The Corrosion Resistance Behaviors of Metallic Bipolar Plates for PEMFC Coated with Physical Vapor Deposition (PVD): An Experimental Study

Durability of polymer electrolyte membrane (PEM)-type fuel cells is the most challenging problem preventing commercialization. There are several sources corroding the membrane and the catalyst layer or oxidizing the bipolar plate of fuel cells. There are several reasons for performance drop in PEM-t...

Full description

Saved in:
Bibliographic Details
Published inArabian Journal for Science and Engineering Vol. 41; no. 5; pp. 1961 - 1968
Main Authors Kahraman, H., Cevik, I., Dündar, F., Ficici, F.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Durability of polymer electrolyte membrane (PEM)-type fuel cells is the most challenging problem preventing commercialization. There are several sources corroding the membrane and the catalyst layer or oxidizing the bipolar plate of fuel cells. There are several reasons for performance drop in PEM-type fuel cells, and degradation of the bipolar plates is one of the most important one. Graphite-based bipolar plates are usually resistant to corrosion, but because of their slow and costly manufacturing process metallic bipolar plates step forward for commercialization. Among other materials, metal nitride-coated stainless steel materials are good candidates for bipolar plate material of commercial applications. In this study, different stainless steel materials, such as 304, 316L, 316Ti and 321, coated with titanium nitride (TiN) and chromium nitride (CrN), using the physical vapor deposition (PVD) method, were tested in terms of corrosion. Corrosion resistance improvement was observed with both TiN and CrN coatings. As the best result, corrosion current value, as low as 0.2 μ A/cm 2 , was obtained with CrN-coated SS316Ti specimen. Small titanium and molybdenum content in stainless steel improved the corrosion resistance of CrN coating.
AbstractList Durability of polymer electrolyte membrane (PEM)-type fuel cells is the most challenging problem preventing commercialization. There are several sources corroding the membrane and the catalyst layer or oxidizing the bipolar plate of fuel cells. There are several reasons for performance drop in PEM-type fuel cells, and degradation of the bipolar plates is one of the most important one. Graphite-based bipolar plates are usually resistant to corrosion, but because of their slow and costly manufacturing process metallic bipolar plates step forward for commercialization. Among other materials, metal nitride-coated stainless steel materials are good candidates for bipolar plate material of commercial applications. In this study, different stainless steel materials, such as 304, 316L, 316Ti and 321, coated with titanium nitride (TiN) and chromium nitride (CrN), using the physical vapor deposition (PVD) method, were tested in terms of corrosion. Corrosion resistance improvement was observed with both TiN and CrN coatings. As the best result, corrosion current value, as low as 0.2 μ A/cm 2 , was obtained with CrN-coated SS316Ti specimen. Small titanium and molybdenum content in stainless steel improved the corrosion resistance of CrN coating.
Durability of polymer electrolyte membrane (PEM)-type fuel cells is the most challenging problem preventing commercialization. There are several sources corroding the membrane and the catalyst layer or oxidizing the bipolar plate of fuel cells. There are several reasons for performance drop in PEM-type fuel cells, and degradation of the bipolar plates is one of the most important one. Graphite-based bipolar plates are usually resistant to corrosion, but because of their slow and costly manufacturing process metallic bipolar plates step forward for commercialization. Among other materials, metal nitride-coated stainless steel materials are good candidates for bipolar plate material of commercial applications. In this study, different stainless steel materials, such as 304, 316L, 316Ti and 321, coated with titanium nitride (TiN) and chromium nitride (CrN), using the physical vapor deposition (PVD) method, were tested in terms of corrosion. Corrosion resistance improvement was observed with both TiN and CrN coatings. As the best result, corrosion current value, as low as 0.2 \({\mu}\)A/cm\({2}}\), was obtained with CrN-coated SS316Ti specimen. Small titanium and molybdenum content in stainless steel improved the corrosion resistance of CrN coating.
Author Cevik, I.
Dündar, F.
Ficici, F.
Kahraman, H.
Author_xml – sequence: 1
  givenname: H.
  orcidid: 0000-0003-3322-9904
  surname: Kahraman
  fullname: Kahraman, H.
  email: huseyink@sakarya.edu.tr
  organization: Mechanical Engineering Department, Faculty of Technology, Sakarya University
– sequence: 2
  givenname: I.
  surname: Cevik
  fullname: Cevik, I.
  organization: Mechanical Engineering Department, Faculty of Technology, Sakarya University
– sequence: 3
  givenname: F.
  surname: Dündar
  fullname: Dündar, F.
  organization: Department of Mechanical Engineering, Faculty of Engineering and Architecture, Meliksah University
– sequence: 4
  givenname: F.
  surname: Ficici
  fullname: Ficici, F.
  organization: Mechanical Engineering Department, Faculty of Technology, Sakarya University
BookMark eNp9kMtOAyEUhonRxHp5AHcsdTHKgc7AuNO2XhKNjbctQTxjMSOMMNX2FXxqaeraFYeT__8C3w7Z9MEjIQfAjoExeZJAiKouGFQFZ6UqFhtkwKGGYsgVbJIBCKgLxXi5TXZSemesAiXFgPw8zpCOQowhueDpPSaXeuMt0nOcmS8XYqKhobfYm7Z1lp67LrQm0mlreky0CXmc3F6MMiMvXum362d0OlsmZ01Ln02XA2PsMr1f8Q-nz-OjU3rm6WTRYXQf6DOYPvTz1-Ue2WpMm3D_79wlTxeTx9FVcXN3eT06uyms4NAXnGNd1SVY-yJL5MJUAoTiatiAzQpkaVhVynxR0jbCMPZijIBGCoWS1UMpdsnhmtvF8DnH1OsPlyy2rfEY5kmDUoxBzYDnKKyjNvtJERvd5TebuNTA9Mq7XnvX2bteedeL3OHrTspZ_4ZRv4d59PlH_5R-ATyHh4c
CitedBy_id crossref_primary_10_1039_D0RA00461H
crossref_primary_10_1080_02670844_2020_1827943
crossref_primary_10_1007_s42452_019_1475_3
crossref_primary_10_1007_s42452_021_04710_5
crossref_primary_10_1016_j_jsamd_2016_11_003
crossref_primary_10_1016_j_enconman_2024_118244
crossref_primary_10_1016_j_energy_2019_07_166
crossref_primary_10_1016_j_ijhydene_2020_04_015
crossref_primary_10_1016_j_matchemphys_2019_121916
crossref_primary_10_1016_j_ijhydene_2019_07_231
crossref_primary_10_1039_C9SE00861F
crossref_primary_10_1007_s11814_022_1121_4
crossref_primary_10_1007_s13369_020_04368_y
crossref_primary_10_2298_TSCI2304089K
crossref_primary_10_3390_coatings13040750
crossref_primary_10_1016_j_elecom_2019_106490
crossref_primary_10_1002_fuce_202300015
crossref_primary_10_1016_j_cej_2024_152662
crossref_primary_10_1016_j_ijhydene_2020_12_074
crossref_primary_10_1016_j_molliq_2020_113679
crossref_primary_10_1016_j_fuel_2024_131610
crossref_primary_10_1016_j_ijhydene_2018_10_218
crossref_primary_10_1557_mrc_2020_59
crossref_primary_10_1016_j_ijhydene_2018_08_058
Cites_doi 10.1016/j.ijhydene.2011.04.123
10.1016/j.jpowsour.2006.09.088
10.1016/j.renene.2012.03.006
10.1016/j.surfcoat.2007.07.056
10.1016/j.tsf.2012.09.027
10.1016/j.jpowsour.2004.10.032
10.1016/S0378-7753(01)00950-8
10.1080/15435075.2010.515185
10.1016/j.vacuum.2011.01.022
10.1080/15435075.2011.621474
10.1016/j.renene.2005.09.003
10.1016/j.renene.2008.12.023
10.1016/j.tsf.2014.03.034
10.1016/j.jpowsour.2006.12.034
10.1016/S0378-7753(03)00023-5
10.1063/1.4737141
10.1016/S0378-7753(03)00070-3
10.2172/15016870
10.1016/j.jpowsour.2009.02.029
10.1016/S0010-938X(01)00102-0
10.1016/j.renene.2011.10.008
10.1016/S0010-938X(03)00187-2
10.1016/j.ijhydene.2005.04.016
10.1016/j.jpowsour.2009.12.040
10.1002/fuce.201300185
10.1016/j.renene.2012.08.071
10.1016/j.jpowsour.2007.12.034
10.1016/j.scriptamat.2003.12.028
10.1016/j.corsci.2005.05.012
10.1016/j.ijhydene.2011.03.021
10.1016/S0257-8972(00)00875-6
10.1016/S0378-7753(02)00542-6
10.1016/j.electacta.2011.11.026
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2016
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2016
DBID AAYXX
CITATION
7SC
7SE
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s13369-016-2058-x
DatabaseName CrossRef
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 1968
ExternalDocumentID 10_1007_s13369_016_2058_x
GroupedDBID 06D
0R~
0VY
23M
29~
2KM
30V
4.4
408
5GY
96X
AAJKR
AAPBV
AARTL
AAYIU
AAYQN
AAZMS
ABPTK
ABTHY
ABULA
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMYQR
ANMIH
AYJHY
BGNMA
C1A
ESBYG
ESX
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HF~
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
M4Y
NU0
O9-
O93
OK1
P9P
R9I
RLLFE
S1Z
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
AAYXX
CITATION
7SC
7SE
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c321t-22e96951ccb75e23a63138284f1c36975a0657f1c87cf3a00baa31f738e709473
IEDL.DBID AGYKE
ISSN 1319-8025
IngestDate Fri Apr 12 03:49:12 EDT 2024
Fri Aug 23 03:30:15 EDT 2024
Sat Dec 16 12:12:59 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords PEMFC
Corrosion
Potentiodynamic
TiN
Coating
CrN
PVD
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-22e96951ccb75e23a63138284f1c36975a0657f1c87cf3a00baa31f738e709473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3322-9904
PQID 1880019012
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1880019012
crossref_primary_10_1007_s13369_016_2058_x
springer_journals_10_1007_s13369_016_2058_x
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Arabian Journal for Science and Engineering
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References TianR.J.SunJ.C.Corrosion resistance and interfacial contact resistance of TiN coated 316L bipolar plates for proton exchange membrane fuel cellInt. J. Hydrog. Energy201136116788679410.1016/j.ijhydene.2011.03.021
WangY.NorthwoodD.O.Effect of substrate material on the corrosion of TiN-coated stainless steels in simulated anode and cathode environments of proton exchange membrane fuel cellsJ. Power Sources2009191248348810.1016/j.jpowsour.2009.02.029
TawfikH.HungY.MahajanD.Metal bipolar plates for PEM fuel cell—a reviewJ. Power Sources2007163275576710.1016/j.jpowsour.2006.09.088
MiddelmanE.Bipolar plates for PEM fuel cellsJ. Power Sources20031181–2444610.1016/S0378-7753(03)00070-3
LiM.C.Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environmentsCorros. Sci.20044661369138010.1016/S0010-938X(03)00187-2
ZhangD.TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion platingInt. J. Hydrog. Energy201136159155916110.1016/j.ijhydene.2011.04.123
Jones, D.A.: Principles and Prevention of Corrosion: Pearson New, International Edition. Pearson Education, Limited, London (2013)
WindJ.Metallic bipolar plates for PEM fuel cellsJ. Power Sources2002105225626010.1016/S0378-7753(01)00950-8
IbrahimM.A.M.KorablovS.F.YoshimuraM.Corrosion of stainless steel coated with TiN, (TiAl)N and CrN in aqueous environmentsCorros. Sci.200244481582810.1016/S0010-938X(01)00102-0
IversenA.K.Stainless steels in bipolar plates—surface resistive properties of corrosion resistant steel grades during current loadsCorros. Sci.20064851036105810.1016/j.corsci.2005.05.012
Turner, J.A.;Wang, H.;Brady,M.P.: Corrosion Protection of Metallic Bipolar Plates for Fuel Cells. pp. 882–888. National Renewable Energy Laboratory (NREL), Golden (2005)
DundarF.Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar platesJ. Power Sources2010195113546355210.1016/j.jpowsour.2009.12.040
HouK.H.Analysis of the corrosion behavior of Al alloy bipolar plate for proton exchange membrane fuel cell (Pemfc) under operating thermal conditionsInt. J. Green Energy201291718310.1080/15435075.2011.621474
WangW-LHeS-MLanC-HProtective graphite coating on metallic bipolar plates for PEMFC applicationsElectrochim. Acta201262303510.1016/j.electacta.2011.11.026
WangD.-Y.WengK.-W.Microstructure analyses of CrN coating synthesized by a hybrid PVD and metal-plasma ion implantation processSurf. Coat. Technol.20021561–3195200
ZhangJ.L.Effects of hardware design and operation conditions on PEM fuel cell water floodingInt. J. Green Energy20107546147410.1080/15435075.2010.515185
CunhaL.Performance of chromium nitride based coatings under plastic processing conditionsSurf. Coat. Technol.2000133–134616710.1016/S0257-8972(00)00875-6
BradyM.P.Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar platesScr. Mater.20045071017102210.1016/j.scriptamat.2003.12.028
SopianK.DaudW.R.W.Challenges and future developments in proton exchange membrane fuel cellsRenew. Energy200631571972710.1016/j.renene.2005.09.003
IncertiL.Nanostructured self-lubricating CrN–Ag films deposited by PVD arc discharge and magnetron sputteringVacuum201185121108111310.1016/j.vacuum.2011.01.022
LopesD.G.Technical and economic analysis of a power supply system based on ethanol reforming and PEMFCRenew. Energy20124520521210.1016/j.renene.2012.03.006
HoW.-Y.Corrosion and electrical properties of multi-layered coatings on stainless steel for PEMFC bipolar plate applicationsSurf. Coat. Technol.20072024–71297130110.1016/j.surfcoat.2007.07.056
MehtaV.CooperJ.S.Review and analysis of PEM fuel cell design and manufacturingJ. Power Sources20031141325310.1016/S0378-7753(02)00542-6
Dursun, B. et al.: Expanded Graphite–Epoxy–Flexible Silica Composite Bipolar Plates for PEM Fuel Cells. Fuel Cells 14(6), 862–867 (2014)
LeeS.H.Corrosion and electrical properties of CrN- and TiN-coated 316L stainless steel used as bipolar plates for polymer electrolyte membrane fuel cellsThin Solid Films201352937437910.1016/j.tsf.2012.09.027
KuanY.D.LeeS.M.SungM.F.Experimental study on the characterization of airflow effect on the direct methanol fuel cellRenew. Energy20093481962196810.1016/j.renene.2008.12.023
HermannA.ChaudhuriT.SpagnolP.Bipolar plates for PEM fuel cells: a reviewInt. J. Hydrog. Energy200530121297130210.1016/j.ijhydene.2005.04.016
RoshandelR.ArbabiF.MoghaddamG.K.Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cellsRenew. Energy201241869510.1016/j.renene.2011.10.008
WangH.-C.The study of electroplating trivalent CrC alloy coatings with different current densities on stainless steel 304 as bipolar plate of proton exchange membrane fuel cellsThin Solid Films2014570, Part B20921410.1016/j.tsf.2014.03.034
WangH.L.SweikartM.A.TurnerJ.A.Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cellsJ. Power Sources2003115224325110.1016/S0378-7753(03)00023-5
LeeC.H.Electrically conductive polymer composite coating on aluminum for PEM fuel cells bipolar plateRenew. Energy201354465010.1016/j.renene.2012.08.071
MaL.WarthesenS.ShoresD.A.Evaluation of materials for bipolar plates in PEMFCsJ. New Mater. Electrochem. Syst.200033221228
Hosseini, S.M.; Shamekhi, A.H.; Yazdani, A. et al.: Dynamicmodelling and simulation of a polymer electrolyte membrane fuel cell used in vehicle considering heat transfer effects. J. Renew. Sustain. Energy 4(4), 043107 (2012) doi:10.1063/1.4737141
YoonW.Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cellsJ. Power Sources2008179126527310.1016/j.jpowsour.2007.12.034
WangY.NorthwoodD.O.An investigation into TiN-coated 316L stainless steel as a bipolar plate material for PEM fuel cellsJ. Power Sources2007165129329810.1016/j.jpowsour.2006.12.034
ChoE.A.Performance of a 1 kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar platesJ. Power Sources20051421–217718310.1016/j.jpowsour.2004.10.032
R.J. Tian (2058_CR19) 2011; 36
W. Yoon (2058_CR22) 2008; 179
2058_CR33
W-L Wang (2058_CR11) 2012; 62
H.L. Wang (2058_CR18) 2003; 115
D.-Y. Wang (2058_CR28) 2002; 156
F. Dundar (2058_CR31) 2010; 195
D.G. Lopes (2058_CR4) 2012; 45
K.H. Hou (2058_CR2) 2012; 9
D. Zhang (2058_CR26) 2011; 36
L. Cunha (2058_CR27) 2000; 133–134
J. Wind (2058_CR15) 2002; 105
L. Ma (2058_CR35) 2000; 3
2058_CR36
2058_CR1
H. Tawfik (2058_CR7) 2007; 163
M.A.M. Ibrahim (2058_CR29) 2002; 44
M.P. Brady (2058_CR34) 2004; 50
Y. Wang (2058_CR32) 2007; 165
V. Mehta (2058_CR17) 2003; 114
C.H. Lee (2058_CR13) 2013; 54
L. Incerti (2058_CR16) 2011; 85
2058_CR23
A.K. Iversen (2058_CR14) 2006; 48
Y.D. Kuan (2058_CR8) 2009; 34
E. Middelman (2058_CR10) 2003; 118
R. Roshandel (2058_CR6) 2012; 41
M.C. Li (2058_CR20) 2004; 46
E.A. Cho (2058_CR21) 2005; 142
W.-Y. Ho (2058_CR25) 2007; 202
S.H. Lee (2058_CR30) 2013; 529
J.L. Zhang (2058_CR5) 2010; 7
K. Sopian (2058_CR3) 2006; 31
Y. Wang (2058_CR24) 2009; 191
H.-C. Wang (2058_CR12) 2014; 570, Part B
A. Hermann (2058_CR9) 2005; 30
References_xml – volume: 36
  start-page: 9155
  issue: 15
  year: 2011
  ident: 2058_CR26
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.04.123
  contributor:
    fullname: D. Zhang
– ident: 2058_CR33
– volume: 163
  start-page: 755
  issue: 2
  year: 2007
  ident: 2058_CR7
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.09.088
  contributor:
    fullname: H. Tawfik
– volume: 45
  start-page: 205
  year: 2012
  ident: 2058_CR4
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.03.006
  contributor:
    fullname: D.G. Lopes
– volume: 202
  start-page: 1297
  issue: 4–7
  year: 2007
  ident: 2058_CR25
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2007.07.056
  contributor:
    fullname: W.-Y. Ho
– volume: 529
  start-page: 374
  year: 2013
  ident: 2058_CR30
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2012.09.027
  contributor:
    fullname: S.H. Lee
– volume: 142
  start-page: 177
  issue: 1–2
  year: 2005
  ident: 2058_CR21
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.10.032
  contributor:
    fullname: E.A. Cho
– volume: 105
  start-page: 256
  issue: 2
  year: 2002
  ident: 2058_CR15
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00950-8
  contributor:
    fullname: J. Wind
– volume: 7
  start-page: 461
  issue: 5
  year: 2010
  ident: 2058_CR5
  publication-title: Int. J. Green Energy
  doi: 10.1080/15435075.2010.515185
  contributor:
    fullname: J.L. Zhang
– volume: 85
  start-page: 1108
  issue: 12
  year: 2011
  ident: 2058_CR16
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2011.01.022
  contributor:
    fullname: L. Incerti
– volume: 9
  start-page: 71
  issue: 1
  year: 2012
  ident: 2058_CR2
  publication-title: Int. J. Green Energy
  doi: 10.1080/15435075.2011.621474
  contributor:
    fullname: K.H. Hou
– volume: 31
  start-page: 719
  issue: 5
  year: 2006
  ident: 2058_CR3
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2005.09.003
  contributor:
    fullname: K. Sopian
– volume: 34
  start-page: 1962
  issue: 8
  year: 2009
  ident: 2058_CR8
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2008.12.023
  contributor:
    fullname: Y.D. Kuan
– volume: 570, Part B
  start-page: 209
  year: 2014
  ident: 2058_CR12
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2014.03.034
  contributor:
    fullname: H.-C. Wang
– volume: 156
  start-page: 195
  issue: 1–3
  year: 2002
  ident: 2058_CR28
  publication-title: Surf. Coat. Technol.
  contributor:
    fullname: D.-Y. Wang
– volume: 165
  start-page: 293
  issue: 1
  year: 2007
  ident: 2058_CR32
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.12.034
  contributor:
    fullname: Y. Wang
– volume: 115
  start-page: 243
  issue: 2
  year: 2003
  ident: 2058_CR18
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(03)00023-5
  contributor:
    fullname: H.L. Wang
– ident: 2058_CR1
  doi: 10.1063/1.4737141
– volume: 118
  start-page: 44
  issue: 1–2
  year: 2003
  ident: 2058_CR10
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(03)00070-3
  contributor:
    fullname: E. Middelman
– volume: 3
  start-page: 221
  issue: 3
  year: 2000
  ident: 2058_CR35
  publication-title: J. New Mater. Electrochem. Syst.
  contributor:
    fullname: L. Ma
– ident: 2058_CR23
  doi: 10.2172/15016870
– volume: 191
  start-page: 483
  issue: 2
  year: 2009
  ident: 2058_CR24
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.02.029
  contributor:
    fullname: Y. Wang
– volume: 44
  start-page: 815
  issue: 4
  year: 2002
  ident: 2058_CR29
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(01)00102-0
  contributor:
    fullname: M.A.M. Ibrahim
– volume: 41
  start-page: 86
  year: 2012
  ident: 2058_CR6
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2011.10.008
  contributor:
    fullname: R. Roshandel
– volume: 46
  start-page: 1369
  issue: 6
  year: 2004
  ident: 2058_CR20
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(03)00187-2
  contributor:
    fullname: M.C. Li
– volume: 30
  start-page: 1297
  issue: 12
  year: 2005
  ident: 2058_CR9
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2005.04.016
  contributor:
    fullname: A. Hermann
– volume: 195
  start-page: 3546
  issue: 11
  year: 2010
  ident: 2058_CR31
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.12.040
  contributor:
    fullname: F. Dundar
– ident: 2058_CR36
  doi: 10.1002/fuce.201300185
– volume: 54
  start-page: 46
  year: 2013
  ident: 2058_CR13
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.08.071
  contributor:
    fullname: C.H. Lee
– volume: 179
  start-page: 265
  issue: 1
  year: 2008
  ident: 2058_CR22
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.12.034
  contributor:
    fullname: W. Yoon
– volume: 50
  start-page: 1017
  issue: 7
  year: 2004
  ident: 2058_CR34
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2003.12.028
  contributor:
    fullname: M.P. Brady
– volume: 48
  start-page: 1036
  issue: 5
  year: 2006
  ident: 2058_CR14
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2005.05.012
  contributor:
    fullname: A.K. Iversen
– volume: 36
  start-page: 6788
  issue: 11
  year: 2011
  ident: 2058_CR19
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.03.021
  contributor:
    fullname: R.J. Tian
– volume: 133–134
  start-page: 61
  year: 2000
  ident: 2058_CR27
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(00)00875-6
  contributor:
    fullname: L. Cunha
– volume: 114
  start-page: 32
  issue: 1
  year: 2003
  ident: 2058_CR17
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00542-6
  contributor:
    fullname: V. Mehta
– volume: 62
  start-page: 30
  year: 2012
  ident: 2058_CR11
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.11.026
  contributor:
    fullname: W-L Wang
SSID ssj0061873
ssj0001916267
Score 2.2330413
Snippet Durability of polymer electrolyte membrane (PEM)-type fuel cells is the most challenging problem preventing commercialization. There are several sources...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1961
SubjectTerms Austenitic stainless steels
Chromium nitride
Corrosion
Corrosion resistance
Engineering
Fuel cells
Heat resistant steels
Humanities and Social Sciences
multidisciplinary
Physical vapor deposition
Plates
Research Article - Mechanical Engineering
Science
Stainless steels
Titanium nitride
Title The Corrosion Resistance Behaviors of Metallic Bipolar Plates for PEMFC Coated with Physical Vapor Deposition (PVD): An Experimental Study
URI https://link.springer.com/article/10.1007/s13369-016-2058-x
https://search.proquest.com/docview/1880019012
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9owELYoXLaHvrbV0m3RVOqh3VUQtvMwvVGeakWFVguip8hxHAmBAiIgbfsT-qs7E5JCX4e9RMpDo9gzHn_2zHxm7G3UNgHnsXRcERnH5SJxVJvHTiIMvlHaupzqncdf_NHU_TT35hUmfm1dpMtmGZHMHfWx1k1Kn1J7fFSspxzEjbWi7rTWGX79fLKzgognP1bp4I99rvI4M6dyHYVTfBnb_JfQ32enI-T8I0qaTz6Dx4eCwCznLKSck2Vzv4ua5vvfjI73aNcT9qjAotA5GM9TVrHpM_bwhKHwnP1AM4Lueot_iwqEG5sR3kRDgYJYcZvBOoGxRQy_Whj4uNjQWhkmK8KwgIgYJv3xoIsy8EEMtO0Lk8I2YKYR_UPPlplj8G4y673_AJ0U-icnDwAlO357zqaD_m135BTHNzhGCr5zhLBtHwGcMVHgWSG1L4nwULkJN9jkwNMIfwK8UYFJpG61Iq0lTwKpbICLzkC-YNV0ndoLBkYlkZYoldAPuhgdG0-ifyQuVxlbv86uSrWFmwNLR3jkY6YODimTjTo4vKuzN6ViQxxLFCDRqV3vs5C46ai2nos6uy61FRaDOvu_xJf3-vqSnQlSd541-YpVd9u9fY3IZhc1ClNusAfDOcfrVHR-Ap887wo
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iB_UgPrE-R_DggwWT7CP1VvugPipF2tLbks1moSBb6VbQv-Cvdma7S1X04HEfzCHfZPIlM_OFsdOoagLOY-m4IjKOy0XiqCqPnUQY_KK0dTn1O3ce_XbfvRt6w6KPOyur3cuUZB6p581uUvpU2-Mjsp5ykDgukbw6Ceb3RW1-sIKEJ79VaRaOfa7yNDOnbh2FK3yZ2vzN5PfFac44fyRJ87Wntc7WCtIItRnKG2zBppts9YuU4Bb7QLyhPp6gXRxpeLIZEUNEFAoFxEkG4wQ6Fsn288jAzeiFNrXQfSayCUhdodvstOpoA1_EQOez0C1AhIFGmg4NW5Z4wVl30Di_hloKzS9XBABVJb5vs36r2au3neKeBcdIwaeOELbqI9MyJgo8K6T2JSkTKjfhBscn8DTylAAfVGASqa-uIq0lTwKpbIC7w0DusMV0nNpdBkYlkZZolWgKxgIdG09iICPRVRlbv8IuygEOX2ZyGuFcOJnQCKnkjNAI3yrspIQgRKenTIZO7fg1C0lEjprguaiwyxKbsJh92d8W9_719zFbbvc6D-HD7eP9PlsR5Cd5qeMBW5xOXu0h0pFpdJS73yfuAtP5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA6iIPognrieI_jgQXGT9Mj6tu6B10oRV3wraZqCIN1lu4L-BX-1M92WVdEHH3swD_mSzJfMzDeMHcYNE3CeSMcVsXFcLlJHNXjipMLgF6Wty6neuXfnX_bd6yfvqexzmlfZ7lVIclLTQCpN2fhsmKRn08I3KX3K8_ERZU85SCLn0BNJyunri-b0kgXJT9FhabI1-1wVIWdOlTsKvX0V5vzN5HdHNWWfPwKmhR_qLrOlkkBCc4L4Cpux2Spb_CIruMY-EHtoDUZoF0cd7m1OJBHRhVINcZTDIIWeReL98mzg4nlIB1wIX4h4AtJYCDu9bgtt4IsE6K4WwhJQeNRI2aFtq3QvOAof28fn0Myg86VdAFCG4vs663c7D61Lp-y54Bgp-NgRwjZ8ZF3GxIFnhdS-JJVC5abc4PgEnkbOEuCDCkwqdb0eay15GkhlAzwpBnKDzWaDzG4yMCqNtUSrRFlwX9CJ8SRuaiTAKhPr19hJNcDRcCKtEU1FlAmNiNLPCI3orcYOKggiXAAU1dCZHbzmEQnKUUE8FzV2WmETlSsx_9vi1r_-3mfzYbsb3V7d3WyzBUHTpMh63GGz49Gr3UVmMo73itn3CYJw2D4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Corrosion+Resistance+Behaviors+of+Metallic+Bipolar+Plates+for+PEMFC+Coated+with+Physical+Vapor+Deposition+%28PVD%29%3A+An+Experimental+Study&rft.jtitle=Arabian+Journal+for+Science+and+Engineering&rft.au=Kahraman%2C+H.&rft.au=Cevik%2C+I.&rft.au=D%C3%BCndar%2C+F.&rft.au=Ficici%2C+F.&rft.date=2016-05-01&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=41&rft.issue=5&rft.spage=1961&rft.epage=1968&rft_id=info:doi/10.1007%2Fs13369-016-2058-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_016_2058_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-8025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-8025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-8025&client=summon