01)00012-X
– volume: 113
  start-page: 976
  year: 2009
  ident: 2100_CR21
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.29558
– volume: 122
  start-page: 1101
  year: 2011
  ident: 2100_CR27
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.34248
SSID ssj0061311
Score 2.0721486
Snippet A series of polyimide (PI) nanocomposite films with various surface-modified colloidal calcium carbonate (SCaCO 3 ) contents were prepared and their physical...
A series of polyimide (PI) nanocomposite films with various surface-modified colloidal calcium carbonate(SCaCO3) contents were prepared and their physical...
SourceID nrf
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 669
SubjectTerms Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Complex Fluids and Microfluidics
Nanochemistry
Nanotechnology
Physical Chemistry
Polymer Sciences
Soft and Granular Matter
고분자공학
Title Residual stress behavior and physical properties of transparent polyimide/surface-modified CaCO3 nanocomposite films
URI https://link.springer.com/article/10.1007/s13233-014-2100-3
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001887122
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Macromolecular Research, 2014, 22(6), , pp.669-677
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6x2wNwAFpALI_KlTiBXGXtOI6Pq1VLH4JKqCuVk2U7dhXtbrLKpgf662tnY1pelXrKxbaSmcl4PDPfZ4CPXDlGueKYM5bjdJxrHHoVsVCpo4XQxpqQ0P_6LTuapScX7KLHca9jt3ssSXae-hbsRgkNvT8p9scU7zwGsMXGuciHsDX58uP0IDrgLDDIdDSpIscsoSQWM_-1yG_b0aBq3F8V0W6jOXwO5_EVN_0l8_2rVu-b6z_YGx_4DS_gWR94osnGUrbhka124PE03ve2A0_vUBO-hPa7XXc4LbRBk6CI50eqKtCq1y5ahVx-E0hZUe1Q2zGlB3hZi1b14me5LAvrbb1xyli8rIvS-YgXTdX0jKJKVXVoaA9dYxa5crFcv4LZ4cH59Aj3NzRgQ8m4xVQLknGqiSkocdrLOrVKcyZYIYTKFFWF4CZVymjqteKjM5eLRBepMYIrZuhrGFZ1Zd8AYpRxRYjOSYd19bO9lSQuE1opH4fYESRRUdL09OXhFo2FvCVeDsKVXrgyCFfSEXz6NWW14e64b_Ce176cm1IGxu3wvKzlvJH-XHEseZ4Skozgc1Sr7H_19f9XfPug0e_gCQl20SV43sOwba7sBx_vtHq3t-9dGMzI5AZqp_bG
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3xcaAcqkJbsf3ClThRWQp2HMdHtAIt5UuqWImbNXZsFLGbrLLpof--djYprShInHKxffCzxy_2vDcABxK94BIllULkND3KDY25ilRh6nmhjHU2XuhfXmWTafr9Vtz2Ou7lkO0-PEl2kfpB7MYZj7k_KQ2_KSF4rMNm4AJ5LFswZcdD-M2if0xnkqpyKhLOhqfM_w3xz2G0XjX-0Xtod8ycvoHXPT8kxytAd2DNVbuwNR7Ksu3C9l8Ogm-h_eGWnZyKrEQfZJDdE6wKsuhBIIt45d5E71RSe9J2huZRBdaSRT37Vc7LwoUl2Xi0js7rovSBmJIxjq85qbCqY955TO5yxJez-fIdTE9PbsYT2hdSoJazo5Zyo1gmuWG24MybMCmpQyOFEoVSmCHHQkmbIlrDw_QFEuVzlZgitVZJFJa_h42qrtweEMGFRMZMzjpJaugdwEx8pgxioAtuBMkwo9r2LuOx2MVMP_gjRxB0AEFHEDQfweGfLouVxcZzjb8GmPS9LXU0xo7fu1rfNzrQ_zMt85SxZATfBhB1vyOXT4_44UWt92FrcnN5oS_Ors4_wisW11J3J_MJNtrmp_scKEprvnRL8jckqNwM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZokXgcEBQQy9NInEBWs3Ycx8dqYdXyKAixUm_W-FVF3U2ibDjw7_FkEwriIXHKxfbB38Qez8z3DSEvFEQpFCimpCxZPi8tw1pFpiGPwmvrgsOA_ofT4niVvz2TZ2Of0-1U7T6lJHecBlRpqvvD1sfDS-Kb4ALrgHKWnizpINkjV9NpPEdDX_Gj6SguUEtmEEzVJZOZ4FNa809L_HIx7dVd_C03Olw5y9vk1ugr0qMduHfIlVAfkOuLqUXbAbn5k5rgXdJ_DtuBWkV3BBA6UfAp1J62IyC0xfB7hzqqtIm0H8TNkRHW07ZZf6s2lQ_JPLsILrBN46uYnFS6gMVHQWuoG6xBx0KvQGO13mzvkdXyzZfFMRubKjAn-LxnwmpeKGG584JHmzYlD2CV1NJrDQUI8Fq5HMDZtJ_oUMVSZ9bnzmkF0on7ZL9u6vCAUCmkAs5tyQd6apqdgM1ioS1Ach3CjGTTjho3Ko5j44u1udRKRhBMAsEgCEbMyMsfU9qd3Ma_Bj9PMJkLVxkUycbveWMuOpOeAidGlTnn2Yy8mkA049-5_fuKD_9r9DNy7dPrpXl_cvruEbnB0ZSG8Mxjst93X8OT5K309ulgkd8B8lLgSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual+stress+behavior+and+physical+properties+of+transparent+polyimide%2Fsurface-modified+CaCO3+nanocomposite+films&rft.jtitle=Macromolecular+research&rft.au=Nam%2C+Ki-Ho&rft.au=Seo%2C+Jongchul&rft.au=Seo%2C+Kwangwon&rft.au=Jang%2C+Wonbong&rft.date=2014-06-01&rft.issn=1598-5032&rft.eissn=2092-7673&rft.volume=22&rft.issue=6&rft.spage=669&rft.epage=677&rft_id=info:doi/10.1007%2Fs13233-014-2100-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13233_014_2100_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5032&client=summon