Pattern recognition of head movement based on mechanomyography and its application
The first part of this study investigated pattern recognition of head movements based on mechanomyography (MMG) signals. Four channel MMG signals were collected from the sternocleidomastoid (SCM) muscles and the splenius capitis (SPL) muscles in the subjects’ neck when they bowed the head, raised th...
Saved in:
Published in | Biomedizinische Technik Vol. 65; no. 1; pp. 51 - 60 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Walter de Gruyter GmbH
01.02.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-5585 1862-278X 1862-278X |
DOI | 10.1515/bmt-2018-0007 |
Cover
Abstract | The first part of this study investigated pattern recognition of head movements based on mechanomyography (MMG) signals. Four channel MMG signals were collected from the sternocleidomastoid (SCM) muscles and the splenius capitis (SPL) muscles in the subjects’ neck when they bowed the head, raised the head, side-bent to left, side-bent to right, turned to left and turned to right. The MMG signals were then filtered, normalized and divided using an unequal length segmentation algorithm into a single action frame. After extracting the energy features of the wavelet packet coefficients and the feature of the principal diagonal slices of the bispectrum, the dimension of the energy features were reduced by the Fisher linear discriminant analysis (FLDA). Finally, all the features were classified through the support vector machine (SVM) classifier. The recognition rate was up to 95.92%. On this basis, the second part of this study used the head movements to control a car model for simulating the control of a wheelchair, and the success rate was 85.74%. |
---|---|
AbstractList | The first part of this study investigated pattern recognition of head movements based on mechanomyography (MMG) signals. Four channel MMG signals were collected from the sternocleidomastoid (SCM) muscles and the splenius capitis (SPL) muscles in the subjects' neck when they bowed the head, raised the head, side-bent to left, side-bent to right, turned to left and turned to right. The MMG signals were then filtered, normalized and divided using an unequal length segmentation algorithm into a single action frame. After extracting the energy features of the wavelet packet coefficients and the feature of the principal diagonal slices of the bispectrum, the dimension of the energy features were reduced by the Fisher linear discriminant analysis (FLDA). Finally, all the features were classified through the support vector machine (SVM) classifier. The recognition rate was up to 95.92%. On this basis, the second part of this study used the head movements to control a car model for simulating the control of a wheelchair, and the success rate was 85.74%. The first part of this study investigated pattern recognition of head movements based on mechanomyography (MMG) signals. Four channel MMG signals were collected from the sternocleidomastoid (SCM) muscles and the splenius capitis (SPL) muscles in the subjects' neck when they bowed the head, raised the head, side-bent to left, side-bent to right, turned to left and turned to right. The MMG signals were then filtered, normalized and divided using an unequal length segmentation algorithm into a single action frame. After extracting the energy features of the wavelet packet coefficients and the feature of the principal diagonal slices of the bispectrum, the dimension of the energy features were reduced by the Fisher linear discriminant analysis (FLDA). Finally, all the features were classified through the support vector machine (SVM) classifier. The recognition rate was up to 95.92%. On this basis, the second part of this study used the head movements to control a car model for simulating the control of a wheelchair, and the success rate was 85.74%.The first part of this study investigated pattern recognition of head movements based on mechanomyography (MMG) signals. Four channel MMG signals were collected from the sternocleidomastoid (SCM) muscles and the splenius capitis (SPL) muscles in the subjects' neck when they bowed the head, raised the head, side-bent to left, side-bent to right, turned to left and turned to right. The MMG signals were then filtered, normalized and divided using an unequal length segmentation algorithm into a single action frame. After extracting the energy features of the wavelet packet coefficients and the feature of the principal diagonal slices of the bispectrum, the dimension of the energy features were reduced by the Fisher linear discriminant analysis (FLDA). Finally, all the features were classified through the support vector machine (SVM) classifier. The recognition rate was up to 95.92%. On this basis, the second part of this study used the head movements to control a car model for simulating the control of a wheelchair, and the success rate was 85.74%. |
Author | Gu, Xiaolin Zhang, Yue Zhong, Hao Yu, Jing Zhang, Shengli Xia, Chunming Wu, Qing |
Author_xml | – sequence: 1 givenname: Xiaolin surname: Gu fullname: Gu, Xiaolin organization: School of Mechanical and Power Engineering , East China University of Science and Technology , Shanghai 200237 , China – sequence: 2 givenname: Qing surname: Wu fullname: Wu, Qing organization: School of Mechanical and Power Engineering , East China University of Science and Technology , Shanghai 200237 , China – sequence: 3 givenname: Yue surname: Zhang fullname: Zhang, Yue organization: School of Mechanical and Power Engineering , East China University of Science and Technology , Shanghai 200237 , China – sequence: 4 givenname: Hao surname: Zhong fullname: Zhong, Hao organization: School of Mechanical and Power Engineering , East China University of Science and Technology , Shanghai 200237 , China – sequence: 5 givenname: Shengli surname: Zhang fullname: Zhang, Shengli organization: School of Mechanical and Power Engineering , East China University of Science and Technology , Shanghai 200237 , China – sequence: 6 givenname: Chunming surname: Xia fullname: Xia, Chunming organization: School of Mechanical and Power Engineering , East China University of Science and Technology , Shanghai 200237 , China – sequence: 7 givenname: Jing surname: Yu fullname: Yu, Jing organization: School of Mechanical and Power Engineering , East China University of Science and Technology , Shanghai 200237 , China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31352427$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtLAzEUhYNU7EOXbiXgxs1oHpPMdCnFFxQUUXAX8qqdMpOMSUbovzf1sSmu7uJ-53DuPVMwct5ZAE4xusQMsyvVpYIgXBcIoeoATHDNSUGq-m0EJghhWjBWszGYxrhBqGRsjo7AmGLKSEmqCXh-kinZ4GCw2r-7JjXeQb-CaysN7Pyn7axLUMloDcybzuq1dL7b-vcg-_UWSmdgkyKUfd82Wu7kx-BwJdtoT37nDLze3rws7ovl493D4npZaEpwDs3mRuOSG0RUxRWvqKqRxbQmFGtVMo0M45whpWrCEVuRqjQ1kdQQgiXHFZ2Bix_fPviPwcYkuiZq27bSWT9EQQjnlHLM5xk930M3fggupxOEliXLgTI7A2e_1KA6a0Qfmk6Grfj7VgboD6CDjzHYldBN-r45Bdm0AiOx60TkTsSuE7HrJKuKPdWf8f_8F-Ihi-I |
CitedBy_id | crossref_primary_10_3724_SP_J_1329_2023_03012 |
Cites_doi | 10.1109/TSMCA.2005.855781 10.5772/55477 10.1007/978-0-85729-495-1_1 10.1080/03091902.2016.1210685 10.1142/S0218213009000226 10.1109/10.55644 10.1152/jappl.1990.68.2.508 10.1108/01439910710718469 10.1109/TNSRE.2014.2366752 10.1016/S1005-8885(14)60306-X 10.1088/0967-3334/30/5/002 10.1016/B978-044450649-8/50016-4 10.1016/S1672-6529(08)60119-5 10.1109/TNSRE.2015.2413393 10.1109/IEMBS.2003.1280527 10.1016/j.jelekin.2009.09.003 10.1016/j.patrec.2017.01.012 10.1016/j.spinee.2010.07.249 10.1016/j.apmr.2005.03.034 10.1007/978-3-642-38989-4_35 10.1016/j.bspc.2012.08.008 10.1109/ROMAN.2009.5326245 10.1016/j.jneumeth.2011.09.026 10.1007/s40010-014-0148-2 |
ContentType | Journal Article |
Copyright | 2020 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2020 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TB 7U5 8FD FR3 L7M P64 7X8 |
DOI | 10.1515/bmt-2018-0007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1862-278X |
EndPage | 60 |
ExternalDocumentID | 31352427 10_1515_bmt_2018_0007 |
Genre | Journal Article |
GroupedDBID | 0R~ 0~D 23N 4.4 5GY AAAEU AAAVF AABBZ AACIX AAGVJ AALGR AAOQK AAOWA AAPJK AAQCX AARRE AASQH AAWFC AAXCG AAYXX ABDRH ABFKT ABFQV ABJNI ABMIY ABPLS ABRDF ABUVI ABWLS ABXMZ ABYBW ACDEB ACEFL ACGFS ACPMA ACUND ACYCL ACZBO ADDWE ADEQT ADGQD ADGYE AECWL AEGVQ AEICA AEJTT AERZL AEXIE AFBAA AFBDD AFCXV AFGDO AFYRI AGBEV AGQYU AHGSO AHOVO AHVWV AHXUK AIERV AIWOI AJHHK AKXKS ALMA_UNASSIGNED_HOLDINGS ALYBR ASYPN BAKPI BCIFA CGQUA CITATION CS3 DU5 EBS EMOBN F5P HZ~ IY9 KDIRW O9- P2P QD8 RDG SA. SLJYH UK5 WTRAM ABVMU CGR CUY CVF DBYYV ECM EIF NPM 7QO 7TB 7U5 8FD ADNPR FR3 L7M P64 7X8 DSRVY |
ID | FETCH-LOGICAL-c321t-259dc146d02b76b673b80e138231cb45c0d56650bb82605f274d82a3d221a6173 |
ISSN | 0013-5585 1862-278X |
IngestDate | Fri Sep 05 09:56:04 EDT 2025 Sat Jul 26 02:34:09 EDT 2025 Wed Feb 19 02:31:19 EST 2025 Tue Jul 01 03:36:35 EDT 2025 Thu Apr 24 22:58:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | wheelchair car model control mechanomyography feature extraction head movement |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c321t-259dc146d02b76b673b80e138231cb45c0d56650bb82605f274d82a3d221a6173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 31352427 |
PQID | 2344532166 |
PQPubID | 2045214 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2266336169 proquest_journals_2344532166 pubmed_primary_31352427 crossref_citationtrail_10_1515_bmt_2018_0007 crossref_primary_10_1515_bmt_2018_0007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | Biomedizinische Technik |
PublicationTitleAlternate | Biomed Tech (Berl) |
PublicationYear | 2020 |
Publisher | Walter de Gruyter GmbH |
Publisher_xml | – name: Walter de Gruyter GmbH |
References | 2023033111160701421_j_bmt-2018-0007_ref_006_w2aab3b7ab1b6b1ab1b6b6Aa 2023033111160701421_j_bmt-2018-0007_ref_017_w2aab3b7ab1b6b1ab1b6c17Aa 2023033111160701421_j_bmt-2018-0007_ref_013_w2aab3b7ab1b6b1ab1b6c13Aa 2023033111160701421_j_bmt-2018-0007_ref_025_w2aab3b7ab1b6b1ab1b6c25Aa 2023033111160701421_j_bmt-2018-0007_ref_007_w2aab3b7ab1b6b1ab1b6b7Aa 2023033111160701421_j_bmt-2018-0007_ref_022_w2aab3b7ab1b6b1ab1b6c22Aa 2023033111160701421_j_bmt-2018-0007_ref_016_w2aab3b7ab1b6b1ab1b6c16Aa 2023033111160701421_j_bmt-2018-0007_ref_008_w2aab3b7ab1b6b1ab1b6b8Aa 2023033111160701421_j_bmt-2018-0007_ref_009_w2aab3b7ab1b6b1ab1b6b9Aa 2023033111160701421_j_bmt-2018-0007_ref_018_w2aab3b7ab1b6b1ab1b6c18Aa 2023033111160701421_j_bmt-2018-0007_ref_012_w2aab3b7ab1b6b1ab1b6c12Aa 2023033111160701421_j_bmt-2018-0007_ref_024_w2aab3b7ab1b6b1ab1b6c24Aa 2023033111160701421_j_bmt-2018-0007_ref_021_w2aab3b7ab1b6b1ab1b6c21Aa 2023033111160701421_j_bmt-2018-0007_ref_015_w2aab3b7ab1b6b1ab1b6c15Aa 2023033111160701421_j_bmt-2018-0007_ref_019_w2aab3b7ab1b6b1ab1b6c19Aa 2023033111160701421_j_bmt-2018-0007_ref_001_w2aab3b7ab1b6b1ab1b6b1Aa 2023033111160701421_j_bmt-2018-0007_ref_002_w2aab3b7ab1b6b1ab1b6b2Aa 2023033111160701421_j_bmt-2018-0007_ref_028_w2aab3b7ab1b6b1ab1b6c28Aa 2023033111160701421_j_bmt-2018-0007_ref_023_w2aab3b7ab1b6b1ab1b6c23Aa 2023033111160701421_j_bmt-2018-0007_ref_011_w2aab3b7ab1b6b1ab1b6c11Aa 2023033111160701421_j_bmt-2018-0007_ref_014_w2aab3b7ab1b6b1ab1b6c14Aa 2023033111160701421_j_bmt-2018-0007_ref_027_w2aab3b7ab1b6b1ab1b6c27Aa 2023033111160701421_j_bmt-2018-0007_ref_003_w2aab3b7ab1b6b1ab1b6b3Aa 2023033111160701421_j_bmt-2018-0007_ref_020_w2aab3b7ab1b6b1ab1b6c20Aa 2023033111160701421_j_bmt-2018-0007_ref_029_w2aab3b7ab1b6b1ab1b6c29Aa 2023033111160701421_j_bmt-2018-0007_ref_004_w2aab3b7ab1b6b1ab1b6b4Aa 2023033111160701421_j_bmt-2018-0007_ref_026_w2aab3b7ab1b6b1ab1b6c26Aa 2023033111160701421_j_bmt-2018-0007_ref_005_w2aab3b7ab1b6b1ab1b6b5Aa 2023033111160701421_j_bmt-2018-0007_ref_010_w2aab3b7ab1b6b1ab1b6c10Aa |
References_xml | – ident: 2023033111160701421_j_bmt-2018-0007_ref_019_w2aab3b7ab1b6b1ab1b6c19Aa doi: 10.1109/TSMCA.2005.855781 – ident: 2023033111160701421_j_bmt-2018-0007_ref_004_w2aab3b7ab1b6b1ab1b6b4Aa doi: 10.5772/55477 – ident: 2023033111160701421_j_bmt-2018-0007_ref_022_w2aab3b7ab1b6b1ab1b6c22Aa doi: 10.1007/978-0-85729-495-1_1 – ident: 2023033111160701421_j_bmt-2018-0007_ref_002_w2aab3b7ab1b6b1ab1b6b2Aa doi: 10.1080/03091902.2016.1210685 – ident: 2023033111160701421_j_bmt-2018-0007_ref_026_w2aab3b7ab1b6b1ab1b6c26Aa – ident: 2023033111160701421_j_bmt-2018-0007_ref_028_w2aab3b7ab1b6b1ab1b6c28Aa – ident: 2023033111160701421_j_bmt-2018-0007_ref_005_w2aab3b7ab1b6b1ab1b6b5Aa doi: 10.1142/S0218213009000226 – ident: 2023033111160701421_j_bmt-2018-0007_ref_011_w2aab3b7ab1b6b1ab1b6c11Aa doi: 10.1109/10.55644 – ident: 2023033111160701421_j_bmt-2018-0007_ref_012_w2aab3b7ab1b6b1ab1b6c12Aa doi: 10.1152/jappl.1990.68.2.508 – ident: 2023033111160701421_j_bmt-2018-0007_ref_003_w2aab3b7ab1b6b1ab1b6b3Aa doi: 10.1108/01439910710718469 – ident: 2023033111160701421_j_bmt-2018-0007_ref_008_w2aab3b7ab1b6b1ab1b6b8Aa doi: 10.1109/TNSRE.2014.2366752 – ident: 2023033111160701421_j_bmt-2018-0007_ref_001_w2aab3b7ab1b6b1ab1b6b1Aa doi: 10.1016/S1005-8885(14)60306-X – ident: 2023033111160701421_j_bmt-2018-0007_ref_015_w2aab3b7ab1b6b1ab1b6c15Aa doi: 10.1088/0967-3334/30/5/002 – ident: 2023033111160701421_j_bmt-2018-0007_ref_017_w2aab3b7ab1b6b1ab1b6c17Aa doi: 10.1016/B978-044450649-8/50016-4 – ident: 2023033111160701421_j_bmt-2018-0007_ref_025_w2aab3b7ab1b6b1ab1b6c25Aa doi: 10.1016/S1672-6529(08)60119-5 – ident: 2023033111160701421_j_bmt-2018-0007_ref_007_w2aab3b7ab1b6b1ab1b6b7Aa doi: 10.1109/TNSRE.2015.2413393 – ident: 2023033111160701421_j_bmt-2018-0007_ref_014_w2aab3b7ab1b6b1ab1b6c14Aa doi: 10.1109/IEMBS.2003.1280527 – ident: 2023033111160701421_j_bmt-2018-0007_ref_024_w2aab3b7ab1b6b1ab1b6c24Aa doi: 10.1016/j.jelekin.2009.09.003 – ident: 2023033111160701421_j_bmt-2018-0007_ref_006_w2aab3b7ab1b6b1ab1b6b6Aa – ident: 2023033111160701421_j_bmt-2018-0007_ref_010_w2aab3b7ab1b6b1ab1b6c10Aa doi: 10.1016/j.patrec.2017.01.012 – ident: 2023033111160701421_j_bmt-2018-0007_ref_027_w2aab3b7ab1b6b1ab1b6c27Aa doi: 10.1016/j.spinee.2010.07.249 – ident: 2023033111160701421_j_bmt-2018-0007_ref_013_w2aab3b7ab1b6b1ab1b6c13Aa – ident: 2023033111160701421_j_bmt-2018-0007_ref_016_w2aab3b7ab1b6b1ab1b6c16Aa doi: 10.1016/j.apmr.2005.03.034 – ident: 2023033111160701421_j_bmt-2018-0007_ref_020_w2aab3b7ab1b6b1ab1b6c20Aa – ident: 2023033111160701421_j_bmt-2018-0007_ref_029_w2aab3b7ab1b6b1ab1b6c29Aa doi: 10.1007/978-3-642-38989-4_35 – ident: 2023033111160701421_j_bmt-2018-0007_ref_021_w2aab3b7ab1b6b1ab1b6c21Aa doi: 10.1016/j.bspc.2012.08.008 – ident: 2023033111160701421_j_bmt-2018-0007_ref_018_w2aab3b7ab1b6b1ab1b6c18Aa doi: 10.1109/ROMAN.2009.5326245 – ident: 2023033111160701421_j_bmt-2018-0007_ref_009_w2aab3b7ab1b6b1ab1b6b9Aa doi: 10.1016/j.jneumeth.2011.09.026 – ident: 2023033111160701421_j_bmt-2018-0007_ref_023_w2aab3b7ab1b6b1ab1b6c23Aa doi: 10.1007/s40010-014-0148-2 |
SSID | ssj0045590 |
Score | 2.1734583 |
Snippet | The first part of this study investigated pattern recognition of head movements based on mechanomyography (MMG) signals. Four channel MMG signals were... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 51 |
SubjectTerms | Algorithms Bowing Computer simulation Discriminant Analysis Feature extraction Head Head movement Head Movements - physiology Humans Muscle, Skeletal - physiology Muscles Pattern recognition Segmentation Support Vector Machine Support vector machines Wavelet analysis Wheelchairs |
Title | Pattern recognition of head movement based on mechanomyography and its application |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31352427 https://www.proquest.com/docview/2344532166 https://www.proquest.com/docview/2266336169 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglVA5oPJe2iIjIS4lNH4kzh4LKl1xQIBatJyi-BGpEtlUkD3QX8-M43izpSsBlyiyvWvF82U8k_F8Q8jLPKu1KaRJDOxeicychFeKy6Rw3DJQmjWv_QHZj_nsXH6YZ_NVlU6fXdLpN-bqxryS_5EqtIFcMUv2HyQb_xQa4B7kC1eQMFz_SsafPDkmJqSEU0DR-LOHTeuZwLtD3KcsxgQah1m-bfMrsFTHuMEoiL0W4_WZ-RdXSD5isASQp3uNmT2nSxTP_KLCsj9Rt_vGz8N-OP4i_W3pVm3hIPCsasefHcDHTOMRDterSvCFEq58YeCoS_u6D2uY6RVjzyr7h77OPLWFbjqQKyswxV2Nx8FyXzZeeIKBpSh7GoFrBNlD122yzZXCWP328enbk6_DhizBaUoDvSrMd7Q22w65M_x-3TLZ4G54s-Nsl9wL_gI97oV_n9xyiwfk7ohF8iH5EmBARzCgbU0RBnSAAfUwoNBzHQYUYEABBnQEg0fk_P3J2btZEkplJEZwBs-TTa2BTc-mXKtc50roInXMB3mNlplJLdjtWap1gQ5szZW0Ba-E5ZxVYMSKx2Rr0S7cU0KdrTVyC7ACrHnjVGU00za1U2lFVZl0Ql4Py1SawCOP5Uy-l-hPwgKXsMAlLjAebFAT8ioOv-wJVDYN3B_WvAzv2M-SCykzeMI8n5AXsRs0IIa1qoVrlzAGbEwhcpZPJ-RJL6s40yDbZxt79sjOCt77ZKv7sXQHYGd2-nnA0W8VGX2x |
linkProvider | Walter de Gruyter |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+recognition+of+head+movement+based+on+mechanomyography+and+its+application&rft.jtitle=Biomedizinische+Technik&rft.au=Gu%2C+Xiaolin&rft.au=Wu%2C+Qing&rft.au=Zhang%2C+Yue&rft.au=Zhong%2C+Hao&rft.date=2020-02-01&rft.eissn=1862-278X&rft.volume=65&rft.issue=1&rft.spage=51&rft_id=info:doi/10.1515%2Fbmt-2018-0007&rft_id=info%3Apmid%2F31352427&rft.externalDocID=31352427 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5585&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5585&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5585&client=summon |