Strategic investment planning for the hydrogen economy – A mixed integer non-linear framework for the development and capacity expansion of hydrogen supply chain networks

•A Mixed-Integer Nonlinear Programming model for the strategic investment planning of large-scale hydrogen economy envelopes is formulated.•Production and carbon capture units are represented using surrogate models derived from rigorous simulation models.•Purity requirements for hydrogen use in tran...

Full description

Saved in:
Bibliographic Details
Published inComputers & chemical engineering Vol. 179; p. 108412
Main Authors Pérez-Uresti, Salvador I., Gallardo, Gustavo, Varvarezos, Dimitrios K.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A Mixed-Integer Nonlinear Programming model for the strategic investment planning of large-scale hydrogen economy envelopes is formulated.•Production and carbon capture units are represented using surrogate models derived from rigorous simulation models.•Purity requirements for hydrogen use in transportation as well as the industrial processes are considered as part of the model formulation.•Case study: California's 10-year infrastructure plan achieves a 90 % carbon cut, $6.9B investment, $1.4B NPV. This work presents a novel Mixed-Integer Nonlinear Programming (MINLP) modeling and optimization framework for the investment planning of large-scale hydrogen economy envelopes. The scope of the model includes the design, synthesis, and long-term capacity expansion of hydrogen supply chain networks (HSCN) that include hydrogen production, purification, storage, transportation, and distribution, subject to environmental sustainability considerations. Production and carbon capture units are represented using surrogate models derived from rigorous simulations to capture important process non-linearities. This framework provides an optimal roadmap for the 10-year plan of hydrogen infrastructure development in the state of California, that demonstrates the important trade-offs between investment decisions, economic incentives, and regulatory carbon emissions constraints. It is shown that the development of the hydrogen production and distribution networks can be achieved over a 10-year horizon in an economically profitable way, while achieving a 90 % reduction in carbon emissions and satisfying all state regulatory mandates.
AbstractList •A Mixed-Integer Nonlinear Programming model for the strategic investment planning of large-scale hydrogen economy envelopes is formulated.•Production and carbon capture units are represented using surrogate models derived from rigorous simulation models.•Purity requirements for hydrogen use in transportation as well as the industrial processes are considered as part of the model formulation.•Case study: California's 10-year infrastructure plan achieves a 90 % carbon cut, $6.9B investment, $1.4B NPV. This work presents a novel Mixed-Integer Nonlinear Programming (MINLP) modeling and optimization framework for the investment planning of large-scale hydrogen economy envelopes. The scope of the model includes the design, synthesis, and long-term capacity expansion of hydrogen supply chain networks (HSCN) that include hydrogen production, purification, storage, transportation, and distribution, subject to environmental sustainability considerations. Production and carbon capture units are represented using surrogate models derived from rigorous simulations to capture important process non-linearities. This framework provides an optimal roadmap for the 10-year plan of hydrogen infrastructure development in the state of California, that demonstrates the important trade-offs between investment decisions, economic incentives, and regulatory carbon emissions constraints. It is shown that the development of the hydrogen production and distribution networks can be achieved over a 10-year horizon in an economically profitable way, while achieving a 90 % reduction in carbon emissions and satisfying all state regulatory mandates.
ArticleNumber 108412
Author Varvarezos, Dimitrios K.
Gallardo, Gustavo
Pérez-Uresti, Salvador I.
Author_xml – sequence: 1
  givenname: Salvador I.
  surname: Pérez-Uresti
  fullname: Pérez-Uresti, Salvador I.
  email: salvador.perez@aspentech.com
  organization: Aspen Technology Inc., Corporate Research Group, Av. Paseo de la reforma 412, Suite 8, Cuauhtémoc, MX, CDMX 06600, Mexico
– sequence: 2
  givenname: Gustavo
  surname: Gallardo
  fullname: Gallardo, Gustavo
  organization: Aspen Technology Inc., Corporate Research Group, Av. Paseo de la reforma 412, Suite 8, Cuauhtémoc, MX, CDMX 06600, Mexico
– sequence: 3
  givenname: Dimitrios K.
  surname: Varvarezos
  fullname: Varvarezos, Dimitrios K.
  organization: Aspen Technology Inc., Corporate Research Group, 2500 City West Blvd., Suite 1800, Houston, TX 77042, USA
BookMark eNqNkEFOGzEUhr1IJQLlDuYAk9oz48RZIRRRWgmpC8racp6fE4cZe2S7KbPjDr1GT9WT1CGoRaxYWXrW_73_fadk4oNHQi44m3HG5592Mwj9AFvs0W9mNaubMpctrydkythSVrwR7Qk5TWnHGKtbKafk912OOuPGAXV-jymXbKZDp713fkNtiDRvkW5HE8MGPUUIPvQj_fP0i17R3j2iKcECwEhLnapzHnWkNuoef4b48I9gcI9dGJ7x2hsKetDg8kjxcdA-ueBpsP_3pB_D0I0Uttp56jEfWOkj-WB1l_D85T0j95-vv6--VLffbr6urm4raGqeKy7sQsMSWmlrLgRYw9CCNHJt51wuF0ZaFAuO0rRivl5w0axbEJxpu9aifDdn5PLIhRhSimhVaapz6VhkuU5xpg7C1U69Eq4OwtVReCEs3xCG6Hodx3dlV8cslhP3DqNK4NADGhcRsjLBvYPyF8vbrjk
CitedBy_id crossref_primary_10_2516_stet_2024073
crossref_primary_10_1021_acs_iecr_4c03989
crossref_primary_10_1016_j_enconman_2024_119278
crossref_primary_10_1016_j_ijhydene_2025_01_196
crossref_primary_10_1016_j_apenergy_2024_124222
crossref_primary_10_1016_j_adapen_2025_100207
Cites_doi 10.2172/1219920
10.1016/j.ijhydene.2019.08.206
10.1021/ie800078e
10.1016/j.energy.2014.03.043
10.1016/j.rser.2019.01.051
10.1016/j.ijggc.2020.103135
10.1016/j.ijhydene.2016.03.178
10.1016/j.apenergy.2021.117740
10.1016/j.ijhydene.2015.10.015
10.1016/j.ijhydene.2009.07.109
10.1002/aic.12024
10.1016/j.ijhydene.2010.04.010
10.1016/j.ijhydene.2021.04.016
10.1016/j.ijhydene.2013.06.071
10.1002/aic.16498
10.1016/j.ijhydene.2011.11.091
10.1016/j.joule.2019.07.006
10.3390/catal11030393
10.1016/j.apenergy.2019.04.064
10.1016/j.ijhydene.2019.10.080
10.1205/cherd.05193
10.1016/j.ijhydene.2015.10.032
10.1016/j.apenergy.2018.09.159
10.1109/TSTE.2021.3064015
10.1016/j.ijhydene.2006.05.009
10.1007/s11081-016-9338-x
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compchemeng.2023.108412
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compchemeng_2023_108412
S009813542300282X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSH
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c321t-15f7ac9c48f2155cfd0efc8d8bf61897d8fe571e8d456b7153b4c510afba597d3
IEDL.DBID .~1
ISSN 0098-1354
IngestDate Tue Jul 01 03:20:55 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Sun Apr 06 06:56:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Supply chain
Capacity expansion
Hydrogen economy
Strategic investment planning
Carbon capture
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-15f7ac9c48f2155cfd0efc8d8bf61897d8fe571e8d456b7153b4c510afba597d3
ParticipantIDs crossref_citationtrail_10_1016_j_compchemeng_2023_108412
crossref_primary_10_1016_j_compchemeng_2023_108412
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2023_108412
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Computers & chemical engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Aspen Technology. 2023d. Aspen PIMS-AO (Process industry modeling system−Advanced optimization). Optimize feedstocks, product slates, capital expansions and more with Aspen PIMS, used at more than 400 refineries and olefins plants worldwide. Available at
Du, Liu, Zhai, Guo, Xiong, Su, He (bib0021) 2021; 11
Penchev, M.; Lim, T., Todd, M., Lever, O., Lever, E., Mathaudhu, S., Martinez-Morales, A. & Raju, A.S.K. 2022. Hydrogen blending impacts study final report. Available at
Mosca, Jimenez, Wassie, Gallucci, Palo, Colozzi, Galdieri (bib0036) 2020; 45
Yu, Wang, Vredenburg (bib0053) 2021; 46
Khor, Varvarezos (bib0033) 2017; 18
Aspen Technology. 2023d. Aspen Unified. Available at
Yang, Ogden (bib0052) 2007; 32
Davis, Martín (bib0019) 2014; 69
Bique, Maia, Grossmann, Zondervan (bib0014) 2021
(Accessed on October 2022).
The governor's office of business and economic development (GO-Biz), 2022. California's hydrogen goals. Available at
Guillén-Gosálbez, Mele, Grossmann (bib0025) 2010; 56
Hydrogen council. 2021. Hydrogen insights. A perspective on hydrogen investment, market development, and cost competitiveness. Available at
Reuß, Grube, Robinius, Stolten (bib0041) 2019; 247
Tarkowski (bib0048) 2019; 105
U.S. Environmental Protection Agency (EPA), 2022. GHG emission factor hub. Available at
Demirhan, Tso, Powell, Pistikopoulos (bib0020) 2019; 65
Almansoori, Shah (bib0002) 2006; 84
Wickham, Hawkes, Jalil-Vega (bib0051) 2022; 305
.
National Grid gas system operator. 2021. Gas Future Operability planning (GFoP) report. Hydrogen blends in the NTS. A teorical exploration . Available at
He, Mallapragada, Bose, Heuberger, Gençer (bib0027) 2021; 12
Linde. 2022. Linde to increase green hydrogen production in the United States. Available at
Sabio, Gadalla, Guillén-Gosálbez, Jiménez (bib0043) 2010; 35
Nunes, Oliveira, Hamacher, Almansoori (bib0038) 2015; 40
(Accessed on November 2022).
Chiyoda corporation. 2020. Chiyoda's Hydrogen Supply Chain Buissiness. The world's first global hydrogen supply chain demonstration project. Available at
Baronas, J., Belinda C.. 2021. Joint agency staff report on assembly bill 8: 2021 annual assessment of time and cost needed to attain 100 hydrogen refueling stations in California. California energy commission and California air resources board. Publication Number: CEC-600-2021-040. Available at
International energy agency (IEA). 2019. The future of hydrogen, Sizing today's opportunities. Available at
Aspen Technology. 2023b. Aspen multi-cases. Achieve a superior design by rapidly analyzing many process simulation cases in parallel – leveraging highperformance computing, machine learning, data analysis and visualization tools. Avilable at
(Accessed on January 2023).
(Accessed on September 2022).
US department of Engery. Alternative fuel data center (AFDC). 2022. Hydrogen fueling station locations. Available at
Almansoori, Shah (bib0003) 2009; 34
Iberdrola. 2022. Iberdrola commissions the largest green hydrogen plant for industrial use in Europe. Available at
California air resources board (CARB), 2021. 2021 annual evaluation of fuel cell electric vehicle deployment and hydrogen fuel station network development. Available at
Ashkanani, Wang, Shi, Siefert, Thompson, Smith, …, Morsi (bib0006) 2020; 101
Shell. 2022. Shell to start building Europe's largest renewable hydrogen plant. Available at
Sadler, D., Cargill, A., Crowther, M., Rennie, A., Watt, J., Burton, S., & Haines, M. 2016. H21 leeds city gate. Leeds City Gate, Northern Gas Networks, Wales and West Utilities, 1325. Available at
Melaina, M.W., Antonia, O., & Penev, M. 2013. Blending hydrogen into natural gas pipeline networks: a review of key issues. Available at
REPHYNE. 2021. Shell starts up Europe's largest PEM green hydrogen electrolyser. Available at
Samsatli, Samsatli (bib0045) 2019; 233
International energy agency (IEA). 2021. Global hydrogen review 2021. Available at
Aspen Technology. 2023c. Aspen Hybrid models. Combine the capabilities of first principles models, domain expertise and AI to expand the boundaries of what is possible for the process industry. Available at
Reuß, Welder, Thürauf, Linßen, Grube, Schewe, Robinius (bib0042) 2019; 44
Varvarezos, D.K., Kunt, T., & Paules, G.E. 2001. Using other optimization technologies in PIMS.
Aspen Technology. 2023a. Aspen HYSYS. Maximize safety, sustainability and profits by optimizing the entire site in one environment using industry-validated simulation and time-saving workflows. Available at
Samsatli, Staffell, Samsatli (bib0046) 2016; 41
Varvarezos (bib0049) 2008; 47
Gilani, H.R.; Sanchez, D.L. 2020. Introduction to the hydrogen market. Available at
California air resources board (CARB). 2018. AB 32 global warming solutions act 2006. Available at
International Renewable Energy Agency (IRENA), 2019. Hydrogen: a Renewable Energy Perspective.Available at
(Accessed November 2022).
Agnolucci, Akgul, McDowall, Papageorgiou (bib0001) 2013; 38
Barthélémy, Weber, Barbier (bib0012) 2017; 42
(Accessed on December 2022).
Guerra, Eichman, Kurtz, Hodge (bib0024) 2019; 3
Almansoori, Shah (bib0004) 2012; 37
Guillén-Gosálbez (10.1016/j.compchemeng.2023.108412_bib0025) 2010; 56
Barthélémy (10.1016/j.compchemeng.2023.108412_bib0012) 2017; 42
10.1016/j.compchemeng.2023.108412_bib0039
Reuß (10.1016/j.compchemeng.2023.108412_bib0042) 2019; 44
Almansoori (10.1016/j.compchemeng.2023.108412_bib0002) 2006; 84
Demirhan (10.1016/j.compchemeng.2023.108412_bib0020) 2019; 65
Du (10.1016/j.compchemeng.2023.108412_bib0021) 2021; 11
Guerra (10.1016/j.compchemeng.2023.108412_bib0024) 2019; 3
Wickham (10.1016/j.compchemeng.2023.108412_bib0051) 2022; 305
10.1016/j.compchemeng.2023.108412_bib0040
Yang (10.1016/j.compchemeng.2023.108412_bib0052) 2007; 32
Almansoori (10.1016/j.compchemeng.2023.108412_bib0003) 2009; 34
Tarkowski (10.1016/j.compchemeng.2023.108412_bib0048) 2019; 105
10.1016/j.compchemeng.2023.108412_bib0047
Samsatli (10.1016/j.compchemeng.2023.108412_bib0045) 2019; 233
10.1016/j.compchemeng.2023.108412_bib0044
Khor (10.1016/j.compchemeng.2023.108412_bib0033) 2017; 18
10.1016/j.compchemeng.2023.108412_bib0028
Agnolucci (10.1016/j.compchemeng.2023.108412_bib0001) 2013; 38
10.1016/j.compchemeng.2023.108412_bib0029
Mosca (10.1016/j.compchemeng.2023.108412_bib0036) 2020; 45
Nunes (10.1016/j.compchemeng.2023.108412_bib0038) 2015; 40
Yu (10.1016/j.compchemeng.2023.108412_bib0053) 2021; 46
Reuß (10.1016/j.compchemeng.2023.108412_bib0041) 2019; 247
10.1016/j.compchemeng.2023.108412_bib0035
10.1016/j.compchemeng.2023.108412_bib0034
Almansoori (10.1016/j.compchemeng.2023.108412_bib0004) 2012; 37
10.1016/j.compchemeng.2023.108412_bib0037
10.1016/j.compchemeng.2023.108412_bib0031
10.1016/j.compchemeng.2023.108412_bib0030
He (10.1016/j.compchemeng.2023.108412_bib0027) 2021; 12
10.1016/j.compchemeng.2023.108412_bib0032
Sabio (10.1016/j.compchemeng.2023.108412_bib0043) 2010; 35
Bique (10.1016/j.compchemeng.2023.108412_bib0014) 2021
10.1016/j.compchemeng.2023.108412_bib0017
10.1016/j.compchemeng.2023.108412_bib0016
10.1016/j.compchemeng.2023.108412_bib0018
Davis (10.1016/j.compchemeng.2023.108412_bib0019) 2014; 69
Ashkanani (10.1016/j.compchemeng.2023.108412_bib0006) 2020; 101
10.1016/j.compchemeng.2023.108412_bib0023
10.1016/j.compchemeng.2023.108412_bib0026
10.1016/j.compchemeng.2023.108412_bib0022
10.1016/j.compchemeng.2023.108412_bib0009
10.1016/j.compchemeng.2023.108412_bib0005
10.1016/j.compchemeng.2023.108412_bib0008
10.1016/j.compchemeng.2023.108412_bib0007
Varvarezos (10.1016/j.compchemeng.2023.108412_bib0049) 2008; 47
10.1016/j.compchemeng.2023.108412_bib0050
10.1016/j.compchemeng.2023.108412_bib0013
Samsatli (10.1016/j.compchemeng.2023.108412_bib0046) 2016; 41
10.1016/j.compchemeng.2023.108412_bib0011
10.1016/j.compchemeng.2023.108412_bib0010
References_xml – volume: 34
  start-page: 7883
  year: 2009
  end-page: 7897
  ident: bib0003
  article-title: Design and operation of a future hydrogen supply chain: multi-period model
  publication-title: Int. J. Hydrog. Energy
– reference: . (Accessed on January 2023).
– reference: Chiyoda corporation. 2020. Chiyoda's Hydrogen Supply Chain Buissiness. The world's first global hydrogen supply chain demonstration project. Available at:
– reference: Penchev, M.; Lim, T., Todd, M., Lever, O., Lever, E., Mathaudhu, S., Martinez-Morales, A. & Raju, A.S.K. 2022. Hydrogen blending impacts study final report. Available at:
– reference: The governor's office of business and economic development (GO-Biz), 2022. California's hydrogen goals. Available at:
– volume: 56
  start-page: 650
  year: 2010
  end-page: 667
  ident: bib0025
  article-title: A bi-criterion optimization approach for the design and planning of hydrogen supply chains for vehicle use
  publication-title: AlChE J.
– volume: 45
  start-page: 7266
  year: 2020
  end-page: 7277
  ident: bib0036
  article-title: Process design for green hydrogen production
  publication-title: Int. J. Hydrog. Energy
– reference: . (Accessed on September 2022).
– reference: International energy agency (IEA). 2019. The future of hydrogen, Sizing today's opportunities. Available at:
– volume: 3
  start-page: 2425
  year: 2019
  end-page: 2443
  ident: bib0024
  article-title: Cost competitiveness of electrolytic hydrogen
  publication-title: Joule
– volume: 101
  year: 2020
  ident: bib0006
  article-title: Levelized cost of CO
  publication-title: Int. J. Greenh. Gas Control
– reference: Aspen Technology. 2023c. Aspen Hybrid models. Combine the capabilities of first principles models, domain expertise and AI to expand the boundaries of what is possible for the process industry. Available at:
– volume: 84
  start-page: 423
  year: 2006
  end-page: 438
  ident: bib0002
  article-title: Design and operation of a future hydrogen supply chain: snapshot model
  publication-title: Chem. Eng. Res. Des.
– reference: Sadler, D., Cargill, A., Crowther, M., Rennie, A., Watt, J., Burton, S., & Haines, M. 2016. H21 leeds city gate. Leeds City Gate, Northern Gas Networks, Wales and West Utilities, 1325. Available at:
– volume: 37
  start-page: 3965
  year: 2012
  end-page: 3977
  ident: bib0004
  article-title: Design and operation of a stochastic hydrogen supply chain network under demand uncertainty
  publication-title: Int. J. Hydrog. Energy
– reference: US department of Engery. Alternative fuel data center (AFDC). 2022. Hydrogen fueling station locations. Available at:
– reference: . (Accessed November 2022).
– reference: Hydrogen council. 2021. Hydrogen insights. A perspective on hydrogen investment, market development, and cost competitiveness. Available at:
– reference: California air resources board (CARB). 2018. AB 32 global warming solutions act 2006. Available at:
– volume: 69
  start-page: 497
  year: 2014
  end-page: 505
  ident: bib0019
  article-title: Optimal year-round operation for methane production from CO2 and water using wind energy
  publication-title: Energy
– reference: International energy agency (IEA). 2021. Global hydrogen review 2021. Available at:
– reference: REPHYNE. 2021. Shell starts up Europe's largest PEM green hydrogen electrolyser. Available at: ​
– reference: . (Accessed on November 2022).
– volume: 35
  start-page: 6836
  year: 2010
  end-page: 6852
  ident: bib0043
  article-title: Strategic planning with risk control of hydrogen supply chains for vehicle use under uncertainty in operating costs: a case study of Spain
  publication-title: Int. J. Hydrog. Energy
– reference: Aspen Technology. 2023d. Aspen PIMS-AO (Process industry modeling system−Advanced optimization). Optimize feedstocks, product slates, capital expansions and more with Aspen PIMS, used at more than 400 refineries and olefins plants worldwide. Available at:
– reference: International Renewable Energy Agency (IRENA), 2019. Hydrogen: a Renewable Energy Perspective.Available at:
– reference: Linde. 2022. Linde to increase green hydrogen production in the United States. Available at:
– reference: Varvarezos, D.K., Kunt, T., & Paules, G.E. 2001. Using other optimization technologies in PIMS.
– volume: 18
  start-page: 943
  year: 2017
  end-page: 989
  ident: bib0033
  article-title: Petroleum refinery optimization
  publication-title: Optim. Eng.
– volume: 247
  start-page: 438
  year: 2019
  end-page: 453
  ident: bib0041
  article-title: A hydrogen supply chain with spatial resolution: comparative analysis of infrastructure technologies in Germany
  publication-title: Appl. Energy
– volume: 65
  start-page: e16498
  year: 2019
  ident: bib0020
  article-title: Sustainable ammonia production through process synthesis and global optimization
  publication-title: AlChE J.
– reference: Shell. 2022. Shell to start building Europe's largest renewable hydrogen plant. Available at: ​
– volume: 38
  start-page: 11189
  year: 2013
  end-page: 11201
  ident: bib0001
  article-title: The importance of economies of scale, transport costs and demand patterns in optimising hydrogen fuelling infrastructure: an exploration with SHIPMod (Spatial hydrogen infrastructure planning model)
  publication-title: Int. J. Hydrog. Energy
– reference: Aspen Technology. 2023a. Aspen HYSYS. Maximize safety, sustainability and profits by optimizing the entire site in one environment using industry-validated simulation and time-saving workflows. Available at:
– reference: Melaina, M.W., Antonia, O., & Penev, M. 2013. Blending hydrogen into natural gas pipeline networks: a review of key issues. Available at:
– year: 2021
  ident: bib0014
  article-title: Design of hydrogen supply chains under demand uncertainty–a case study of passenger transport in Germany
  publication-title: Phys. Sci. Rev.
– reference: California air resources board (CARB), 2021. 2021 annual evaluation of fuel cell electric vehicle deployment and hydrogen fuel station network development. Available at:
– reference: National Grid gas system operator. 2021. Gas Future Operability planning (GFoP) report. Hydrogen blends in the NTS. A teorical exploration . Available at:
– volume: 44
  start-page: 32136
  year: 2019
  end-page: 32150
  ident: bib0042
  article-title: Modeling hydrogen networks for future energy systems: a comparison of linear and nonlinear approaches
  publication-title: Int. J. Hydrog. Energy
– reference: Aspen Technology. 2023b. Aspen multi-cases. Achieve a superior design by rapidly analyzing many process simulation cases in parallel – leveraging highperformance computing, machine learning, data analysis and visualization tools. Avilable at:
– volume: 11
  start-page: 393
  year: 2021
  ident: bib0021
  article-title: A review of hydrogen purification technologies for fuel cell vehicles
  publication-title: Catalysts
– reference: . (Accessed on December 2022).
– volume: 105
  start-page: 86
  year: 2019
  end-page: 94
  ident: bib0048
  article-title: Underground hydrogen storage: characteristics and prospects
  publication-title: Renew. Sust. Energy Rev.
– volume: 47
  start-page: 8282
  year: 2008
  end-page: 8285
  ident: bib0049
  article-title: Optimal solution-range analysis in production planning: refinery feedstock selection
  publication-title: Ind. Eng. Chem. Res.
– reference: Aspen Technology. 2023d. Aspen Unified. Available at:
– volume: 42
  start-page: 7254
  year: 2017
  end-page: 7262
  ident: bib0012
  article-title: Hydrogen storage: recent improvements and industrial perspectives
  publication-title: Int. J. Hydrog. Energy
– volume: 32
  start-page: 268
  year: 2007
  end-page: 286
  ident: bib0052
  article-title: Determining the lowest-cost hydrogen delivery mode
  publication-title: Int. J. Hydrog. Energy
– volume: 12
  start-page: 1730
  year: 2021
  end-page: 1740
  ident: bib0027
  article-title: Hydrogen supply chain planning with flexible transmission and storage scheduling
  publication-title: IEEE Trans. Sustain. Energy
– reference: U.S. Environmental Protection Agency (EPA), 2022. GHG emission factor hub. Available at:
– volume: 46
  start-page: 21261
  year: 2021
  end-page: 21273
  ident: bib0053
  article-title: Insights into low-carbon hydrogen production methods: green, blue and aqua hydrogen
  publication-title: Int. J. Hydrog. Energy
– reference: Baronas, J., Belinda C.. 2021. Joint agency staff report on assembly bill 8: 2021 annual assessment of time and cost needed to attain 100 hydrogen refueling stations in California. California energy commission and California air resources board. Publication Number: CEC-600-2021-040. Available at:
– reference: Iberdrola. 2022. Iberdrola commissions the largest green hydrogen plant for industrial use in Europe. Available at:
– reference: Gilani, H.R.; Sanchez, D.L. 2020. Introduction to the hydrogen market. Available at :
– reference: .
– volume: 305
  year: 2022
  ident: bib0051
  article-title: Hydrogen supply chain optimisation for the transport sector–Focus on hydrogen purity and purification requirements
  publication-title: Appl. Energy
– volume: 233
  start-page: 854
  year: 2019
  end-page: 893
  ident: bib0045
  article-title: The role of renewable hydrogen and inter-seasonal storage in decarbonising heat–Comprehensive optimisation of future renewable energy value chains
  publication-title: Appl. Energy
– volume: 41
  start-page: 447
  year: 2016
  end-page: 475
  ident: bib0046
  article-title: Optimal design and operation of integrated wind-hydrogen-electricity networks for decarbonising the domestic transport sector in Great Britain
  publication-title: Int. J. Hydrog. Energy
– volume: 40
  start-page: 16408
  year: 2015
  end-page: 16418
  ident: bib0038
  article-title: Design of a hydrogen supply chain with uncertainty
  publication-title: Int. J. Hydrog. Energy
– reference: . (Accessed on October 2022).
– ident: 10.1016/j.compchemeng.2023.108412_bib0035
  doi: 10.2172/1219920
– volume: 45
  start-page: 7266
  issue: 12
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108412_bib0036
  article-title: Process design for green hydrogen production
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.08.206
– volume: 47
  start-page: 8282
  issue: 21
  year: 2008
  ident: 10.1016/j.compchemeng.2023.108412_bib0049
  article-title: Optimal solution-range analysis in production planning: refinery feedstock selection
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie800078e
– volume: 69
  start-page: 497
  year: 2014
  ident: 10.1016/j.compchemeng.2023.108412_bib0019
  article-title: Optimal year-round operation for methane production from CO2 and water using wind energy
  publication-title: Energy
  doi: 10.1016/j.energy.2014.03.043
– ident: 10.1016/j.compchemeng.2023.108412_bib0040
– volume: 105
  start-page: 86
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108412_bib0048
  article-title: Underground hydrogen storage: characteristics and prospects
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2019.01.051
– ident: 10.1016/j.compchemeng.2023.108412_bib0029
– ident: 10.1016/j.compchemeng.2023.108412_bib0044
– volume: 101
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108412_bib0006
  article-title: Levelized cost of CO2 captured using five physical solvents in pre-combustion applications
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2020.103135
– ident: 10.1016/j.compchemeng.2023.108412_bib0011
– volume: 42
  start-page: 7254
  issue: 11
  year: 2017
  ident: 10.1016/j.compchemeng.2023.108412_bib0012
  article-title: Hydrogen storage: recent improvements and industrial perspectives
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.03.178
– volume: 305
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108412_bib0051
  article-title: Hydrogen supply chain optimisation for the transport sector–Focus on hydrogen purity and purification requirements
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117740
– ident: 10.1016/j.compchemeng.2023.108412_bib0030
– volume: 40
  start-page: 16408
  issue: 46
  year: 2015
  ident: 10.1016/j.compchemeng.2023.108412_bib0038
  article-title: Design of a hydrogen supply chain with uncertainty
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.10.015
– ident: 10.1016/j.compchemeng.2023.108412_bib0034
– ident: 10.1016/j.compchemeng.2023.108412_bib0047
– ident: 10.1016/j.compchemeng.2023.108412_bib0022
– volume: 34
  start-page: 7883
  issue: 19
  year: 2009
  ident: 10.1016/j.compchemeng.2023.108412_bib0003
  article-title: Design and operation of a future hydrogen supply chain: multi-period model
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2009.07.109
– ident: 10.1016/j.compchemeng.2023.108412_bib0005
– volume: 56
  start-page: 650
  issue: 3
  year: 2010
  ident: 10.1016/j.compchemeng.2023.108412_bib0025
  article-title: A bi-criterion optimization approach for the design and planning of hydrogen supply chains for vehicle use
  publication-title: AlChE J.
  doi: 10.1002/aic.12024
– volume: 35
  start-page: 6836
  issue: 13
  year: 2010
  ident: 10.1016/j.compchemeng.2023.108412_bib0043
  article-title: Strategic planning with risk control of hydrogen supply chains for vehicle use under uncertainty in operating costs: a case study of Spain
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.04.010
– ident: 10.1016/j.compchemeng.2023.108412_bib0026
– ident: 10.1016/j.compchemeng.2023.108412_bib0009
– volume: 46
  start-page: 21261
  issue: 41
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108412_bib0053
  article-title: Insights into low-carbon hydrogen production methods: green, blue and aqua hydrogen
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.04.016
– volume: 38
  start-page: 11189
  issue: 26
  year: 2013
  ident: 10.1016/j.compchemeng.2023.108412_bib0001
  article-title: The importance of economies of scale, transport costs and demand patterns in optimising hydrogen fuelling infrastructure: an exploration with SHIPMod (Spatial hydrogen infrastructure planning model)
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2013.06.071
– volume: 65
  start-page: e16498
  issue: 7
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108412_bib0020
  article-title: Sustainable ammonia production through process synthesis and global optimization
  publication-title: AlChE J.
  doi: 10.1002/aic.16498
– ident: 10.1016/j.compchemeng.2023.108412_bib0016
– ident: 10.1016/j.compchemeng.2023.108412_bib0050
– ident: 10.1016/j.compchemeng.2023.108412_bib0037
– ident: 10.1016/j.compchemeng.2023.108412_bib0023
– volume: 37
  start-page: 3965
  issue: 5
  year: 2012
  ident: 10.1016/j.compchemeng.2023.108412_bib0004
  article-title: Design and operation of a stochastic hydrogen supply chain network under demand uncertainty
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.11.091
– ident: 10.1016/j.compchemeng.2023.108412_bib0008
– ident: 10.1016/j.compchemeng.2023.108412_bib0013
– ident: 10.1016/j.compchemeng.2023.108412_bib0017
– volume: 3
  start-page: 2425
  issue: 10
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108412_bib0024
  article-title: Cost competitiveness of electrolytic hydrogen
  publication-title: Joule
  doi: 10.1016/j.joule.2019.07.006
– year: 2021
  ident: 10.1016/j.compchemeng.2023.108412_bib0014
  article-title: Design of hydrogen supply chains under demand uncertainty–a case study of passenger transport in Germany
  publication-title: Phys. Sci. Rev.
– ident: 10.1016/j.compchemeng.2023.108412_bib0032
– volume: 11
  start-page: 393
  issue: 3
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108412_bib0021
  article-title: A review of hydrogen purification technologies for fuel cell vehicles
  publication-title: Catalysts
  doi: 10.3390/catal11030393
– volume: 247
  start-page: 438
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108412_bib0041
  article-title: A hydrogen supply chain with spatial resolution: comparative analysis of infrastructure technologies in Germany
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.04.064
– volume: 44
  start-page: 32136
  issue: 60
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108412_bib0042
  article-title: Modeling hydrogen networks for future energy systems: a comparison of linear and nonlinear approaches
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.10.080
– volume: 84
  start-page: 423
  issue: 6
  year: 2006
  ident: 10.1016/j.compchemeng.2023.108412_bib0002
  article-title: Design and operation of a future hydrogen supply chain: snapshot model
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/cherd.05193
– ident: 10.1016/j.compchemeng.2023.108412_bib0007
– ident: 10.1016/j.compchemeng.2023.108412_bib0028
– volume: 41
  start-page: 447
  issue: 1
  year: 2016
  ident: 10.1016/j.compchemeng.2023.108412_bib0046
  article-title: Optimal design and operation of integrated wind-hydrogen-electricity networks for decarbonising the domestic transport sector in Great Britain
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.10.032
– ident: 10.1016/j.compchemeng.2023.108412_bib0010
– volume: 233
  start-page: 854
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108412_bib0045
  article-title: The role of renewable hydrogen and inter-seasonal storage in decarbonising heat–Comprehensive optimisation of future renewable energy value chains
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.159
– volume: 12
  start-page: 1730
  issue: 3
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108412_bib0027
  article-title: Hydrogen supply chain planning with flexible transmission and storage scheduling
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2021.3064015
– volume: 32
  start-page: 268
  issue: 2
  year: 2007
  ident: 10.1016/j.compchemeng.2023.108412_bib0052
  article-title: Determining the lowest-cost hydrogen delivery mode
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2006.05.009
– ident: 10.1016/j.compchemeng.2023.108412_bib0031
– volume: 18
  start-page: 943
  issue: 4
  year: 2017
  ident: 10.1016/j.compchemeng.2023.108412_bib0033
  article-title: Petroleum refinery optimization
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-016-9338-x
– ident: 10.1016/j.compchemeng.2023.108412_bib0018
– ident: 10.1016/j.compchemeng.2023.108412_bib0039
SSID ssj0002488
Score 2.4509275
Snippet •A Mixed-Integer Nonlinear Programming model for the strategic investment planning of large-scale hydrogen economy envelopes is formulated.•Production and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108412
SubjectTerms Capacity expansion
Carbon capture
Hydrogen economy
Optimization
Strategic investment planning
Supply chain
Title Strategic investment planning for the hydrogen economy – A mixed integer non-linear framework for the development and capacity expansion of hydrogen supply chain networks
URI https://dx.doi.org/10.1016/j.compchemeng.2023.108412
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSuRAEG5EQfQg6q6sv5TgNWpPOkkHvAyijIqeFOYW-nfNsmaGmRFmLuI7-Bo-lU9iVX6cWRBc8JiQSoeuTtXXzVdfMXYQxVo5kcRBGEkdCCd0oLRLAh_HlptQaBtTvfP1Tdy5E5fdqDvHTptaGKJV1rG_iulltK7vHNWzedTPc6rxTSUPI8QD5cahSxXsOCqu6cOnKc2jJaRsdDPp6UW2P-V4EW0b5-bBFb8PqY84Me4Eb32eo2byzvkqW6kBI7Srb1pjc65YZ8szMoI_2GsjMWsgL2Uz6MQP-nU7IkBYCgjz4H5iBz1cL-DKYuQJvD2_QBse8rGzUMpGuAEUvSIg5KkG4Bve1scb7JRhBKqwYDDTGoTx4MYYVOjcDXp-Os6QOoZOwNyrvICi4psPf7K787Pb005Qd2EITNjio4BHPlEmNUJ6hAeR8fbYeSOt1D7mMk2s9C5KuJMWsZhOMIJqYfBPV14r3K3YcIPN47e7XwxSxDdCOWsJ5AjMhHGo04iKfTnpxvNNJpt5z0wtUU6dMv5mDRftTzbjsoxcllUu22StD9N-pdPxP0YnjXOzfxZdhvnka_Ot75lvsyW6qgobd9j8aPDodhHhjPReuYT32EL74qpz8w7DUQJn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3battAEB1SB3p5KL3S9DqFvqrpWrvSCvpiQoPTJH5KwG9ir41KIxvHhfit_9Df6Ff1Szqji-1CoYW-Ssxq2VnNnF3OnAF4ozJrgsyzJFXaJjJImxgb8iRmmRculdZnXO98OsnG5_LjVE134KCvhWFaZRf725jeROvuyX63mvvzquIa30KLVBEeaA4O0xuwy-pUagC7o6Pj8WQdkIdS6146kw1uwusNzYuZ27Q8l6H-9JZbiTPpTorhn9PUVuo5vAd3O8yIo3Za92En1A_gzpaS4EP40avMOqwa5Qy-9MN515EICZkiIT28WPnFjLYMhqYeeYU_v33HEV5W18FjoxwRFljP6oTBp1lg7Klb6xH8hmSEpvboKNk6QvIYrimu8NUbzuLmO1fcNHSF7sJUNdYt5fzqEZwffjg7GCddI4bEpUOxTISKuXGFkzoSQlAu-nchOu21jZnQRe51DCoXQXuCYzanIGqlo5_dRGvowOLTxzCguYcngAVBHGmC94xzJCXDLLWF4npfwdLxYg90v-6l61TKuVnGl7Kno30ut1xWssvK1mV7MFybzlupjn8xet87t_xt35WUUv5u_vT_zF_BrfHZ6Ul5cjQ5fga3-U1b5_gcBsvF1_CCAM_Svuw29C-IVgUY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategic+investment+planning+for+the+hydrogen+economy+%E2%80%93+A+mixed+integer+non-linear+framework+for+the+development+and+capacity+expansion+of+hydrogen+supply+chain+networks&rft.jtitle=Computers+%26+chemical+engineering&rft.au=P%C3%A9rez-Uresti%2C+Salvador+I.&rft.au=Gallardo%2C+Gustavo&rft.au=Varvarezos%2C+Dimitrios+K.&rft.date=2023-11-01&rft.issn=0098-1354&rft.volume=179&rft.spage=108412&rft_id=info:doi/10.1016%2Fj.compchemeng.2023.108412&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2023_108412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon