In-field classification of the asymptomatic biotrophic phase of potato late blight based on deep learning and proximal hyperspectral imaging
•In-field classification of the asymptomatic biotrophic phase of potato late blight.•Proximal hyperspectral images collected in multiple days with 20 potato genotypes.•A new 3D convolutional deep learning architecture PLB-2D-3D-A is proposed.•Important wavelengths are determined for early PLB diseas...
Saved in:
Published in | Computers and electronics in agriculture Vol. 205; p. 107585 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •In-field classification of the asymptomatic biotrophic phase of potato late blight.•Proximal hyperspectral images collected in multiple days with 20 potato genotypes.•A new 3D convolutional deep learning architecture PLB-2D-3D-A is proposed.•Important wavelengths are determined for early PLB disease recognition in fields.
Effective detection of potato late blight (PLB) is an essential aspect of potato cultivation. However, it is a challenge to detect late blight in asymptomatic biotrophic phase in fields with conventional imaging approaches because of the lack of visual symptoms in the canopy. Hyperspectral imaging can capture spectral signals from a wide range of wavelengths also outside the visual wavelengths. Here, we propose a deep learning classification architecture for hyperspectral images by combining 2D convolutional neural network (2D-CNN) and 3D-CNN with deep cooperative attention networks (PLB-2D-3D-A). First, 2D-CNN and 3D-CNN are used to extract rich spectral space features, and then the attention mechanism AttentionBlock and SE-ResNet are used to emphasize the salient features in the feature maps and increase the generalization ability of the model. The dataset is built with 15,360 images (64x64x204), cropped from 240 raw images captured in an experimental field with over 20 potato genotypes. The accuracy in the test dataset of 2000 images reached 0.739 in the full band and 0.790 in the specific bands (492 nm, 519 nm, 560 nm, 592 nm, 717 nm and 765 nm). This study shows an encouraging result for classification of the asymptomatic biotrophic phase of PLB disease with deep learning and proximal hyperspectral imaging. |
---|---|
AbstractList | Effective detection of potato late blight (PLB) is an essential aspect of potato cultivation. However, it is a challenge to detect late blight in asymptomatic biotrophic phase in fields with conventional imaging approaches because of the lack of visual symptoms in the canopy. Hyperspectral imaging can capture spectral signals from a wide range of wavelengths also outside the visual wavelengths. Here, we propose a deep learning classification architecture for hyperspectral images by combining 2D convolutional neural network (2D-CNN) and 3D-CNN with deep cooperative attention networks (PLB-2D-3D-A). First, 2D-CNN and 3D-CNN are used to extract rich spectral space features, and then the attention mechanism AttentionBlock and SE-ResNet are used to emphasize the salient features in the feature maps and increase the generalization ability of the model. The dataset is built with 15,360 images (64x64x204), cropped from 240 raw images captured in an experimental field with over 20 potato genotypes. The accuracy in the test dataset of 2000 images reached 0.739 in the full band and 0.790 in the specific bands (492 nm, 519 nm, 560 nm, 592 nm, 717 nm and 765 nm). This study shows an encouraging result for classification of the asymptomatic biotrophic phase of PLB disease with deep learning and proximal hyperspectral imaging. •In-field classification of the asymptomatic biotrophic phase of potato late blight.•Proximal hyperspectral images collected in multiple days with 20 potato genotypes.•A new 3D convolutional deep learning architecture PLB-2D-3D-A is proposed.•Important wavelengths are determined for early PLB disease recognition in fields. Effective detection of potato late blight (PLB) is an essential aspect of potato cultivation. However, it is a challenge to detect late blight in asymptomatic biotrophic phase in fields with conventional imaging approaches because of the lack of visual symptoms in the canopy. Hyperspectral imaging can capture spectral signals from a wide range of wavelengths also outside the visual wavelengths. Here, we propose a deep learning classification architecture for hyperspectral images by combining 2D convolutional neural network (2D-CNN) and 3D-CNN with deep cooperative attention networks (PLB-2D-3D-A). First, 2D-CNN and 3D-CNN are used to extract rich spectral space features, and then the attention mechanism AttentionBlock and SE-ResNet are used to emphasize the salient features in the feature maps and increase the generalization ability of the model. The dataset is built with 15,360 images (64x64x204), cropped from 240 raw images captured in an experimental field with over 20 potato genotypes. The accuracy in the test dataset of 2000 images reached 0.739 in the full band and 0.790 in the specific bands (492 nm, 519 nm, 560 nm, 592 nm, 717 nm and 765 nm). This study shows an encouraging result for classification of the asymptomatic biotrophic phase of PLB disease with deep learning and proximal hyperspectral imaging. |
ArticleNumber | 107585 |
Author | Sandroni, Murilo Høegh Riis Sundmark, Ea Qi, Chao Cairo Westergaard, Jesper Alexandersson, Erik Gao, Junfeng Bagge, Merethe |
Author_xml | – sequence: 1 givenname: Chao surname: Qi fullname: Qi, Chao organization: Lincoln Agri-Robotics, Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln, UK – sequence: 2 givenname: Murilo surname: Sandroni fullname: Sandroni, Murilo organization: Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden – sequence: 3 givenname: Jesper surname: Cairo Westergaard fullname: Cairo Westergaard, Jesper organization: Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark – sequence: 4 givenname: Ea surname: Høegh Riis Sundmark fullname: Høegh Riis Sundmark, Ea organization: Danespo Breeding Company, Give, Denmark – sequence: 5 givenname: Merethe surname: Bagge fullname: Bagge, Merethe organization: Danespo Breeding Company, Give, Denmark – sequence: 6 givenname: Erik surname: Alexandersson fullname: Alexandersson, Erik organization: Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden – sequence: 7 givenname: Junfeng surname: Gao fullname: Gao, Junfeng organization: Lincoln Agri-Robotics, Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln, UK |
BackLink | https://res.slu.se/id/publ/120799$$DView record from Swedish Publication Index |
BookMark | eNp9UcuOGyEQRJFXir3ZP8iBHxgv4Hkwl0iRlexaspTL3hEDjQdrPCDASfwP-ei0Nascc2qqqKpWqzZkNYcZCPnM2ZYz3j6ftyZcoj5tBRMCqa6RzQey5rITVYdwRdYokxVv-_4j2eR8Zoh72a3Jn8NcOQ-TpWbSOXvnjS4-zDQ4WkagOt8usYQLkoYOPpQU4ojPOOoMd1EMRZdAJ12ADpM_jYUO-GUpZliASCfQafbzierZ0pjCb3_REx1vEVKOYEpChNQJJZ_Ig9NThqf3-Ujevn97279Wxx8vh_3XY2V2gpeK93XTSieM65xsoBk4glq2ese5EMzuoLaiAynqvnNt2zaDcJZxLm3vxMB2j2S7xOZfEK-Dign3p5sK2qs8XQed7kNlUFywru_RUC8Gk0LOCdw_C2fq3oA6q6UBdW9ALQ2g7ctiA7zlpweMNR5mA9YnPFzZ4P8f8Bc3lZZf |
CitedBy_id | crossref_primary_10_1016_j_ophoto_2024_100062 crossref_primary_10_1080_10095020_2024_2332638 crossref_primary_10_3390_plants12102061 crossref_primary_10_1016_j_compag_2023_108153 crossref_primary_10_3390_foods12102089 crossref_primary_10_1007_s11540_024_09702_7 crossref_primary_10_1016_j_compag_2024_109037 crossref_primary_10_3390_agriculture14070977 crossref_primary_10_1016_j_compag_2023_108577 crossref_primary_10_1016_j_jag_2023_103352 crossref_primary_10_3390_s23115096 crossref_primary_10_1016_j_atech_2023_100316 |
Cites_doi | 10.1016/j.compag.2019.105147 10.1016/j.compag.2019.02.018 10.1016/j.isprsjprs.2019.06.001 10.1016/j.neunet.2018.11.005 10.1016/j.cej.2021.129327 10.1016/j.compag.2020.105865 10.1016/j.eswa.2021.115673 10.1016/j.isprsjprs.2017.11.021 10.3390/s18020441 10.1371/journal.pcbi.1009048 10.1016/j.isprsjprs.2020.01.002 10.1016/j.compag.2019.105041 10.1016/j.knosys.2020.106723 10.1109/TPAMI.2019.2913372 10.1109/TNNLS.2019.2956390 10.1016/j.compag.2021.106188 10.1021/ac60214a047 10.1016/j.compag.2021.106061 10.1109/TII.2020.2979237 10.3390/agronomy9050258 10.1109/TGRS.2003.813555 10.1016/j.ijbiomac.2021.05.097 10.1016/j.patcog.2020.107255 10.1016/j.rse.2021.112640 10.1016/j.saa.2019.02.014 10.1016/j.plantsci.2019.110316 10.1016/j.compag.2018.08.018 10.1016/j.compag.2020.105683 10.1038/s41438-021-00556-5 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | 6I. AAFTH AAYXX CITATION ADTPV AOWAS D8T ZZAVC |
DOI | 10.1016/j.compag.2022.107585 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-7107 |
ExternalDocumentID | oai_slubar_slu_se_120799 10_1016_j_compag_2022_107585 S0168169922008936 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAHBH AAXKI AAYXX AFJKZ AKRWK CITATION ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c321t-194568f2cf7f85e5b18f2486a311220d3e4d27e82497f6665b2fd0118d9f2b03 |
IEDL.DBID | AIKHN |
ISSN | 0168-1699 1872-7107 |
IngestDate | Tue Oct 01 22:36:46 EDT 2024 Thu Sep 26 16:02:08 EDT 2024 Fri Feb 23 02:39:29 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Asymptomatic biotrophic phase Attention networks Plant phenotyping Convolutional neural networks Wavelength selection |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-194568f2cf7f85e5b18f2486a311220d3e4d27e82497f6665b2fd0118d9f2b03 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0168169922008936 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_120799 crossref_primary_10_1016_j_compag_2022_107585 elsevier_sciencedirect_doi_10_1016_j_compag_2022_107585 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Computers and electronics in agriculture |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Eckle, Schmidt-Hieber (b0030) 2019; 110 Hu, Shen, Albanie, Sun, Wu (b0055) 2020; 42 Chen, Wang, Cai, Wang, Li, Du (b0020) 2021; 8 Rodriguez, Lizarazo, Prieto, Angulo-Morales (b0120) 2021; 184 Khosravi, Daggupati, Alami, Awadh, Ghareb, Panahi, Pham, Rezaie, Qi, Yaseen (b0070) 2019; 167 Li, Lehtomaki, Elberink, Vosselman, Kukko, Puttonen, Chen, Hyyppa (b0090) 2019; 154 Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (b0150) 2016 Savitzky, A. and Golay, M. J. J. A. c. 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry. 36, 1627-1639. doi: https://pubs.acs.org/doi/pdf/10.1021/ac60214a047. Liao, Zhao, Wei, Wei, Wang (b0095) 2020; 31 Chawade, van Ham, Blomquist, Bagge, Alexandersson, Ortiz (b0015) 2019; 9 Zhang, Gao, Cen, Lu, Yu, He, Pieters (b9000) 2019; 159 Han, Deng (b0045) 2018; 153 Ma, Tsuchikawa, Inagaki (b0100) 2020; 177 Vuduc, Chandramowlishwaran, Choi, Guney, Shringarpure (b0160) 2010 Duarte-Carvajalino, Alzate, Ramirez, Santa-Sepulveda, Fajardo-Rojas, Soto-Suarez (b0025) 2018; 10 Paoletti, Haut, Plaza, Plaza (b0115) 2018; 145 Ruiliang, Peng, Biging, Larrieu (b0125) 2003; 41 Bagheri (b0005) 2020; 168 Zhang, Jiang, Li (b0180) 2021; 185 Molina-Bolivar, Galisteo-Gonzalez, Ruiz, Medina-O'Donnell, Martinez, Parra (b0110) 2019; 214 Behmann, Acebron, Emin, Bennertz, Matsubara, Thomas, Bohnenkamp, Kuska, Jussila, Salo, Mahlein, Rascher (b0010) 2018; 18 Tongcham, P., Supa, P., Pornwongthong, P. and Prasitmeeboon, P. 2020. Mushroom spawn quality classification with machine learning. Computers and Electronics in Agriculture Li, Jiang, Qin, Zhong, Elofsson (b0085) 2021; 17 179. doi: 10, 105865. doi: 1016/j.compag.2020.105865. Jozdani, Chen (b0065) 2020; 160 Yin, Wang, Yang (b0175) 2020; 102 Ioffe, S. and Szegedy, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Batch normalization: Accelerating deep network training by reducing internal covariate shift, International conference on machine learning, 448-456: PMLR. Krizhevsky, Sutskever, Hinton (b0080) 2012 Shi, Han, Kleerekoper, Chang, Hu (b0135) 2021; arXiv[Preprint]. arXiv:2107.13277 Su, Yi, Su, Mi, Liu, Hu, Xu, Guo, Chen (b0145) 2021; 17 Yang, Anderson, Gao, Wood, Gu, Hain (b0170) 2021; 265 Wang, Zheng, Cheng, Li, Liang, Shen, Dou, Yin, Yan (b0165) 2021; 417 Han, Moraga (b0050) 1995; 930 Gao, Westergaard, Sundmark, Bagge, Liljeroth, Alexandersson (b0035) 2021; 214 Zheng, Lu, Li, Yu, Zhang, He, Omayma, Wu, Xie, Li, Xu, Dou, Wang (b0185) 2021; 182 Kingma, D. P. and Ba, J. J. 2014. Adam: A Method for Stochastic Optimization. arXiv[Preprint]. arXiv:1412.6980. Meng, Wang, Hu, Luo, Zhong (b0105) 2021; 186 Gold, Townsend, Herrmann, Gevens (b0040) 2020; 295 Jozdani (10.1016/j.compag.2022.107585_b0065) 2020; 160 Gao (10.1016/j.compag.2022.107585_b0035) 2021; 214 Ma (10.1016/j.compag.2022.107585_b0100) 2020; 177 Liao (10.1016/j.compag.2022.107585_b0095) 2020; 31 Chen (10.1016/j.compag.2022.107585_b0020) 2021; 8 Khosravi (10.1016/j.compag.2022.107585_b0070) 2019; 167 Hu (10.1016/j.compag.2022.107585_b0055) 2020; 42 Eckle (10.1016/j.compag.2022.107585_b0030) 2019; 110 Molina-Bolivar (10.1016/j.compag.2022.107585_b0110) 2019; 214 10.1016/j.compag.2022.107585_b0060 Su (10.1016/j.compag.2022.107585_b0145) 2021; 17 Wang (10.1016/j.compag.2022.107585_b0165) 2021; 417 Duarte-Carvajalino (10.1016/j.compag.2022.107585_b0025) 2018; 10 Szegedy (10.1016/j.compag.2022.107585_b0150) 2016 10.1016/j.compag.2022.107585_b0155 Zheng (10.1016/j.compag.2022.107585_b0185) 2021; 182 Chawade (10.1016/j.compag.2022.107585_b0015) 2019; 9 10.1016/j.compag.2022.107585_b0075 10.1016/j.compag.2022.107585_b0130 Han (10.1016/j.compag.2022.107585_b0045) 2018; 153 Shi (10.1016/j.compag.2022.107585_b0135) 2021 Paoletti (10.1016/j.compag.2022.107585_b0115) 2018; 145 Yin (10.1016/j.compag.2022.107585_b0175) 2020; 102 Han (10.1016/j.compag.2022.107585_b0050) 1995; 930 Li (10.1016/j.compag.2022.107585_b0085) 2021; 17 Li (10.1016/j.compag.2022.107585_b0090) 2019; 154 Rodriguez (10.1016/j.compag.2022.107585_b0120) 2021; 184 Bagheri (10.1016/j.compag.2022.107585_b0005) 2020; 168 Gold (10.1016/j.compag.2022.107585_b0040) 2020; 295 Ruiliang (10.1016/j.compag.2022.107585_b0125) 2003; 41 Behmann (10.1016/j.compag.2022.107585_b0010) 2018; 18 Krizhevsky (10.1016/j.compag.2022.107585_b0080) 2012 Yang (10.1016/j.compag.2022.107585_b0170) 2021; 265 Meng (10.1016/j.compag.2022.107585_b0105) 2021; 186 Vuduc (10.1016/j.compag.2022.107585_b0160) 2010 Zhang (10.1016/j.compag.2022.107585_b0180) 2021; 185 Zhang (10.1016/j.compag.2022.107585_b9000) 2019; 159 |
References_xml | – volume: 265 start-page: 14 year: 2021 ident: b0170 article-title: Studying drought-induced forest mortality using high spatiotemporal resolution evapotranspiration data from thermal satellite imaging publication-title: Remote Sens. Environ. contributor: fullname: Hain – volume: 42 start-page: 2011 year: 2020 end-page: 2023 ident: b0055 article-title: Squeeze-and-Excitation Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Wu – volume: 17 start-page: 6 year: 2021 ident: b0085 article-title: GCSENet: A GCN, CNN and SENet ensemble model for microRNA-disease association prediction publication-title: PLoS Comput. Biol. contributor: fullname: Elofsson – volume: 102 year: 2020 ident: b0175 article-title: A novel image-dehazing network with a parallel attention block publication-title: Pattern Recogn. contributor: fullname: Yang – volume: 177 year: 2020 ident: b0100 article-title: Rapid and non-destructive seed viability prediction using near-infrared hyperspectral imaging coupled with a deep learning approach publication-title: Comput. Electron. Agric. contributor: fullname: Inagaki – volume: 153 start-page: 248 year: 2018 end-page: 255 ident: b0045 article-title: Application driven key wavelengths mining method for aflatoxin detection using hyperspectral data publication-title: Comput. Electron. Agric contributor: fullname: Deng – start-page: 2818 year: 2016 end-page: 2826 ident: b0150 article-title: Rethinking the inception architecture for computer vision publication-title: ProceedIngs of the IEEE Conference on Computer Vision and Pattern Recognition contributor: fullname: Wojna – volume: 10 start-page: 17 year: 2018 ident: b0025 article-title: Evaluating Late Blight Severity in Potato Crops Using Unmanned Aerial Vehicles and Machine Learning Algorithms publication-title: Remote Sens. (Basel) contributor: fullname: Soto-Suarez – volume: 41 start-page: 916 year: 2003 end-page: 921 ident: b0125 article-title: Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Larrieu – volume: 18 start-page: 441 year: 2018 ident: b0010 article-title: Specim IQ: Evaluation of a New, Miniaturized Handheld Hyperspectral Camera and Its Application for Plant Phenotyping and Disease Detection publication-title: Sensors contributor: fullname: Rascher – volume: arXiv[Preprint]. arXiv:2107.13277 year: 2021 ident: b0135 publication-title: A Novel CropdocNet for Automated Potato Late Blight Disease Detection from the Unmanned Aerial Vehicle-based Hyperspectral Imagery. contributor: fullname: Hu – volume: 417 start-page: 14 year: 2021 ident: b0165 article-title: Field application of star polymer-delivered chitosan to amplify plant defense against potato late blight publication-title: Chem. Eng. J contributor: fullname: Yan – volume: 159 start-page: 42 year: 2019 end-page: 49 ident: b9000 article-title: Automated spectral feature extraction from hyperspectral images to differentiate weedy rice and barnyard grass from a rice crop publication-title: Comput. Electron. Agric. contributor: fullname: Pieters – volume: 167 year: 2019 ident: b0070 article-title: Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: A case study in Iraq publication-title: Comput. Electron. Agric. contributor: fullname: Yaseen – start-page: 25 year: 2012 ident: b0080 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Information Processing Systems contributor: fullname: Hinton – volume: 110 start-page: 232 year: 2019 end-page: 242 ident: b0030 article-title: A comparison of deep networks with ReLU activation function and linear spline-type methods publication-title: Neural Netw contributor: fullname: Schmidt-Hieber – volume: 182 start-page: 1670 year: 2021 end-page: 1680 ident: b0185 article-title: Efficiency of chitosan application against Phytophthora infestans and the activation of defence mechanisms in potato publication-title: Int. J. Biol. Macromol. contributor: fullname: Wang – volume: 145 start-page: 120 year: 2018 end-page: 147 ident: b0115 article-title: A new deep convolutional neural network for fast hyperspectral image classification publication-title: ISPRS J. Photogramm. Remote Sens. contributor: fullname: Plaza – volume: 154 start-page: 98 year: 2019 end-page: 113 ident: b0090 article-title: Semantic segmentation of road furniture in mobile laser scanning data publication-title: ISPRS J. Photogramm. Remote Sens contributor: fullname: Hyyppa – volume: 184 start-page: 16 year: 2021 ident: b0120 article-title: Assessment of potato late blight from UAV-based multispectral imagery publication-title: Comput. Electron. Agric. contributor: fullname: Angulo-Morales – volume: 17 start-page: 2242 year: 2021 end-page: 2249 ident: b0145 article-title: Aerial Visual Perception in Smart Farming: Field Study of Wheat Yellow Rust Monitoring publication-title: IEEE Trans. Ind. Inf. contributor: fullname: Chen – volume: 168 year: 2020 ident: b0005 article-title: Application of aerial remote sensing technology for detection of fire blight infected pear trees publication-title: Comput. Electronics Agriculture contributor: fullname: Bagheri – volume: 8 start-page: 9 year: 2021 ident: b0020 article-title: The role of the MAP kinase-kinase protein STMKK1 in potato immunity to different pathogens publication-title: Hortic. Res contributor: fullname: Du – volume: 930 start-page: 195 year: 1995 end-page: 201 ident: b0050 article-title: The influence of the sigmoid function parameters on the speed of backpropagation learning publication-title: Int. Workshop on artificial neural networks contributor: fullname: Moraga – volume: 185 year: 2021 ident: b0180 article-title: CS-ResNet: Cost-sensitive residual convolutional neural network for PCB cosmetic defect detection publication-title: Expert Syst. Appl. contributor: fullname: Li – volume: 186 year: 2021 ident: b0105 article-title: Deep learning-based crop mapping in the cloudy season using one-shot hyperspectral satellite imagery publication-title: Comput. Electron. Agric contributor: fullname: Zhong – volume: 160 start-page: 275 year: 2020 end-page: 290 ident: b0065 article-title: On the versatility of popular and recently proposed supervised evaluation metrics for segmentation quality of remotely sensed images: An experimental case study of building extraction publication-title: ISPRS J. Photogramm. Remote Sens. contributor: fullname: Chen – start-page: 13 year: 2010 ident: b0160 article-title: On the limits of GPU acceleration publication-title: Proceedings of the 2nd USENIX Conference on Hot Topics in Parallelism contributor: fullname: Shringarpure – volume: 9 start-page: 258 year: 2019 ident: b0015 article-title: High-throughput field-phenotyping tools for plant breeding and precision agriculture publication-title: Agronomy contributor: fullname: Ortiz – volume: 295 start-page: 12 year: 2020 ident: b0040 article-title: Investigating potato late blight physiological differences across potato cultivars with spectroscopy and machine learning publication-title: Plant Sci. contributor: fullname: Gevens – volume: 214 year: 2021 ident: b0035 article-title: Automatic late blight lesion recognition and severity quantification based on field imagery of diverse potato genotypes by deep learning publication-title: Knowl.-Based Syst contributor: fullname: Alexandersson – volume: 214 start-page: 161 year: 2019 end-page: 169 ident: b0110 article-title: Maslinic acid conjugate with 7-amino-4-methylcoumarin as probe to monitor the temperature dependent conformational changes of human serum albumin by FRET publication-title: Spectrochim. Acta Part a-Molecul. Biomolecul. Spectrosc contributor: fullname: Parra – volume: 31 start-page: 4600 year: 2020 end-page: 4609 ident: b0095 article-title: Parameter Distribution Balanced CNNs publication-title: IEEE Trans. Neural Networks Learn. Syst contributor: fullname: Wang – volume: 168 year: 2020 ident: 10.1016/j.compag.2022.107585_b0005 article-title: Application of aerial remote sensing technology for detection of fire blight infected pear trees publication-title: Comput. Electronics Agriculture. doi: 10.1016/j.compag.2019.105147 contributor: fullname: Bagheri – start-page: 25 year: 2012 ident: 10.1016/j.compag.2022.107585_b0080 article-title: Imagenet classification with deep convolutional neural networks contributor: fullname: Krizhevsky – volume: 159 start-page: 42 year: 2019 ident: 10.1016/j.compag.2022.107585_b9000 article-title: Automated spectral feature extraction from hyperspectral images to differentiate weedy rice and barnyard grass from a rice crop publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.02.018 contributor: fullname: Zhang – volume: 154 start-page: 98 year: 2019 ident: 10.1016/j.compag.2022.107585_b0090 article-title: Semantic segmentation of road furniture in mobile laser scanning data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.06.001 contributor: fullname: Li – volume: 110 start-page: 232 year: 2019 ident: 10.1016/j.compag.2022.107585_b0030 article-title: A comparison of deep networks with ReLU activation function and linear spline-type methods publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.11.005 contributor: fullname: Eckle – year: 2021 ident: 10.1016/j.compag.2022.107585_b0135 publication-title: A Novel CropdocNet for Automated Potato Late Blight Disease Detection from the Unmanned Aerial Vehicle-based Hyperspectral Imagery. contributor: fullname: Shi – volume: 417 start-page: 14 year: 2021 ident: 10.1016/j.compag.2022.107585_b0165 article-title: Field application of star polymer-delivered chitosan to amplify plant defense against potato late blight publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129327 contributor: fullname: Wang – ident: 10.1016/j.compag.2022.107585_b0075 – ident: 10.1016/j.compag.2022.107585_b0155 doi: 10.1016/j.compag.2020.105865 – volume: 185 year: 2021 ident: 10.1016/j.compag.2022.107585_b0180 article-title: CS-ResNet: Cost-sensitive residual convolutional neural network for PCB cosmetic defect detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115673 contributor: fullname: Zhang – volume: 145 start-page: 120 year: 2018 ident: 10.1016/j.compag.2022.107585_b0115 article-title: A new deep convolutional neural network for fast hyperspectral image classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.021 contributor: fullname: Paoletti – start-page: 13 year: 2010 ident: 10.1016/j.compag.2022.107585_b0160 article-title: On the limits of GPU acceleration contributor: fullname: Vuduc – volume: 18 start-page: 441 year: 2018 ident: 10.1016/j.compag.2022.107585_b0010 article-title: Specim IQ: Evaluation of a New, Miniaturized Handheld Hyperspectral Camera and Its Application for Plant Phenotyping and Disease Detection publication-title: Sensors doi: 10.3390/s18020441 contributor: fullname: Behmann – volume: 17 start-page: 6 year: 2021 ident: 10.1016/j.compag.2022.107585_b0085 article-title: GCSENet: A GCN, CNN and SENet ensemble model for microRNA-disease association prediction publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1009048 contributor: fullname: Li – volume: 160 start-page: 275 year: 2020 ident: 10.1016/j.compag.2022.107585_b0065 article-title: On the versatility of popular and recently proposed supervised evaluation metrics for segmentation quality of remotely sensed images: An experimental case study of building extraction publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.01.002 contributor: fullname: Jozdani – volume: 167 year: 2019 ident: 10.1016/j.compag.2022.107585_b0070 article-title: Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: A case study in Iraq publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105041 contributor: fullname: Khosravi – volume: 214 year: 2021 ident: 10.1016/j.compag.2022.107585_b0035 article-title: Automatic late blight lesion recognition and severity quantification based on field imagery of diverse potato genotypes by deep learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106723 contributor: fullname: Gao – volume: 42 start-page: 2011 year: 2020 ident: 10.1016/j.compag.2022.107585_b0055 article-title: Squeeze-and-Excitation Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2913372 contributor: fullname: Hu – volume: 31 start-page: 4600 year: 2020 ident: 10.1016/j.compag.2022.107585_b0095 article-title: Parameter Distribution Balanced CNNs publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2019.2956390 contributor: fullname: Liao – volume: 186 year: 2021 ident: 10.1016/j.compag.2022.107585_b0105 article-title: Deep learning-based crop mapping in the cloudy season using one-shot hyperspectral satellite imagery publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106188 contributor: fullname: Meng – ident: 10.1016/j.compag.2022.107585_b0130 doi: 10.1021/ac60214a047 – volume: 184 start-page: 16 year: 2021 ident: 10.1016/j.compag.2022.107585_b0120 article-title: Assessment of potato late blight from UAV-based multispectral imagery publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106061 contributor: fullname: Rodriguez – volume: 17 start-page: 2242 year: 2021 ident: 10.1016/j.compag.2022.107585_b0145 article-title: Aerial Visual Perception in Smart Farming: Field Study of Wheat Yellow Rust Monitoring publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2020.2979237 contributor: fullname: Su – start-page: 2818 year: 2016 ident: 10.1016/j.compag.2022.107585_b0150 article-title: Rethinking the inception architecture for computer vision contributor: fullname: Szegedy – volume: 9 start-page: 258 year: 2019 ident: 10.1016/j.compag.2022.107585_b0015 article-title: High-throughput field-phenotyping tools for plant breeding and precision agriculture publication-title: Agronomy doi: 10.3390/agronomy9050258 contributor: fullname: Chawade – volume: 41 start-page: 916 year: 2003 ident: 10.1016/j.compag.2022.107585_b0125 article-title: Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.813555 contributor: fullname: Ruiliang – volume: 182 start-page: 1670 year: 2021 ident: 10.1016/j.compag.2022.107585_b0185 article-title: Efficiency of chitosan application against Phytophthora infestans and the activation of defence mechanisms in potato publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.05.097 contributor: fullname: Zheng – volume: 930 start-page: 195 year: 1995 ident: 10.1016/j.compag.2022.107585_b0050 article-title: The influence of the sigmoid function parameters on the speed of backpropagation learning publication-title: Int. Workshop on artificial neural networks contributor: fullname: Han – volume: 102 year: 2020 ident: 10.1016/j.compag.2022.107585_b0175 article-title: A novel image-dehazing network with a parallel attention block publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2020.107255 contributor: fullname: Yin – volume: 265 start-page: 14 year: 2021 ident: 10.1016/j.compag.2022.107585_b0170 article-title: Studying drought-induced forest mortality using high spatiotemporal resolution evapotranspiration data from thermal satellite imaging publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112640 contributor: fullname: Yang – volume: 10 start-page: 17 year: 2018 ident: 10.1016/j.compag.2022.107585_b0025 article-title: Evaluating Late Blight Severity in Potato Crops Using Unmanned Aerial Vehicles and Machine Learning Algorithms publication-title: Remote Sens. (Basel). contributor: fullname: Duarte-Carvajalino – volume: 214 start-page: 161 year: 2019 ident: 10.1016/j.compag.2022.107585_b0110 article-title: Maslinic acid conjugate with 7-amino-4-methylcoumarin as probe to monitor the temperature dependent conformational changes of human serum albumin by FRET publication-title: Spectrochim. Acta Part a-Molecul. Biomolecul. Spectrosc. doi: 10.1016/j.saa.2019.02.014 contributor: fullname: Molina-Bolivar – volume: 295 start-page: 12 year: 2020 ident: 10.1016/j.compag.2022.107585_b0040 article-title: Investigating potato late blight physiological differences across potato cultivars with spectroscopy and machine learning publication-title: Plant Sci. doi: 10.1016/j.plantsci.2019.110316 contributor: fullname: Gold – volume: 153 start-page: 248 year: 2018 ident: 10.1016/j.compag.2022.107585_b0045 article-title: Application driven key wavelengths mining method for aflatoxin detection using hyperspectral data publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.08.018 contributor: fullname: Han – volume: 177 year: 2020 ident: 10.1016/j.compag.2022.107585_b0100 article-title: Rapid and non-destructive seed viability prediction using near-infrared hyperspectral imaging coupled with a deep learning approach publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105683 contributor: fullname: Ma – volume: 8 start-page: 9 year: 2021 ident: 10.1016/j.compag.2022.107585_b0020 article-title: The role of the MAP kinase-kinase protein STMKK1 in potato immunity to different pathogens publication-title: Hortic. Res. doi: 10.1038/s41438-021-00556-5 contributor: fullname: Chen – ident: 10.1016/j.compag.2022.107585_b0060 |
SSID | ssj0016987 |
Score | 2.4934268 |
Snippet | •In-field classification of the asymptomatic biotrophic phase of potato late blight.•Proximal hyperspectral images collected in multiple days with 20 potato... Effective detection of potato late blight (PLB) is an essential aspect of potato cultivation. However, it is a challenge to detect late blight in asymptomatic... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 107585 |
SubjectTerms | Agricultural Science Asymptomatic biotrophic phase Attention networks Convolutional neural networks Jordbruksvetenskap Plant phenotyping Wavelength selection |
Title | In-field classification of the asymptomatic biotrophic phase of potato late blight based on deep learning and proximal hyperspectral imaging |
URI | https://dx.doi.org/10.1016/j.compag.2022.107585 https://res.slu.se/id/publ/120799 |
Volume | 205 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS_QwEB50vehB1NcXv8lB8FS3TfqRHBdRVkUv-oK30DbJ7r7stqVbD178Bf5oJ00rehDBU9uhaUImzDxDn5kBOBW5Cvw8Qg2g-_TCMEQ7qBlGKVEWsIzF2k9tovDdfTz-F948RU8rcNHnwlhaZWf7nU1vrXUnGXa7Oaxms-EDghUexLauKvoxweJVWEN3RPkA1kbXt-P7j58JseAuazrGgAkH9Bl0Lc2rpXpPMFCkFEUWPX_roT6XEm3dz9UWbHa4kYzc0rZhRRc7sDGa1F3tDP0H3q4LryWkkdxCYssBaredlIYgzCPp8mVRNWVbo5Vks7Kpy2qKt9UUPZl9qSoReZZkjvCTZHMbtRPr5BTBbyitK9K1mJiQtFDEEmBmC1zTFENZl7FZ4xOKbN-jXXi8uny8GHtdswUvZzRovEAglOKG5iYxPNKoKnwIeZwyRGTUV0yHiiaaY7iWGIx5oowaZdNWlTA089lfGBRlofeA0DDnRtAkVQjWEqMx_OY8FYwlKFJptA9ev7-yciU1ZM81-y-dPqTVh3T62IekV4L8cjQkWv0fRp45nX3MY4tpL-fPWVrbi1xqGVA_EeLg13McwrrtQO-I3EcwaOpnfYw4pclOYPX8NTjpTuM7XarqDw |
link.rule.ids | 230,315,783,787,888,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHFoOVVtaQZ8-VOIUbWLnYR9XqGi3wF66SNysJLZ3Fy1JlA2H_of-6H6OEwSHCqmnxKM4tmacmW-UeRDyXZY6CssEEoD5DOI4hh40HF5KUkS84KkJc5cofLVIZ9fxz5vkZo-cjbkwLqxy0P1ep_faeqBMBm5Oms1m8gtgRUSpq6sKOyZ5-oIcAA1IfJ0H0_nFbPHwMyGVwmdNp3CYMGHMoOvDvPpQ7xUcRcZAcuj5nxbqcSnR3vycvyGvB9xIp35rb8meqd6Rw-mqHWpnmCPyZ14FfUAaLR0kdjFAPdtpbSlgHs13v--aru5rtNJiU3dt3axx26xhydxDTQ3kWdMt4Cctts5rp87IaYp3aGMaOrSYWNG80tQFwGzusKc1XFmfsdliBJLre_SeLM9_LM9mwdBsISg5i7ogkmCesKy0mRWJgagwiEWacyAyFmpuYs0yI-CuZRY-T1Iwq13aqpaWFSH_QParujLHhLK4FFayLNcAa5k1cL-FyCXnGUg6T05IMPJXNb6khhpjzW6Vl4dy8lBeHickG4WgnhwNBa3_zMxTL7OHdVwx7d32vshbd1E7oyIWZlJ-_O81vpGXs-XVpbqcLy4-kVeuG70P6v5M9rv23nwBZumKr8OZ_AsIfewD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-field+classification+of+the+asymptomatic+biotrophic+phase+of+potato+late+blight+based+on+deep+learning+and+proximal+hyperspectral+imaging&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Araujo+Sandroni%2C+Murilo&rft.au=Alexandersson%2C+Erik&rft.date=2023-02-01&rft.issn=0168-1699&rft.volume=205&rft_id=info:doi/10.1016%2Fj.compag.2022.107585&rft.externalDocID=oai_slubar_slu_se_120799 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |