Passive strain sensing for structural health monitoring using retroreflective sheeting materials
•Retroreflectivity of retroreflective sheeting material changes with induced strain.•Strain and retroreflectivity are linearly related for some materials.•Strain sensitivity is dependent on the material type.•Retroreflectivity degrades with cyclic loading.•This passive strain sensor is low cost, pra...
Saved in:
Published in | Measurement : journal of the International Measurement Confederation Vol. 214; p. 112763 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Retroreflectivity of retroreflective sheeting material changes with induced strain.•Strain and retroreflectivity are linearly related for some materials.•Strain sensitivity is dependent on the material type.•Retroreflectivity degrades with cyclic loading.•This passive strain sensor is low cost, practical, and straightforward.
Retroreflective sheeting materials (RRSM) are used for various applications in engineering, although primarily for traffic signs. ASTM standards for RRSM specify required minimum retroreflectivities (RR). In this study, tests are conducted that show retroreflectivity decreases when the material is subject to tension, opening the possibility for using RRSM as a passive strain sensor for structural health monitoring that is low cost, practical, and innovative. Ten RRSM types were loaded in tension to 4,000 microstrain while measuring retroreflectivity and strain of the material. Results show that certain RRSM demonstrate a reasonably linear relationship between RR and strain. Furthermore, others do not return to their baseline retroreflectivity but degrade with repeated loading. Four of the materials are identified as the most likely to perform well as passive strain sensors. |
---|---|
AbstractList | •Retroreflectivity of retroreflective sheeting material changes with induced strain.•Strain and retroreflectivity are linearly related for some materials.•Strain sensitivity is dependent on the material type.•Retroreflectivity degrades with cyclic loading.•This passive strain sensor is low cost, practical, and straightforward.
Retroreflective sheeting materials (RRSM) are used for various applications in engineering, although primarily for traffic signs. ASTM standards for RRSM specify required minimum retroreflectivities (RR). In this study, tests are conducted that show retroreflectivity decreases when the material is subject to tension, opening the possibility for using RRSM as a passive strain sensor for structural health monitoring that is low cost, practical, and innovative. Ten RRSM types were loaded in tension to 4,000 microstrain while measuring retroreflectivity and strain of the material. Results show that certain RRSM demonstrate a reasonably linear relationship between RR and strain. Furthermore, others do not return to their baseline retroreflectivity but degrade with repeated loading. Four of the materials are identified as the most likely to perform well as passive strain sensors. |
ArticleNumber | 112763 |
Author | Power, Hannah M. Shenton III, Harry W. |
Author_xml | – sequence: 1 givenname: Hannah M. surname: Power fullname: Power, Hannah M. email: hpower@udel.edu – sequence: 2 givenname: Harry W. surname: Shenton III fullname: Shenton III, Harry W. email: shenton@udel.edu |
BookMark | eNqNkEtLAzEQgINUsK3-h_UHbM1rs92TSPEFgh4UvMU0mdiU3USSbMF_727rQTz1NMM8Pma-GZr44AGhS4IXBBNxtV10oFIfoQOfFxRTtiCE1oKdoClZ1qzkhL5P0BRTwUpKOTlDs5S2GGPBGjFFHy8qJbeDIuWonC8S-OT8Z2FDHEu9zn1UbbEB1eZN0QXvcojjQL8fi5BjiGBb0HlP2QDksdGpDNGpNp2jUzsEuPiNc_R2d_u6eiifnu8fVzdPpWaU5JLaGhttmakEJtYIrhreDBm1htWNIawWS2YYr4TSxHJaw5pXZo0rwDVnirI5uj5wdQwpDSdJ7bLKLvjxsVYSLEdhciv_CJOjMHkQNhCaf4Sv6DoVv4_aXR12YXhx5yDKpB14DcbFQY00wR1B-QFPApMG |
CitedBy_id | crossref_primary_10_4108_eetpht_10_5899 crossref_primary_10_1088_1755_1315_1326_1_012090 |
Cites_doi | 10.1016/j.solener.2018.06.073 10.3390/mi12010034 10.1109/TMTT.2013.2243751 10.1109/IPSN.2007.4379685 10.1016/j.proeng.2016.07.212 10.1088/0964-1726/17/2/025015 10.1063/1.1472901 10.1016/j.yofte.2022.102876 10.1299/jsmermd.2017.1P1-B04 10.1061/(ASCE)BE.1943-5592.0000933 10.1098/rsta.2006.1925 10.1109/JSEN.2018.2831903 10.1039/C7RA13284K 10.3390/app12052413 10.1109/JSEN.2016.2631259 10.1177/1475921703036169 10.1109/JPROC.2016.2588818 10.5539/mas.v7n2p57 10.3390/s17092151 10.1117/12.941687 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.measurement.2023.112763 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-412X |
ExternalDocumentID | 10_1016_j_measurement_2023_112763 S0263224123003275 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GS5 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SST SSZ T5K ZMT ~G- 29M AATTM AAXKI AAYWO AAYXX ABFNM ABXDB ACNNM ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SSH WUQ XPP |
ID | FETCH-LOGICAL-c321t-2f70dcf3d5601fd64a94901f2fd379d137683d3456ac1f427eb45db05e0743a23 |
IEDL.DBID | .~1 |
ISSN | 0263-2241 |
IngestDate | Thu Apr 24 22:56:05 EDT 2025 Tue Jul 01 00:52:23 EDT 2025 Fri Feb 23 02:35:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Retroreflectivity Reflective Bridge |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-2f70dcf3d5601fd64a94901f2fd379d137683d3456ac1f427eb45db05e0743a23 |
ParticipantIDs | crossref_citationtrail_10_1016_j_measurement_2023_112763 crossref_primary_10_1016_j_measurement_2023_112763 elsevier_sciencedirect_doi_10_1016_j_measurement_2023_112763 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-15 |
PublicationDateYYYYMMDD | 2023-06-15 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Measurement : journal of the International Measurement Confederation |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | 2(3) (2003) 0257-267. DOI: 10.1177/145792103036169. Burghardt, Pashkevich, Fiolic, Zakowska (b0140) 2019; 47 A. Bruinsma, J. Heida, D-Sight Technique for Rapid Impact Damage Detection on Composite Aircraft Structures, in Saleh, Fleyeh, Alam (b0150) 2022; 12 A.M. Biondi, J. Zhou, X. Guo, R. Wu, Q. Tang, H. Gandhi, T. Yu, B. Gopalan, T. Hanna, J. Ivey, X. Wang, Pipeline structural health monitoring using distributed fiber optic sensing textile Daliri, Galehdar, Rowe, Ghorbani, John (b0040) 2011; 23 Chen, Zhou, Wang, Dong, Qian (b0055) 2017; 17 Sohn, Farrar, Hemez, Czarnecki (b0015) 2002 Kostromitin (b0160) 2016; 150 Brisbane, Australia, 2017. Micro-Measurements. 2010. Document Number: 11053, Measurement of Residual Stresses by the Hole-Drilling Strain Gauge Method. 26(5) (2020) 667-680 Doi:10.12989/sss.2020.26.5.667. DiGiampaolo, DiCarlofelice, Gregori (b0085) 2017; 17 615(1) (2002) 969. Doi:10.1063/1.1472901. Federal Highway Administration (FHWA). 2005. FHWA Retroreflective Sheeting Identification Guide. https://safety.fhwa.dot.gov/roadway_dept/night_visib/retrotoolkit/pdfs/sheetguide_sept05.pdf. M. Omachi, S. Umemoto, T. Takaki, K. Matsuo, N. Miyamoto, I. Ishii, T. Aoyama, Visualization of Strain and New Strain Measurement Technique, in Brownjohn (b0005) 2007; 365 (b0020) 2018 Hong, Cao, Wu (b0035) 2016; 21 7(2) (2013) 57-76. http://dx.doi.org/10.5539/mas.v7n2p57. Y. Wang, Q. Tan, L. Zhang, M. Li, Z. Fan, Wireless Passive LC Temperature and Strain Dual-Parameter Sensor 1999. P.C. Chang, A. Flatau, S.C. Liu, Review Paper: Health Monitoring in Civil Infrastructure. . ASTM D4956-19 Standard Specification for Retroreflective Sheeting for Traffic Control American Society for Testing and Materials, “Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method,” ASTM Standard E837-20, American Society for Testing and Materials, West Conshohocken, PA (2020). Khalid, Ahmed, Yetisen, Butt (b0155) 2018; 14 12(1) (2021) 34. L. Mauri, G. Battista, E.L. Vollaro, R.L. Vollaro, Retroreflective Materials for Building’s Facades: Experimental Characterization and Numerical Simulations J.P. Lynch, C.R. Farrar, J.E. Michaels, Structural Health Monitoring: Technical Advances to Practical Implementations V. 2007, pp. 254-263, DOI: 10.1109/IPSN.2007.4379685. U.S. Department of Transportation Federal Highway Administration (FHWA), Manual on Uniform Traffic Control Devices (MUTCD), 2009 Edition with Revision Numbers 1 and 2 Incorporated, 2012. M.R. Kaloop, M. Elsharawy, B. Abdelwahed, J.W. Hu, D. Kim, Performance Assessment of Bridges Using Short-Period Structural Health Monitoring System: Sungsu Bridge Case Study. M.O. Furkan, Q. Mao, S. Livadiotis, M. Mazzotti, A.E. Aktan, S.P. Sumitro, I. Bartoli, Multipurpose Wireless Sensors for Asset Management and Health Monitoring of Bridges Proceedings of the IEEE. 104(8) (2016) 1508-1512. DOI: 10.1109/JPROC.2016.2588818. E.L. Tan, B.D. Pereles, R. Shao, J. Ong, K.G. Ong, A Wireless, Passive Strain Sensor Based on the Harmonic Response of Magnetically Soft Materials. Thai, Aubert, Pons, DeJean, Tentzeris, Plana (b0065) 2013; 61 American Society for Testing and Materials, “Standard Test Method for Measurement of Retroreflective Signs Using a Portable Retroreflectometer at a 0.5 Degree Observation Angle,” ASTM Standard E2540-16, American Society for Testing and Materials, West Conshohocken, PA (2022). 17(2008): 025016. http://dx.doi.org/10.1088/0964-1726/17/2/025015. D.G. Watters, P. Jayaweera, A.J. Bahr, D.L. Huesris, Design and Performance of Wireless Sensors for Structural Health Monitoring. Kirk, Hunt, Brooks (b0145) 2001 171(2018): 150-156. Doi:10.1016/j.solener.2018.06.073. A. Deivasigamani, A. Daliri, C.H. Wang, S. John, A review of Passive Wireless Sensors for Structural Health Monitoring. Shenton III, Al-Khateeb, Chajes, Wenczel (b0050) 2017; 13 S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, M. Turon, Health Monitoring of Civil Infrastructures Using Wireless Sensor, in I. Yamaguchi, Advances in the Laser Speckle Strain Gauge. Proc. SPIE 0814, Photomechanics and Speckle Metrology, 1988. Doi:10.1117/12.941687. American Society for Testing and Materials, “Standard Test Method for Measurement of Retroreflective Signs Using a Portable Retroreflectometer at a 0.2 Degree Observation Angle,” ASTM Standard E1709-16, American Society for Testing and Materials, West Conshohocken, PA (2022). Volume 70, 2022, 102876, ISSN 1068-5200, Doi:10.1016/j.yofte.2022.102876. Jang, Kang, Kim (b0080) 2013; 22 Chakaravarthi, Logakannan, Philip, Rengaswamy, Ramachandran, Arunachalam (b0090) 2018; 18 10.1016/j.measurement.2023.112763_b0180 Sohn (10.1016/j.measurement.2023.112763_b0015) 2002 10.1016/j.measurement.2023.112763_b0060 Thai (10.1016/j.measurement.2023.112763_b0065) 2013; 61 Jang (10.1016/j.measurement.2023.112763_b0080) 2013; 22 10.1016/j.measurement.2023.112763_b0110 DiGiampaolo (10.1016/j.measurement.2023.112763_b0085) 2017; 17 10.1016/j.measurement.2023.112763_b0075 10.1016/j.measurement.2023.112763_b0130 Burghardt (10.1016/j.measurement.2023.112763_b0140) 2019; 47 Saleh (10.1016/j.measurement.2023.112763_b0150) 2022; 12 10.1016/j.measurement.2023.112763_b0010 10.1016/j.measurement.2023.112763_b0175 10.1016/j.measurement.2023.112763_b0115 10.1016/j.measurement.2023.112763_b0135 10.1016/j.measurement.2023.112763_b0070 Khalid (10.1016/j.measurement.2023.112763_b0155) 2018; 14 10.1016/j.measurement.2023.112763_b0095 (10.1016/j.measurement.2023.112763_b0020) 2018 10.1016/j.measurement.2023.112763_b0030 Chen (10.1016/j.measurement.2023.112763_b0055) 2017; 17 10.1016/j.measurement.2023.112763_b0170 Hong (10.1016/j.measurement.2023.112763_b0035) 2016; 21 Kirk (10.1016/j.measurement.2023.112763_b0145) 2001 10.1016/j.measurement.2023.112763_b0105 Chakaravarthi (10.1016/j.measurement.2023.112763_b0090) 2018; 18 10.1016/j.measurement.2023.112763_b0165 10.1016/j.measurement.2023.112763_b0045 10.1016/j.measurement.2023.112763_b0100 10.1016/j.measurement.2023.112763_b0185 10.1016/j.measurement.2023.112763_b0120 10.1016/j.measurement.2023.112763_b0125 Kostromitin (10.1016/j.measurement.2023.112763_b0160) 2016; 150 Shenton III (10.1016/j.measurement.2023.112763_b0050) 2017; 13 Brownjohn (10.1016/j.measurement.2023.112763_b0005) 2007; 365 Daliri (10.1016/j.measurement.2023.112763_b0040) 2011; 23 10.1016/j.measurement.2023.112763_b0025 |
References_xml | – reference: . V. 2007, pp. 254-263, DOI: 10.1109/IPSN.2007.4379685. – reference: D.G. Watters, P. Jayaweera, A.J. Bahr, D.L. Huesris, Design and Performance of Wireless Sensors for Structural Health Monitoring. – start-page: 1 year: 2018 end-page: 14 ident: b0020 publication-title: Structural Health Monitoring of Large Civil Engineering Structures – volume: 12 year: 2022 ident: b0150 article-title: An Analysis of the Factors Influencing the Retroreflectivity Performance of In-Service Road Traffic Signs publication-title: Appl. Sci.. – reference: 7(2) (2013) 57-76. http://dx.doi.org/10.5539/mas.v7n2p57. – volume: 14 start-page: 7588 year: 2018 end-page: 7598 ident: b0155 article-title: Flexible Corner Cube Retroreflector Array for Temperature and Strain Sensing publication-title: RSC Advances. – reference: U.S. Department of Transportation Federal Highway Administration (FHWA), Manual on Uniform Traffic Control Devices (MUTCD), 2009 Edition with Revision Numbers 1 and 2 Incorporated, 2012. – year: 2002 ident: b0015 article-title: A Review of Structural Health Monitoring Literature 1996–2001 publication-title: Los Alamos National Laboratory. – reference: A.M. Biondi, J. Zhou, X. Guo, R. Wu, Q. Tang, H. Gandhi, T. Yu, B. Gopalan, T. Hanna, J. Ivey, X. Wang, Pipeline structural health monitoring using distributed fiber optic sensing textile – reference: J.P. Lynch, C.R. Farrar, J.E. Michaels, Structural Health Monitoring: Technical Advances to Practical Implementations, – reference: Proceedings of the IEEE. 104(8) (2016) 1508-1512. DOI: 10.1109/JPROC.2016.2588818. – volume: 23 start-page: 169 year: 2011 end-page: 182 ident: b0040 article-title: Utilising Microstrip Patch Antenna Strain Sensors for Structural Health Monitoring publication-title: J. Intell. Mater. Syst. Struct. – volume: 61 start-page: 1385 year: 2013 end-page: 1396 ident: b0065 article-title: Novel Design of a Highly Sensitive RF Strain Transducer for Passive and Remote Sensing in Two Dimensions publication-title: IEEE Trans. Microwave Theory and Tech. – volume: 18 start-page: 5143 year: 2018 end-page: 5150 ident: b0090 article-title: Reusable Passive Wireless RFID Sensor for Strain Measurement on Metals publication-title: IEEE Sensors Journal. – reference: ASTM D4956-19 Standard Specification for Retroreflective Sheeting for Traffic Control, – volume: 13 start-page: 3 year: 2017 end-page: 13 ident: b0050 article-title: Indian River Inlet Bridge (Part A): Description of the Bridge and the Structural Health Monitoring System publication-title: Bridge Structures – Assessment, Design and Construction. – reference: Y. Wang, Q. Tan, L. Zhang, M. Li, Z. Fan, Wireless Passive LC Temperature and Strain Dual-Parameter Sensor – reference: Federal Highway Administration (FHWA). 2005. FHWA Retroreflective Sheeting Identification Guide. https://safety.fhwa.dot.gov/roadway_dept/night_visib/retrotoolkit/pdfs/sheetguide_sept05.pdf. – reference: M.R. Kaloop, M. Elsharawy, B. Abdelwahed, J.W. Hu, D. Kim, Performance Assessment of Bridges Using Short-Period Structural Health Monitoring System: Sungsu Bridge Case Study. – reference: American Society for Testing and Materials, “Standard Test Method for Measurement of Retroreflective Signs Using a Portable Retroreflectometer at a 0.2 Degree Observation Angle,” ASTM Standard E1709-16, American Society for Testing and Materials, West Conshohocken, PA (2022). – reference: American Society for Testing and Materials, “Standard Test Method for Measurement of Retroreflective Signs Using a Portable Retroreflectometer at a 0.5 Degree Observation Angle,” ASTM Standard E2540-16, American Society for Testing and Materials, West Conshohocken, PA (2022). – volume: 365 start-page: 589 year: 2007 end-page: 622 ident: b0005 article-title: Structural Health Monitoring of Civil Infrastructure publication-title: Phil. Trans. R. Soc. A. – reference: American Society for Testing and Materials, “Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method,” ASTM Standard E837-20, American Society for Testing and Materials, West Conshohocken, PA (2020). – reference: M.O. Furkan, Q. Mao, S. Livadiotis, M. Mazzotti, A.E. Aktan, S.P. Sumitro, I. Bartoli, Multipurpose Wireless Sensors for Asset Management and Health Monitoring of Bridges, – reference: M. Omachi, S. Umemoto, T. Takaki, K. Matsuo, N. Miyamoto, I. Ishii, T. Aoyama, Visualization of Strain and New Strain Measurement Technique, in: – reference: A. Bruinsma, J. Heida, D-Sight Technique for Rapid Impact Damage Detection on Composite Aircraft Structures, in: – volume: 17 start-page: 2151 year: 2017 ident: b0055 article-title: Deployment of a Smart Structural Health Monitoring System for Long-Span Arch Bridges: A Review and a Case Study publication-title: Sensors – volume: 22 year: 2013 ident: b0080 article-title: Frequency Selective Surface Based Passive Wireless Sensor for Structural Health Monitoring publication-title: Smart Materials and Structures – reference: S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, M. Turon, Health Monitoring of Civil Infrastructures Using Wireless Sensor, in: – reference: Micro-Measurements. 2010. Document Number: 11053, Measurement of Residual Stresses by the Hole-Drilling Strain Gauge Method. – reference: 17(2008): 025016. http://dx.doi.org/10.1088/0964-1726/17/2/025015. – reference: 171(2018): 150-156. Doi:10.1016/j.solener.2018.06.073. – volume: 21 start-page: 04016059 year: 2016 ident: b0035 article-title: Strain-Based Damage-Assessment Method for Bridges Under Moving Vehicular Loads Using Long-Gauge Strain Sensing publication-title: J. Bridge Eng. – reference: 12(1) (2021) 34. – reference: 1999. – reference: L. Mauri, G. Battista, E.L. Vollaro, R.L. Vollaro, Retroreflective Materials for Building’s Facades: Experimental Characterization and Numerical Simulations – reference: 2(3) (2003) 0257-267. DOI: 10.1177/145792103036169. – reference: E.L. Tan, B.D. Pereles, R. Shao, J. Ong, K.G. Ong, A Wireless, Passive Strain Sensor Based on the Harmonic Response of Magnetically Soft Materials. – reference: Brisbane, Australia, 2017. – volume: 47 start-page: 49 year: 2019 end-page: 60 ident: b0140 article-title: Horizontal Road Markings with High Retroreflectivity: Durability, Environmental, and Financial Considerations publication-title: Adv. Transport. Studies. – reference: . Volume 70, 2022, 102876, ISSN 1068-5200, Doi:10.1016/j.yofte.2022.102876. – reference: P.C. Chang, A. Flatau, S.C. Liu, Review Paper: Health Monitoring in Civil Infrastructure. – volume: 150 start-page: 1046 year: 2016 end-page: 1049 ident: b0160 article-title: Technological Aspects of Retroreflective Sheeting Production publication-title: Proc. Eng. – reference: I. Yamaguchi, Advances in the Laser Speckle Strain Gauge. Proc. SPIE 0814, Photomechanics and Speckle Metrology, 1988. Doi:10.1117/12.941687. – reference: . – year: 2001 ident: b0145 article-title: Factors Affecting Sign Retroreflectivity – volume: 17 start-page: 286 year: 2017 end-page: 294 ident: b0085 article-title: An RFID-Enabled Wireless Strain Gauge Sensor for Static and Dynamic Structural Monitoring publication-title: IEEE Sensors J. – reference: A. Deivasigamani, A. Daliri, C.H. Wang, S. John, A review of Passive Wireless Sensors for Structural Health Monitoring. – reference: 26(5) (2020) 667-680 Doi:10.12989/sss.2020.26.5.667. – reference: 615(1) (2002) 969. Doi:10.1063/1.1472901. – ident: 10.1016/j.measurement.2023.112763_b0165 – ident: 10.1016/j.measurement.2023.112763_b0060 – ident: 10.1016/j.measurement.2023.112763_b0115 – volume: 13 start-page: 3 issue: 1 year: 2017 ident: 10.1016/j.measurement.2023.112763_b0050 article-title: Indian River Inlet Bridge (Part A): Description of the Bridge and the Structural Health Monitoring System publication-title: Bridge Structures – Assessment, Design and Construction. – volume: 47 start-page: 49 issue: 2019 year: 2019 ident: 10.1016/j.measurement.2023.112763_b0140 article-title: Horizontal Road Markings with High Retroreflectivity: Durability, Environmental, and Financial Considerations publication-title: Adv. Transport. Studies. – year: 2002 ident: 10.1016/j.measurement.2023.112763_b0015 article-title: A Review of Structural Health Monitoring Literature 1996–2001 publication-title: Los Alamos National Laboratory. – ident: 10.1016/j.measurement.2023.112763_b0135 doi: 10.1016/j.solener.2018.06.073 – ident: 10.1016/j.measurement.2023.112763_b0110 doi: 10.3390/mi12010034 – volume: 61 start-page: 1385 issue: 3 year: 2013 ident: 10.1016/j.measurement.2023.112763_b0065 article-title: Novel Design of a Highly Sensitive RF Strain Transducer for Passive and Remote Sensing in Two Dimensions publication-title: IEEE Trans. Microwave Theory and Tech. doi: 10.1109/TMTT.2013.2243751 – ident: 10.1016/j.measurement.2023.112763_b0130 – ident: 10.1016/j.measurement.2023.112763_b0045 doi: 10.1109/IPSN.2007.4379685 – ident: 10.1016/j.measurement.2023.112763_b0125 – ident: 10.1016/j.measurement.2023.112763_b0180 – volume: 150 start-page: 1046 issue: 2016 year: 2016 ident: 10.1016/j.measurement.2023.112763_b0160 article-title: Technological Aspects of Retroreflective Sheeting Production publication-title: Proc. Eng. doi: 10.1016/j.proeng.2016.07.212 – ident: 10.1016/j.measurement.2023.112763_b0105 doi: 10.1088/0964-1726/17/2/025015 – year: 2001 ident: 10.1016/j.measurement.2023.112763_b0145 – ident: 10.1016/j.measurement.2023.112763_b0095 doi: 10.1063/1.1472901 – ident: 10.1016/j.measurement.2023.112763_b0120 doi: 10.1016/j.yofte.2022.102876 – volume: 22 issue: 2013 year: 2013 ident: 10.1016/j.measurement.2023.112763_b0080 article-title: Frequency Selective Surface Based Passive Wireless Sensor for Structural Health Monitoring publication-title: Smart Materials and Structures – ident: 10.1016/j.measurement.2023.112763_b0075 doi: 10.1299/jsmermd.2017.1P1-B04 – volume: 21 start-page: 04016059 issue: 10 year: 2016 ident: 10.1016/j.measurement.2023.112763_b0035 article-title: Strain-Based Damage-Assessment Method for Bridges Under Moving Vehicular Loads Using Long-Gauge Strain Sensing publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0000933 – start-page: 1 year: 2018 ident: 10.1016/j.measurement.2023.112763_b0020 – ident: 10.1016/j.measurement.2023.112763_b0030 – ident: 10.1016/j.measurement.2023.112763_b0170 – volume: 23 start-page: 169 issue: 3 year: 2011 ident: 10.1016/j.measurement.2023.112763_b0040 article-title: Utilising Microstrip Patch Antenna Strain Sensors for Structural Health Monitoring publication-title: J. Intell. Mater. Syst. Struct. – volume: 365 start-page: 589 year: 2007 ident: 10.1016/j.measurement.2023.112763_b0005 article-title: Structural Health Monitoring of Civil Infrastructure publication-title: Phil. Trans. R. Soc. A. doi: 10.1098/rsta.2006.1925 – volume: 18 start-page: 5143 issue: 12 year: 2018 ident: 10.1016/j.measurement.2023.112763_b0090 article-title: Reusable Passive Wireless RFID Sensor for Strain Measurement on Metals publication-title: IEEE Sensors Journal. doi: 10.1109/JSEN.2018.2831903 – volume: 14 start-page: 7588 issue: 2018 year: 2018 ident: 10.1016/j.measurement.2023.112763_b0155 article-title: Flexible Corner Cube Retroreflector Array for Temperature and Strain Sensing publication-title: RSC Advances. doi: 10.1039/C7RA13284K – volume: 12 issue: 5 year: 2022 ident: 10.1016/j.measurement.2023.112763_b0150 article-title: An Analysis of the Factors Influencing the Retroreflectivity Performance of In-Service Road Traffic Signs publication-title: Appl. Sci.. doi: 10.3390/app12052413 – ident: 10.1016/j.measurement.2023.112763_b0175 – volume: 17 start-page: 286 issue: 2 year: 2017 ident: 10.1016/j.measurement.2023.112763_b0085 article-title: An RFID-Enabled Wireless Strain Gauge Sensor for Static and Dynamic Structural Monitoring publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2016.2631259 – ident: 10.1016/j.measurement.2023.112763_b0010 doi: 10.1177/1475921703036169 – ident: 10.1016/j.measurement.2023.112763_b0025 doi: 10.1109/JPROC.2016.2588818 – ident: 10.1016/j.measurement.2023.112763_b0185 – ident: 10.1016/j.measurement.2023.112763_b0070 doi: 10.5539/mas.v7n2p57 – volume: 17 start-page: 2151 issue: 9 year: 2017 ident: 10.1016/j.measurement.2023.112763_b0055 article-title: Deployment of a Smart Structural Health Monitoring System for Long-Span Arch Bridges: A Review and a Case Study publication-title: Sensors doi: 10.3390/s17092151 – ident: 10.1016/j.measurement.2023.112763_b0100 doi: 10.1117/12.941687 |
SSID | ssj0006396 |
Score | 2.3599482 |
Snippet | •Retroreflectivity of retroreflective sheeting material changes with induced strain.•Strain and retroreflectivity are linearly related for some... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112763 |
SubjectTerms | Bridge Reflective Retroreflectivity |
Title | Passive strain sensing for structural health monitoring using retroreflective sheeting materials |
URI | https://dx.doi.org/10.1016/j.measurement.2023.112763 |
Volume | 214 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8NADA5DUfRBdCrOH-MEX7u1d9feCr6M4ZiKQ9DB3mrbu-pkm2Obr_7tJr3OTRAUfGy5lDZJk--OLwnAhacTnbjCOArTDW5QtHTCLJCOrw3mZ9-EMadq5Ltu0OnJm77fL0FrUQtDtMoi9tuYnkfr4k690GZ9MhjUH1xqNY4JCEG0K7iiQnMpFXl57WNJ88AMHNhzFuHQ6k04X3K8RstzuBrNEaeCmrwj6E85aiXvtHdhpwCMrGnfaQ9KZlyG7ZU2gmXYyGmc6Wwfnu4RC2P8YrN89AObET19_MwQmTLbKZa6bDBb_MhG-f9Mz2Dv-bKpmU9p8MjQRkE2ezF5RTRDWGs99QB67avHVscpZig4qeDe3OGZcnWaCU07r0wHMg4lQoCMZ1qoUHsYXxpCC4RRceplkiuTSB-t5xvCFjEXh7A2fhubI2CxTlCXMkEEqGRgVCy4MbGrUilF5mtVgcZCa1FaNBinjx1GCybZa7Si8IgUHlmFV4B_iU5sl42_CF0uTBN9c5kIs8Hv4sf_Ez-BLboi1pjnn8Ia2tCcIT6ZJ9XcAauw3ry-7XQ_AeY26O8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB604usgPvHtCl5jk31kLXgRUaLVItiCt5hkN1rRWNr6_53JpraCoOA1yYRkdvebb5eZbwCOApOa1BfW0xhucINipNfIQ-kpYzE-K9tIOFUj37bCqCOvH9TDFJyPamEorbLCfofpJVpXV-qVN-u9brd-75PUOAYgJNG-4FpNwwypU6kazJxdNaPWFyBjEA7dUYvwyGAODsdpXm_jo7hjaiVONTWlKOhPYWoi9Fwuw1LFGdmZ-6wVmLLFKixOKAmuwmyZyZkN1uDxDukwQhgblN0f2IAy1IsnhuSUObFYEtpgrv6RvZVLmt7BPsrH-nbYp94jrw4I2eDZlkXRDJmtm6zr0Lm8aJ9HXtVGwcsED4Yez7VvslwY2nzlJpRJQyILyHluhG6YACHmRBiBTCrJglxybVOpcACVJXqRcLEBteK9sJvAEpOiL2WKJFDL0OpEcGsTX2dSilwZvQUnI6_FWaUxTj_7Go-SyV7iCYfH5PDYOXwL-Jdpzwlt_MXodDQ08bdZE2NA-N18-3_mBzAftW9v4purVnMHFugOJZEFahdqOJ52D-nKMN2vpuMn3UbroA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passive+strain+sensing+for+structural+health+monitoring+using+retroreflective+sheeting+materials&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Power%2C+Hannah+M.&rft.au=Shenton+III%2C+Harry+W.&rft.date=2023-06-15&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=214&rft_id=info:doi/10.1016%2Fj.measurement.2023.112763&rft.externalDocID=S0263224123003275 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |