Pattern recognition of head movement based on mechanomyography and its application

The first part of this study investigated pattern recognition of head movements based on mechanomyography (MMG) signals. Four channel MMG signals were collected from the sternocleidomastoid (SCM) muscles and the splenius capitis (SPL) muscles in the subjects’ neck when they bowed the head, raised th...

Full description

Saved in:
Bibliographic Details
Published inBiomedizinische Technik Vol. 65; no. 1; pp. 51 - 60
Main Authors Gu, Xiaolin, Wu, Qing, Zhang, Yue, Zhong, Hao, Zhang, Shengli, Xia, Chunming, Yu, Jing
Format Journal Article
LanguageEnglish
Published Germany Walter de Gruyter GmbH 01.02.2020
Subjects
Online AccessGet full text
ISSN0013-5585
1862-278X
1862-278X
DOI10.1515/bmt-2018-0007

Cover

Abstract The first part of this study investigated pattern recognition of head movements based on mechanomyography (MMG) signals. Four channel MMG signals were collected from the sternocleidomastoid (SCM) muscles and the splenius capitis (SPL) muscles in the subjects’ neck when they bowed the head, raised the head, side-bent to left, side-bent to right, turned to left and turned to right. The MMG signals were then filtered, normalized and divided using an unequal length segmentation algorithm into a single action frame. After extracting the energy features of the wavelet packet coefficients and the feature of the principal diagonal slices of the bispectrum, the dimension of the energy features were reduced by the Fisher linear discriminant analysis (FLDA). Finally, all the features were classified through the support vector machine (SVM) classifier. The recognition rate was up to 95.92%. On this basis, the second part of this study used the head movements to control a car model for simulating the control of a wheelchair, and the success rate was 85.74%.
AbstractList The first part of this study investigated pattern recognition of head movements based on mechanomyography (MMG) signals. Four channel MMG signals were collected from the sternocleidomastoid (SCM) muscles and the splenius capitis (SPL) muscles in the subjects' neck when they bowed the head, raised the head, side-bent to left, side-bent to right, turned to left and turned to right. The MMG signals were then filtered, normalized and divided using an unequal length segmentation algorithm into a single action frame. After extracting the energy features of the wavelet packet coefficients and the feature of the principal diagonal slices of the bispectrum, the dimension of the energy features were reduced by the Fisher linear discriminant analysis (FLDA). Finally, all the features were classified through the support vector machine (SVM) classifier. The recognition rate was up to 95.92%. On this basis, the second part of this study used the head movements to control a car model for simulating the control of a wheelchair, and the success rate was 85.74%.
The first part of this study investigated pattern recognition of head movements based on mechanomyography (MMG) signals. Four channel MMG signals were collected from the sternocleidomastoid (SCM) muscles and the splenius capitis (SPL) muscles in the subjects' neck when they bowed the head, raised the head, side-bent to left, side-bent to right, turned to left and turned to right. The MMG signals were then filtered, normalized and divided using an unequal length segmentation algorithm into a single action frame. After extracting the energy features of the wavelet packet coefficients and the feature of the principal diagonal slices of the bispectrum, the dimension of the energy features were reduced by the Fisher linear discriminant analysis (FLDA). Finally, all the features were classified through the support vector machine (SVM) classifier. The recognition rate was up to 95.92%. On this basis, the second part of this study used the head movements to control a car model for simulating the control of a wheelchair, and the success rate was 85.74%.The first part of this study investigated pattern recognition of head movements based on mechanomyography (MMG) signals. Four channel MMG signals were collected from the sternocleidomastoid (SCM) muscles and the splenius capitis (SPL) muscles in the subjects' neck when they bowed the head, raised the head, side-bent to left, side-bent to right, turned to left and turned to right. The MMG signals were then filtered, normalized and divided using an unequal length segmentation algorithm into a single action frame. After extracting the energy features of the wavelet packet coefficients and the feature of the principal diagonal slices of the bispectrum, the dimension of the energy features were reduced by the Fisher linear discriminant analysis (FLDA). Finally, all the features were classified through the support vector machine (SVM) classifier. The recognition rate was up to 95.92%. On this basis, the second part of this study used the head movements to control a car model for simulating the control of a wheelchair, and the success rate was 85.74%.
Author Gu, Xiaolin
Zhang, Yue
Zhong, Hao
Yu, Jing
Zhang, Shengli
Xia, Chunming
Wu, Qing
Author_xml – sequence: 1
  givenname: Xiaolin
  surname: Gu
  fullname: Gu, Xiaolin
  organization: School of Mechanical and Power Engineering , East China University of Science and Technology , Shanghai 200237 , China
– sequence: 2
  givenname: Qing
  surname: Wu
  fullname: Wu, Qing
  organization: School of Mechanical and Power Engineering , East China University of Science and Technology , Shanghai 200237 , China
– sequence: 3
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  organization: School of Mechanical and Power Engineering , East China University of Science and Technology , Shanghai 200237 , China
– sequence: 4
  givenname: Hao
  surname: Zhong
  fullname: Zhong, Hao
  organization: School of Mechanical and Power Engineering , East China University of Science and Technology , Shanghai 200237 , China
– sequence: 5
  givenname: Shengli
  surname: Zhang
  fullname: Zhang, Shengli
  organization: School of Mechanical and Power Engineering , East China University of Science and Technology , Shanghai 200237 , China
– sequence: 6
  givenname: Chunming
  surname: Xia
  fullname: Xia, Chunming
  organization: School of Mechanical and Power Engineering , East China University of Science and Technology , Shanghai 200237 , China
– sequence: 7
  givenname: Jing
  surname: Yu
  fullname: Yu, Jing
  organization: School of Mechanical and Power Engineering , East China University of Science and Technology , Shanghai 200237 , China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31352427$$D View this record in MEDLINE/PubMed
BookMark eNptkUtLAzEUhYNU7EOXbiXgxs1oHpPMdCnFFxQUUXAX8qqdMpOMSUbovzf1sSmu7uJ-53DuPVMwct5ZAE4xusQMsyvVpYIgXBcIoeoATHDNSUGq-m0EJghhWjBWszGYxrhBqGRsjo7AmGLKSEmqCXh-kinZ4GCw2r-7JjXeQb-CaysN7Pyn7axLUMloDcybzuq1dL7b-vcg-_UWSmdgkyKUfd82Wu7kx-BwJdtoT37nDLze3rws7ovl493D4npZaEpwDs3mRuOSG0RUxRWvqKqRxbQmFGtVMo0M45whpWrCEVuRqjQ1kdQQgiXHFZ2Bix_fPviPwcYkuiZq27bSWT9EQQjnlHLM5xk930M3fggupxOEliXLgTI7A2e_1KA6a0Qfmk6Grfj7VgboD6CDjzHYldBN-r45Bdm0AiOx60TkTsSuE7HrJKuKPdWf8f_8F-Ihi-I
CitedBy_id crossref_primary_10_3724_SP_J_1329_2023_03012
Cites_doi 10.1109/TSMCA.2005.855781
10.5772/55477
10.1007/978-0-85729-495-1_1
10.1080/03091902.2016.1210685
10.1142/S0218213009000226
10.1109/10.55644
10.1152/jappl.1990.68.2.508
10.1108/01439910710718469
10.1109/TNSRE.2014.2366752
10.1016/S1005-8885(14)60306-X
10.1088/0967-3334/30/5/002
10.1016/B978-044450649-8/50016-4
10.1016/S1672-6529(08)60119-5
10.1109/TNSRE.2015.2413393
10.1109/IEMBS.2003.1280527
10.1016/j.jelekin.2009.09.003
10.1016/j.patrec.2017.01.012
10.1016/j.spinee.2010.07.249
10.1016/j.apmr.2005.03.034
10.1007/978-3-642-38989-4_35
10.1016/j.bspc.2012.08.008
10.1109/ROMAN.2009.5326245
10.1016/j.jneumeth.2011.09.026
10.1007/s40010-014-0148-2
ContentType Journal Article
Copyright 2020 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2020 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TB
7U5
8FD
FR3
L7M
P64
7X8
DOI 10.1515/bmt-2018-0007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1862-278X
EndPage 60
ExternalDocumentID 31352427
10_1515_bmt_2018_0007
Genre Journal Article
GroupedDBID 0R~
0~D
23N
4.4
5GY
AAAEU
AAAVF
AABBZ
AACIX
AAGVJ
AALGR
AAOQK
AAOWA
AAPJK
AAQCX
AARRE
AASQH
AAWFC
AAXCG
AAYXX
ABDRH
ABFKT
ABFQV
ABJNI
ABMIY
ABPLS
ABRDF
ABUVI
ABWLS
ABXMZ
ABYBW
ACDEB
ACEFL
ACGFS
ACPMA
ACUND
ACYCL
ACZBO
ADDWE
ADEQT
ADGQD
ADGYE
AECWL
AEGVQ
AEICA
AEJTT
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFGDO
AFYRI
AGBEV
AGQYU
AHGSO
AHOVO
AHVWV
AHXUK
AIERV
AIWOI
AJHHK
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALYBR
ASYPN
BAKPI
BCIFA
CGQUA
CITATION
CS3
DU5
EBS
EMOBN
F5P
HZ~
IY9
KDIRW
O9-
P2P
QD8
RDG
SA.
SLJYH
UK5
WTRAM
ABVMU
CGR
CUY
CVF
DBYYV
ECM
EIF
NPM
7QO
7TB
7U5
8FD
ADNPR
FR3
L7M
P64
7X8
DSRVY
ID FETCH-LOGICAL-c321t-259dc146d02b76b673b80e138231cb45c0d56650bb82605f274d82a3d221a6173
ISSN 0013-5585
1862-278X
IngestDate Fri Sep 05 09:56:04 EDT 2025
Sat Jul 26 02:34:09 EDT 2025
Wed Feb 19 02:31:19 EST 2025
Tue Jul 01 03:36:35 EDT 2025
Thu Apr 24 22:58:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords wheelchair
car model control
mechanomyography
feature extraction
head movement
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-259dc146d02b76b673b80e138231cb45c0d56650bb82605f274d82a3d221a6173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31352427
PQID 2344532166
PQPubID 2045214
PageCount 10
ParticipantIDs proquest_miscellaneous_2266336169
proquest_journals_2344532166
pubmed_primary_31352427
crossref_citationtrail_10_1515_bmt_2018_0007
crossref_primary_10_1515_bmt_2018_0007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Biomedizinische Technik
PublicationTitleAlternate Biomed Tech (Berl)
PublicationYear 2020
Publisher Walter de Gruyter GmbH
Publisher_xml – name: Walter de Gruyter GmbH
References 2023033111160701421_j_bmt-2018-0007_ref_006_w2aab3b7ab1b6b1ab1b6b6Aa
2023033111160701421_j_bmt-2018-0007_ref_017_w2aab3b7ab1b6b1ab1b6c17Aa
2023033111160701421_j_bmt-2018-0007_ref_013_w2aab3b7ab1b6b1ab1b6c13Aa
2023033111160701421_j_bmt-2018-0007_ref_025_w2aab3b7ab1b6b1ab1b6c25Aa
2023033111160701421_j_bmt-2018-0007_ref_007_w2aab3b7ab1b6b1ab1b6b7Aa
2023033111160701421_j_bmt-2018-0007_ref_022_w2aab3b7ab1b6b1ab1b6c22Aa
2023033111160701421_j_bmt-2018-0007_ref_016_w2aab3b7ab1b6b1ab1b6c16Aa
2023033111160701421_j_bmt-2018-0007_ref_008_w2aab3b7ab1b6b1ab1b6b8Aa
2023033111160701421_j_bmt-2018-0007_ref_009_w2aab3b7ab1b6b1ab1b6b9Aa
2023033111160701421_j_bmt-2018-0007_ref_018_w2aab3b7ab1b6b1ab1b6c18Aa
2023033111160701421_j_bmt-2018-0007_ref_012_w2aab3b7ab1b6b1ab1b6c12Aa
2023033111160701421_j_bmt-2018-0007_ref_024_w2aab3b7ab1b6b1ab1b6c24Aa
2023033111160701421_j_bmt-2018-0007_ref_021_w2aab3b7ab1b6b1ab1b6c21Aa
2023033111160701421_j_bmt-2018-0007_ref_015_w2aab3b7ab1b6b1ab1b6c15Aa
2023033111160701421_j_bmt-2018-0007_ref_019_w2aab3b7ab1b6b1ab1b6c19Aa
2023033111160701421_j_bmt-2018-0007_ref_001_w2aab3b7ab1b6b1ab1b6b1Aa
2023033111160701421_j_bmt-2018-0007_ref_002_w2aab3b7ab1b6b1ab1b6b2Aa
2023033111160701421_j_bmt-2018-0007_ref_028_w2aab3b7ab1b6b1ab1b6c28Aa
2023033111160701421_j_bmt-2018-0007_ref_023_w2aab3b7ab1b6b1ab1b6c23Aa
2023033111160701421_j_bmt-2018-0007_ref_011_w2aab3b7ab1b6b1ab1b6c11Aa
2023033111160701421_j_bmt-2018-0007_ref_014_w2aab3b7ab1b6b1ab1b6c14Aa
2023033111160701421_j_bmt-2018-0007_ref_027_w2aab3b7ab1b6b1ab1b6c27Aa
2023033111160701421_j_bmt-2018-0007_ref_003_w2aab3b7ab1b6b1ab1b6b3Aa
2023033111160701421_j_bmt-2018-0007_ref_020_w2aab3b7ab1b6b1ab1b6c20Aa
2023033111160701421_j_bmt-2018-0007_ref_029_w2aab3b7ab1b6b1ab1b6c29Aa
2023033111160701421_j_bmt-2018-0007_ref_004_w2aab3b7ab1b6b1ab1b6b4Aa
2023033111160701421_j_bmt-2018-0007_ref_026_w2aab3b7ab1b6b1ab1b6c26Aa
2023033111160701421_j_bmt-2018-0007_ref_005_w2aab3b7ab1b6b1ab1b6b5Aa
2023033111160701421_j_bmt-2018-0007_ref_010_w2aab3b7ab1b6b1ab1b6c10Aa
References_xml – ident: 2023033111160701421_j_bmt-2018-0007_ref_019_w2aab3b7ab1b6b1ab1b6c19Aa
  doi: 10.1109/TSMCA.2005.855781
– ident: 2023033111160701421_j_bmt-2018-0007_ref_004_w2aab3b7ab1b6b1ab1b6b4Aa
  doi: 10.5772/55477
– ident: 2023033111160701421_j_bmt-2018-0007_ref_022_w2aab3b7ab1b6b1ab1b6c22Aa
  doi: 10.1007/978-0-85729-495-1_1
– ident: 2023033111160701421_j_bmt-2018-0007_ref_002_w2aab3b7ab1b6b1ab1b6b2Aa
  doi: 10.1080/03091902.2016.1210685
– ident: 2023033111160701421_j_bmt-2018-0007_ref_026_w2aab3b7ab1b6b1ab1b6c26Aa
– ident: 2023033111160701421_j_bmt-2018-0007_ref_028_w2aab3b7ab1b6b1ab1b6c28Aa
– ident: 2023033111160701421_j_bmt-2018-0007_ref_005_w2aab3b7ab1b6b1ab1b6b5Aa
  doi: 10.1142/S0218213009000226
– ident: 2023033111160701421_j_bmt-2018-0007_ref_011_w2aab3b7ab1b6b1ab1b6c11Aa
  doi: 10.1109/10.55644
– ident: 2023033111160701421_j_bmt-2018-0007_ref_012_w2aab3b7ab1b6b1ab1b6c12Aa
  doi: 10.1152/jappl.1990.68.2.508
– ident: 2023033111160701421_j_bmt-2018-0007_ref_003_w2aab3b7ab1b6b1ab1b6b3Aa
  doi: 10.1108/01439910710718469
– ident: 2023033111160701421_j_bmt-2018-0007_ref_008_w2aab3b7ab1b6b1ab1b6b8Aa
  doi: 10.1109/TNSRE.2014.2366752
– ident: 2023033111160701421_j_bmt-2018-0007_ref_001_w2aab3b7ab1b6b1ab1b6b1Aa
  doi: 10.1016/S1005-8885(14)60306-X
– ident: 2023033111160701421_j_bmt-2018-0007_ref_015_w2aab3b7ab1b6b1ab1b6c15Aa
  doi: 10.1088/0967-3334/30/5/002
– ident: 2023033111160701421_j_bmt-2018-0007_ref_017_w2aab3b7ab1b6b1ab1b6c17Aa
  doi: 10.1016/B978-044450649-8/50016-4
– ident: 2023033111160701421_j_bmt-2018-0007_ref_025_w2aab3b7ab1b6b1ab1b6c25Aa
  doi: 10.1016/S1672-6529(08)60119-5
– ident: 2023033111160701421_j_bmt-2018-0007_ref_007_w2aab3b7ab1b6b1ab1b6b7Aa
  doi: 10.1109/TNSRE.2015.2413393
– ident: 2023033111160701421_j_bmt-2018-0007_ref_014_w2aab3b7ab1b6b1ab1b6c14Aa
  doi: 10.1109/IEMBS.2003.1280527
– ident: 2023033111160701421_j_bmt-2018-0007_ref_024_w2aab3b7ab1b6b1ab1b6c24Aa
  doi: 10.1016/j.jelekin.2009.09.003
– ident: 2023033111160701421_j_bmt-2018-0007_ref_006_w2aab3b7ab1b6b1ab1b6b6Aa
– ident: 2023033111160701421_j_bmt-2018-0007_ref_010_w2aab3b7ab1b6b1ab1b6c10Aa
  doi: 10.1016/j.patrec.2017.01.012
– ident: 2023033111160701421_j_bmt-2018-0007_ref_027_w2aab3b7ab1b6b1ab1b6c27Aa
  doi: 10.1016/j.spinee.2010.07.249
– ident: 2023033111160701421_j_bmt-2018-0007_ref_013_w2aab3b7ab1b6b1ab1b6c13Aa
– ident: 2023033111160701421_j_bmt-2018-0007_ref_016_w2aab3b7ab1b6b1ab1b6c16Aa
  doi: 10.1016/j.apmr.2005.03.034
– ident: 2023033111160701421_j_bmt-2018-0007_ref_020_w2aab3b7ab1b6b1ab1b6c20Aa
– ident: 2023033111160701421_j_bmt-2018-0007_ref_029_w2aab3b7ab1b6b1ab1b6c29Aa
  doi: 10.1007/978-3-642-38989-4_35
– ident: 2023033111160701421_j_bmt-2018-0007_ref_021_w2aab3b7ab1b6b1ab1b6c21Aa
  doi: 10.1016/j.bspc.2012.08.008
– ident: 2023033111160701421_j_bmt-2018-0007_ref_018_w2aab3b7ab1b6b1ab1b6c18Aa
  doi: 10.1109/ROMAN.2009.5326245
– ident: 2023033111160701421_j_bmt-2018-0007_ref_009_w2aab3b7ab1b6b1ab1b6b9Aa
  doi: 10.1016/j.jneumeth.2011.09.026
– ident: 2023033111160701421_j_bmt-2018-0007_ref_023_w2aab3b7ab1b6b1ab1b6c23Aa
  doi: 10.1007/s40010-014-0148-2
SSID ssj0045590
Score 2.1734583
Snippet The first part of this study investigated pattern recognition of head movements based on mechanomyography (MMG) signals. Four channel MMG signals were...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 51
SubjectTerms Algorithms
Bowing
Computer simulation
Discriminant Analysis
Feature extraction
Head
Head movement
Head Movements - physiology
Humans
Muscle, Skeletal - physiology
Muscles
Pattern recognition
Segmentation
Support Vector Machine
Support vector machines
Wavelet analysis
Wheelchairs
Title Pattern recognition of head movement based on mechanomyography and its application
URI https://www.ncbi.nlm.nih.gov/pubmed/31352427
https://www.proquest.com/docview/2344532166
https://www.proquest.com/docview/2266336169
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglVA5oPJe2iIjIS4lNH4kzh4LKl1xQIBatJyi-BGpEtlUkD3QX8-M43izpSsBlyiyvWvF82U8k_F8Q8jLPKu1KaRJDOxeicychFeKy6Rw3DJQmjWv_QHZj_nsXH6YZ_NVlU6fXdLpN-bqxryS_5EqtIFcMUv2HyQb_xQa4B7kC1eQMFz_SsafPDkmJqSEU0DR-LOHTeuZwLtD3KcsxgQah1m-bfMrsFTHuMEoiL0W4_WZ-RdXSD5isASQp3uNmT2nSxTP_KLCsj9Rt_vGz8N-OP4i_W3pVm3hIPCsasefHcDHTOMRDterSvCFEq58YeCoS_u6D2uY6RVjzyr7h77OPLWFbjqQKyswxV2Nx8FyXzZeeIKBpSh7GoFrBNlD122yzZXCWP328enbk6_DhizBaUoDvSrMd7Q22w65M_x-3TLZ4G54s-Nsl9wL_gI97oV_n9xyiwfk7ohF8iH5EmBARzCgbU0RBnSAAfUwoNBzHQYUYEABBnQEg0fk_P3J2btZEkplJEZwBs-TTa2BTc-mXKtc50roInXMB3mNlplJLdjtWap1gQ5szZW0Ba-E5ZxVYMSKx2Rr0S7cU0KdrTVyC7ACrHnjVGU00za1U2lFVZl0Ql4Py1SawCOP5Uy-l-hPwgKXsMAlLjAebFAT8ioOv-wJVDYN3B_WvAzv2M-SCykzeMI8n5AXsRs0IIa1qoVrlzAGbEwhcpZPJ-RJL6s40yDbZxt79sjOCt77ZKv7sXQHYGd2-nnA0W8VGX2x
linkProvider Walter de Gruyter
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+recognition+of+head+movement+based+on+mechanomyography+and+its+application&rft.jtitle=Biomedizinische+Technik&rft.au=Gu%2C+Xiaolin&rft.au=Wu%2C+Qing&rft.au=Zhang%2C+Yue&rft.au=Zhong%2C+Hao&rft.date=2020-02-01&rft.eissn=1862-278X&rft.volume=65&rft.issue=1&rft.spage=51&rft_id=info:doi/10.1515%2Fbmt-2018-0007&rft_id=info%3Apmid%2F31352427&rft.externalDocID=31352427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5585&client=summon