Optimizing and using AI to study of the cross-section of finned tubes for nanofluid-conveying in solar panel cooling with phase change materials
This study numerically investigated the effect of applying different shapes of nanofluid-conveying pipes on a thermal solar panel system. Two pipes with circular, elliptical, and square shapes were employed in this system. Likewise, paraffin wax Phase Change Material (PCM) was used in the solar ther...
Saved in:
Published in | Engineering analysis with boundary elements Vol. 157; pp. 71 - 81 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study numerically investigated the effect of applying different shapes of nanofluid-conveying pipes on a thermal solar panel system. Two pipes with circular, elliptical, and square shapes were employed in this system. Likewise, paraffin wax Phase Change Material (PCM) was used in the solar thermal panel. A large number of spherical pin fins were installed over the pipes inside the PCM. The two phases of the NF were simulated, and all equations were solved using an element-free Galerkin method based on weak form. The results showed that the elliptical pipes increased the volume of the liquid PCM around them, while the circular pipes raised the quantity of solid PCM around them. That is to say, these two pipe types brought about the maximum difference in the volume of the phase change material (5%). When t = 2000 s, the temperature could decrease by >1% through circular rather than elliptical pipes. In the same period, the heat transfer rate of the circular pipes was 16.17% above that of elliptical pipes, whose heat transfer was 48.43% higher compared to the square pipes. When the solar panel was hot, elliptical pipes maximized the temperature of the output NF, and circular pipes minimized the NF's temperature at the outlet. |
---|---|
AbstractList | This study numerically investigated the effect of applying different shapes of nanofluid-conveying pipes on a thermal solar panel system. Two pipes with circular, elliptical, and square shapes were employed in this system. Likewise, paraffin wax Phase Change Material (PCM) was used in the solar thermal panel. A large number of spherical pin fins were installed over the pipes inside the PCM. The two phases of the NF were simulated, and all equations were solved using an element-free Galerkin method based on weak form. The results showed that the elliptical pipes increased the volume of the liquid PCM around them, while the circular pipes raised the quantity of solid PCM around them. That is to say, these two pipe types brought about the maximum difference in the volume of the phase change material (5%). When t = 2000 s, the temperature could decrease by >1% through circular rather than elliptical pipes. In the same period, the heat transfer rate of the circular pipes was 16.17% above that of elliptical pipes, whose heat transfer was 48.43% higher compared to the square pipes. When the solar panel was hot, elliptical pipes maximized the temperature of the output NF, and circular pipes minimized the NF's temperature at the outlet. |
Author | Zhu, Chaoyang |
Author_xml | – sequence: 1 givenname: Chaoyang surname: Zhu fullname: Zhu, Chaoyang email: czhu4043@gmail.com organization: Institute of Social Innovation and Public Culture, Communication University of China Beijing, 100024, China |
BookMark | eNqNkM1q3DAUhUVIoJOk76A8gB3Jv_IqhCFNBgLZtNCduJauZzR4rgZJTpk8RR65dtNF6Sqrc7lwPjjfJTsnT8jYjRS5FLK53edIWyDo_UQ2L0RR5kLlQqoztpKqLTPZtT_P2Up0dZ21Xdd-YZcx7oWQpRDNir2_HJM7uDdHWw5k-RSX637Dk-cxTfbE_cDTDrkJPsYsoknO0_IcHBFanqYeIx984ATkh3FyNjOeXvG0gBzx6EcI_AiEIzfej8v7l0s7ftxBnLk7oC3yAyQMDsZ4zS6GOfDr37xiP749fF8_Zc8vj5v1_XNmykKmTNaqLrC3tTQgK9s3RvTCNl3VFqbsKymbSqmikj2Y0jaytm1Zw4BCiaYG1RflFes-uH-GBRz0MbgDhJOWQi9q9V7_o1YvarVQelY7d-_-6xqXYBGTArjxU4T1BwHnia8Og47GIRm0LsyKtfXuE5TfT-ijGg |
CitedBy_id | crossref_primary_10_1007_s11082_024_07077_0 crossref_primary_10_1016_j_heliyon_2024_e35171 crossref_primary_10_1016_j_optmat_2024_115919 crossref_primary_10_1007_s11082_024_07263_0 crossref_primary_10_1016_j_chemphys_2024_112463 crossref_primary_10_1002_qua_27512 crossref_primary_10_1016_j_prime_2024_100480 crossref_primary_10_1039_D4CE00300D crossref_primary_10_1016_j_est_2024_112995 crossref_primary_10_1007_s10973_024_13516_7 crossref_primary_10_1142_S0217984924504931 crossref_primary_10_1016_j_physb_2024_416229 crossref_primary_10_1049_rpg2_13061 crossref_primary_10_1016_j_est_2024_113320 crossref_primary_10_1016_j_pmatsci_2024_101388 crossref_primary_10_1080_10407782_2024_2357592 crossref_primary_10_1007_s40430_024_05371_2 crossref_primary_10_1016_j_physb_2024_416346 crossref_primary_10_1016_j_icheatmasstransfer_2024_107795 crossref_primary_10_1049_gtd2_13279 crossref_primary_10_1007_s10904_024_03315_w crossref_primary_10_1016_j_heliyon_2024_e33952 crossref_primary_10_1016_j_csite_2024_104799 crossref_primary_10_1016_j_csite_2024_104781 crossref_primary_10_1186_s40807_024_00121_3 crossref_primary_10_1016_j_csite_2024_104585 crossref_primary_10_1016_j_molstruc_2024_138606 crossref_primary_10_1016_j_synthmet_2024_117651 crossref_primary_10_1016_j_mseb_2024_117672 crossref_primary_10_1016_j_energy_2024_131898 crossref_primary_10_1016_j_jmgm_2024_108792 crossref_primary_10_1016_j_solener_2024_112784 crossref_primary_10_1016_j_engfailanal_2024_108504 crossref_primary_10_1002_slct_202401827 crossref_primary_10_1007_s10971_024_06529_z crossref_primary_10_1016_j_comptc_2024_114771 crossref_primary_10_1016_j_optmat_2024_116255 crossref_primary_10_1007_s10973_024_13555_0 crossref_primary_10_1007_s11664_024_11266_8 crossref_primary_10_1016_j_matchemphys_2024_129493 crossref_primary_10_1016_j_mseb_2024_117506 crossref_primary_10_1080_15376494_2024_2377412 crossref_primary_10_1093_ijlct_ctae098 crossref_primary_10_1016_j_jpowsour_2025_236345 crossref_primary_10_1016_j_physe_2024_116069 crossref_primary_10_1016_j_heliyon_2024_e30937 crossref_primary_10_2298_TSCI240215161U crossref_primary_10_1016_j_mseb_2024_117482 crossref_primary_10_1016_j_ssc_2024_115671 crossref_primary_10_1007_s43207_025_00476_3 crossref_primary_10_1115_1_4066038 crossref_primary_10_1016_j_csite_2024_104819 crossref_primary_10_1016_j_est_2024_111880 crossref_primary_10_1007_s11082_024_07420_5 crossref_primary_10_1038_s41598_024_62690_z crossref_primary_10_1007_s10971_024_06482_x crossref_primary_10_1007_s11082_024_07038_7 crossref_primary_10_1016_j_optmat_2024_115896 crossref_primary_10_1007_s12633_024_03104_7 crossref_primary_10_1080_10407782_2024_2373394 crossref_primary_10_1039_D4RA03286A crossref_primary_10_1016_j_ijthermalsci_2024_109180 crossref_primary_10_1038_s41598_024_67418_7 crossref_primary_10_1007_s43207_024_00465_y crossref_primary_10_1016_j_est_2024_112389 crossref_primary_10_1016_j_cplett_2024_141291 crossref_primary_10_1002_ese3_1834 crossref_primary_10_1016_j_est_2024_113351 crossref_primary_10_1016_j_diamond_2024_111517 |
Cites_doi | 10.1016/j.aej.2019.09.013 10.1016/j.renene.2019.06.015 10.1016/j.applthermaleng.2019.114510 10.1002/er.3907 10.1016/j.jclepro.2016.12.029 10.1016/j.renene.2019.09.126 10.1016/j.anucene.2021.108924 10.1115/1.4004508 10.1016/j.apenergy.2013.01.031 10.1115/1.4029932 10.1016/j.renene.2019.07.076 10.1016/j.renene.2019.08.081 10.1016/j.renene.2019.07.062 10.1016/j.renene.2019.06.102 10.1016/j.apenergy.2018.10.114 10.1016/j.asej.2022.101985 10.1016/j.solmat.2004.01.011 10.1016/j.anucene.2020.107573 10.1016/j.ijheatmasstransfer.2018.06.108 10.1016/j.molliq.2020.113807 10.1016/j.renene.2019.09.012 10.1016/j.rser.2017.10.012 10.1007/s10973-020-10539-8 10.1016/j.tca.2017.02.001 10.1016/j.renene.2010.11.006 10.1016/j.apenergy.2011.01.017 10.1016/j.molliq.2021.116198 10.1016/S0038-092X(01)00096-2 10.1016/j.renene.2019.05.135 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.enganabound.2023.08.018 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-197X |
EndPage | 81 |
ExternalDocumentID | 10_1016_j_enganabound_2023_08_018 S0955799723004277 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TN5 UHS VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION |
ID | FETCH-LOGICAL-c321t-15852ebd51ca14db6c0b0d69472c3b4116488241bac3d615d735afe08065a8b23 |
IEDL.DBID | .~1 |
ISSN | 0955-7997 |
IngestDate | Tue Jul 01 02:31:59 EDT 2025 Thu Apr 24 22:55:21 EDT 2025 Fri Feb 23 02:35:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Circular pipe Square pipe Thermal solar panel Elliptical pipe Nanofluid Meshless |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-15852ebd51ca14db6c0b0d69472c3b4116488241bac3d615d735afe08065a8b23 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_enganabound_2023_08_018 crossref_citationtrail_10_1016_j_enganabound_2023_08_018 elsevier_sciencedirect_doi_10_1016_j_enganabound_2023_08_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 2023-12-00 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationTitle | Engineering analysis with boundary elements |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Saffarian, Moravej, Doranehgard (bib0011) 2020; 146 Ebrahimpour, Sheikholeslami (bib0018) 2021; 335 Teo, Lee, Hawlader (bib0025) 2012; 90 Aljaerani, Samykano, Pandey, Kadirgama, Saidur (bib0012) 2020; 314 Raj, Subudhi (bib0020) 2018; 84 Li (bib0029) 2013; 106 Mahon, Henshall, Claudio, Eames (bib0008) 2020; 145 Sharma, Naidu (bib0015) 2023; 14 Alizadeh, Ghasempour, Shafii, Ahmadi, Yan, Nazari (bib0019) 2018; 127 R. Nasrin, M. Hasanuzzaman, N.A. Rahim, Effect of high irradiation on photovoltaic power and energy, 42 (2018) 1115–31. Habiballahi, Ameri, Mansouri (bib0026) 2015; 137 Salisu, Mustafa, Olatomiwa, Mohammed (bib0013) 2019; 58 Kim, Kim, Bhattarai, Oh (bib0023) 2011; 133 Salilih, Abu-Hamdeh (bib0017) 2021 Krauter (bib0021) 2004; 82 Rahman, Hasanuzzaman, Rahim (bib0034) 2017; 143 Yerdesh, Abdulina, Aliuly, Belyayev, Mohanraj, Kaltayev (bib0005) 2020; 145 Nasraoui, Driss, Kchaou (bib0003) 2020; 145 Farhadi, Taki (bib0007) 2020; 147 Roper, Harkema, Sabharwall, Riddle, Chisholm, Day, Marotta (bib0016) 2022; 169 Schiller (bib0032) 1933; 77 Jiang, Palacios, Lei, Navarro, Qiao, Mura, Xu, Ding (bib0014) 2019; 235 M. Manninen, V. Taivassalo, S. Kallio, On the mixture model for multiphase flow, (1996). Choudhary, Sachdeva, Kumar (bib0009) 2020; 147 Izadi, El Haj Assad (bib0001) 2021 Anirudh, Dhinakaran (bib0010) 2020; 145 Prudhvi, Sai (bib0024) 2012 Khanlari, Güler, Tuncer, Şirin, Bilge, Yılmaz, Güngör (bib0006) 2020; 145 Shojaeizadeh, Veysi, Goudarzi (bib0004) 2020; 164 Tripanagnostopoulos, Nousia, Souliotis, Yianoulis (bib0027) 2002; 72 Hartmann, Glueck, Schmidt (bib0022) 2011; 36 M. Ishii, Thermo-fluid dynamic theory of two-phase flow, J NASA Sti/recon Technical Report A, 75 (1975) 29657. Wang, Yin (bib0002) 2020; 144 Żyła, Fal (bib0028) 2017; 650 Farhadi (10.1016/j.enganabound.2023.08.018_bib0007) 2020; 147 Salisu (10.1016/j.enganabound.2023.08.018_bib0013) 2019; 58 Schiller (10.1016/j.enganabound.2023.08.018_bib0032) 1933; 77 Saffarian (10.1016/j.enganabound.2023.08.018_bib0011) 2020; 146 Salilih (10.1016/j.enganabound.2023.08.018_bib0017) 2021 Raj (10.1016/j.enganabound.2023.08.018_bib0020) 2018; 84 Sharma (10.1016/j.enganabound.2023.08.018_bib0015) 2023; 14 Krauter (10.1016/j.enganabound.2023.08.018_bib0021) 2004; 82 Habiballahi (10.1016/j.enganabound.2023.08.018_bib0026) 2015; 137 Tripanagnostopoulos (10.1016/j.enganabound.2023.08.018_bib0027) 2002; 72 Li (10.1016/j.enganabound.2023.08.018_bib0029) 2013; 106 Anirudh (10.1016/j.enganabound.2023.08.018_bib0010) 2020; 145 10.1016/j.enganabound.2023.08.018_bib0030 10.1016/j.enganabound.2023.08.018_bib0031 Aljaerani (10.1016/j.enganabound.2023.08.018_bib0012) 2020; 314 10.1016/j.enganabound.2023.08.018_bib0033 Nasraoui (10.1016/j.enganabound.2023.08.018_bib0003) 2020; 145 Ebrahimpour (10.1016/j.enganabound.2023.08.018_bib0018) 2021; 335 Choudhary (10.1016/j.enganabound.2023.08.018_bib0009) 2020; 147 Prudhvi (10.1016/j.enganabound.2023.08.018_bib0024) 2012 Wang (10.1016/j.enganabound.2023.08.018_bib0002) 2020; 144 Kim (10.1016/j.enganabound.2023.08.018_bib0023) 2011; 133 Alizadeh (10.1016/j.enganabound.2023.08.018_bib0019) 2018; 127 Żyła (10.1016/j.enganabound.2023.08.018_bib0028) 2017; 650 Mahon (10.1016/j.enganabound.2023.08.018_bib0008) 2020; 145 Khanlari (10.1016/j.enganabound.2023.08.018_bib0006) 2020; 145 Izadi (10.1016/j.enganabound.2023.08.018_bib0001) 2021 Teo (10.1016/j.enganabound.2023.08.018_bib0025) 2012; 90 Yerdesh (10.1016/j.enganabound.2023.08.018_bib0005) 2020; 145 Jiang (10.1016/j.enganabound.2023.08.018_bib0014) 2019; 235 Hartmann (10.1016/j.enganabound.2023.08.018_bib0022) 2011; 36 Roper (10.1016/j.enganabound.2023.08.018_bib0016) 2022; 169 Rahman (10.1016/j.enganabound.2023.08.018_bib0034) 2017; 143 Shojaeizadeh (10.1016/j.enganabound.2023.08.018_bib0004) 2020; 164 |
References_xml | – volume: 90 start-page: 309 year: 2012 end-page: 315 ident: bib0025 article-title: An active cooling system for photovoltaic modules publication-title: Appl Energy – volume: 84 start-page: 54 year: 2018 end-page: 74 ident: bib0020 article-title: A review of studies using nanofluids in flat-plate and direct absorption solar collectors publication-title: Renew Sustain Energy Rev – volume: 106 start-page: 25 year: 2013 end-page: 30 ident: bib0029 article-title: A nano-graphite/paraffin phase change material with high thermal conductivity publication-title: Appl Energy – reference: M. Manninen, V. Taivassalo, S. Kallio, On the mixture model for multiphase flow, (1996). – volume: 145 start-page: 1799 year: 2020 end-page: 1807 ident: bib0008 article-title: Feasibility study of MgSO4 + zeolite based composite thermochemical energy stores charged by vacuum flat plate solar thermal collectors for seasonal thermal energy storage publication-title: Renew Energy – volume: 58 start-page: 1103 year: 2019 end-page: 1118 ident: bib0013 article-title: Assessment of technical and economic feasibility for a hybrid PV-wind-diesel-battery energy system in a remote community of north central Nigeria publication-title: Alex Eng J – volume: 14 year: 2023 ident: bib0015 article-title: Optimization techniques for grid-connected PV with retired EV batteries in centralized charging station with challenges and future possibilities: a review publication-title: Ain Shams Eng J – start-page: 1093 year: 2012 end-page: 1097 ident: bib0024 article-title: Efficiency improvement of solar PV panels using active cooling publication-title: Proceedings of the 2012 11th International Conference on Environment and Electrical Engineering – volume: 335 year: 2021 ident: bib0018 article-title: Investigation of nanofluid convective flow through a solar system equipped with mirrors publication-title: J Mol Liq – reference: M. Ishii, Thermo-fluid dynamic theory of two-phase flow, J NASA Sti/recon Technical Report A, 75 (1975) 29657. – start-page: 221 year: 2021 end-page: 250 ident: bib0001 article-title: Chapter 15 - Use of nanofluids in solar energy systems publication-title: Design and performance optimization of renewable energy systems – volume: 145 start-page: 1677 year: 2020 end-page: 1692 ident: bib0006 article-title: Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application publication-title: Renew Energy – volume: 145 start-page: 428 year: 2020 end-page: 441 ident: bib0010 article-title: Performance improvement of a flat-plate solar collector by inserting intermittent porous blocks publication-title: Renew Energy – reference: R. Nasrin, M. Hasanuzzaman, N.A. Rahim, Effect of high irradiation on photovoltaic power and energy, 42 (2018) 1115–31. – volume: 147 start-page: 730 year: 2020 end-page: 740 ident: bib0007 article-title: The energy gain reduction due to shadow inside a flat-plate solar collector publication-title: Renew Energy – volume: 127 start-page: 203 year: 2018 end-page: 208 ident: bib0019 article-title: Numerical simulation of PV cooling by using single turn pulsating heat pipe publication-title: Int J Heat Mass Transf – volume: 146 start-page: 2316 year: 2020 end-page: 2329 ident: bib0011 article-title: Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid publication-title: Renew Energy – volume: 169 year: 2022 ident: bib0016 article-title: Molten salt for advanced energy applications: a review publication-title: Ann Nucl Energy – volume: 164 year: 2020 ident: bib0004 article-title: Heat transfer and thermal efficiency of a lab-fabricated ferrofluid-based single-ended tube solar collector under the effect of magnetic field: an experimental study publication-title: Appl Therm Eng – volume: 650 start-page: 106 year: 2017 end-page: 113 ident: bib0028 article-title: Viscosity, thermal and electrical conductivity of silicon dioxide–ethylene glycol transparent nanofluids: an experimental studies publication-title: Thermochim Acta – volume: 36 start-page: 1329 year: 2011 end-page: 1338 ident: bib0022 article-title: Solar cooling for small office buildings: comparison of solar thermal and photovoltaic options for two different European climates publication-title: Renew Energy – volume: 77 start-page: 318 year: 1933 end-page: 320 ident: bib0032 article-title: A drag coefficient correlation publication-title: J Zeit. Ver. Deutsch. Ing. – volume: 145 start-page: 1222 year: 2020 end-page: 1234 ident: bib0005 article-title: Numerical simulation on solar collector and cascade heat pump combi water heating systems in Kazakhstan climates publication-title: Renew Energy – volume: 145 start-page: 1658 year: 2020 end-page: 1671 ident: bib0003 article-title: Novel collector design for enhancing the performance of solar chimney power plant publication-title: Renew Energy – volume: 235 start-page: 529 year: 2019 end-page: 542 ident: bib0014 article-title: Novel key parameter for eutectic nitrates based nanofluids selection for concentrating solar power (CSP) systems publication-title: Appl Energy – volume: 82 start-page: 131 year: 2004 end-page: 137 ident: bib0021 article-title: Increased electrical yield via water flow over the front of photovoltaic panels publication-title: Sol Energy Mater Sol Cells – volume: 144 year: 2020 ident: bib0002 article-title: Design and exergy evaluation of a novel parabolic trough solar-nuclear combined system publication-title: Ann Nucl Energy – volume: 133 year: 2011 ident: bib0023 article-title: Simulation and Model Validation of the Surface Cooling System for Improving the Power of a Photovoltaic Module publication-title: J Sol Energy Eng – volume: 137 year: 2015 ident: bib0026 article-title: Efficiency improvement of photovoltaic water pumping systems by means of water flow beneath photovoltaic cells surface publication-title: J Sol Energy Eng – year: 2021 ident: bib0017 article-title: Charging process of thermal energy storage system under varying incident heat flux: interaction the fluid neighbour nodes and particles in order to heat transfer publication-title: J Therm Anal Calorim – volume: 143 start-page: 912 year: 2017 end-page: 924 ident: bib0034 article-title: Effects of operational conditions on the energy efficiency of photovoltaic modules operating in Malaysia publication-title: J Clean Prod – volume: 147 start-page: 1801 year: 2020 end-page: 1814 ident: bib0009 article-title: Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector publication-title: Renew Energy – volume: 314 year: 2020 ident: bib0012 article-title: Thermo-physical properties and corrosivity improvement of molten salts by use of nanoparticles for concentrated solar power applications: a critical review publication-title: J Mol Liq – volume: 72 start-page: 217 year: 2002 end-page: 234 ident: bib0027 article-title: Hybrid photovoltaic/thermal solar systems publication-title: Sol Energy – volume: 58 start-page: 1103 year: 2019 ident: 10.1016/j.enganabound.2023.08.018_bib0013 article-title: Assessment of technical and economic feasibility for a hybrid PV-wind-diesel-battery energy system in a remote community of north central Nigeria publication-title: Alex Eng J doi: 10.1016/j.aej.2019.09.013 – volume: 145 start-page: 428 year: 2020 ident: 10.1016/j.enganabound.2023.08.018_bib0010 article-title: Performance improvement of a flat-plate solar collector by inserting intermittent porous blocks publication-title: Renew Energy doi: 10.1016/j.renene.2019.06.015 – volume: 77 start-page: 318 year: 1933 ident: 10.1016/j.enganabound.2023.08.018_bib0032 article-title: A drag coefficient correlation publication-title: J Zeit. Ver. Deutsch. Ing. – volume: 164 year: 2020 ident: 10.1016/j.enganabound.2023.08.018_bib0004 article-title: Heat transfer and thermal efficiency of a lab-fabricated ferrofluid-based single-ended tube solar collector under the effect of magnetic field: an experimental study publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.114510 – ident: 10.1016/j.enganabound.2023.08.018_bib0033 doi: 10.1002/er.3907 – ident: 10.1016/j.enganabound.2023.08.018_bib0031 – start-page: 1093 year: 2012 ident: 10.1016/j.enganabound.2023.08.018_bib0024 article-title: Efficiency improvement of solar PV panels using active cooling – volume: 143 start-page: 912 year: 2017 ident: 10.1016/j.enganabound.2023.08.018_bib0034 article-title: Effects of operational conditions on the energy efficiency of photovoltaic modules operating in Malaysia publication-title: J Clean Prod doi: 10.1016/j.jclepro.2016.12.029 – volume: 147 start-page: 1801 year: 2020 ident: 10.1016/j.enganabound.2023.08.018_bib0009 article-title: Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector publication-title: Renew Energy doi: 10.1016/j.renene.2019.09.126 – volume: 169 year: 2022 ident: 10.1016/j.enganabound.2023.08.018_bib0016 article-title: Molten salt for advanced energy applications: a review publication-title: Ann Nucl Energy doi: 10.1016/j.anucene.2021.108924 – volume: 133 year: 2011 ident: 10.1016/j.enganabound.2023.08.018_bib0023 article-title: Simulation and Model Validation of the Surface Cooling System for Improving the Power of a Photovoltaic Module publication-title: J Sol Energy Eng doi: 10.1115/1.4004508 – volume: 106 start-page: 25 year: 2013 ident: 10.1016/j.enganabound.2023.08.018_bib0029 article-title: A nano-graphite/paraffin phase change material with high thermal conductivity publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.01.031 – volume: 137 year: 2015 ident: 10.1016/j.enganabound.2023.08.018_bib0026 article-title: Efficiency improvement of photovoltaic water pumping systems by means of water flow beneath photovoltaic cells surface publication-title: J Sol Energy Eng doi: 10.1115/1.4029932 – volume: 145 start-page: 1677 year: 2020 ident: 10.1016/j.enganabound.2023.08.018_bib0006 article-title: Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application publication-title: Renew Energy doi: 10.1016/j.renene.2019.07.076 – volume: 146 start-page: 2316 year: 2020 ident: 10.1016/j.enganabound.2023.08.018_bib0011 article-title: Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid publication-title: Renew Energy doi: 10.1016/j.renene.2019.08.081 – volume: 145 start-page: 1658 year: 2020 ident: 10.1016/j.enganabound.2023.08.018_bib0003 article-title: Novel collector design for enhancing the performance of solar chimney power plant publication-title: Renew Energy doi: 10.1016/j.renene.2019.07.062 – volume: 145 start-page: 1222 year: 2020 ident: 10.1016/j.enganabound.2023.08.018_bib0005 article-title: Numerical simulation on solar collector and cascade heat pump combi water heating systems in Kazakhstan climates publication-title: Renew Energy doi: 10.1016/j.renene.2019.06.102 – volume: 235 start-page: 529 year: 2019 ident: 10.1016/j.enganabound.2023.08.018_bib0014 article-title: Novel key parameter for eutectic nitrates based nanofluids selection for concentrating solar power (CSP) systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.10.114 – start-page: 221 year: 2021 ident: 10.1016/j.enganabound.2023.08.018_bib0001 article-title: Chapter 15 - Use of nanofluids in solar energy systems – volume: 14 year: 2023 ident: 10.1016/j.enganabound.2023.08.018_bib0015 article-title: Optimization techniques for grid-connected PV with retired EV batteries in centralized charging station with challenges and future possibilities: a review publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2022.101985 – volume: 82 start-page: 131 year: 2004 ident: 10.1016/j.enganabound.2023.08.018_bib0021 article-title: Increased electrical yield via water flow over the front of photovoltaic panels publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2004.01.011 – volume: 144 year: 2020 ident: 10.1016/j.enganabound.2023.08.018_bib0002 article-title: Design and exergy evaluation of a novel parabolic trough solar-nuclear combined system publication-title: Ann Nucl Energy doi: 10.1016/j.anucene.2020.107573 – ident: 10.1016/j.enganabound.2023.08.018_bib0030 – volume: 127 start-page: 203 year: 2018 ident: 10.1016/j.enganabound.2023.08.018_bib0019 article-title: Numerical simulation of PV cooling by using single turn pulsating heat pipe publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.06.108 – volume: 314 year: 2020 ident: 10.1016/j.enganabound.2023.08.018_bib0012 article-title: Thermo-physical properties and corrosivity improvement of molten salts by use of nanoparticles for concentrated solar power applications: a critical review publication-title: J Mol Liq doi: 10.1016/j.molliq.2020.113807 – volume: 147 start-page: 730 year: 2020 ident: 10.1016/j.enganabound.2023.08.018_bib0007 article-title: The energy gain reduction due to shadow inside a flat-plate solar collector publication-title: Renew Energy doi: 10.1016/j.renene.2019.09.012 – volume: 84 start-page: 54 year: 2018 ident: 10.1016/j.enganabound.2023.08.018_bib0020 article-title: A review of studies using nanofluids in flat-plate and direct absorption solar collectors publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.10.012 – year: 2021 ident: 10.1016/j.enganabound.2023.08.018_bib0017 article-title: Charging process of thermal energy storage system under varying incident heat flux: interaction the fluid neighbour nodes and particles in order to heat transfer publication-title: J Therm Anal Calorim doi: 10.1007/s10973-020-10539-8 – volume: 650 start-page: 106 year: 2017 ident: 10.1016/j.enganabound.2023.08.018_bib0028 article-title: Viscosity, thermal and electrical conductivity of silicon dioxide–ethylene glycol transparent nanofluids: an experimental studies publication-title: Thermochim Acta doi: 10.1016/j.tca.2017.02.001 – volume: 36 start-page: 1329 year: 2011 ident: 10.1016/j.enganabound.2023.08.018_bib0022 article-title: Solar cooling for small office buildings: comparison of solar thermal and photovoltaic options for two different European climates publication-title: Renew Energy doi: 10.1016/j.renene.2010.11.006 – volume: 90 start-page: 309 year: 2012 ident: 10.1016/j.enganabound.2023.08.018_bib0025 article-title: An active cooling system for photovoltaic modules publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.01.017 – volume: 335 year: 2021 ident: 10.1016/j.enganabound.2023.08.018_bib0018 article-title: Investigation of nanofluid convective flow through a solar system equipped with mirrors publication-title: J Mol Liq doi: 10.1016/j.molliq.2021.116198 – volume: 72 start-page: 217 year: 2002 ident: 10.1016/j.enganabound.2023.08.018_bib0027 article-title: Hybrid photovoltaic/thermal solar systems publication-title: Sol Energy doi: 10.1016/S0038-092X(01)00096-2 – volume: 145 start-page: 1799 year: 2020 ident: 10.1016/j.enganabound.2023.08.018_bib0008 article-title: Feasibility study of MgSO4 + zeolite based composite thermochemical energy stores charged by vacuum flat plate solar thermal collectors for seasonal thermal energy storage publication-title: Renew Energy doi: 10.1016/j.renene.2019.05.135 |
SSID | ssj0013006 |
Score | 2.580908 |
Snippet | This study numerically investigated the effect of applying different shapes of nanofluid-conveying pipes on a thermal solar panel system. Two pipes with... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 71 |
SubjectTerms | Circular pipe Elliptical pipe Meshless Nanofluid Square pipe Thermal solar panel |
Title | Optimizing and using AI to study of the cross-section of finned tubes for nanofluid-conveying in solar panel cooling with phase change materials |
URI | https://dx.doi.org/10.1016/j.enganabound.2023.08.018 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhbE9lHbdWNcPbrBXLf6QYxn6EkJD0rAM1oXmzejLmUcmh8Z56UP_hv3J08lOm0Khgz0ZCZ1tdOfTyfrd_Qj5HOtAGM1SaoJuRpnSnHKjU5pxbgplGEsyzEb-OukOp-xqlsx2SH-TC4Owytb3Nz7de-u2p9POZmdZlp1rLJ6WYt5n7AkjMKOcsRSt_Mt9-HiSEHh-TRxMcfQr8ukR42XsXFhEAFssGhrFvpon8n88t0ZtrTuDA7LfBozQa97pkOwY-5a82SojeET-fHPf_e_yzjVAWA2IZZ9DbwR1Bb58LFQFuEAP_OPoyqOvLHYWyLyloV5LswIXvoIVtioW61JTD0fHHCgoLaxwAwzOcZgFqAp5fuaAf3Bh-dOtgtBkD4MLfht7fkemg8sf_SFtmRaoiqOwpqHbNERG6iRUImRadlUgA93NWBqpWLLQ7alcJM5CKVSsXQyk0zgRhQnwVFZwGcXvya6trPlAQIjIGExfVanTBldC8UJJyRMj8Q7JMeGbuc1VW4Yc2TAW-QZv9ivfUkuOasmRKTPkxyR6EF02tTj-Rehio8D8iWHlbs14Wfzj_4mfkNfYavAvp2S3vl2bMxfF1PLcm-k52euNxsMJXsffb8Z_AdbT-Jc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhU4IJ5qSwuDBEezeTgbr1QOFbTapQ8OtFJvwY_JErQ4q25WCA78Bv4Lf7AeJ9tuJSSQUI9xNEk0Y8-M42_mY-xlaiOFVuQco_6AC2Mll2hzPpASS4NCZAOqRj467g9Pxfuz7GyF_V7UwhCssvP9rU8P3rob6XXa7E2rqveRmqflVPeZBsKIvENWHuD3b37fNnszeueN_CpJ9vdO3g55Ry3ATZrEDY99lpygtllsVCys7ptIR7Y_EHliUi1iv4nwqaeItTKp9UHf5mmmSozoGFJJTd0OvN-_Jby7INqE1z_jq6OLKBB60tdx-rw19uIKVIZurBxBjh11KU3S0D6UCEf-FBSXAt3-fXavy1Bht1XCA7aC7iG7u9S38BH79cE7mq_VD38Bylkg8PwYdkfQ1BD61UJdgs8sIbyOzwLcy9FgSVRfFpq5xhn4fBmccnU5mVeWB_w7FV1B5WBGO27wngonYGoiFhoD_TKG6WcfdqEtVwafbbcL6DE7vRH9P2Grrna4zkCpBJHqZU0uRC6NMrI0WssMNT0h22ByodvCdH3PiX5jUiwAbl-KJbMUZJaCqDljucGSS9Fp2_zjX4R2FgYsrs3kwgepv4tv_p_4c3Z7eHJ0WByOjg-esjt0pwXfbLHV5nyO2z6FavSzMGWBfbrpNXIB8PQxYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+and+using+AI+to+study+of+the+cross-section+of+finned+tubes+for+nanofluid-conveying+in+solar+panel+cooling+with+phase+change+materials&rft.jtitle=Engineering+analysis+with+boundary+elements&rft.au=Zhu%2C+Chaoyang&rft.date=2023-12-01&rft.pub=Elsevier+Ltd&rft.issn=0955-7997&rft.eissn=1873-197X&rft.volume=157&rft.spage=71&rft.epage=81&rft_id=info:doi/10.1016%2Fj.enganabound.2023.08.018&rft.externalDocID=S0955799723004277 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-7997&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-7997&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-7997&client=summon |