The Corrosion Resistance Behaviors of Metallic Bipolar Plates for PEMFC Coated with Physical Vapor Deposition (PVD): An Experimental Study
Durability of polymer electrolyte membrane (PEM)-type fuel cells is the most challenging problem preventing commercialization. There are several sources corroding the membrane and the catalyst layer or oxidizing the bipolar plate of fuel cells. There are several reasons for performance drop in PEM-t...
Saved in:
Published in | Arabian Journal for Science and Engineering Vol. 41; no. 5; pp. 1961 - 1968 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Durability of polymer electrolyte membrane (PEM)-type fuel cells is the most challenging problem preventing commercialization. There are several sources corroding the membrane and the catalyst layer or oxidizing the bipolar plate of fuel cells. There are several reasons for performance drop in PEM-type fuel cells, and degradation of the bipolar plates is one of the most important one. Graphite-based bipolar plates are usually resistant to corrosion, but because of their slow and costly manufacturing process metallic bipolar plates step forward for commercialization. Among other materials, metal nitride-coated stainless steel materials are good candidates for bipolar plate material of commercial applications. In this study, different stainless steel materials, such as 304, 316L, 316Ti and 321, coated with titanium nitride (TiN) and chromium nitride (CrN), using the physical vapor deposition (PVD) method, were tested in terms of corrosion. Corrosion resistance improvement was observed with both TiN and CrN coatings. As the best result, corrosion current value, as low as 0.2
μ
A/cm
2
, was obtained with CrN-coated SS316Ti specimen. Small titanium and molybdenum content in stainless steel improved the corrosion resistance of CrN coating. |
---|---|
AbstractList | Durability of polymer electrolyte membrane (PEM)-type fuel cells is the most challenging problem preventing commercialization. There are several sources corroding the membrane and the catalyst layer or oxidizing the bipolar plate of fuel cells. There are several reasons for performance drop in PEM-type fuel cells, and degradation of the bipolar plates is one of the most important one. Graphite-based bipolar plates are usually resistant to corrosion, but because of their slow and costly manufacturing process metallic bipolar plates step forward for commercialization. Among other materials, metal nitride-coated stainless steel materials are good candidates for bipolar plate material of commercial applications. In this study, different stainless steel materials, such as 304, 316L, 316Ti and 321, coated with titanium nitride (TiN) and chromium nitride (CrN), using the physical vapor deposition (PVD) method, were tested in terms of corrosion. Corrosion resistance improvement was observed with both TiN and CrN coatings. As the best result, corrosion current value, as low as 0.2
μ
A/cm
2
, was obtained with CrN-coated SS316Ti specimen. Small titanium and molybdenum content in stainless steel improved the corrosion resistance of CrN coating. Durability of polymer electrolyte membrane (PEM)-type fuel cells is the most challenging problem preventing commercialization. There are several sources corroding the membrane and the catalyst layer or oxidizing the bipolar plate of fuel cells. There are several reasons for performance drop in PEM-type fuel cells, and degradation of the bipolar plates is one of the most important one. Graphite-based bipolar plates are usually resistant to corrosion, but because of their slow and costly manufacturing process metallic bipolar plates step forward for commercialization. Among other materials, metal nitride-coated stainless steel materials are good candidates for bipolar plate material of commercial applications. In this study, different stainless steel materials, such as 304, 316L, 316Ti and 321, coated with titanium nitride (TiN) and chromium nitride (CrN), using the physical vapor deposition (PVD) method, were tested in terms of corrosion. Corrosion resistance improvement was observed with both TiN and CrN coatings. As the best result, corrosion current value, as low as 0.2 \({\mu}\)A/cm\({2}}\), was obtained with CrN-coated SS316Ti specimen. Small titanium and molybdenum content in stainless steel improved the corrosion resistance of CrN coating. |
Author | Cevik, I. Dündar, F. Ficici, F. Kahraman, H. |
Author_xml | – sequence: 1 givenname: H. orcidid: 0000-0003-3322-9904 surname: Kahraman fullname: Kahraman, H. email: huseyink@sakarya.edu.tr organization: Mechanical Engineering Department, Faculty of Technology, Sakarya University – sequence: 2 givenname: I. surname: Cevik fullname: Cevik, I. organization: Mechanical Engineering Department, Faculty of Technology, Sakarya University – sequence: 3 givenname: F. surname: Dündar fullname: Dündar, F. organization: Department of Mechanical Engineering, Faculty of Engineering and Architecture, Meliksah University – sequence: 4 givenname: F. surname: Ficici fullname: Ficici, F. organization: Mechanical Engineering Department, Faculty of Technology, Sakarya University |
BookMark | eNp9kMtOAyEUhonRxHp5AHcsdTHKgc7AuNO2XhKNjbctQTxjMSOMMNX2FXxqaeraFYeT__8C3w7Z9MEjIQfAjoExeZJAiKouGFQFZ6UqFhtkwKGGYsgVbJIBCKgLxXi5TXZSemesAiXFgPw8zpCOQowhueDpPSaXeuMt0nOcmS8XYqKhobfYm7Z1lp67LrQm0mlreky0CXmc3F6MMiMvXum362d0OlsmZ01Ln02XA2PsMr1f8Q-nz-OjU3rm6WTRYXQf6DOYPvTz1-Ue2WpMm3D_79wlTxeTx9FVcXN3eT06uyms4NAXnGNd1SVY-yJL5MJUAoTiatiAzQpkaVhVynxR0jbCMPZijIBGCoWS1UMpdsnhmtvF8DnH1OsPlyy2rfEY5kmDUoxBzYDnKKyjNvtJERvd5TebuNTA9Mq7XnvX2bteedeL3OHrTspZ_4ZRv4d59PlH_5R-ATyHh4c |
CitedBy_id | crossref_primary_10_1039_D0RA00461H crossref_primary_10_1080_02670844_2020_1827943 crossref_primary_10_1007_s42452_019_1475_3 crossref_primary_10_1007_s42452_021_04710_5 crossref_primary_10_1016_j_jsamd_2016_11_003 crossref_primary_10_1016_j_enconman_2024_118244 crossref_primary_10_1016_j_energy_2019_07_166 crossref_primary_10_1016_j_ijhydene_2020_04_015 crossref_primary_10_1016_j_matchemphys_2019_121916 crossref_primary_10_1016_j_ijhydene_2019_07_231 crossref_primary_10_1039_C9SE00861F crossref_primary_10_1007_s11814_022_1121_4 crossref_primary_10_1007_s13369_020_04368_y crossref_primary_10_2298_TSCI2304089K crossref_primary_10_3390_coatings13040750 crossref_primary_10_1016_j_elecom_2019_106490 crossref_primary_10_1002_fuce_202300015 crossref_primary_10_1016_j_cej_2024_152662 crossref_primary_10_1016_j_ijhydene_2020_12_074 crossref_primary_10_1016_j_molliq_2020_113679 crossref_primary_10_1016_j_fuel_2024_131610 crossref_primary_10_1016_j_ijhydene_2018_10_218 crossref_primary_10_1557_mrc_2020_59 crossref_primary_10_1016_j_ijhydene_2018_08_058 |
Cites_doi | 10.1016/j.ijhydene.2011.04.123 10.1016/j.jpowsour.2006.09.088 10.1016/j.renene.2012.03.006 10.1016/j.surfcoat.2007.07.056 10.1016/j.tsf.2012.09.027 10.1016/j.jpowsour.2004.10.032 10.1016/S0378-7753(01)00950-8 10.1080/15435075.2010.515185 10.1016/j.vacuum.2011.01.022 10.1080/15435075.2011.621474 10.1016/j.renene.2005.09.003 10.1016/j.renene.2008.12.023 10.1016/j.tsf.2014.03.034 10.1016/j.jpowsour.2006.12.034 10.1016/S0378-7753(03)00023-5 10.1063/1.4737141 10.1016/S0378-7753(03)00070-3 10.2172/15016870 10.1016/j.jpowsour.2009.02.029 10.1016/S0010-938X(01)00102-0 10.1016/j.renene.2011.10.008 10.1016/S0010-938X(03)00187-2 10.1016/j.ijhydene.2005.04.016 10.1016/j.jpowsour.2009.12.040 10.1002/fuce.201300185 10.1016/j.renene.2012.08.071 10.1016/j.jpowsour.2007.12.034 10.1016/j.scriptamat.2003.12.028 10.1016/j.corsci.2005.05.012 10.1016/j.ijhydene.2011.03.021 10.1016/S0257-8972(00)00875-6 10.1016/S0378-7753(02)00542-6 10.1016/j.electacta.2011.11.026 |
ContentType | Journal Article |
Copyright | King Fahd University of Petroleum & Minerals 2016 |
Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2016 |
DBID | AAYXX CITATION 7SC 7SE 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s13369-016-2058-x |
DatabaseName | CrossRef Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-4281 |
EndPage | 1968 |
ExternalDocumentID | 10_1007_s13369_016_2058_x |
GroupedDBID | 06D 0R~ 0VY 23M 29~ 2KM 30V 4.4 408 5GY 96X AAJKR AAPBV AARTL AAYIU AAYQN AAZMS ABPTK ABTHY ABULA ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL ALMA_UNASSIGNED_HOLDINGS AMKLP AMYQR ANMIH AYJHY BGNMA C1A ESBYG ESX FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HF~ HMJXF HRMNR HZ~ I0C IXD J9A KOV M4Y NU0 O9- O93 OK1 P9P R9I RLLFE S1Z S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 AAYXX CITATION 7SC 7SE 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c321t-22e96951ccb75e23a63138284f1c36975a0657f1c87cf3a00baa31f738e709473 |
IEDL.DBID | AGYKE |
ISSN | 1319-8025 |
IngestDate | Fri Apr 12 03:49:12 EDT 2024 Fri Aug 23 03:30:15 EDT 2024 Sat Dec 16 12:12:59 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | PEMFC Corrosion Potentiodynamic TiN Coating CrN PVD |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-22e96951ccb75e23a63138284f1c36975a0657f1c87cf3a00baa31f738e709473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3322-9904 |
PQID | 1880019012 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1880019012 crossref_primary_10_1007_s13369_016_2058_x springer_journals_10_1007_s13369_016_2058_x |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationTitle | Arabian Journal for Science and Engineering |
PublicationTitleAbbrev | Arab J Sci Eng |
PublicationYear | 2016 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | TianR.J.SunJ.C.Corrosion resistance and interfacial contact resistance of TiN coated 316L bipolar plates for proton exchange membrane fuel cellInt. J. Hydrog. Energy201136116788679410.1016/j.ijhydene.2011.03.021 WangY.NorthwoodD.O.Effect of substrate material on the corrosion of TiN-coated stainless steels in simulated anode and cathode environments of proton exchange membrane fuel cellsJ. Power Sources2009191248348810.1016/j.jpowsour.2009.02.029 TawfikH.HungY.MahajanD.Metal bipolar plates for PEM fuel cell—a reviewJ. Power Sources2007163275576710.1016/j.jpowsour.2006.09.088 MiddelmanE.Bipolar plates for PEM fuel cellsJ. Power Sources20031181–2444610.1016/S0378-7753(03)00070-3 LiM.C.Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environmentsCorros. Sci.20044661369138010.1016/S0010-938X(03)00187-2 ZhangD.TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion platingInt. J. Hydrog. Energy201136159155916110.1016/j.ijhydene.2011.04.123 Jones, D.A.: Principles and Prevention of Corrosion: Pearson New, International Edition. Pearson Education, Limited, London (2013) WindJ.Metallic bipolar plates for PEM fuel cellsJ. Power Sources2002105225626010.1016/S0378-7753(01)00950-8 IbrahimM.A.M.KorablovS.F.YoshimuraM.Corrosion of stainless steel coated with TiN, (TiAl)N and CrN in aqueous environmentsCorros. Sci.200244481582810.1016/S0010-938X(01)00102-0 IversenA.K.Stainless steels in bipolar plates—surface resistive properties of corrosion resistant steel grades during current loadsCorros. Sci.20064851036105810.1016/j.corsci.2005.05.012 Turner, J.A.;Wang, H.;Brady,M.P.: Corrosion Protection of Metallic Bipolar Plates for Fuel Cells. pp. 882–888. National Renewable Energy Laboratory (NREL), Golden (2005) DundarF.Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar platesJ. Power Sources2010195113546355210.1016/j.jpowsour.2009.12.040 HouK.H.Analysis of the corrosion behavior of Al alloy bipolar plate for proton exchange membrane fuel cell (Pemfc) under operating thermal conditionsInt. J. Green Energy201291718310.1080/15435075.2011.621474 WangW-LHeS-MLanC-HProtective graphite coating on metallic bipolar plates for PEMFC applicationsElectrochim. Acta201262303510.1016/j.electacta.2011.11.026 WangD.-Y.WengK.-W.Microstructure analyses of CrN coating synthesized by a hybrid PVD and metal-plasma ion implantation processSurf. Coat. Technol.20021561–3195200 ZhangJ.L.Effects of hardware design and operation conditions on PEM fuel cell water floodingInt. J. Green Energy20107546147410.1080/15435075.2010.515185 CunhaL.Performance of chromium nitride based coatings under plastic processing conditionsSurf. Coat. Technol.2000133–134616710.1016/S0257-8972(00)00875-6 BradyM.P.Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar platesScr. Mater.20045071017102210.1016/j.scriptamat.2003.12.028 SopianK.DaudW.R.W.Challenges and future developments in proton exchange membrane fuel cellsRenew. Energy200631571972710.1016/j.renene.2005.09.003 IncertiL.Nanostructured self-lubricating CrN–Ag films deposited by PVD arc discharge and magnetron sputteringVacuum201185121108111310.1016/j.vacuum.2011.01.022 LopesD.G.Technical and economic analysis of a power supply system based on ethanol reforming and PEMFCRenew. Energy20124520521210.1016/j.renene.2012.03.006 HoW.-Y.Corrosion and electrical properties of multi-layered coatings on stainless steel for PEMFC bipolar plate applicationsSurf. Coat. Technol.20072024–71297130110.1016/j.surfcoat.2007.07.056 MehtaV.CooperJ.S.Review and analysis of PEM fuel cell design and manufacturingJ. Power Sources20031141325310.1016/S0378-7753(02)00542-6 Dursun, B. et al.: Expanded Graphite–Epoxy–Flexible Silica Composite Bipolar Plates for PEM Fuel Cells. Fuel Cells 14(6), 862–867 (2014) LeeS.H.Corrosion and electrical properties of CrN- and TiN-coated 316L stainless steel used as bipolar plates for polymer electrolyte membrane fuel cellsThin Solid Films201352937437910.1016/j.tsf.2012.09.027 KuanY.D.LeeS.M.SungM.F.Experimental study on the characterization of airflow effect on the direct methanol fuel cellRenew. Energy20093481962196810.1016/j.renene.2008.12.023 HermannA.ChaudhuriT.SpagnolP.Bipolar plates for PEM fuel cells: a reviewInt. J. Hydrog. Energy200530121297130210.1016/j.ijhydene.2005.04.016 RoshandelR.ArbabiF.MoghaddamG.K.Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cellsRenew. Energy201241869510.1016/j.renene.2011.10.008 WangH.-C.The study of electroplating trivalent CrC alloy coatings with different current densities on stainless steel 304 as bipolar plate of proton exchange membrane fuel cellsThin Solid Films2014570, Part B20921410.1016/j.tsf.2014.03.034 WangH.L.SweikartM.A.TurnerJ.A.Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cellsJ. Power Sources2003115224325110.1016/S0378-7753(03)00023-5 LeeC.H.Electrically conductive polymer composite coating on aluminum for PEM fuel cells bipolar plateRenew. Energy201354465010.1016/j.renene.2012.08.071 MaL.WarthesenS.ShoresD.A.Evaluation of materials for bipolar plates in PEMFCsJ. New Mater. Electrochem. Syst.200033221228 Hosseini, S.M.; Shamekhi, A.H.; Yazdani, A. et al.: Dynamicmodelling and simulation of a polymer electrolyte membrane fuel cell used in vehicle considering heat transfer effects. J. Renew. Sustain. Energy 4(4), 043107 (2012) doi:10.1063/1.4737141 YoonW.Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cellsJ. Power Sources2008179126527310.1016/j.jpowsour.2007.12.034 WangY.NorthwoodD.O.An investigation into TiN-coated 316L stainless steel as a bipolar plate material for PEM fuel cellsJ. Power Sources2007165129329810.1016/j.jpowsour.2006.12.034 ChoE.A.Performance of a 1 kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar platesJ. Power Sources20051421–217718310.1016/j.jpowsour.2004.10.032 R.J. Tian (2058_CR19) 2011; 36 W. Yoon (2058_CR22) 2008; 179 2058_CR33 W-L Wang (2058_CR11) 2012; 62 H.L. Wang (2058_CR18) 2003; 115 D.-Y. Wang (2058_CR28) 2002; 156 F. Dundar (2058_CR31) 2010; 195 D.G. Lopes (2058_CR4) 2012; 45 K.H. Hou (2058_CR2) 2012; 9 D. Zhang (2058_CR26) 2011; 36 L. Cunha (2058_CR27) 2000; 133–134 J. Wind (2058_CR15) 2002; 105 L. Ma (2058_CR35) 2000; 3 2058_CR36 2058_CR1 H. Tawfik (2058_CR7) 2007; 163 M.A.M. Ibrahim (2058_CR29) 2002; 44 M.P. Brady (2058_CR34) 2004; 50 Y. Wang (2058_CR32) 2007; 165 V. Mehta (2058_CR17) 2003; 114 C.H. Lee (2058_CR13) 2013; 54 L. Incerti (2058_CR16) 2011; 85 2058_CR23 A.K. Iversen (2058_CR14) 2006; 48 Y.D. Kuan (2058_CR8) 2009; 34 E. Middelman (2058_CR10) 2003; 118 R. Roshandel (2058_CR6) 2012; 41 M.C. Li (2058_CR20) 2004; 46 E.A. Cho (2058_CR21) 2005; 142 W.-Y. Ho (2058_CR25) 2007; 202 S.H. Lee (2058_CR30) 2013; 529 J.L. Zhang (2058_CR5) 2010; 7 K. Sopian (2058_CR3) 2006; 31 Y. Wang (2058_CR24) 2009; 191 H.-C. Wang (2058_CR12) 2014; 570, Part B A. Hermann (2058_CR9) 2005; 30 |
References_xml | – volume: 36 start-page: 9155 issue: 15 year: 2011 ident: 2058_CR26 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.04.123 contributor: fullname: D. Zhang – ident: 2058_CR33 – volume: 163 start-page: 755 issue: 2 year: 2007 ident: 2058_CR7 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.09.088 contributor: fullname: H. Tawfik – volume: 45 start-page: 205 year: 2012 ident: 2058_CR4 publication-title: Renew. Energy doi: 10.1016/j.renene.2012.03.006 contributor: fullname: D.G. Lopes – volume: 202 start-page: 1297 issue: 4–7 year: 2007 ident: 2058_CR25 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2007.07.056 contributor: fullname: W.-Y. Ho – volume: 529 start-page: 374 year: 2013 ident: 2058_CR30 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2012.09.027 contributor: fullname: S.H. Lee – volume: 142 start-page: 177 issue: 1–2 year: 2005 ident: 2058_CR21 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.10.032 contributor: fullname: E.A. Cho – volume: 105 start-page: 256 issue: 2 year: 2002 ident: 2058_CR15 publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00950-8 contributor: fullname: J. Wind – volume: 7 start-page: 461 issue: 5 year: 2010 ident: 2058_CR5 publication-title: Int. J. Green Energy doi: 10.1080/15435075.2010.515185 contributor: fullname: J.L. Zhang – volume: 85 start-page: 1108 issue: 12 year: 2011 ident: 2058_CR16 publication-title: Vacuum doi: 10.1016/j.vacuum.2011.01.022 contributor: fullname: L. Incerti – volume: 9 start-page: 71 issue: 1 year: 2012 ident: 2058_CR2 publication-title: Int. J. Green Energy doi: 10.1080/15435075.2011.621474 contributor: fullname: K.H. Hou – volume: 31 start-page: 719 issue: 5 year: 2006 ident: 2058_CR3 publication-title: Renew. Energy doi: 10.1016/j.renene.2005.09.003 contributor: fullname: K. Sopian – volume: 34 start-page: 1962 issue: 8 year: 2009 ident: 2058_CR8 publication-title: Renew. Energy doi: 10.1016/j.renene.2008.12.023 contributor: fullname: Y.D. Kuan – volume: 570, Part B start-page: 209 year: 2014 ident: 2058_CR12 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2014.03.034 contributor: fullname: H.-C. Wang – volume: 156 start-page: 195 issue: 1–3 year: 2002 ident: 2058_CR28 publication-title: Surf. Coat. Technol. contributor: fullname: D.-Y. Wang – volume: 165 start-page: 293 issue: 1 year: 2007 ident: 2058_CR32 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.12.034 contributor: fullname: Y. Wang – volume: 115 start-page: 243 issue: 2 year: 2003 ident: 2058_CR18 publication-title: J. Power Sources doi: 10.1016/S0378-7753(03)00023-5 contributor: fullname: H.L. Wang – ident: 2058_CR1 doi: 10.1063/1.4737141 – volume: 118 start-page: 44 issue: 1–2 year: 2003 ident: 2058_CR10 publication-title: J. Power Sources doi: 10.1016/S0378-7753(03)00070-3 contributor: fullname: E. Middelman – volume: 3 start-page: 221 issue: 3 year: 2000 ident: 2058_CR35 publication-title: J. New Mater. Electrochem. Syst. contributor: fullname: L. Ma – ident: 2058_CR23 doi: 10.2172/15016870 – volume: 191 start-page: 483 issue: 2 year: 2009 ident: 2058_CR24 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.02.029 contributor: fullname: Y. Wang – volume: 44 start-page: 815 issue: 4 year: 2002 ident: 2058_CR29 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(01)00102-0 contributor: fullname: M.A.M. Ibrahim – volume: 41 start-page: 86 year: 2012 ident: 2058_CR6 publication-title: Renew. Energy doi: 10.1016/j.renene.2011.10.008 contributor: fullname: R. Roshandel – volume: 46 start-page: 1369 issue: 6 year: 2004 ident: 2058_CR20 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(03)00187-2 contributor: fullname: M.C. Li – volume: 30 start-page: 1297 issue: 12 year: 2005 ident: 2058_CR9 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2005.04.016 contributor: fullname: A. Hermann – volume: 195 start-page: 3546 issue: 11 year: 2010 ident: 2058_CR31 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.12.040 contributor: fullname: F. Dundar – ident: 2058_CR36 doi: 10.1002/fuce.201300185 – volume: 54 start-page: 46 year: 2013 ident: 2058_CR13 publication-title: Renew. Energy doi: 10.1016/j.renene.2012.08.071 contributor: fullname: C.H. Lee – volume: 179 start-page: 265 issue: 1 year: 2008 ident: 2058_CR22 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.12.034 contributor: fullname: W. Yoon – volume: 50 start-page: 1017 issue: 7 year: 2004 ident: 2058_CR34 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2003.12.028 contributor: fullname: M.P. Brady – volume: 48 start-page: 1036 issue: 5 year: 2006 ident: 2058_CR14 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2005.05.012 contributor: fullname: A.K. Iversen – volume: 36 start-page: 6788 issue: 11 year: 2011 ident: 2058_CR19 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.03.021 contributor: fullname: R.J. Tian – volume: 133–134 start-page: 61 year: 2000 ident: 2058_CR27 publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(00)00875-6 contributor: fullname: L. Cunha – volume: 114 start-page: 32 issue: 1 year: 2003 ident: 2058_CR17 publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00542-6 contributor: fullname: V. Mehta – volume: 62 start-page: 30 year: 2012 ident: 2058_CR11 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.11.026 contributor: fullname: W-L Wang |
SSID | ssj0061873 ssj0001916267 |
Score | 2.2330413 |
Snippet | Durability of polymer electrolyte membrane (PEM)-type fuel cells is the most challenging problem preventing commercialization. There are several sources... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1961 |
SubjectTerms | Austenitic stainless steels Chromium nitride Corrosion Corrosion resistance Engineering Fuel cells Heat resistant steels Humanities and Social Sciences multidisciplinary Physical vapor deposition Plates Research Article - Mechanical Engineering Science Stainless steels Titanium nitride |
Title | The Corrosion Resistance Behaviors of Metallic Bipolar Plates for PEMFC Coated with Physical Vapor Deposition (PVD): An Experimental Study |
URI | https://link.springer.com/article/10.1007/s13369-016-2058-x https://search.proquest.com/docview/1880019012 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9owELYoXLaHvrbV0m3RVOqh3VUQtvMwvVGeakWFVguip8hxHAmBAiIgbfsT-qs7E5JCX4e9RMpDo9gzHn_2zHxm7G3UNgHnsXRcERnH5SJxVJvHTiIMvlHaupzqncdf_NHU_TT35hUmfm1dpMtmGZHMHfWx1k1Kn1J7fFSspxzEjbWi7rTWGX79fLKzgognP1bp4I99rvI4M6dyHYVTfBnb_JfQ32enI-T8I0qaTz6Dx4eCwCznLKSck2Vzv4ua5vvfjI73aNcT9qjAotA5GM9TVrHpM_bwhKHwnP1AM4Lueot_iwqEG5sR3kRDgYJYcZvBOoGxRQy_Whj4uNjQWhkmK8KwgIgYJv3xoIsy8EEMtO0Lk8I2YKYR_UPPlplj8G4y673_AJ0U-icnDwAlO357zqaD_m135BTHNzhGCr5zhLBtHwGcMVHgWSG1L4nwULkJN9jkwNMIfwK8UYFJpG61Iq0lTwKpbICLzkC-YNV0ndoLBkYlkZYoldAPuhgdG0-ifyQuVxlbv86uSrWFmwNLR3jkY6YODimTjTo4vKuzN6ViQxxLFCDRqV3vs5C46ai2nos6uy61FRaDOvu_xJf3-vqSnQlSd541-YpVd9u9fY3IZhc1ClNusAfDOcfrVHR-Ap887wo |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iB_UgPrE-R_DggwWT7CP1VvugPipF2tLbks1moSBb6VbQv-Cvdma7S1X04HEfzCHfZPIlM_OFsdOoagLOY-m4IjKOy0XiqCqPnUQY_KK0dTn1O3ce_XbfvRt6w6KPOyur3cuUZB6p581uUvpU2-Mjsp5ykDgukbw6Ceb3RW1-sIKEJ79VaRaOfa7yNDOnbh2FK3yZ2vzN5PfFac44fyRJ87Wntc7WCtIItRnKG2zBppts9YuU4Bb7QLyhPp6gXRxpeLIZEUNEFAoFxEkG4wQ6Fsn288jAzeiFNrXQfSayCUhdodvstOpoA1_EQOez0C1AhIFGmg4NW5Z4wVl30Di_hloKzS9XBABVJb5vs36r2au3neKeBcdIwaeOELbqI9MyJgo8K6T2JSkTKjfhBscn8DTylAAfVGASqa-uIq0lTwKpbIC7w0DusMV0nNpdBkYlkZZolWgKxgIdG09iICPRVRlbv8IuygEOX2ZyGuFcOJnQCKnkjNAI3yrspIQgRKenTIZO7fg1C0lEjprguaiwyxKbsJh92d8W9_719zFbbvc6D-HD7eP9PlsR5Cd5qeMBW5xOXu0h0pFpdJS73yfuAtP5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA6iIPognrieI_jgQXGT9Mj6tu6B10oRV3wraZqCIN1lu4L-BX-1M92WVdEHH3swD_mSzJfMzDeMHcYNE3CeSMcVsXFcLlJHNXjipMLgF6Wty6neuXfnX_bd6yfvqexzmlfZ7lVIclLTQCpN2fhsmKRn08I3KX3K8_ERZU85SCLn0BNJyunri-b0kgXJT9FhabI1-1wVIWdOlTsKvX0V5vzN5HdHNWWfPwKmhR_qLrOlkkBCc4L4Cpux2Spb_CIruMY-EHtoDUZoF0cd7m1OJBHRhVINcZTDIIWeReL98mzg4nlIB1wIX4h4AtJYCDu9bgtt4IsE6K4WwhJQeNRI2aFtq3QvOAof28fn0Myg86VdAFCG4vs663c7D61Lp-y54Bgp-NgRwjZ8ZF3GxIFnhdS-JJVC5abc4PgEnkbOEuCDCkwqdb0eay15GkhlAzwpBnKDzWaDzG4yMCqNtUSrRFlwX9CJ8SRuaiTAKhPr19hJNcDRcCKtEU1FlAmNiNLPCI3orcYOKggiXAAU1dCZHbzmEQnKUUE8FzV2WmETlSsx_9vi1r_-3mfzYbsb3V7d3WyzBUHTpMh63GGz49Gr3UVmMo73itn3CYJw2D4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Corrosion+Resistance+Behaviors+of+Metallic+Bipolar+Plates+for+PEMFC+Coated+with+Physical+Vapor+Deposition+%28PVD%29%3A+An+Experimental+Study&rft.jtitle=Arabian+Journal+for+Science+and+Engineering&rft.au=Kahraman%2C+H.&rft.au=Cevik%2C+I.&rft.au=D%C3%BCndar%2C+F.&rft.au=Ficici%2C+F.&rft.date=2016-05-01&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=41&rft.issue=5&rft.spage=1961&rft.epage=1968&rft_id=info:doi/10.1007%2Fs13369-016-2058-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_016_2058_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-8025&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-8025&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-8025&client=summon |