Strategic investment planning for the hydrogen economy – A mixed integer non-linear framework for the development and capacity expansion of hydrogen supply chain networks
•A Mixed-Integer Nonlinear Programming model for the strategic investment planning of large-scale hydrogen economy envelopes is formulated.•Production and carbon capture units are represented using surrogate models derived from rigorous simulation models.•Purity requirements for hydrogen use in tran...
Saved in:
Published in | Computers & chemical engineering Vol. 179; p. 108412 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A Mixed-Integer Nonlinear Programming model for the strategic investment planning of large-scale hydrogen economy envelopes is formulated.•Production and carbon capture units are represented using surrogate models derived from rigorous simulation models.•Purity requirements for hydrogen use in transportation as well as the industrial processes are considered as part of the model formulation.•Case study: California's 10-year infrastructure plan achieves a 90 % carbon cut, $6.9B investment, $1.4B NPV.
This work presents a novel Mixed-Integer Nonlinear Programming (MINLP) modeling and optimization framework for the investment planning of large-scale hydrogen economy envelopes. The scope of the model includes the design, synthesis, and long-term capacity expansion of hydrogen supply chain networks (HSCN) that include hydrogen production, purification, storage, transportation, and distribution, subject to environmental sustainability considerations. Production and carbon capture units are represented using surrogate models derived from rigorous simulations to capture important process non-linearities. This framework provides an optimal roadmap for the 10-year plan of hydrogen infrastructure development in the state of California, that demonstrates the important trade-offs between investment decisions, economic incentives, and regulatory carbon emissions constraints. It is shown that the development of the hydrogen production and distribution networks can be achieved over a 10-year horizon in an economically profitable way, while achieving a 90 % reduction in carbon emissions and satisfying all state regulatory mandates. |
---|---|
AbstractList | •A Mixed-Integer Nonlinear Programming model for the strategic investment planning of large-scale hydrogen economy envelopes is formulated.•Production and carbon capture units are represented using surrogate models derived from rigorous simulation models.•Purity requirements for hydrogen use in transportation as well as the industrial processes are considered as part of the model formulation.•Case study: California's 10-year infrastructure plan achieves a 90 % carbon cut, $6.9B investment, $1.4B NPV.
This work presents a novel Mixed-Integer Nonlinear Programming (MINLP) modeling and optimization framework for the investment planning of large-scale hydrogen economy envelopes. The scope of the model includes the design, synthesis, and long-term capacity expansion of hydrogen supply chain networks (HSCN) that include hydrogen production, purification, storage, transportation, and distribution, subject to environmental sustainability considerations. Production and carbon capture units are represented using surrogate models derived from rigorous simulations to capture important process non-linearities. This framework provides an optimal roadmap for the 10-year plan of hydrogen infrastructure development in the state of California, that demonstrates the important trade-offs between investment decisions, economic incentives, and regulatory carbon emissions constraints. It is shown that the development of the hydrogen production and distribution networks can be achieved over a 10-year horizon in an economically profitable way, while achieving a 90 % reduction in carbon emissions and satisfying all state regulatory mandates. |
ArticleNumber | 108412 |
Author | Varvarezos, Dimitrios K. Gallardo, Gustavo Pérez-Uresti, Salvador I. |
Author_xml | – sequence: 1 givenname: Salvador I. surname: Pérez-Uresti fullname: Pérez-Uresti, Salvador I. email: salvador.perez@aspentech.com organization: Aspen Technology Inc., Corporate Research Group, Av. Paseo de la reforma 412, Suite 8, Cuauhtémoc, MX, CDMX 06600, Mexico – sequence: 2 givenname: Gustavo surname: Gallardo fullname: Gallardo, Gustavo organization: Aspen Technology Inc., Corporate Research Group, Av. Paseo de la reforma 412, Suite 8, Cuauhtémoc, MX, CDMX 06600, Mexico – sequence: 3 givenname: Dimitrios K. surname: Varvarezos fullname: Varvarezos, Dimitrios K. organization: Aspen Technology Inc., Corporate Research Group, 2500 City West Blvd., Suite 1800, Houston, TX 77042, USA |
BookMark | eNqNkEFOGzEUhr1IJQLlDuYAk9oz48RZIRRRWgmpC8racp6fE4cZe2S7KbPjDr1GT9WT1CGoRaxYWXrW_73_fadk4oNHQi44m3HG5592Mwj9AFvs0W9mNaubMpctrydkythSVrwR7Qk5TWnHGKtbKafk912OOuPGAXV-jymXbKZDp713fkNtiDRvkW5HE8MGPUUIPvQj_fP0i17R3j2iKcECwEhLnapzHnWkNuoef4b48I9gcI9dGJ7x2hsKetDg8kjxcdA-ueBpsP_3pB_D0I0Uttp56jEfWOkj-WB1l_D85T0j95-vv6--VLffbr6urm4raGqeKy7sQsMSWmlrLgRYw9CCNHJt51wuF0ZaFAuO0rRivl5w0axbEJxpu9aifDdn5PLIhRhSimhVaapz6VhkuU5xpg7C1U69Eq4OwtVReCEs3xCG6Hodx3dlV8cslhP3DqNK4NADGhcRsjLBvYPyF8vbrjk |
CitedBy_id | crossref_primary_10_2516_stet_2024073 crossref_primary_10_1021_acs_iecr_4c03989 crossref_primary_10_1016_j_enconman_2024_119278 crossref_primary_10_1016_j_ijhydene_2025_01_196 crossref_primary_10_1016_j_apenergy_2024_124222 crossref_primary_10_1016_j_adapen_2025_100207 |
Cites_doi | 10.2172/1219920 10.1016/j.ijhydene.2019.08.206 10.1021/ie800078e 10.1016/j.energy.2014.03.043 10.1016/j.rser.2019.01.051 10.1016/j.ijggc.2020.103135 10.1016/j.ijhydene.2016.03.178 10.1016/j.apenergy.2021.117740 10.1016/j.ijhydene.2015.10.015 10.1016/j.ijhydene.2009.07.109 10.1002/aic.12024 10.1016/j.ijhydene.2010.04.010 10.1016/j.ijhydene.2021.04.016 10.1016/j.ijhydene.2013.06.071 10.1002/aic.16498 10.1016/j.ijhydene.2011.11.091 10.1016/j.joule.2019.07.006 10.3390/catal11030393 10.1016/j.apenergy.2019.04.064 10.1016/j.ijhydene.2019.10.080 10.1205/cherd.05193 10.1016/j.ijhydene.2015.10.032 10.1016/j.apenergy.2018.09.159 10.1109/TSTE.2021.3064015 10.1016/j.ijhydene.2006.05.009 10.1007/s11081-016-9338-x |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compchemeng.2023.108412 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_compchemeng_2023_108412 S009813542300282X |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEWK ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSH SST SSZ T5K VH1 WUQ ZY4 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c321t-15f7ac9c48f2155cfd0efc8d8bf61897d8fe571e8d456b7153b4c510afba597d3 |
IEDL.DBID | .~1 |
ISSN | 0098-1354 |
IngestDate | Tue Jul 01 03:20:55 EDT 2025 Thu Apr 24 22:57:16 EDT 2025 Sun Apr 06 06:56:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Supply chain Capacity expansion Hydrogen economy Strategic investment planning Carbon capture Optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-15f7ac9c48f2155cfd0efc8d8bf61897d8fe571e8d456b7153b4c510afba597d3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_compchemeng_2023_108412 crossref_primary_10_1016_j_compchemeng_2023_108412 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2023_108412 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2023 2023-11-00 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
PublicationDecade | 2020 |
PublicationTitle | Computers & chemical engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Aspen Technology. 2023d. Aspen PIMS-AO (Process industry modeling system−Advanced optimization). Optimize feedstocks, product slates, capital expansions and more with Aspen PIMS, used at more than 400 refineries and olefins plants worldwide. Available at Du, Liu, Zhai, Guo, Xiong, Su, He (bib0021) 2021; 11 Penchev, M.; Lim, T., Todd, M., Lever, O., Lever, E., Mathaudhu, S., Martinez-Morales, A. & Raju, A.S.K. 2022. Hydrogen blending impacts study final report. Available at Mosca, Jimenez, Wassie, Gallucci, Palo, Colozzi, Galdieri (bib0036) 2020; 45 Yu, Wang, Vredenburg (bib0053) 2021; 46 Khor, Varvarezos (bib0033) 2017; 18 Aspen Technology. 2023d. Aspen Unified. Available at Yang, Ogden (bib0052) 2007; 32 Davis, Martín (bib0019) 2014; 69 Bique, Maia, Grossmann, Zondervan (bib0014) 2021 (Accessed on October 2022). The governor's office of business and economic development (GO-Biz), 2022. California's hydrogen goals. Available at Guillén-Gosálbez, Mele, Grossmann (bib0025) 2010; 56 Hydrogen council. 2021. Hydrogen insights. A perspective on hydrogen investment, market development, and cost competitiveness. Available at Reuß, Grube, Robinius, Stolten (bib0041) 2019; 247 Tarkowski (bib0048) 2019; 105 U.S. Environmental Protection Agency (EPA), 2022. GHG emission factor hub. Available at Demirhan, Tso, Powell, Pistikopoulos (bib0020) 2019; 65 Almansoori, Shah (bib0002) 2006; 84 Wickham, Hawkes, Jalil-Vega (bib0051) 2022; 305 . National Grid gas system operator. 2021. Gas Future Operability planning (GFoP) report. Hydrogen blends in the NTS. A teorical exploration . Available at He, Mallapragada, Bose, Heuberger, Gençer (bib0027) 2021; 12 Linde. 2022. Linde to increase green hydrogen production in the United States. Available at Sabio, Gadalla, Guillén-Gosálbez, Jiménez (bib0043) 2010; 35 Nunes, Oliveira, Hamacher, Almansoori (bib0038) 2015; 40 (Accessed on November 2022). Chiyoda corporation. 2020. Chiyoda's Hydrogen Supply Chain Buissiness. The world's first global hydrogen supply chain demonstration project. Available at Baronas, J., Belinda C.. 2021. Joint agency staff report on assembly bill 8: 2021 annual assessment of time and cost needed to attain 100 hydrogen refueling stations in California. California energy commission and California air resources board. Publication Number: CEC-600-2021-040. Available at International energy agency (IEA). 2019. The future of hydrogen, Sizing today's opportunities. Available at Aspen Technology. 2023b. Aspen multi-cases. Achieve a superior design by rapidly analyzing many process simulation cases in parallel – leveraging highperformance computing, machine learning, data analysis and visualization tools. Avilable at (Accessed on January 2023). (Accessed on September 2022). US department of Engery. Alternative fuel data center (AFDC). 2022. Hydrogen fueling station locations. Available at Almansoori, Shah (bib0003) 2009; 34 Iberdrola. 2022. Iberdrola commissions the largest green hydrogen plant for industrial use in Europe. Available at California air resources board (CARB), 2021. 2021 annual evaluation of fuel cell electric vehicle deployment and hydrogen fuel station network development. Available at Ashkanani, Wang, Shi, Siefert, Thompson, Smith, …, Morsi (bib0006) 2020; 101 Shell. 2022. Shell to start building Europe's largest renewable hydrogen plant. Available at Sadler, D., Cargill, A., Crowther, M., Rennie, A., Watt, J., Burton, S., & Haines, M. 2016. H21 leeds city gate. Leeds City Gate, Northern Gas Networks, Wales and West Utilities, 1325. Available at Melaina, M.W., Antonia, O., & Penev, M. 2013. Blending hydrogen into natural gas pipeline networks: a review of key issues. Available at REPHYNE. 2021. Shell starts up Europe's largest PEM green hydrogen electrolyser. Available at Samsatli, Samsatli (bib0045) 2019; 233 International energy agency (IEA). 2021. Global hydrogen review 2021. Available at Aspen Technology. 2023c. Aspen Hybrid models. Combine the capabilities of first principles models, domain expertise and AI to expand the boundaries of what is possible for the process industry. Available at Reuß, Welder, Thürauf, Linßen, Grube, Schewe, Robinius (bib0042) 2019; 44 Varvarezos, D.K., Kunt, T., & Paules, G.E. 2001. Using other optimization technologies in PIMS. Aspen Technology. 2023a. Aspen HYSYS. Maximize safety, sustainability and profits by optimizing the entire site in one environment using industry-validated simulation and time-saving workflows. Available at Samsatli, Staffell, Samsatli (bib0046) 2016; 41 Varvarezos (bib0049) 2008; 47 Gilani, H.R.; Sanchez, D.L. 2020. Introduction to the hydrogen market. Available at California air resources board (CARB). 2018. AB 32 global warming solutions act 2006. Available at International Renewable Energy Agency (IRENA), 2019. Hydrogen: a Renewable Energy Perspective.Available at (Accessed November 2022). Agnolucci, Akgul, McDowall, Papageorgiou (bib0001) 2013; 38 Barthélémy, Weber, Barbier (bib0012) 2017; 42 (Accessed on December 2022). Guerra, Eichman, Kurtz, Hodge (bib0024) 2019; 3 Almansoori, Shah (bib0004) 2012; 37 Guillén-Gosálbez (10.1016/j.compchemeng.2023.108412_bib0025) 2010; 56 Barthélémy (10.1016/j.compchemeng.2023.108412_bib0012) 2017; 42 10.1016/j.compchemeng.2023.108412_bib0039 Reuß (10.1016/j.compchemeng.2023.108412_bib0042) 2019; 44 Almansoori (10.1016/j.compchemeng.2023.108412_bib0002) 2006; 84 Demirhan (10.1016/j.compchemeng.2023.108412_bib0020) 2019; 65 Du (10.1016/j.compchemeng.2023.108412_bib0021) 2021; 11 Guerra (10.1016/j.compchemeng.2023.108412_bib0024) 2019; 3 Wickham (10.1016/j.compchemeng.2023.108412_bib0051) 2022; 305 10.1016/j.compchemeng.2023.108412_bib0040 Yang (10.1016/j.compchemeng.2023.108412_bib0052) 2007; 32 Almansoori (10.1016/j.compchemeng.2023.108412_bib0003) 2009; 34 Tarkowski (10.1016/j.compchemeng.2023.108412_bib0048) 2019; 105 10.1016/j.compchemeng.2023.108412_bib0047 Samsatli (10.1016/j.compchemeng.2023.108412_bib0045) 2019; 233 10.1016/j.compchemeng.2023.108412_bib0044 Khor (10.1016/j.compchemeng.2023.108412_bib0033) 2017; 18 10.1016/j.compchemeng.2023.108412_bib0028 Agnolucci (10.1016/j.compchemeng.2023.108412_bib0001) 2013; 38 10.1016/j.compchemeng.2023.108412_bib0029 Mosca (10.1016/j.compchemeng.2023.108412_bib0036) 2020; 45 Nunes (10.1016/j.compchemeng.2023.108412_bib0038) 2015; 40 Yu (10.1016/j.compchemeng.2023.108412_bib0053) 2021; 46 Reuß (10.1016/j.compchemeng.2023.108412_bib0041) 2019; 247 10.1016/j.compchemeng.2023.108412_bib0035 10.1016/j.compchemeng.2023.108412_bib0034 Almansoori (10.1016/j.compchemeng.2023.108412_bib0004) 2012; 37 10.1016/j.compchemeng.2023.108412_bib0037 10.1016/j.compchemeng.2023.108412_bib0031 10.1016/j.compchemeng.2023.108412_bib0030 He (10.1016/j.compchemeng.2023.108412_bib0027) 2021; 12 10.1016/j.compchemeng.2023.108412_bib0032 Sabio (10.1016/j.compchemeng.2023.108412_bib0043) 2010; 35 Bique (10.1016/j.compchemeng.2023.108412_bib0014) 2021 10.1016/j.compchemeng.2023.108412_bib0017 10.1016/j.compchemeng.2023.108412_bib0016 10.1016/j.compchemeng.2023.108412_bib0018 Davis (10.1016/j.compchemeng.2023.108412_bib0019) 2014; 69 Ashkanani (10.1016/j.compchemeng.2023.108412_bib0006) 2020; 101 10.1016/j.compchemeng.2023.108412_bib0023 10.1016/j.compchemeng.2023.108412_bib0026 10.1016/j.compchemeng.2023.108412_bib0022 10.1016/j.compchemeng.2023.108412_bib0009 10.1016/j.compchemeng.2023.108412_bib0005 10.1016/j.compchemeng.2023.108412_bib0008 10.1016/j.compchemeng.2023.108412_bib0007 Varvarezos (10.1016/j.compchemeng.2023.108412_bib0049) 2008; 47 10.1016/j.compchemeng.2023.108412_bib0050 10.1016/j.compchemeng.2023.108412_bib0013 Samsatli (10.1016/j.compchemeng.2023.108412_bib0046) 2016; 41 10.1016/j.compchemeng.2023.108412_bib0011 10.1016/j.compchemeng.2023.108412_bib0010 |
References_xml | – volume: 34 start-page: 7883 year: 2009 end-page: 7897 ident: bib0003 article-title: Design and operation of a future hydrogen supply chain: multi-period model publication-title: Int. J. Hydrog. Energy – reference: . (Accessed on January 2023). – reference: Chiyoda corporation. 2020. Chiyoda's Hydrogen Supply Chain Buissiness. The world's first global hydrogen supply chain demonstration project. Available at: – reference: Penchev, M.; Lim, T., Todd, M., Lever, O., Lever, E., Mathaudhu, S., Martinez-Morales, A. & Raju, A.S.K. 2022. Hydrogen blending impacts study final report. Available at: – reference: The governor's office of business and economic development (GO-Biz), 2022. California's hydrogen goals. Available at: – volume: 56 start-page: 650 year: 2010 end-page: 667 ident: bib0025 article-title: A bi-criterion optimization approach for the design and planning of hydrogen supply chains for vehicle use publication-title: AlChE J. – volume: 45 start-page: 7266 year: 2020 end-page: 7277 ident: bib0036 article-title: Process design for green hydrogen production publication-title: Int. J. Hydrog. Energy – reference: . (Accessed on September 2022). – reference: International energy agency (IEA). 2019. The future of hydrogen, Sizing today's opportunities. Available at: – volume: 3 start-page: 2425 year: 2019 end-page: 2443 ident: bib0024 article-title: Cost competitiveness of electrolytic hydrogen publication-title: Joule – volume: 101 year: 2020 ident: bib0006 article-title: Levelized cost of CO publication-title: Int. J. Greenh. Gas Control – reference: Aspen Technology. 2023c. Aspen Hybrid models. Combine the capabilities of first principles models, domain expertise and AI to expand the boundaries of what is possible for the process industry. Available at: – volume: 84 start-page: 423 year: 2006 end-page: 438 ident: bib0002 article-title: Design and operation of a future hydrogen supply chain: snapshot model publication-title: Chem. Eng. Res. Des. – reference: Sadler, D., Cargill, A., Crowther, M., Rennie, A., Watt, J., Burton, S., & Haines, M. 2016. H21 leeds city gate. Leeds City Gate, Northern Gas Networks, Wales and West Utilities, 1325. Available at: – volume: 37 start-page: 3965 year: 2012 end-page: 3977 ident: bib0004 article-title: Design and operation of a stochastic hydrogen supply chain network under demand uncertainty publication-title: Int. J. Hydrog. Energy – reference: US department of Engery. Alternative fuel data center (AFDC). 2022. Hydrogen fueling station locations. Available at: – reference: . (Accessed November 2022). – reference: Hydrogen council. 2021. Hydrogen insights. A perspective on hydrogen investment, market development, and cost competitiveness. Available at: – reference: California air resources board (CARB). 2018. AB 32 global warming solutions act 2006. Available at: – volume: 69 start-page: 497 year: 2014 end-page: 505 ident: bib0019 article-title: Optimal year-round operation for methane production from CO2 and water using wind energy publication-title: Energy – reference: International energy agency (IEA). 2021. Global hydrogen review 2021. Available at: – reference: REPHYNE. 2021. Shell starts up Europe's largest PEM green hydrogen electrolyser. Available at: – reference: . (Accessed on November 2022). – volume: 35 start-page: 6836 year: 2010 end-page: 6852 ident: bib0043 article-title: Strategic planning with risk control of hydrogen supply chains for vehicle use under uncertainty in operating costs: a case study of Spain publication-title: Int. J. Hydrog. Energy – reference: Aspen Technology. 2023d. Aspen PIMS-AO (Process industry modeling system−Advanced optimization). Optimize feedstocks, product slates, capital expansions and more with Aspen PIMS, used at more than 400 refineries and olefins plants worldwide. Available at: – reference: International Renewable Energy Agency (IRENA), 2019. Hydrogen: a Renewable Energy Perspective.Available at: – reference: Linde. 2022. Linde to increase green hydrogen production in the United States. Available at: – reference: Varvarezos, D.K., Kunt, T., & Paules, G.E. 2001. Using other optimization technologies in PIMS. – volume: 18 start-page: 943 year: 2017 end-page: 989 ident: bib0033 article-title: Petroleum refinery optimization publication-title: Optim. Eng. – volume: 247 start-page: 438 year: 2019 end-page: 453 ident: bib0041 article-title: A hydrogen supply chain with spatial resolution: comparative analysis of infrastructure technologies in Germany publication-title: Appl. Energy – volume: 65 start-page: e16498 year: 2019 ident: bib0020 article-title: Sustainable ammonia production through process synthesis and global optimization publication-title: AlChE J. – reference: Shell. 2022. Shell to start building Europe's largest renewable hydrogen plant. Available at: – volume: 38 start-page: 11189 year: 2013 end-page: 11201 ident: bib0001 article-title: The importance of economies of scale, transport costs and demand patterns in optimising hydrogen fuelling infrastructure: an exploration with SHIPMod (Spatial hydrogen infrastructure planning model) publication-title: Int. J. Hydrog. Energy – reference: Aspen Technology. 2023a. Aspen HYSYS. Maximize safety, sustainability and profits by optimizing the entire site in one environment using industry-validated simulation and time-saving workflows. Available at: – reference: Melaina, M.W., Antonia, O., & Penev, M. 2013. Blending hydrogen into natural gas pipeline networks: a review of key issues. Available at: – year: 2021 ident: bib0014 article-title: Design of hydrogen supply chains under demand uncertainty–a case study of passenger transport in Germany publication-title: Phys. Sci. Rev. – reference: California air resources board (CARB), 2021. 2021 annual evaluation of fuel cell electric vehicle deployment and hydrogen fuel station network development. Available at: – reference: National Grid gas system operator. 2021. Gas Future Operability planning (GFoP) report. Hydrogen blends in the NTS. A teorical exploration . Available at: – volume: 44 start-page: 32136 year: 2019 end-page: 32150 ident: bib0042 article-title: Modeling hydrogen networks for future energy systems: a comparison of linear and nonlinear approaches publication-title: Int. J. Hydrog. Energy – reference: Aspen Technology. 2023b. Aspen multi-cases. Achieve a superior design by rapidly analyzing many process simulation cases in parallel – leveraging highperformance computing, machine learning, data analysis and visualization tools. Avilable at: – volume: 11 start-page: 393 year: 2021 ident: bib0021 article-title: A review of hydrogen purification technologies for fuel cell vehicles publication-title: Catalysts – reference: . (Accessed on December 2022). – volume: 105 start-page: 86 year: 2019 end-page: 94 ident: bib0048 article-title: Underground hydrogen storage: characteristics and prospects publication-title: Renew. Sust. Energy Rev. – volume: 47 start-page: 8282 year: 2008 end-page: 8285 ident: bib0049 article-title: Optimal solution-range analysis in production planning: refinery feedstock selection publication-title: Ind. Eng. Chem. Res. – reference: Aspen Technology. 2023d. Aspen Unified. Available at: – volume: 42 start-page: 7254 year: 2017 end-page: 7262 ident: bib0012 article-title: Hydrogen storage: recent improvements and industrial perspectives publication-title: Int. J. Hydrog. Energy – volume: 32 start-page: 268 year: 2007 end-page: 286 ident: bib0052 article-title: Determining the lowest-cost hydrogen delivery mode publication-title: Int. J. Hydrog. Energy – volume: 12 start-page: 1730 year: 2021 end-page: 1740 ident: bib0027 article-title: Hydrogen supply chain planning with flexible transmission and storage scheduling publication-title: IEEE Trans. Sustain. Energy – reference: U.S. Environmental Protection Agency (EPA), 2022. GHG emission factor hub. Available at: – volume: 46 start-page: 21261 year: 2021 end-page: 21273 ident: bib0053 article-title: Insights into low-carbon hydrogen production methods: green, blue and aqua hydrogen publication-title: Int. J. Hydrog. Energy – reference: Baronas, J., Belinda C.. 2021. Joint agency staff report on assembly bill 8: 2021 annual assessment of time and cost needed to attain 100 hydrogen refueling stations in California. California energy commission and California air resources board. Publication Number: CEC-600-2021-040. Available at: – reference: Iberdrola. 2022. Iberdrola commissions the largest green hydrogen plant for industrial use in Europe. Available at: – reference: Gilani, H.R.; Sanchez, D.L. 2020. Introduction to the hydrogen market. Available at : – reference: . – volume: 305 year: 2022 ident: bib0051 article-title: Hydrogen supply chain optimisation for the transport sector–Focus on hydrogen purity and purification requirements publication-title: Appl. Energy – volume: 233 start-page: 854 year: 2019 end-page: 893 ident: bib0045 article-title: The role of renewable hydrogen and inter-seasonal storage in decarbonising heat–Comprehensive optimisation of future renewable energy value chains publication-title: Appl. Energy – volume: 41 start-page: 447 year: 2016 end-page: 475 ident: bib0046 article-title: Optimal design and operation of integrated wind-hydrogen-electricity networks for decarbonising the domestic transport sector in Great Britain publication-title: Int. J. Hydrog. Energy – volume: 40 start-page: 16408 year: 2015 end-page: 16418 ident: bib0038 article-title: Design of a hydrogen supply chain with uncertainty publication-title: Int. J. Hydrog. Energy – reference: . (Accessed on October 2022). – ident: 10.1016/j.compchemeng.2023.108412_bib0035 doi: 10.2172/1219920 – volume: 45 start-page: 7266 issue: 12 year: 2020 ident: 10.1016/j.compchemeng.2023.108412_bib0036 article-title: Process design for green hydrogen production publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.08.206 – volume: 47 start-page: 8282 issue: 21 year: 2008 ident: 10.1016/j.compchemeng.2023.108412_bib0049 article-title: Optimal solution-range analysis in production planning: refinery feedstock selection publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie800078e – volume: 69 start-page: 497 year: 2014 ident: 10.1016/j.compchemeng.2023.108412_bib0019 article-title: Optimal year-round operation for methane production from CO2 and water using wind energy publication-title: Energy doi: 10.1016/j.energy.2014.03.043 – ident: 10.1016/j.compchemeng.2023.108412_bib0040 – volume: 105 start-page: 86 year: 2019 ident: 10.1016/j.compchemeng.2023.108412_bib0048 article-title: Underground hydrogen storage: characteristics and prospects publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2019.01.051 – ident: 10.1016/j.compchemeng.2023.108412_bib0029 – ident: 10.1016/j.compchemeng.2023.108412_bib0044 – volume: 101 year: 2020 ident: 10.1016/j.compchemeng.2023.108412_bib0006 article-title: Levelized cost of CO2 captured using five physical solvents in pre-combustion applications publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2020.103135 – ident: 10.1016/j.compchemeng.2023.108412_bib0011 – volume: 42 start-page: 7254 issue: 11 year: 2017 ident: 10.1016/j.compchemeng.2023.108412_bib0012 article-title: Hydrogen storage: recent improvements and industrial perspectives publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.03.178 – volume: 305 year: 2022 ident: 10.1016/j.compchemeng.2023.108412_bib0051 article-title: Hydrogen supply chain optimisation for the transport sector–Focus on hydrogen purity and purification requirements publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117740 – ident: 10.1016/j.compchemeng.2023.108412_bib0030 – volume: 40 start-page: 16408 issue: 46 year: 2015 ident: 10.1016/j.compchemeng.2023.108412_bib0038 article-title: Design of a hydrogen supply chain with uncertainty publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.10.015 – ident: 10.1016/j.compchemeng.2023.108412_bib0034 – ident: 10.1016/j.compchemeng.2023.108412_bib0047 – ident: 10.1016/j.compchemeng.2023.108412_bib0022 – volume: 34 start-page: 7883 issue: 19 year: 2009 ident: 10.1016/j.compchemeng.2023.108412_bib0003 article-title: Design and operation of a future hydrogen supply chain: multi-period model publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2009.07.109 – ident: 10.1016/j.compchemeng.2023.108412_bib0005 – volume: 56 start-page: 650 issue: 3 year: 2010 ident: 10.1016/j.compchemeng.2023.108412_bib0025 article-title: A bi-criterion optimization approach for the design and planning of hydrogen supply chains for vehicle use publication-title: AlChE J. doi: 10.1002/aic.12024 – volume: 35 start-page: 6836 issue: 13 year: 2010 ident: 10.1016/j.compchemeng.2023.108412_bib0043 article-title: Strategic planning with risk control of hydrogen supply chains for vehicle use under uncertainty in operating costs: a case study of Spain publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.04.010 – ident: 10.1016/j.compchemeng.2023.108412_bib0026 – ident: 10.1016/j.compchemeng.2023.108412_bib0009 – volume: 46 start-page: 21261 issue: 41 year: 2021 ident: 10.1016/j.compchemeng.2023.108412_bib0053 article-title: Insights into low-carbon hydrogen production methods: green, blue and aqua hydrogen publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.04.016 – volume: 38 start-page: 11189 issue: 26 year: 2013 ident: 10.1016/j.compchemeng.2023.108412_bib0001 article-title: The importance of economies of scale, transport costs and demand patterns in optimising hydrogen fuelling infrastructure: an exploration with SHIPMod (Spatial hydrogen infrastructure planning model) publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2013.06.071 – volume: 65 start-page: e16498 issue: 7 year: 2019 ident: 10.1016/j.compchemeng.2023.108412_bib0020 article-title: Sustainable ammonia production through process synthesis and global optimization publication-title: AlChE J. doi: 10.1002/aic.16498 – ident: 10.1016/j.compchemeng.2023.108412_bib0016 – ident: 10.1016/j.compchemeng.2023.108412_bib0050 – ident: 10.1016/j.compchemeng.2023.108412_bib0037 – ident: 10.1016/j.compchemeng.2023.108412_bib0023 – volume: 37 start-page: 3965 issue: 5 year: 2012 ident: 10.1016/j.compchemeng.2023.108412_bib0004 article-title: Design and operation of a stochastic hydrogen supply chain network under demand uncertainty publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.11.091 – ident: 10.1016/j.compchemeng.2023.108412_bib0008 – ident: 10.1016/j.compchemeng.2023.108412_bib0013 – ident: 10.1016/j.compchemeng.2023.108412_bib0017 – volume: 3 start-page: 2425 issue: 10 year: 2019 ident: 10.1016/j.compchemeng.2023.108412_bib0024 article-title: Cost competitiveness of electrolytic hydrogen publication-title: Joule doi: 10.1016/j.joule.2019.07.006 – year: 2021 ident: 10.1016/j.compchemeng.2023.108412_bib0014 article-title: Design of hydrogen supply chains under demand uncertainty–a case study of passenger transport in Germany publication-title: Phys. Sci. Rev. – ident: 10.1016/j.compchemeng.2023.108412_bib0032 – volume: 11 start-page: 393 issue: 3 year: 2021 ident: 10.1016/j.compchemeng.2023.108412_bib0021 article-title: A review of hydrogen purification technologies for fuel cell vehicles publication-title: Catalysts doi: 10.3390/catal11030393 – volume: 247 start-page: 438 year: 2019 ident: 10.1016/j.compchemeng.2023.108412_bib0041 article-title: A hydrogen supply chain with spatial resolution: comparative analysis of infrastructure technologies in Germany publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.04.064 – volume: 44 start-page: 32136 issue: 60 year: 2019 ident: 10.1016/j.compchemeng.2023.108412_bib0042 article-title: Modeling hydrogen networks for future energy systems: a comparison of linear and nonlinear approaches publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.10.080 – volume: 84 start-page: 423 issue: 6 year: 2006 ident: 10.1016/j.compchemeng.2023.108412_bib0002 article-title: Design and operation of a future hydrogen supply chain: snapshot model publication-title: Chem. Eng. Res. Des. doi: 10.1205/cherd.05193 – ident: 10.1016/j.compchemeng.2023.108412_bib0007 – ident: 10.1016/j.compchemeng.2023.108412_bib0028 – volume: 41 start-page: 447 issue: 1 year: 2016 ident: 10.1016/j.compchemeng.2023.108412_bib0046 article-title: Optimal design and operation of integrated wind-hydrogen-electricity networks for decarbonising the domestic transport sector in Great Britain publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.10.032 – ident: 10.1016/j.compchemeng.2023.108412_bib0010 – volume: 233 start-page: 854 year: 2019 ident: 10.1016/j.compchemeng.2023.108412_bib0045 article-title: The role of renewable hydrogen and inter-seasonal storage in decarbonising heat–Comprehensive optimisation of future renewable energy value chains publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.159 – volume: 12 start-page: 1730 issue: 3 year: 2021 ident: 10.1016/j.compchemeng.2023.108412_bib0027 article-title: Hydrogen supply chain planning with flexible transmission and storage scheduling publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2021.3064015 – volume: 32 start-page: 268 issue: 2 year: 2007 ident: 10.1016/j.compchemeng.2023.108412_bib0052 article-title: Determining the lowest-cost hydrogen delivery mode publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2006.05.009 – ident: 10.1016/j.compchemeng.2023.108412_bib0031 – volume: 18 start-page: 943 issue: 4 year: 2017 ident: 10.1016/j.compchemeng.2023.108412_bib0033 article-title: Petroleum refinery optimization publication-title: Optim. Eng. doi: 10.1007/s11081-016-9338-x – ident: 10.1016/j.compchemeng.2023.108412_bib0018 – ident: 10.1016/j.compchemeng.2023.108412_bib0039 |
SSID | ssj0002488 |
Score | 2.4509275 |
Snippet | •A Mixed-Integer Nonlinear Programming model for the strategic investment planning of large-scale hydrogen economy envelopes is formulated.•Production and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108412 |
SubjectTerms | Capacity expansion Carbon capture Hydrogen economy Optimization Strategic investment planning Supply chain |
Title | Strategic investment planning for the hydrogen economy – A mixed integer non-linear framework for the development and capacity expansion of hydrogen supply chain networks |
URI | https://dx.doi.org/10.1016/j.compchemeng.2023.108412 |
Volume | 179 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSuRAEG5EQfQg6q6sv5TgNWpPOkkHvAyijIqeFOYW-nfNsmaGmRFmLuI7-Bo-lU9iVX6cWRBc8JiQSoeuTtXXzVdfMXYQxVo5kcRBGEkdCCd0oLRLAh_HlptQaBtTvfP1Tdy5E5fdqDvHTptaGKJV1rG_iulltK7vHNWzedTPc6rxTSUPI8QD5cahSxXsOCqu6cOnKc2jJaRsdDPp6UW2P-V4EW0b5-bBFb8PqY84Me4Eb32eo2byzvkqW6kBI7Srb1pjc65YZ8szMoI_2GsjMWsgL2Uz6MQP-nU7IkBYCgjz4H5iBz1cL-DKYuQJvD2_QBse8rGzUMpGuAEUvSIg5KkG4Bve1scb7JRhBKqwYDDTGoTx4MYYVOjcDXp-Os6QOoZOwNyrvICi4psPf7K787Pb005Qd2EITNjio4BHPlEmNUJ6hAeR8fbYeSOt1D7mMk2s9C5KuJMWsZhOMIJqYfBPV14r3K3YcIPN47e7XwxSxDdCOWsJ5AjMhHGo04iKfTnpxvNNJpt5z0wtUU6dMv5mDRftTzbjsoxcllUu22StD9N-pdPxP0YnjXOzfxZdhvnka_Ot75lvsyW6qgobd9j8aPDodhHhjPReuYT32EL74qpz8w7DUQJn |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3battAEB1SB3p5KL3S9DqFvqrpWrvSCvpiQoPTJH5KwG9ir41KIxvHhfit_9Df6Ff1Szqji-1CoYW-Ssxq2VnNnF3OnAF4ozJrgsyzJFXaJjJImxgb8iRmmRculdZnXO98OsnG5_LjVE134KCvhWFaZRf725jeROvuyX63mvvzquIa30KLVBEeaA4O0xuwy-pUagC7o6Pj8WQdkIdS6146kw1uwusNzYuZ27Q8l6H-9JZbiTPpTorhn9PUVuo5vAd3O8yIo3Za92En1A_gzpaS4EP40avMOqwa5Qy-9MN515EICZkiIT28WPnFjLYMhqYeeYU_v33HEV5W18FjoxwRFljP6oTBp1lg7Klb6xH8hmSEpvboKNk6QvIYrimu8NUbzuLmO1fcNHSF7sJUNdYt5fzqEZwffjg7GCddI4bEpUOxTISKuXGFkzoSQlAu-nchOu21jZnQRe51DCoXQXuCYzanIGqlo5_dRGvowOLTxzCguYcngAVBHGmC94xzJCXDLLWF4npfwdLxYg90v-6l61TKuVnGl7Kno30ut1xWssvK1mV7MFybzlupjn8xet87t_xt35WUUv5u_vT_zF_BrfHZ6Ul5cjQ5fga3-U1b5_gcBsvF1_CCAM_Svuw29C-IVgUY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategic+investment+planning+for+the+hydrogen+economy+%E2%80%93+A+mixed+integer+non-linear+framework+for+the+development+and+capacity+expansion+of+hydrogen+supply+chain+networks&rft.jtitle=Computers+%26+chemical+engineering&rft.au=P%C3%A9rez-Uresti%2C+Salvador+I.&rft.au=Gallardo%2C+Gustavo&rft.au=Varvarezos%2C+Dimitrios+K.&rft.date=2023-11-01&rft.issn=0098-1354&rft.volume=179&rft.spage=108412&rft_id=info:doi/10.1016%2Fj.compchemeng.2023.108412&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2023_108412 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |