Focusing Quantum Many-body Dynamics: The Rigorous Derivation of the 1D Focusing Cubic Nonlinear Schrödinger Equation

We consider the dynamics of N bosons in 1D. We assume that the pair interaction is attractive and given by N β - 1 V ( N β ) . where ∫ V ⩽ 0 . We develop new techniques in treating the N -body Hamiltonian so that we overcome the difficulties generated by the attractive interaction and establish new...

Full description

Saved in:
Bibliographic Details
Published inArchive for rational mechanics and analysis Vol. 221; no. 2; pp. 631 - 676
Main Authors Chen, Xuwen, Holmer, Justin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2016
Subjects
Online AccessGet full text
ISSN0003-9527
1432-0673
DOI10.1007/s00205-016-0970-6

Cover

Abstract We consider the dynamics of N bosons in 1D. We assume that the pair interaction is attractive and given by N β - 1 V ( N β ) . where ∫ V ⩽ 0 . We develop new techniques in treating the N -body Hamiltonian so that we overcome the difficulties generated by the attractive interaction and establish new energy estimates. We also prove the optimal 1D collapsing estimate which reduces the regularity requirement in the uniqueness argument by half a derivative. We derive rigorously the 1D focusing cubic NLS with a quadratic trap as the N → ∞ limit of the N -body dynamic and hence justify the mean-field limit and prove the propagation of chaos for the focusing quantum many-body system.
AbstractList We consider the dynamics of N bosons in 1D. We assume that the pair interaction is attractive and given by N β - 1 V ( N β ) . where ∫ V ⩽ 0 . We develop new techniques in treating the N -body Hamiltonian so that we overcome the difficulties generated by the attractive interaction and establish new energy estimates. We also prove the optimal 1D collapsing estimate which reduces the regularity requirement in the uniqueness argument by half a derivative. We derive rigorously the 1D focusing cubic NLS with a quadratic trap as the N → ∞ limit of the N -body dynamic and hence justify the mean-field limit and prove the propagation of chaos for the focusing quantum many-body system.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We consider the dynamics of N bosons in 1D. We assume that the pair interaction is attractive and given by ... where ... We develop new techniques in treating the N-body Hamiltonian so that we overcome the difficulties generated by the attractive interaction and establish new energy estimates. We also prove the optimal 1D collapsing estimate which reduces the regularity requirement in the uniqueness argument by half a derivative. We derive rigorously the 1D focusing cubic NLS with a quadratic trap as the ... limit of the N-body dynamic and hence justify the mean-field limit and prove the propagation of chaos for the focusing quantum many-body system.
Author Holmer, Justin
Chen, Xuwen
Author_xml – sequence: 1
  givenname: Xuwen
  surname: Chen
  fullname: Chen, Xuwen
  email: chenxuwen@math.brown.edu
  organization: Department of Mathematics, University of Rochester
– sequence: 2
  givenname: Justin
  surname: Holmer
  fullname: Holmer, Justin
  organization: Department of Mathematics, Brown University
BookMark eNp9kLlOAzEQhi0EEuF4ADqXNIbxtU7oUMIlcQgIteV1vGC0scFeI-XFeAFejE2CKCioRqOZb0b_t4M2QwwOoQMKRxRAHWcABpIArQiMFJBqAw2o4IxApfgmGgAAJyPJ1Dbayfl12TJeDVA5j7ZkH57xfTGhK3N8Y8KC1HG2wJNFMHNv8wmevjj84J9jiiXjiUv-w3Q-Bhwb3PUjOsG_Z8al9hbfxtD64EzCj_YlfX3O-pFL-Oy9rMA9tNWYNrv9n7qLns7PpuNLcn13cTU-vSaWM9oRJhrGRsYIAUpJqqCpG9UIS8FVQ1kZZuvaDa1wkgorR0Mja6EEFZKJis-44bvocH33LcX34nKn5z5b17YmuD6KpkMupaJMyX6Vrldtijkn1-i35OcmLTQFvVSs14p1r1gvFeuqZ9QfxvpuFbBLxrf_kmxN5v7LUo1-jSWF3sU_0DehWpKt
CitedBy_id crossref_primary_10_1093_imrn_rnab132
crossref_primary_10_1016_j_aim_2019_04_066
crossref_primary_10_1007_s00023_018_0738_7
crossref_primary_10_1007_s42543_023_00065_5
crossref_primary_10_1007_s42543_023_00066_4
crossref_primary_10_1016_j_physd_2017_07_007
crossref_primary_10_1142_S0129055X2150029X
crossref_primary_10_1007_s40818_022_00126_5
crossref_primary_10_1017_fmp_2021_16
crossref_primary_10_1137_22M1535139
crossref_primary_10_5802_cml_62
crossref_primary_10_1007_s00220_017_2994_7
crossref_primary_10_1007_s00220_024_05157_6
crossref_primary_10_1007_s00205_020_01557_9
crossref_primary_10_1016_j_jfa_2021_109096
crossref_primary_10_1093_imrn_rnw113
crossref_primary_10_3934_dcds_2022006
crossref_primary_10_1007_s11464_024_0043_3
crossref_primary_10_1137_17M1117598
crossref_primary_10_1007_s10955_020_02500_8
crossref_primary_10_1007_s00023_016_0513_6
crossref_primary_10_1007_s40818_024_00177_w
crossref_primary_10_1016_j_physd_2021_133148
crossref_primary_10_1007_s00023_021_01112_6
crossref_primary_10_1016_j_jfa_2021_108934
crossref_primary_10_1007_s40818_022_00130_9
crossref_primary_10_1007_s00220_019_03599_x
crossref_primary_10_1063_1_5075514
crossref_primary_10_1090_qam_1455
crossref_primary_10_1016_j_anihpc_2018_10_007
crossref_primary_10_2140_apde_2017_10_589
crossref_primary_10_1016_j_jfa_2017_04_016
crossref_primary_10_1007_s00220_016_2797_2
crossref_primary_10_1007_s00222_019_00868_3
crossref_primary_10_1063_1_5099113
crossref_primary_10_1007_s10955_023_03082_x
Cites_doi 10.1007/s00205-011-0453-8
10.1103/PhysRevLett.106.195301
10.1016/j.matpur.2010.12.004
10.1016/j.jfa.2014.02.006
10.1016/j.aim.2011.06.028
10.1142/S0219891608001726
10.1038/nature747
10.1007/s00220-008-0426-4
10.3934/dcds.2010.27.715
10.1007/s00220-009-0867-4
10.1353/ajm.1998.0011
10.1126/science.1071021
10.1007/s11005-011-0470-4
10.1090/conm/581/11491
10.1007/s00220-011-1341-7
10.1016/j.matpur.2012.02.003
10.1007/s00220-009-0754-z
10.1126/science.269.5221.198
10.1002/cpa.20123
10.1007/s10955-010-9981-0
10.1007/s00205-013-0645-5
10.1007/s00220-010-1010-2
10.1007/s00205-005-0388-z
10.1007/s00205-013-0667-z
10.1103/PhysRevLett.85.1795
10.4310/ATMP.2001.v5.n6.a6
10.1103/RevModPhys.52.569
10.1007/s00023-013-0248-6
10.1007/s00222-006-0022-1
10.1007/s00220-013-1818-7
10.1007/s00220-009-0933-y
10.1016/S1049-250X(08)60101-9
10.1016/j.anihpc.2010.06.003
10.1103/PhysRevLett.75.3969
10.1007/s10955-011-0283-y
10.1103/PhysRevLett.80.2027
10.1002/cpa.21542
10.4310/CMS.2011.v9.n4.a1
10.1016/j.jfa.2010.11.003
10.1007/s10955-006-9271-z
10.1090/S0002-9939-2013-11877-0
10.1353/ajm.2011.0004
10.1090/S0894-0347-09-00635-3
10.4007/annals.2010.172.291
10.4171/JEMS/610
10.1093/imrn/rnv228
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s00205-016-0970-6
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1432-0673
EndPage 676
ExternalDocumentID 10_1007_s00205_016_0970_6
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-1200455
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID --Z
-54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9T
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z7Y
Z7Z
Z83
Z8S
Z8T
Z8W
Z92
ZMTXR
ZY4
~8M
~EX
AADXB
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
8FD
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c321t-24f229aa440775170fbf7f4c10e6856a2cbbe8c4e514c598a5b4741452463d3a3
IEDL.DBID U2A
ISSN 0003-9527
IngestDate Thu Sep 04 22:11:52 EDT 2025
Tue Jul 01 03:54:05 EDT 2025
Thu Apr 24 23:00:02 EDT 2025
Fri Feb 21 02:37:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Rigorous Derivation
Pitaevskii Equation
Marginal Density
Trace Class Operator
Wigner Measure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-24f229aa440775170fbf7f4c10e6856a2cbbe8c4e514c598a5b4741452463d3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1835571275
PQPubID 23500
PageCount 46
ParticipantIDs proquest_miscellaneous_1835571275
crossref_primary_10_1007_s00205_016_0970_6
crossref_citationtrail_10_1007_s00205_016_0970_6
springer_journals_10_1007_s00205_016_0970_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160800
2016-8-00
20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 8
  year: 2016
  text: 20160800
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Archive for rational mechanics and analysis
PublicationTitleAbbrev Arch Rational Mech Anal
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Lieb, Seiringer, Solovej, Yngvason (CR41) 2005
Benedikter, Oliveira, Schlein (CR6) 2015; 68
Kirkpatrick, Schlein, Staffilani (CR38) 2011; 133
Grillakis, Machedon, Margetis (CR33) 2010; 294
Chen, Pavlović, Tzirakis (CR12) 2010; 27
Hayashi, Naumkin (CR35) 1998; 120
Michelangeli, Schlein (CR43) 2012; 311
Pickl (CR45) 2011; 97
Chen, Pavlović (CR9) 2010; 27
Chen (CR17) 2013; 210
Gressman, Sohinger, Staffilani (CR30) 2014; 266
Grillakis, Margetis (CR31) 2008; 5
Elgart, Erdös, Schlein, Yau (CR23) 2006; 179
CR47
Chen (CR15) 2012; 203
Ammari, Nier (CR3) 2015; 16
Klainerman, Machedon (CR39) 2008; 279
Pickl (CR44) 2010; 140
Chen (CR16) 2012; 98
Chen, Lee, Schlein (CR8) 2011; 144
Cornish, Claussen, Roberts, Cornell, Wieman (CR21) 2000; 85
Davis, Mewes, Andrews, van Druten, Durfee, Kurn, Ketterle (CR22) 1995; 75
Chen, Pavlović (CR11) 2014; 15
Ketterle, van Druten (CR36) 1996; 37
Rodnianski, Schlein (CR46) 2009; 291
Ammari, Nier (CR2) 2011; 95
Knowles, Pickl (CR40) 2010; 298
Erdös, Schlein, Yau (CR25) 2006; 59
Erdös, Schlein, Yau (CR26) 2007; 167
Erdös, Schlein, Yau (CR27) 2009; 22
Spohn (CR48) 1980; 52
CR19
Grillakis, Machedon (CR32) 2013; 324
Anderson, Ensher, Matthews, Wieman, Cornell (CR4) 1995; 269
Grillakis, Machedon, Margetis (CR34) 2011; 228
Medley, Weld, Miyake, Pritchard, Ketterle (CR42) 2011; 106
Stamper-Kurn, Andrews, Chikkatur, Inouye, Miesner, Stenger, Ketterle (CR49) 1998; 80
Strecker, Partridge, Truscott, Hulet (CR50) 2002; 417
Adami, Golse, Teta (CR1) 2007; 127
Chen, Holmer (CR18) 2013; 210
Khaykovich, Schreck, Ferrari, Bourdel, Cubizolles, Carr, Castin, Salomon (CR37) 2002; 296
Erdös, Yau (CR24) 2001; 5
Carles (CR7) 2011; 9
Chen, Pavlović, Tzirakis (CR13) 2012; 581
Chen, Pavlović (CR10) 2011; 260
Erdös, Schlein, Yau (CR28) 2010; 172
Fröhlich, Knowles, Schwarz (CR29) 2009; 288
CR20
Beckner (CR5) 2014; 142
Chen (CR14) 2011; 24
E.H. Lieb (970_CR41) 2005
X. Chen (970_CR15) 2012; 203
P. Pickl (970_CR44) 2010; 140
S. Klainerman (970_CR39) 2008; 279
L. Erdös (970_CR27) 2009; 22
M.G. Grillakis (970_CR31) 2008; 5
I. Rodnianski (970_CR46) 2009; 291
X. Chen (970_CR18) 2013; 210
M.G. Grillakis (970_CR32) 2013; 324
M.G. Grillakis (970_CR33) 2010; 294
T. Chen (970_CR11) 2014; 15
A. Michelangeli (970_CR43) 2012; 311
A. Knowles (970_CR40) 2010; 298
H. Spohn (970_CR48) 1980; 52
Z. Ammari (970_CR2) 2011; 95
N. Benedikter (970_CR6) 2015; 68
J. Fröhlich (970_CR29) 2009; 288
970_CR47
K.E. Strecker (970_CR50) 2002; 417
D.M. Stamper-Kurn (970_CR49) 1998; 80
T. Chen (970_CR13) 2012; 581
L. Erdös (970_CR28) 2010; 172
K. Kirkpatrick (970_CR38) 2011; 133
W. Beckner (970_CR5) 2014; 142
X. Chen (970_CR16) 2012; 98
L. Erdös (970_CR26) 2007; 167
P. Pickl (970_CR45) 2011; 97
L. Erdös (970_CR25) 2006; 59
R. Carles (970_CR7) 2011; 9
T. Chen (970_CR9) 2010; 27
T. Chen (970_CR10) 2011; 260
L. Khaykovich (970_CR37) 2002; 296
A. Elgart (970_CR23) 2006; 179
T. Chen (970_CR12) 2010; 27
P. Gressman (970_CR30) 2014; 266
S.L. Cornish (970_CR21) 2000; 85
M.G. Grillakis (970_CR34) 2011; 228
R. Adami (970_CR1) 2007; 127
L. Chen (970_CR8) 2011; 144
X. Chen (970_CR17) 2013; 210
W. Ketterle (970_CR36) 1996; 37
970_CR20
K.B. Davis (970_CR22) 1995; 75
N. Hayashi (970_CR35) 1998; 120
X. Chen (970_CR14) 2011; 24
Z. Ammari (970_CR3) 2015; 16
P. Medley (970_CR42) 2011; 106
970_CR19
L. Erdös (970_CR24) 2001; 5
M.H. Anderson (970_CR4) 1995; 269
References_xml – volume: 203
  start-page: 455
  year: 2012
  end-page: 497
  ident: CR15
  article-title: Second order corrections to mean field evolution for weakly interacting bosons in the case of three-body interactions
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/s00205-011-0453-8
– volume: 106
  start-page: 195301
  year: 2011
  ident: CR42
  article-title: Spin gradient demagnetization cooling of ultracold atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.195301
– volume: 95
  start-page: 585
  year: 2011
  end-page: 626
  ident: CR2
  article-title: Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states
  publication-title: J. Math. Pures. Appl.
  doi: 10.1016/j.matpur.2010.12.004
– volume: 266
  start-page: 4705
  year: 2014
  end-page: 4764
  ident: CR30
  article-title: On the uniqueness of solutions to the periodic 3D Gross–Pitaevskii hierarchy
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2014.02.006
– volume: 228
  start-page: 1788
  year: 2011
  end-page: 1815
  ident: CR34
  article-title: Second order corrections to mean field evolution for weakly interacting bosons. II
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2011.06.028
– volume: 5
  start-page: 857
  year: 2008
  end-page: 883
  ident: CR31
  article-title: A priori estimates for many-body Hamiltonian evolution of interacting boson system
  publication-title: J. Hyperb. Differ. Equ.
  doi: 10.1142/S0219891608001726
– volume: 417
  start-page: 150
  year: 2002
  end-page: 153
  ident: CR50
  article-title: Formation and propagation of matter-wave soliton trains
  publication-title: Nature
  doi: 10.1038/nature747
– volume: 279
  start-page: 169
  year: 2008
  end-page: 185
  ident: CR39
  article-title: On the uniqueness of solutions to the Gross–Pitaevskii hierarchy
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-008-0426-4
– volume: 27
  start-page: 715
  year: 2010
  end-page: 739
  ident: CR9
  article-title: On the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2010.27.715
– volume: 291
  start-page: 31
  year: 2009
  end-page: 61
  ident: CR46
  article-title: Quantum fluctuations and rate of convergence towards mean field dynamics
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-009-0867-4
– volume: 120
  start-page: 369
  year: 1998
  end-page: 389
  ident: CR35
  article-title: Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.1998.0011
– ident: CR19
– volume: 16
  start-page: 155
  year: 2015
  end-page: 220
  ident: CR3
  article-title: Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential
  publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
– volume: 296
  start-page: 1290
  year: 2002
  end-page: 1293
  ident: CR37
  article-title: Formation of a matter-wave bright soliton
  publication-title: Science
  doi: 10.1126/science.1071021
– volume: 97
  start-page: 151
  year: 2011
  end-page: 164
  ident: CR45
  article-title: A simple derivation of mean field limits for quantum systems
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-011-0470-4
– volume: 581
  start-page: 39
  year: 2012
  end-page: 62
  ident: CR13
  article-title: Multilinear Morawetz identities for the Gross–Pitaevskii hierarchy
  publication-title: Contemp. Math.
  doi: 10.1090/conm/581/11491
– volume: 311
  start-page: 645
  year: 2012
  end-page: 687
  ident: CR43
  article-title: Dynamical collapse of boson stars
  publication-title: Commum. Math. Phys.
  doi: 10.1007/s00220-011-1341-7
– volume: 98
  start-page: 450
  year: 2012
  end-page: 478
  ident: CR16
  article-title: Collapsing estimates and the rigorous derivation of the 2d cubic nonlinear Schrödinger equation with anisotropic switchable quadratic traps
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2012.02.003
– volume: 288
  start-page: 1023
  year: 2009
  end-page: 1059
  ident: CR29
  article-title: On the mean-field limit of bosons with coulomb two-body interaction
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-009-0754-z
– volume: 269
  start-page: 198
  year: 1995
  end-page: 201
  ident: CR4
  article-title: Observation of Bose–Einstein condensation in a dilute atomic vapor
  publication-title: Science
  doi: 10.1126/science.269.5221.198
– volume: 59
  start-page: 1659
  year: 2006
  end-page: 1741
  ident: CR25
  article-title: Derivation of the Gross–Pitaevskii Hierarchy for the dynamics of Bose–Einstein condensate
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20123
– volume: 140
  start-page: 76
  year: 2010
  end-page: 89
  ident: CR44
  article-title: Derivation of the time dependent Gross–Pitaevskii equation without positivity condition on the interaction
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-010-9981-0
– volume: 210
  start-page: 365
  year: 2013
  end-page: 408
  ident: CR17
  article-title: On the rigorous derivation of the 3D cubic nonlinear Schrödinger equation with a quadratic trap
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/s00205-013-0645-5
– volume: 298
  start-page: 101
  year: 2010
  end-page: 138
  ident: CR40
  article-title: Mean-field dynamics: singular potentials and rate of convergence
  publication-title: Commum. Math. Phys.
  doi: 10.1007/s00220-010-1010-2
– volume: 179
  start-page: 265
  year: 2006
  end-page: 283
  ident: CR23
  article-title: Gross–Pitaevskii equation as the mean field limit of weakly coupled bosons
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/s00205-005-0388-z
– volume: 210
  start-page: 909
  year: 2013
  end-page: 954
  ident: CR18
  article-title: On the rigorous derivation of the 2D cubic nonlinear Schrödinger equation from 3D quantum many-body dynamics
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/s00205-013-0667-z
– volume: 85
  start-page: 1795
  year: 2000
  end-page: 1798
  ident: CR21
  article-title: Stable Rb Bose–Einstein condensates with widely turnable interactions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.1795
– volume: 24
  start-page: 209
  year: 2011
  end-page: 230
  ident: CR14
  article-title: Classical proofs of Kato type smoothing estimates for the Schrödinger equation with quadratic potential in with application
  publication-title: Differ. Integr. Equ.
– volume: 5
  start-page: 1169
  year: 2001
  end-page: 1205
  ident: CR24
  article-title: Derivation of the non-linear Schrödinger equation from a many-body coulomb system
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2001.v5.n6.a6
– ident: CR47
– volume: 52
  start-page: 569
  year: 1980
  end-page: 615
  ident: CR48
  article-title: Kinetic equations from Hamiltonian dynamics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.52.569
– volume: 15
  start-page: 543
  year: 2014
  end-page: 588
  ident: CR11
  article-title: Derivation of the cubic NLS and Gross–Pitaevskii hierarchy from manybody dynamics in  = 3 based on spacetime norms
  publication-title: Ann. H. Poincaré
  doi: 10.1007/s00023-013-0248-6
– volume: 167
  start-page: 515
  year: 2007
  end-page: 614
  ident: CR26
  article-title: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems
  publication-title: Invent. Math.
  doi: 10.1007/s00222-006-0022-1
– year: 2005
  ident: CR41
  publication-title: The Mathematics of the Bose Gas and Its Condensation
– volume: 324
  start-page: 601
  year: 2013
  end-page: 636
  ident: CR32
  article-title: Pair excitations and the mean field approximation of interacting Bosons, I
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-013-1818-7
– volume: 294
  start-page: 273
  year: 2010
  end-page: 301
  ident: CR33
  article-title: Second order corrections to mean field evolution for weakly interacting bosons. I
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-009-0933-y
– volume: 37
  start-page: 181
  year: 1996
  end-page: 236
  ident: CR36
  article-title: Evaporative cooling of trapped atoms
  publication-title: Adv. At. Mol. Opt. Phys.
  doi: 10.1016/S1049-250X(08)60101-9
– volume: 27
  start-page: 1271
  year: 2010
  end-page: 1290
  ident: CR12
  article-title: Energy conservation and blowup of solutions for focusing Gross–Pitaevskii hierarchies
  publication-title: Ann. I. H. Poincaré
  doi: 10.1016/j.anihpc.2010.06.003
– volume: 75
  start-page: 3969
  year: 1995
  end-page: 3973
  ident: CR22
  article-title: Bose–Einstein condensation in a gas of sodium atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.3969
– volume: 144
  start-page: 872
  year: 2011
  end-page: 903
  ident: CR8
  article-title: Rate of convergence towards hartree dynamics
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-011-0283-y
– volume: 80
  start-page: 2027
  year: 1998
  end-page: 2030
  ident: CR49
  article-title: Optical confinement of a Bose–Einstein condensate
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.2027
– volume: 68
  start-page: 1399
  year: 2015
  end-page: 1482
  ident: CR6
  article-title: Quantitative derivation of the Gross–Pitaevskii equation
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21542
– volume: 9
  start-page: 937
  year: 2011
  end-page: 964
  ident: CR7
  article-title: Nonlinear Schrödinger equation with time dependent potential
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2011.v9.n4.a1
– volume: 260
  start-page: 959
  year: 2011
  end-page: 997
  ident: CR10
  article-title: The quintic NLS as the mean field limit of a boson gas with three-body interactions
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2010.11.003
– volume: 127
  start-page: 1194
  year: 2007
  end-page: 1220
  ident: CR1
  article-title: Rigorous derivation of the cubic NLS in dimension one
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-006-9271-z
– volume: 142
  start-page: 1217
  year: 2014
  end-page: 1228
  ident: CR5
  article-title: Multilinear embedding—convolution estimates on smooth submanifolds
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-2013-11877-0
– volume: 133
  start-page: 91
  year: 2011
  end-page: 130
  ident: CR38
  article-title: Derivation of the two dimensional nonlinear Schrödinger equation from many body quantum dynamics
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.2011.0004
– volume: 22
  start-page: 1099
  year: 2009
  end-page: 1156
  ident: CR27
  article-title: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-09-00635-3
– ident: CR20
– volume: 172
  start-page: 291
  year: 2010
  end-page: 370
  ident: CR28
  article-title: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate
  publication-title: Ann. Math.
  doi: 10.4007/annals.2010.172.291
– volume: 269
  start-page: 198
  year: 1995
  ident: 970_CR4
  publication-title: Science
  doi: 10.1126/science.269.5221.198
– volume: 142
  start-page: 1217
  year: 2014
  ident: 970_CR5
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-2013-11877-0
– volume: 15
  start-page: 543
  year: 2014
  ident: 970_CR11
  publication-title: Ann. H. Poincaré
  doi: 10.1007/s00023-013-0248-6
– volume: 120
  start-page: 369
  year: 1998
  ident: 970_CR35
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.1998.0011
– volume: 24
  start-page: 209
  year: 2011
  ident: 970_CR14
  publication-title: Differ. Integr. Equ.
– volume: 210
  start-page: 365
  year: 2013
  ident: 970_CR17
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/s00205-013-0645-5
– volume: 37
  start-page: 181
  year: 1996
  ident: 970_CR36
  publication-title: Adv. At. Mol. Opt. Phys.
  doi: 10.1016/S1049-250X(08)60101-9
– volume: 228
  start-page: 1788
  year: 2011
  ident: 970_CR34
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2011.06.028
– volume: 417
  start-page: 150
  year: 2002
  ident: 970_CR50
  publication-title: Nature
  doi: 10.1038/nature747
– volume: 27
  start-page: 715
  year: 2010
  ident: 970_CR9
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2010.27.715
– volume: 9
  start-page: 937
  year: 2011
  ident: 970_CR7
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2011.v9.n4.a1
– volume: 210
  start-page: 909
  year: 2013
  ident: 970_CR18
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/s00205-013-0667-z
– volume: 27
  start-page: 1271
  year: 2010
  ident: 970_CR12
  publication-title: Ann. I. H. Poincaré
  doi: 10.1016/j.anihpc.2010.06.003
– volume: 311
  start-page: 645
  year: 2012
  ident: 970_CR43
  publication-title: Commum. Math. Phys.
  doi: 10.1007/s00220-011-1341-7
– volume: 167
  start-page: 515
  year: 2007
  ident: 970_CR26
  publication-title: Invent. Math.
  doi: 10.1007/s00222-006-0022-1
– volume: 133
  start-page: 91
  year: 2011
  ident: 970_CR38
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.2011.0004
– ident: 970_CR19
  doi: 10.4171/JEMS/610
– volume: 85
  start-page: 1795
  year: 2000
  ident: 970_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.1795
– volume: 5
  start-page: 857
  year: 2008
  ident: 970_CR31
  publication-title: J. Hyperb. Differ. Equ.
  doi: 10.1142/S0219891608001726
– volume: 16
  start-page: 155
  year: 2015
  ident: 970_CR3
  publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
– volume: 68
  start-page: 1399
  year: 2015
  ident: 970_CR6
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21542
– volume: 22
  start-page: 1099
  year: 2009
  ident: 970_CR27
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-09-00635-3
– volume: 324
  start-page: 601
  year: 2013
  ident: 970_CR32
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-013-1818-7
– volume: 260
  start-page: 959
  year: 2011
  ident: 970_CR10
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2010.11.003
– volume: 52
  start-page: 569
  year: 1980
  ident: 970_CR48
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.52.569
– volume: 294
  start-page: 273
  year: 2010
  ident: 970_CR33
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-009-0933-y
– volume: 298
  start-page: 101
  year: 2010
  ident: 970_CR40
  publication-title: Commum. Math. Phys.
  doi: 10.1007/s00220-010-1010-2
– volume: 80
  start-page: 2027
  year: 1998
  ident: 970_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.2027
– volume: 279
  start-page: 169
  year: 2008
  ident: 970_CR39
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-008-0426-4
– volume: 106
  start-page: 195301
  year: 2011
  ident: 970_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.195301
– volume: 75
  start-page: 3969
  year: 1995
  ident: 970_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.3969
– volume-title: The Mathematics of the Bose Gas and Its Condensation
  year: 2005
  ident: 970_CR41
– volume: 172
  start-page: 291
  year: 2010
  ident: 970_CR28
  publication-title: Ann. Math.
  doi: 10.4007/annals.2010.172.291
– ident: 970_CR47
– volume: 581
  start-page: 39
  year: 2012
  ident: 970_CR13
  publication-title: Contemp. Math.
  doi: 10.1090/conm/581/11491
– volume: 291
  start-page: 31
  year: 2009
  ident: 970_CR46
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-009-0867-4
– volume: 203
  start-page: 455
  year: 2012
  ident: 970_CR15
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/s00205-011-0453-8
– volume: 59
  start-page: 1659
  year: 2006
  ident: 970_CR25
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20123
– volume: 144
  start-page: 872
  year: 2011
  ident: 970_CR8
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-011-0283-y
– volume: 127
  start-page: 1194
  year: 2007
  ident: 970_CR1
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-006-9271-z
– volume: 288
  start-page: 1023
  year: 2009
  ident: 970_CR29
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-009-0754-z
– volume: 179
  start-page: 265
  year: 2006
  ident: 970_CR23
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/s00205-005-0388-z
– volume: 5
  start-page: 1169
  year: 2001
  ident: 970_CR24
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2001.v5.n6.a6
– volume: 95
  start-page: 585
  year: 2011
  ident: 970_CR2
  publication-title: J. Math. Pures. Appl.
  doi: 10.1016/j.matpur.2010.12.004
– volume: 266
  start-page: 4705
  year: 2014
  ident: 970_CR30
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2014.02.006
– volume: 97
  start-page: 151
  year: 2011
  ident: 970_CR45
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-011-0470-4
– ident: 970_CR20
  doi: 10.1093/imrn/rnv228
– volume: 98
  start-page: 450
  year: 2012
  ident: 970_CR16
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2012.02.003
– volume: 296
  start-page: 1290
  year: 2002
  ident: 970_CR37
  publication-title: Science
  doi: 10.1126/science.1071021
– volume: 140
  start-page: 76
  year: 2010
  ident: 970_CR44
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-010-9981-0
SSID ssj0003236
Score 2.40234
Snippet We consider the dynamics of N bosons in 1D. We assume that the pair interaction is attractive and given by N β - 1 V ( N β ) . where ∫ V ⩽ 0 . We develop new...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We consider the dynamics of N bosons in 1D. We assume that the pair interaction is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 631
SubjectTerms Classical Mechanics
Complex Systems
Derivation
Derivatives
Dynamical systems
Dynamics
Estimates
Fluid- and Aerodynamics
Mathematical and Computational Physics
Nonlinear dynamics
Physics
Physics and Astronomy
Schroedinger equation
Texts
Theoretical
Title Focusing Quantum Many-body Dynamics: The Rigorous Derivation of the 1D Focusing Cubic Nonlinear Schrödinger Equation
URI https://link.springer.com/article/10.1007/s00205-016-0970-6
https://www.proquest.com/docview/1835571275
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SXQrtIUnThmxeqNBTi8CWJT9yW_aRkLKBli6kJ2PJcrKQ2K29PvSP5Q_kj2UkP0JDG8jNBnkQmoc-eUbfAHxKJaL4wAmoTD1Jue8qjIMio0yEhj5Lhq7V9OLCP1vy80tx2d7jrrpq9y4laSN1f9nNIBtTaIYnYJRO_VcwFHh0N964ZOM-_HrM9gU0TzQSLOhSmf8S8fdm9IgwnyRF7V4z34bNFiSScaPVd7Ch8x3YagEjad2x2oG3i550Fd9e22pOVb2Hel4oU9B-Rb7VuHL1LVmgz1NZpH_ItGlBX50QtBDyfXVVlHj4J1O0xObvLCkyglKJOyW9mEktV4pcNLQaSYlTuC7v71I7eTL73dCFf4DlfPZjckbb_gpUecxdU8YzxqIk4dzw4LmBk8ksyLhyHe2Hwk-YklKHimsEVUpEYSIkRwDCBeO-l3qJtwuDvMj1HhAn1b6jEF1EEgUwN-EqFEp7IpJR6go9Aqdb6Fi15OOmB8ZN3NMmW93EpuDM6Cb2R_C5_-RXw7zx3OCPnfZi9A-T9EhyjcsXY8gSIjA09iP40qk1bh21-r_E_ReNPoA3zJqVqQw8hMG6rPURopW1PIbh-PTn19mxtdIHyAfhDA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5inaaxBwZjiDIGRtrTJkuJY-eyt2ltVba2ElMr9S2KHadUggSa5mF_jD_AH-PYuSDQhsRbIjlHls_Fn3OOvwNwlkpE8YETUJl6knLfVRgHRUaZCA19lgxdq-npzB8v-M1SLJt73GVb7d6mJG2k7i67GWRjCs3wBIzSqb8Du4gFQtO2YMGuuvDrMdsX0DzRSLCgTWU-JOLPzeg3wvwrKWr3mtFzeNaARHJVa_UFPNH5ERw2gJE07lgewcG0I13Ftz1bzanKl1CNCmUK2lfkU4UrV30lU_R5Kov0ngzqFvTlJUELIXfrVbHBwz8ZoCXWf2dJkRGUStwB6cRcV3KtyKym1Ug2OIXPm58_Ujt5Mvxe04Ufw2I0nF-PadNfgSqPuVvKeMZYlCScGx48N3AymQUZV66j_VD4CVNS6lBxjaBKiShMhOQIQLhg3PdSL_FeQS8vcv0aiJNq31GILiKJApibcBUKpT0RySh1he6D0y50rBrycdMD40vc0SZb3cSm4MzoJvb7cN598q1m3vjX4A-t9mL0D5P0SHKNyxdjyBIiMDT2fbho1Ro3jlo-LvHNf41-D_vj-XQSTz7Obk_gKbMmZqoE30Jvu6n0KSKXrXxnLfUXeIniaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9wwEB5xqIg-lFssLWAknlpZxI6do2-IZcW1qxZ1Jd6i2HEACRK62Tz0j_UP8McY50JFBYm3RHImlufwl8z4G4D9RCGK9x2fqsRVVHhMYxyUKeUysPRZKmCVpocj72Qszq7kVdPntGir3duUZH2mwbI0ZdODhyQ96A6-WZRji87waxjfRL1ZmMdozKyhj_lhF4pdXvUItFc0lNxv05r_E_HvxvSMNl8kSKt9Z7AMnxrASA5rDa_AjMlWYakBj6RxzWIVPg47Ala8-1BVdupiDcpBrm1x-zX5WeIqlvdkiP5PVZ78If26HX3xnaC1kMvb63ySlwXpo1XWf2pJnhKUSlifdGKOSnWryaim2IgnOIWbyePfpJo8Of5dU4evw3hw_OvohDa9Fqh2OZtSLlLOwzgWwnLiMd9JVeqnQjPHeIH0Yq6VMoEWBgGWlmEQSyUQjAjJhecmbuxuwFyWZ2YTiJMYz9GINEKFAjiLhQ6kNq4MVZgwaXrgtAsd6YaI3PbDuIs6CuVKN5EtPrO6ibwefO0eeahZON4avNdqL0JfsQmQODO4fBGGLyl9S2nfg2-tWqPGaYvXJW69a_QuLPzoD6KL09H5Z1jklYXZgsEvMDedlGYbQcxU7VSG-gSiS-an
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focusing+Quantum+Many-body+Dynamics%3A+The+Rigorous+Derivation+of+the+1D+Focusing+Cubic+Nonlinear+Schr%C3%B6dinger+Equation&rft.jtitle=Archive+for+rational+mechanics+and+analysis&rft.au=Chen%2C+Xuwen&rft.au=Holmer%2C+Justin&rft.date=2016-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0003-9527&rft.eissn=1432-0673&rft.volume=221&rft.issue=2&rft.spage=631&rft.epage=676&rft_id=info:doi/10.1007%2Fs00205-016-0970-6&rft.externalDocID=10_1007_s00205_016_0970_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-9527&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-9527&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-9527&client=summon