A thermoelastic diffusion interaction in an infinitely long annular cylinder

The present paper is aimed at studying a two-dimensional problem for an infinitely long solid conducting circular cylinder with a permeating substance in contact with its bounding surface. The problem is considered in the context of generalized thermoelastic diffusion theory with one relaxation time...

Full description

Saved in:
Bibliographic Details
Published inArchive of applied mechanics (1991) Vol. 84; no. 7; pp. 953 - 965
Main Authors Allam, Allam A., Omar, M. A., Ramadan, Khaled T.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present paper is aimed at studying a two-dimensional problem for an infinitely long solid conducting circular cylinder with a permeating substance in contact with its bounding surface. The problem is considered in the context of generalized thermoelastic diffusion theory with one relaxation time. The lateral surface of the solid is traction free and subjected to known temperature and chemical potential as functions of time. The solution is obtained by a transform method and a direct approach without the customary use of potential functions. Numerical inversion of the transformed solution is carried out to obtain the temperature, displacement, stress, and concentration of the diffusive material distributions. Numerical results are represented graphically and discussed. The second sound effect and the asymptotic behavior for the solution are discussed.
AbstractList The present paper is aimed at studying a two-dimensional problem for an infinitely long solid conducting circular cylinder with a permeating substance in contact with its bounding surface. The problem is considered in the context of generalized thermoelastic diffusion theory with one relaxation time. The lateral surface of the solid is traction free and subjected to known temperature and chemical potential as functions of time. The solution is obtained by a transform method and a direct approach without the customary use of potential functions. Numerical inversion of the transformed solution is carried out to obtain the temperature, displacement, stress, and concentration of the diffusive material distributions. Numerical results are represented graphically and discussed. The second sound effect and the asymptotic behavior for the solution are discussed.
Author Omar, M. A.
Allam, Allam A.
Ramadan, Khaled T.
Author_xml – sequence: 1
  givenname: Allam A.
  surname: Allam
  fullname: Allam, Allam A.
  email: abdoallahallam@yahoo.com
  organization: Department of Basic and Applied Science, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport
– sequence: 2
  givenname: M. A.
  surname: Omar
  fullname: Omar, M. A.
  organization: Department of Basic and Applied Science, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport
– sequence: 3
  givenname: Khaled T.
  surname: Ramadan
  fullname: Ramadan, Khaled T.
  organization: Department of Basic and Applied Science, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport
BookMark eNp9kD1PwzAQhi1UJNrCD2DLyGI4fySOx6riS6rEArPlOHZx5TrFTob-e1yFmeW90-l9T3fPCi3iEC1C9wQeCYB4ygCcSAyEY2g5wfQKLQlnFEPTkgVagmQSk5qxG7TK-QDFXlNYot2mGr9tOg426Dx6U_XeuSn7IVY-jjZpM859pS_qfPSjDecqDHFfRnEKOlXmHHzsbbpF106HbO_-6hp9vTx_bt_w7uP1fbvZYcMoGTGtXTm2bpyURVyvmaYARgja1aC5NJwJ6Wwrue2Mg67Xuu8AbCM6bqATbI0e5r2nNPxMNo_q6LOxIehohykr0ghSt0LUpFjJbDVpyDlZp07JH3U6KwLqQk7N5FQhpy7kFC0ZOmdy8ca9TeowTCmWj_4J_QLFy3OQ
CitedBy_id crossref_primary_10_1016_j_jmps_2015_02_018
crossref_primary_10_1007_s00707_016_1569_6
crossref_primary_10_1080_01495739_2020_1736966
crossref_primary_10_1080_01495739_2016_1232151
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118568
crossref_primary_10_1108_MMMS_12_2014_0066
crossref_primary_10_1007_s00707_017_1814_7
crossref_primary_10_1177_1081286516644313
Cites_doi 10.1080/01495730903018531
10.1007/s00419-011-0535-y
10.1080/01495730801978281
10.1016/j.euromechsol.2011.06.007
10.1098/rspa.1991.0012
10.1007/BF00044969
10.1016/0377-0427(84)90075-X
10.1007/s00033-009-0016-0
10.1007/s00419-011-0587-z
10.1016/j.ijengsci.2003.05.001
10.1093/qjmam/33.1.1
10.1007/BF00045689
10.1016/0022-5096(67)90024-5
10.1103/PhysRev.131.2013
10.1080/01495739.2011.586274
10.1007/s00419-011-0572-6
10.1007/BF00915613
10.1007/s00419-011-0555-7
10.1016/j.ijsolstr.2005.01.001
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1007/s00419-014-0841-2
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1432-0681
EndPage 965
ExternalDocumentID 10_1007_s00419_014_0841_2
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
2.D
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
ZMTXR
ZY4
_50
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
7TB
8FD
AAYZH
FR3
KR7
ID FETCH-LOGICAL-c321t-25f04156f9956ffda3a200c772b50a49c4379fe894ebcf0bdaadb00e67b4c0b73
IEDL.DBID AGYKE
ISSN 0939-1533
IngestDate Fri Oct 25 05:43:42 EDT 2024
Thu Sep 12 17:19:31 EDT 2024
Sat Dec 16 12:06:44 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Thermoelastic diffusion
Chemical potential
Solid cylinder
Laplace transform
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-25f04156f9956ffda3a200c772b50a49c4379fe894ebcf0bdaadb00e67b4c0b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671587751
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1671587751
crossref_primary_10_1007_s00419_014_0841_2
springer_journals_10_1007_s00419_014_0841_2
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Archive of applied mechanics (1991)
PublicationTitleAbbrev Arch Appl Mech
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References NowackiW.Dynamic problems of diffusion in solidsEng. Fract. Mech.197681261266
NowackiW.Dynamical problems of thermoelastic diffusion in solids iBull. de l’Acad. Polonaise des Sci. Sér. des Sci. Tech.1974225564353792
Sherief, H.H.: On generalized thermoelasticity. Ph.d. thesis, University of Calgary, Canada (1980)
LordH.ShulmanY.A generalized dynamical theory of thermoelasticityJ. Mech. Phys. Solids19671529930910.1016/0022-5096(67)90024-50156.22702
Podstrigach, Y.S.: Differential equations of thermodiffusion problem in isotropic deformable solid. Dopovidi Ukrainian Acad. Sci. 2, 169–172 (In Ukrainian) (1961)
Aouadi, M.: A generalized thermoelastic diffusion problem for an infinitely long solid cylinder. Int. J. Math. Math. Sci. 2006, 1–15 (2006)
GreenA.E.LindsayK.A.ThermoelasticityJ. Elast.197221710.1007/BF000456890775.73063
SheriefH.H.SalehH.A.A half-space problem in the theory of generalized thermoelastic diffusionInt. J. Solids Struct.200542154484449310.1016/j.ijsolstr.2005.01.0011119.74366
SinghB.On theory of generalized thermoelastic solids with voids and diffusionEur. J. Mech.-A/Solids201130697698210.1016/j.euromechsol.2011.06.0071278.740412882871
de Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics, vol. 140. North-Holland, Amsterdam; Wiley, New York (1962)
HonigG.HirdesU.A method for the numerical inversion of the Laplace transformJ. Comput. Appl. Math.19841011313210.1016/0377-0427(84)90075-X0535.65090736594
El-MaghrabyN.M.Two-dimensional thermoelasticity problem for a thick plate under the action of a body force in two relaxation timesJ. Therm. Stress.20093286387610.1080/01495730903018531
EzzatM.A.FayikM.A.Fractional order theory of thermoelastic diffusionJ. Therm. Stress.201134885187210.1080/01495739.2011.586274
GreenA.E.NaghdiP.M.A re-examination of the basic postulates of thermomechanicsProc. R. Soc. A199143217119410.1098/rspa.1991.00120726.730041116956
PhilibertJ.One and a half century of diffusion: Fick, Einstein, before and beyondDiffus. Fundam.20052110
AouadiM.A theory of thermoelastic diffusion materials with voidsZeitschrift für Angewandte Math. Phys. (ZAMP)201061235737910.1007/s00033-009-0016-01262.740132609672
ChesterM.Second sound in solidsPhys. Rev.19631312013201510.1103/PhysRev.131.2013
NowackiW.Dynamical problems of thermoelastic diffusion in solids iiiBull. de l’Acad. Polonaise des Sci. Sér. des Sci. Tech.1974222052110327.73004
Podstrigach, Y.S.: Diffusion theory of inelasticity of metals. J. Appl. Mech. Tech. Phys. 2, 67–72 (In Russian) (1965)
EzzatM.A.El-KaramanyA.S.FayikM.A.Fractional order theory in thermoelastic solid with three-phase lag heat transferArch. Appl. Mech.201282455757210.1007/s00419-011-0572-6
SheriefH.H.HamzaF.A.SalahH.A.The theory of generalized thermoelastic diffusionInt. J. Eng. Sci.20044259160810.1016/j.ijengsci.2003.05.0011211.74080
DhaliwalR.S.SheriefH.H.Generalized thermoelasticity for anisotropic mediaQ. Appl. Math.1980331810.1093/qjmam/33.1.1575828
KratochvilJ.BeckerW.Asymptotic analysis of stresses in an isotropic linear elastic plane or half-plane weakened by a finite number of holesArch. Appl. Mech.201282674375410.1007/s00419-011-0587-z
El-MaghrabyN.M.A two-dimensional generalized thermoelasticity problem for a half-space under the action of a body forceJ. Therm. Stress.20083155756810.1080/01495730801978281
Allam, A.A.: Application in the theory of generalized thermoelasticity with stochastic and deterministic boundary conditions. Ph.D. thesis, Faculty of Science, Alexandria University (2011)
NowackiW.Dynamical problems of thermoelastic diffusion in solids iiBull. de l’Acad. Polonaise des Sci. Sér. des Sci. Tech.197422129135
Hosseini ZadS.K.KomeiliA.EslamiM.R.FariborzS.Classical and generalized coupled thermoelasticity analysis in one-dimensional layered mediaArch. Appl. Mech.201282226728210.1007/s00419-011-0555-7
GreenA.E.NaghdiP.M.Thermoelasticity without energy dissipationJ. Elast.199331318920810.1007/BF000449690784.730091236373
XiongQ.TianX.Two-dimensional thermoelastic problem of an infinite magneto-microstretch homogeneous isotropic plateArch. Appl. Mech.2012821132910.1007/s00419-011-0535-y
841_CR25
M. Chester (841_CR4) 1963; 131
R.S. Dhaliwal (841_CR5) 1980; 33
841_CR21
841_CR24
J. Kratochvil (841_CR16) 2012; 82
841_CR23
M.A. Ezzat (841_CR9) 2011; 34
W. Nowacki (841_CR20) 1974; 22
M.A. Ezzat (841_CR8) 2012; 82
W. Nowacki (841_CR18) 1974; 22
H.H. Sherief (841_CR26) 2004; 42
W. Nowacki (841_CR19) 1974; 22
J. Philibert (841_CR22) 2005; 2
G. Honig (841_CR14) 1984; 10
H.H. Sherief (841_CR27) 2005; 42
Q. Xiong (841_CR29) 2012; 82
N.M. El-Maghraby (841_CR6) 2008; 31
A.E. Green (841_CR12) 1993; 31
841_CR13
N.M. El-Maghraby (841_CR7) 2009; 32
B. Singh (841_CR28) 2011; 30
841_CR2
M. Aouadi (841_CR3) 2010; 61
841_CR1
A.E. Green (841_CR10) 1972; 2
S.K. Hosseini Zad (841_CR15) 2012; 82
A.E. Green (841_CR11) 1991; 432
H. Lord (841_CR17) 1967; 15
References_xml – volume: 32
  start-page: 863
  year: 2009
  ident: 841_CR7
  publication-title: J. Therm. Stress.
  doi: 10.1080/01495730903018531
  contributor:
    fullname: N.M. El-Maghraby
– volume: 82
  start-page: 13
  issue: 1
  year: 2012
  ident: 841_CR29
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-011-0535-y
  contributor:
    fullname: Q. Xiong
– volume: 31
  start-page: 557
  year: 2008
  ident: 841_CR6
  publication-title: J. Therm. Stress.
  doi: 10.1080/01495730801978281
  contributor:
    fullname: N.M. El-Maghraby
– volume: 22
  start-page: 55
  year: 1974
  ident: 841_CR18
  publication-title: Bull. de l’Acad. Polonaise des Sci. Sér. des Sci. Tech.
  contributor:
    fullname: W. Nowacki
– volume: 2
  start-page: 1
  year: 2005
  ident: 841_CR22
  publication-title: Diffus. Fundam.
  contributor:
    fullname: J. Philibert
– volume: 30
  start-page: 976
  issue: 6
  year: 2011
  ident: 841_CR28
  publication-title: Eur. J. Mech.-A/Solids
  doi: 10.1016/j.euromechsol.2011.06.007
  contributor:
    fullname: B. Singh
– volume: 432
  start-page: 171
  year: 1991
  ident: 841_CR11
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.1991.0012
  contributor:
    fullname: A.E. Green
– ident: 841_CR1
– volume: 31
  start-page: 189
  issue: 3
  year: 1993
  ident: 841_CR12
  publication-title: J. Elast.
  doi: 10.1007/BF00044969
  contributor:
    fullname: A.E. Green
– volume: 22
  start-page: 129
  year: 1974
  ident: 841_CR19
  publication-title: Bull. de l’Acad. Polonaise des Sci. Sér. des Sci. Tech.
  contributor:
    fullname: W. Nowacki
– volume: 10
  start-page: 113
  year: 1984
  ident: 841_CR14
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(84)90075-X
  contributor:
    fullname: G. Honig
– volume: 61
  start-page: 357
  issue: 2
  year: 2010
  ident: 841_CR3
  publication-title: Zeitschrift für Angewandte Math. Phys. (ZAMP)
  doi: 10.1007/s00033-009-0016-0
  contributor:
    fullname: M. Aouadi
– volume: 82
  start-page: 743
  issue: 6
  year: 2012
  ident: 841_CR16
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-011-0587-z
  contributor:
    fullname: J. Kratochvil
– volume: 42
  start-page: 591
  year: 2004
  ident: 841_CR26
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2003.05.001
  contributor:
    fullname: H.H. Sherief
– volume: 33
  start-page: 1
  year: 1980
  ident: 841_CR5
  publication-title: Q. Appl. Math.
  doi: 10.1093/qjmam/33.1.1
  contributor:
    fullname: R.S. Dhaliwal
– ident: 841_CR25
– ident: 841_CR21
– ident: 841_CR23
– volume: 2
  start-page: 1
  year: 1972
  ident: 841_CR10
  publication-title: J. Elast.
  doi: 10.1007/BF00045689
  contributor:
    fullname: A.E. Green
– ident: 841_CR2
– volume: 15
  start-page: 299
  year: 1967
  ident: 841_CR17
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(67)90024-5
  contributor:
    fullname: H. Lord
– ident: 841_CR13
– volume: 131
  start-page: 2013
  year: 1963
  ident: 841_CR4
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.131.2013
  contributor:
    fullname: M. Chester
– volume: 34
  start-page: 851
  issue: 8
  year: 2011
  ident: 841_CR9
  publication-title: J. Therm. Stress.
  doi: 10.1080/01495739.2011.586274
  contributor:
    fullname: M.A. Ezzat
– volume: 22
  start-page: 205
  year: 1974
  ident: 841_CR20
  publication-title: Bull. de l’Acad. Polonaise des Sci. Sér. des Sci. Tech.
  contributor:
    fullname: W. Nowacki
– volume: 82
  start-page: 557
  issue: 4
  year: 2012
  ident: 841_CR8
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-011-0572-6
  contributor:
    fullname: M.A. Ezzat
– ident: 841_CR24
  doi: 10.1007/BF00915613
– volume: 82
  start-page: 267
  issue: 2
  year: 2012
  ident: 841_CR15
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-011-0555-7
  contributor:
    fullname: S.K. Hosseini Zad
– volume: 42
  start-page: 4484
  issue: 15
  year: 2005
  ident: 841_CR27
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2005.01.001
  contributor:
    fullname: H.H. Sherief
SSID ssj0004520
Score 2.089233
Snippet The present paper is aimed at studying a two-dimensional problem for an infinitely long solid conducting circular cylinder with a permeating substance in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 953
SubjectTerms Asymptotic properties
Chemical potential
Classical Mechanics
Cylinders
Diffusion
Engineering
Mathematical analysis
Mathematical models
Original
Permeating
Stress concentration
Theoretical and Applied Mechanics
Title A thermoelastic diffusion interaction in an infinitely long annular cylinder
URI https://link.springer.com/article/10.1007/s00419-014-0841-2
https://search.proquest.com/docview/1671587751
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVKe4EDO6IslZE4gVI1thM3xxS1VCw9UamcItuxEWpJUZdD-Xo8WUrZDr1EkWJZynjGfvb4vUHokmrYJPPY4Z7kDmPCd0SDW18mOnCbccBIWg7osed3--xu4A1KiCyPLpJhvchIphP1kusGylBwtYeBFKnr2Gm3kvNOK-Ht8317VSM8PVkJaOAAmilymX918n01-oKYP7Ki6WLT2ckIgNNUoxDumAzr85msq4_fCo5r_Mcu2s6xJw4zZ9lDJZ3so60VRcID9BBiQIRvY21RtW2GoYDKHE7UMAhLTDIahH3HAp7mFSDraIFH4-QFA-vYbpSxWoxAhHFyiPqd9tNN18kLLjiKEnfmEM8AY983QHc1JhZU2CBSFoBLryFYoEC80OhmwLRUpiFjIWIbttrnkqmG5PQIlZNxoo8RFooyT8BwG_uNmyZRsbBoRlKqpDC0iq4Kw0fvma5GtFRQTk0UWRNFYKKIVNFFMTSR9X5IaYhEj-fTyPW56zU599wqui7sHeVhOP2_x5O1Wp-iTZIOGNzSPUPl2WSuzy0Wmcmadb5Oq9Wr5U5YQxt9En4CxVHXdQ
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yD-pB_MT5GcGTEmiTtGmPQxxTt5022C0kaSLCbMc-DvvvzevaOUUPXkqgIYf3XpJf8t7vF4TumIVDssiIiLQgnKuYqED4WKY2DZMs5bR8DqjXjztD_jKKRhWPe1ZXu9cpyXKlXpPdQBoKans4aJGGxK-72yCvDoL5Q9ralAgvL1ZSlhIAM3Uq87chvm9GXwjzR1K03GvaB2i_Aom4tfLqIdqy-RHa25AOPEbdFgbo9lFYD399NwwvnSzg6guDAsR0xVfwbazg694BW46XeFzkbxjowf5Ei81yDGqJ0xM0bD8NHjukehmBGEbDOaGRA2p97ICX6lymmPLRbjxS1lGgeGpAZdDZJOVWGxfoTKnMzy8bC81NoAU7RY28yO0ZwsowHinwi_P_hEuoyZSHHZoxo5VjTXRfm0hOVgIYci11XNpTentKsKekTXRbG1H6MIXcg8ptsZjJMBZhlAgRhU30UFtXVvNl9veI5__qfYN2OoNeV3af-68XaJeWnobS2kvUmE8X9soDiLm-LgPmE5CsvCs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yQfQgfuL8jOBJKVuTtGmPQx1T5_DgYLeQpIkIsx1bd9h_b14_5hQ9eCmFhhxeXvp-yXu_30Poiho4JPPE44HiHmMy9GSbO18mJvajJGakaAf0PAh7Q_Y4CkZVn9NZXe1epyRLTgOoNKV5a5LY1pL4BjJRUOfDQJfU99w_eN1FIgo1fUPSWZULLy5ZYhp7AGzqtOZvU3wPTF9o80eCtIg73R20XQFG3ClXeBetmXQPba3ICO6jfgcDjPvIjIPCbhiGridzuAbDoAYxLbkL7h1LeNp3wJnjBR5n6RsGqrA73WK9GINy4vQADbv3r7c9r-qS4GlK_NwjgQWafWiBo2ptIql0nq8dalZBW7JYg-KgNVHMjNK2rRIpE7fXTMgV023F6SFqpFlqjhCWmrJAwhpZ943biOhEOgiiKNVKWtpE17WJxKQUwxBL2ePCnsLZU4A9BWmiy9qIwrks5CFkarL5TPgh94OI88BvopvauqLaO7O_Zzz-1-gLtPFy1xX9h8HTCdokxUJDle0pauTTuTlzWCJX54W_fALGwMBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+thermoelastic+diffusion+interaction+in+an+infinitely+long+annular+cylinder&rft.jtitle=Archive+of+applied+mechanics+%281991%29&rft.au=Allam%2C+Allam+A&rft.au=Omar%2C+MA&rft.au=Ramadan%2C+Khaled+T&rft.date=2014-07-01&rft.issn=0939-1533&rft.eissn=1432-0681&rft.volume=84&rft.issue=7&rft.spage=953&rft.epage=965&rft_id=info:doi/10.1007%2Fs00419-014-0841-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0939-1533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0939-1533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0939-1533&client=summon