Optimizing and using AI to study of the cross-section of finned tubes for nanofluid-conveying in solar panel cooling with phase change materials

This study numerically investigated the effect of applying different shapes of nanofluid-conveying pipes on a thermal solar panel system. Two pipes with circular, elliptical, and square shapes were employed in this system. Likewise, paraffin wax Phase Change Material (PCM) was used in the solar ther...

Full description

Saved in:
Bibliographic Details
Published inEngineering analysis with boundary elements Vol. 157; pp. 71 - 81
Main Author Zhu, Chaoyang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study numerically investigated the effect of applying different shapes of nanofluid-conveying pipes on a thermal solar panel system. Two pipes with circular, elliptical, and square shapes were employed in this system. Likewise, paraffin wax Phase Change Material (PCM) was used in the solar thermal panel. A large number of spherical pin fins were installed over the pipes inside the PCM. The two phases of the NF were simulated, and all equations were solved using an element-free Galerkin method based on weak form. The results showed that the elliptical pipes increased the volume of the liquid PCM around them, while the circular pipes raised the quantity of solid PCM around them. That is to say, these two pipe types brought about the maximum difference in the volume of the phase change material (5%). When t = 2000 s, the temperature could decrease by >1% through circular rather than elliptical pipes. In the same period, the heat transfer rate of the circular pipes was 16.17% above that of elliptical pipes, whose heat transfer was 48.43% higher compared to the square pipes. When the solar panel was hot, elliptical pipes maximized the temperature of the output NF, and circular pipes minimized the NF's temperature at the outlet.
AbstractList This study numerically investigated the effect of applying different shapes of nanofluid-conveying pipes on a thermal solar panel system. Two pipes with circular, elliptical, and square shapes were employed in this system. Likewise, paraffin wax Phase Change Material (PCM) was used in the solar thermal panel. A large number of spherical pin fins were installed over the pipes inside the PCM. The two phases of the NF were simulated, and all equations were solved using an element-free Galerkin method based on weak form. The results showed that the elliptical pipes increased the volume of the liquid PCM around them, while the circular pipes raised the quantity of solid PCM around them. That is to say, these two pipe types brought about the maximum difference in the volume of the phase change material (5%). When t = 2000 s, the temperature could decrease by >1% through circular rather than elliptical pipes. In the same period, the heat transfer rate of the circular pipes was 16.17% above that of elliptical pipes, whose heat transfer was 48.43% higher compared to the square pipes. When the solar panel was hot, elliptical pipes maximized the temperature of the output NF, and circular pipes minimized the NF's temperature at the outlet.
Author Zhu, Chaoyang
Author_xml – sequence: 1
  givenname: Chaoyang
  surname: Zhu
  fullname: Zhu, Chaoyang
  email: czhu4043@gmail.com
  organization: Institute of Social Innovation and Public Culture, Communication University of China Beijing, 100024, China
BookMark eNqNkM1q3DAUhUVIoJOk76A8gB3Jv_IqhCFNBgLZtNCduJauZzR4rgZJTpk8RR65dtNF6Sqrc7lwPjjfJTsnT8jYjRS5FLK53edIWyDo_UQ2L0RR5kLlQqoztpKqLTPZtT_P2Up0dZ21Xdd-YZcx7oWQpRDNir2_HJM7uDdHWw5k-RSX637Dk-cxTfbE_cDTDrkJPsYsoknO0_IcHBFanqYeIx984ATkh3FyNjOeXvG0gBzx6EcI_AiEIzfej8v7l0s7ftxBnLk7oC3yAyQMDsZ4zS6GOfDr37xiP749fF8_Zc8vj5v1_XNmykKmTNaqLrC3tTQgK9s3RvTCNl3VFqbsKymbSqmikj2Y0jaytm1Zw4BCiaYG1RflFes-uH-GBRz0MbgDhJOWQi9q9V7_o1YvarVQelY7d-_-6xqXYBGTArjxU4T1BwHnia8Og47GIRm0LsyKtfXuE5TfT-ijGg
CitedBy_id crossref_primary_10_1007_s11082_024_07077_0
crossref_primary_10_1016_j_heliyon_2024_e35171
crossref_primary_10_1016_j_optmat_2024_115919
crossref_primary_10_1007_s11082_024_07263_0
crossref_primary_10_1016_j_chemphys_2024_112463
crossref_primary_10_1002_qua_27512
crossref_primary_10_1016_j_prime_2024_100480
crossref_primary_10_1039_D4CE00300D
crossref_primary_10_1016_j_est_2024_112995
crossref_primary_10_1007_s10973_024_13516_7
crossref_primary_10_1142_S0217984924504931
crossref_primary_10_1016_j_physb_2024_416229
crossref_primary_10_1049_rpg2_13061
crossref_primary_10_1016_j_est_2024_113320
crossref_primary_10_1016_j_pmatsci_2024_101388
crossref_primary_10_1080_10407782_2024_2357592
crossref_primary_10_1007_s40430_024_05371_2
crossref_primary_10_1016_j_physb_2024_416346
crossref_primary_10_1016_j_icheatmasstransfer_2024_107795
crossref_primary_10_1049_gtd2_13279
crossref_primary_10_1007_s10904_024_03315_w
crossref_primary_10_1016_j_heliyon_2024_e33952
crossref_primary_10_1016_j_csite_2024_104799
crossref_primary_10_1016_j_csite_2024_104781
crossref_primary_10_1186_s40807_024_00121_3
crossref_primary_10_1016_j_csite_2024_104585
crossref_primary_10_1016_j_molstruc_2024_138606
crossref_primary_10_1016_j_synthmet_2024_117651
crossref_primary_10_1016_j_mseb_2024_117672
crossref_primary_10_1016_j_energy_2024_131898
crossref_primary_10_1016_j_jmgm_2024_108792
crossref_primary_10_1016_j_solener_2024_112784
crossref_primary_10_1016_j_engfailanal_2024_108504
crossref_primary_10_1002_slct_202401827
crossref_primary_10_1007_s10971_024_06529_z
crossref_primary_10_1016_j_comptc_2024_114771
crossref_primary_10_1016_j_optmat_2024_116255
crossref_primary_10_1007_s10973_024_13555_0
crossref_primary_10_1007_s11664_024_11266_8
crossref_primary_10_1016_j_matchemphys_2024_129493
crossref_primary_10_1016_j_mseb_2024_117506
crossref_primary_10_1080_15376494_2024_2377412
crossref_primary_10_1093_ijlct_ctae098
crossref_primary_10_1016_j_jpowsour_2025_236345
crossref_primary_10_1016_j_physe_2024_116069
crossref_primary_10_1016_j_heliyon_2024_e30937
crossref_primary_10_2298_TSCI240215161U
crossref_primary_10_1016_j_mseb_2024_117482
crossref_primary_10_1016_j_ssc_2024_115671
crossref_primary_10_1007_s43207_025_00476_3
crossref_primary_10_1115_1_4066038
crossref_primary_10_1016_j_csite_2024_104819
crossref_primary_10_1016_j_est_2024_111880
crossref_primary_10_1007_s11082_024_07420_5
crossref_primary_10_1038_s41598_024_62690_z
crossref_primary_10_1007_s10971_024_06482_x
crossref_primary_10_1007_s11082_024_07038_7
crossref_primary_10_1016_j_optmat_2024_115896
crossref_primary_10_1007_s12633_024_03104_7
crossref_primary_10_1080_10407782_2024_2373394
crossref_primary_10_1039_D4RA03286A
crossref_primary_10_1016_j_ijthermalsci_2024_109180
crossref_primary_10_1038_s41598_024_67418_7
crossref_primary_10_1007_s43207_024_00465_y
crossref_primary_10_1016_j_est_2024_112389
crossref_primary_10_1016_j_cplett_2024_141291
crossref_primary_10_1002_ese3_1834
crossref_primary_10_1016_j_est_2024_113351
crossref_primary_10_1016_j_diamond_2024_111517
Cites_doi 10.1016/j.aej.2019.09.013
10.1016/j.renene.2019.06.015
10.1016/j.applthermaleng.2019.114510
10.1002/er.3907
10.1016/j.jclepro.2016.12.029
10.1016/j.renene.2019.09.126
10.1016/j.anucene.2021.108924
10.1115/1.4004508
10.1016/j.apenergy.2013.01.031
10.1115/1.4029932
10.1016/j.renene.2019.07.076
10.1016/j.renene.2019.08.081
10.1016/j.renene.2019.07.062
10.1016/j.renene.2019.06.102
10.1016/j.apenergy.2018.10.114
10.1016/j.asej.2022.101985
10.1016/j.solmat.2004.01.011
10.1016/j.anucene.2020.107573
10.1016/j.ijheatmasstransfer.2018.06.108
10.1016/j.molliq.2020.113807
10.1016/j.renene.2019.09.012
10.1016/j.rser.2017.10.012
10.1007/s10973-020-10539-8
10.1016/j.tca.2017.02.001
10.1016/j.renene.2010.11.006
10.1016/j.apenergy.2011.01.017
10.1016/j.molliq.2021.116198
10.1016/S0038-092X(01)00096-2
10.1016/j.renene.2019.05.135
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.enganabound.2023.08.018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-197X
EndPage 81
ExternalDocumentID 10_1016_j_enganabound_2023_08_018
S0955799723004277
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
UHS
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
ID FETCH-LOGICAL-c321t-15852ebd51ca14db6c0b0d69472c3b4116488241bac3d615d735afe08065a8b23
IEDL.DBID .~1
ISSN 0955-7997
IngestDate Tue Jul 01 02:31:59 EDT 2025
Thu Apr 24 22:55:21 EDT 2025
Fri Feb 23 02:35:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Circular pipe
Square pipe
Thermal solar panel
Elliptical pipe
Nanofluid
Meshless
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-15852ebd51ca14db6c0b0d69472c3b4116488241bac3d615d735afe08065a8b23
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_enganabound_2023_08_018
crossref_citationtrail_10_1016_j_enganabound_2023_08_018
elsevier_sciencedirect_doi_10_1016_j_enganabound_2023_08_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Engineering analysis with boundary elements
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Saffarian, Moravej, Doranehgard (bib0011) 2020; 146
Ebrahimpour, Sheikholeslami (bib0018) 2021; 335
Teo, Lee, Hawlader (bib0025) 2012; 90
Aljaerani, Samykano, Pandey, Kadirgama, Saidur (bib0012) 2020; 314
Raj, Subudhi (bib0020) 2018; 84
Li (bib0029) 2013; 106
Mahon, Henshall, Claudio, Eames (bib0008) 2020; 145
Sharma, Naidu (bib0015) 2023; 14
Alizadeh, Ghasempour, Shafii, Ahmadi, Yan, Nazari (bib0019) 2018; 127
R. Nasrin, M. Hasanuzzaman, N.A. Rahim, Effect of high irradiation on photovoltaic power and energy, 42 (2018) 1115–31.
Habiballahi, Ameri, Mansouri (bib0026) 2015; 137
Salisu, Mustafa, Olatomiwa, Mohammed (bib0013) 2019; 58
Kim, Kim, Bhattarai, Oh (bib0023) 2011; 133
Salilih, Abu-Hamdeh (bib0017) 2021
Krauter (bib0021) 2004; 82
Rahman, Hasanuzzaman, Rahim (bib0034) 2017; 143
Yerdesh, Abdulina, Aliuly, Belyayev, Mohanraj, Kaltayev (bib0005) 2020; 145
Nasraoui, Driss, Kchaou (bib0003) 2020; 145
Farhadi, Taki (bib0007) 2020; 147
Roper, Harkema, Sabharwall, Riddle, Chisholm, Day, Marotta (bib0016) 2022; 169
Schiller (bib0032) 1933; 77
Jiang, Palacios, Lei, Navarro, Qiao, Mura, Xu, Ding (bib0014) 2019; 235
M. Manninen, V. Taivassalo, S. Kallio, On the mixture model for multiphase flow, (1996).
Choudhary, Sachdeva, Kumar (bib0009) 2020; 147
Izadi, El Haj Assad (bib0001) 2021
Anirudh, Dhinakaran (bib0010) 2020; 145
Prudhvi, Sai (bib0024) 2012
Khanlari, Güler, Tuncer, Şirin, Bilge, Yılmaz, Güngör (bib0006) 2020; 145
Shojaeizadeh, Veysi, Goudarzi (bib0004) 2020; 164
Tripanagnostopoulos, Nousia, Souliotis, Yianoulis (bib0027) 2002; 72
Hartmann, Glueck, Schmidt (bib0022) 2011; 36
M. Ishii, Thermo-fluid dynamic theory of two-phase flow, J NASA Sti/recon Technical Report A, 75 (1975) 29657.
Wang, Yin (bib0002) 2020; 144
Żyła, Fal (bib0028) 2017; 650
Farhadi (10.1016/j.enganabound.2023.08.018_bib0007) 2020; 147
Salisu (10.1016/j.enganabound.2023.08.018_bib0013) 2019; 58
Schiller (10.1016/j.enganabound.2023.08.018_bib0032) 1933; 77
Saffarian (10.1016/j.enganabound.2023.08.018_bib0011) 2020; 146
Salilih (10.1016/j.enganabound.2023.08.018_bib0017) 2021
Raj (10.1016/j.enganabound.2023.08.018_bib0020) 2018; 84
Sharma (10.1016/j.enganabound.2023.08.018_bib0015) 2023; 14
Krauter (10.1016/j.enganabound.2023.08.018_bib0021) 2004; 82
Habiballahi (10.1016/j.enganabound.2023.08.018_bib0026) 2015; 137
Tripanagnostopoulos (10.1016/j.enganabound.2023.08.018_bib0027) 2002; 72
Li (10.1016/j.enganabound.2023.08.018_bib0029) 2013; 106
Anirudh (10.1016/j.enganabound.2023.08.018_bib0010) 2020; 145
10.1016/j.enganabound.2023.08.018_bib0030
10.1016/j.enganabound.2023.08.018_bib0031
Aljaerani (10.1016/j.enganabound.2023.08.018_bib0012) 2020; 314
10.1016/j.enganabound.2023.08.018_bib0033
Nasraoui (10.1016/j.enganabound.2023.08.018_bib0003) 2020; 145
Ebrahimpour (10.1016/j.enganabound.2023.08.018_bib0018) 2021; 335
Choudhary (10.1016/j.enganabound.2023.08.018_bib0009) 2020; 147
Prudhvi (10.1016/j.enganabound.2023.08.018_bib0024) 2012
Wang (10.1016/j.enganabound.2023.08.018_bib0002) 2020; 144
Kim (10.1016/j.enganabound.2023.08.018_bib0023) 2011; 133
Alizadeh (10.1016/j.enganabound.2023.08.018_bib0019) 2018; 127
Żyła (10.1016/j.enganabound.2023.08.018_bib0028) 2017; 650
Mahon (10.1016/j.enganabound.2023.08.018_bib0008) 2020; 145
Khanlari (10.1016/j.enganabound.2023.08.018_bib0006) 2020; 145
Izadi (10.1016/j.enganabound.2023.08.018_bib0001) 2021
Teo (10.1016/j.enganabound.2023.08.018_bib0025) 2012; 90
Yerdesh (10.1016/j.enganabound.2023.08.018_bib0005) 2020; 145
Jiang (10.1016/j.enganabound.2023.08.018_bib0014) 2019; 235
Hartmann (10.1016/j.enganabound.2023.08.018_bib0022) 2011; 36
Roper (10.1016/j.enganabound.2023.08.018_bib0016) 2022; 169
Rahman (10.1016/j.enganabound.2023.08.018_bib0034) 2017; 143
Shojaeizadeh (10.1016/j.enganabound.2023.08.018_bib0004) 2020; 164
References_xml – volume: 90
  start-page: 309
  year: 2012
  end-page: 315
  ident: bib0025
  article-title: An active cooling system for photovoltaic modules
  publication-title: Appl Energy
– volume: 84
  start-page: 54
  year: 2018
  end-page: 74
  ident: bib0020
  article-title: A review of studies using nanofluids in flat-plate and direct absorption solar collectors
  publication-title: Renew Sustain Energy Rev
– volume: 106
  start-page: 25
  year: 2013
  end-page: 30
  ident: bib0029
  article-title: A nano-graphite/paraffin phase change material with high thermal conductivity
  publication-title: Appl Energy
– reference: M. Manninen, V. Taivassalo, S. Kallio, On the mixture model for multiphase flow, (1996).
– volume: 145
  start-page: 1799
  year: 2020
  end-page: 1807
  ident: bib0008
  article-title: Feasibility study of MgSO4 + zeolite based composite thermochemical energy stores charged by vacuum flat plate solar thermal collectors for seasonal thermal energy storage
  publication-title: Renew Energy
– volume: 58
  start-page: 1103
  year: 2019
  end-page: 1118
  ident: bib0013
  article-title: Assessment of technical and economic feasibility for a hybrid PV-wind-diesel-battery energy system in a remote community of north central Nigeria
  publication-title: Alex Eng J
– volume: 14
  year: 2023
  ident: bib0015
  article-title: Optimization techniques for grid-connected PV with retired EV batteries in centralized charging station with challenges and future possibilities: a review
  publication-title: Ain Shams Eng J
– start-page: 1093
  year: 2012
  end-page: 1097
  ident: bib0024
  article-title: Efficiency improvement of solar PV panels using active cooling
  publication-title: Proceedings of the 2012 11th International Conference on Environment and Electrical Engineering
– volume: 335
  year: 2021
  ident: bib0018
  article-title: Investigation of nanofluid convective flow through a solar system equipped with mirrors
  publication-title: J Mol Liq
– reference: M. Ishii, Thermo-fluid dynamic theory of two-phase flow, J NASA Sti/recon Technical Report A, 75 (1975) 29657.
– start-page: 221
  year: 2021
  end-page: 250
  ident: bib0001
  article-title: Chapter 15 - Use of nanofluids in solar energy systems
  publication-title: Design and performance optimization of renewable energy systems
– volume: 145
  start-page: 1677
  year: 2020
  end-page: 1692
  ident: bib0006
  article-title: Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application
  publication-title: Renew Energy
– volume: 145
  start-page: 428
  year: 2020
  end-page: 441
  ident: bib0010
  article-title: Performance improvement of a flat-plate solar collector by inserting intermittent porous blocks
  publication-title: Renew Energy
– reference: R. Nasrin, M. Hasanuzzaman, N.A. Rahim, Effect of high irradiation on photovoltaic power and energy, 42 (2018) 1115–31.
– volume: 147
  start-page: 730
  year: 2020
  end-page: 740
  ident: bib0007
  article-title: The energy gain reduction due to shadow inside a flat-plate solar collector
  publication-title: Renew Energy
– volume: 127
  start-page: 203
  year: 2018
  end-page: 208
  ident: bib0019
  article-title: Numerical simulation of PV cooling by using single turn pulsating heat pipe
  publication-title: Int J Heat Mass Transf
– volume: 146
  start-page: 2316
  year: 2020
  end-page: 2329
  ident: bib0011
  article-title: Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid
  publication-title: Renew Energy
– volume: 169
  year: 2022
  ident: bib0016
  article-title: Molten salt for advanced energy applications: a review
  publication-title: Ann Nucl Energy
– volume: 164
  year: 2020
  ident: bib0004
  article-title: Heat transfer and thermal efficiency of a lab-fabricated ferrofluid-based single-ended tube solar collector under the effect of magnetic field: an experimental study
  publication-title: Appl Therm Eng
– volume: 650
  start-page: 106
  year: 2017
  end-page: 113
  ident: bib0028
  article-title: Viscosity, thermal and electrical conductivity of silicon dioxide–ethylene glycol transparent nanofluids: an experimental studies
  publication-title: Thermochim Acta
– volume: 36
  start-page: 1329
  year: 2011
  end-page: 1338
  ident: bib0022
  article-title: Solar cooling for small office buildings: comparison of solar thermal and photovoltaic options for two different European climates
  publication-title: Renew Energy
– volume: 77
  start-page: 318
  year: 1933
  end-page: 320
  ident: bib0032
  article-title: A drag coefficient correlation
  publication-title: J Zeit. Ver. Deutsch. Ing.
– volume: 145
  start-page: 1222
  year: 2020
  end-page: 1234
  ident: bib0005
  article-title: Numerical simulation on solar collector and cascade heat pump combi water heating systems in Kazakhstan climates
  publication-title: Renew Energy
– volume: 145
  start-page: 1658
  year: 2020
  end-page: 1671
  ident: bib0003
  article-title: Novel collector design for enhancing the performance of solar chimney power plant
  publication-title: Renew Energy
– volume: 235
  start-page: 529
  year: 2019
  end-page: 542
  ident: bib0014
  article-title: Novel key parameter for eutectic nitrates based nanofluids selection for concentrating solar power (CSP) systems
  publication-title: Appl Energy
– volume: 82
  start-page: 131
  year: 2004
  end-page: 137
  ident: bib0021
  article-title: Increased electrical yield via water flow over the front of photovoltaic panels
  publication-title: Sol Energy Mater Sol Cells
– volume: 144
  year: 2020
  ident: bib0002
  article-title: Design and exergy evaluation of a novel parabolic trough solar-nuclear combined system
  publication-title: Ann Nucl Energy
– volume: 133
  year: 2011
  ident: bib0023
  article-title: Simulation and Model Validation of the Surface Cooling System for Improving the Power of a Photovoltaic Module
  publication-title: J Sol Energy Eng
– volume: 137
  year: 2015
  ident: bib0026
  article-title: Efficiency improvement of photovoltaic water pumping systems by means of water flow beneath photovoltaic cells surface
  publication-title: J Sol Energy Eng
– year: 2021
  ident: bib0017
  article-title: Charging process of thermal energy storage system under varying incident heat flux: interaction the fluid neighbour nodes and particles in order to heat transfer
  publication-title: J Therm Anal Calorim
– volume: 143
  start-page: 912
  year: 2017
  end-page: 924
  ident: bib0034
  article-title: Effects of operational conditions on the energy efficiency of photovoltaic modules operating in Malaysia
  publication-title: J Clean Prod
– volume: 147
  start-page: 1801
  year: 2020
  end-page: 1814
  ident: bib0009
  article-title: Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector
  publication-title: Renew Energy
– volume: 314
  year: 2020
  ident: bib0012
  article-title: Thermo-physical properties and corrosivity improvement of molten salts by use of nanoparticles for concentrated solar power applications: a critical review
  publication-title: J Mol Liq
– volume: 72
  start-page: 217
  year: 2002
  end-page: 234
  ident: bib0027
  article-title: Hybrid photovoltaic/thermal solar systems
  publication-title: Sol Energy
– volume: 58
  start-page: 1103
  year: 2019
  ident: 10.1016/j.enganabound.2023.08.018_bib0013
  article-title: Assessment of technical and economic feasibility for a hybrid PV-wind-diesel-battery energy system in a remote community of north central Nigeria
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2019.09.013
– volume: 145
  start-page: 428
  year: 2020
  ident: 10.1016/j.enganabound.2023.08.018_bib0010
  article-title: Performance improvement of a flat-plate solar collector by inserting intermittent porous blocks
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.06.015
– volume: 77
  start-page: 318
  year: 1933
  ident: 10.1016/j.enganabound.2023.08.018_bib0032
  article-title: A drag coefficient correlation
  publication-title: J Zeit. Ver. Deutsch. Ing.
– volume: 164
  year: 2020
  ident: 10.1016/j.enganabound.2023.08.018_bib0004
  article-title: Heat transfer and thermal efficiency of a lab-fabricated ferrofluid-based single-ended tube solar collector under the effect of magnetic field: an experimental study
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114510
– ident: 10.1016/j.enganabound.2023.08.018_bib0033
  doi: 10.1002/er.3907
– ident: 10.1016/j.enganabound.2023.08.018_bib0031
– start-page: 1093
  year: 2012
  ident: 10.1016/j.enganabound.2023.08.018_bib0024
  article-title: Efficiency improvement of solar PV panels using active cooling
– volume: 143
  start-page: 912
  year: 2017
  ident: 10.1016/j.enganabound.2023.08.018_bib0034
  article-title: Effects of operational conditions on the energy efficiency of photovoltaic modules operating in Malaysia
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2016.12.029
– volume: 147
  start-page: 1801
  year: 2020
  ident: 10.1016/j.enganabound.2023.08.018_bib0009
  article-title: Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.09.126
– volume: 169
  year: 2022
  ident: 10.1016/j.enganabound.2023.08.018_bib0016
  article-title: Molten salt for advanced energy applications: a review
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2021.108924
– volume: 133
  year: 2011
  ident: 10.1016/j.enganabound.2023.08.018_bib0023
  article-title: Simulation and Model Validation of the Surface Cooling System for Improving the Power of a Photovoltaic Module
  publication-title: J Sol Energy Eng
  doi: 10.1115/1.4004508
– volume: 106
  start-page: 25
  year: 2013
  ident: 10.1016/j.enganabound.2023.08.018_bib0029
  article-title: A nano-graphite/paraffin phase change material with high thermal conductivity
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.01.031
– volume: 137
  year: 2015
  ident: 10.1016/j.enganabound.2023.08.018_bib0026
  article-title: Efficiency improvement of photovoltaic water pumping systems by means of water flow beneath photovoltaic cells surface
  publication-title: J Sol Energy Eng
  doi: 10.1115/1.4029932
– volume: 145
  start-page: 1677
  year: 2020
  ident: 10.1016/j.enganabound.2023.08.018_bib0006
  article-title: Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.07.076
– volume: 146
  start-page: 2316
  year: 2020
  ident: 10.1016/j.enganabound.2023.08.018_bib0011
  article-title: Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.08.081
– volume: 145
  start-page: 1658
  year: 2020
  ident: 10.1016/j.enganabound.2023.08.018_bib0003
  article-title: Novel collector design for enhancing the performance of solar chimney power plant
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.07.062
– volume: 145
  start-page: 1222
  year: 2020
  ident: 10.1016/j.enganabound.2023.08.018_bib0005
  article-title: Numerical simulation on solar collector and cascade heat pump combi water heating systems in Kazakhstan climates
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.06.102
– volume: 235
  start-page: 529
  year: 2019
  ident: 10.1016/j.enganabound.2023.08.018_bib0014
  article-title: Novel key parameter for eutectic nitrates based nanofluids selection for concentrating solar power (CSP) systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.10.114
– start-page: 221
  year: 2021
  ident: 10.1016/j.enganabound.2023.08.018_bib0001
  article-title: Chapter 15 - Use of nanofluids in solar energy systems
– volume: 14
  year: 2023
  ident: 10.1016/j.enganabound.2023.08.018_bib0015
  article-title: Optimization techniques for grid-connected PV with retired EV batteries in centralized charging station with challenges and future possibilities: a review
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2022.101985
– volume: 82
  start-page: 131
  year: 2004
  ident: 10.1016/j.enganabound.2023.08.018_bib0021
  article-title: Increased electrical yield via water flow over the front of photovoltaic panels
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2004.01.011
– volume: 144
  year: 2020
  ident: 10.1016/j.enganabound.2023.08.018_bib0002
  article-title: Design and exergy evaluation of a novel parabolic trough solar-nuclear combined system
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2020.107573
– ident: 10.1016/j.enganabound.2023.08.018_bib0030
– volume: 127
  start-page: 203
  year: 2018
  ident: 10.1016/j.enganabound.2023.08.018_bib0019
  article-title: Numerical simulation of PV cooling by using single turn pulsating heat pipe
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.06.108
– volume: 314
  year: 2020
  ident: 10.1016/j.enganabound.2023.08.018_bib0012
  article-title: Thermo-physical properties and corrosivity improvement of molten salts by use of nanoparticles for concentrated solar power applications: a critical review
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2020.113807
– volume: 147
  start-page: 730
  year: 2020
  ident: 10.1016/j.enganabound.2023.08.018_bib0007
  article-title: The energy gain reduction due to shadow inside a flat-plate solar collector
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.09.012
– volume: 84
  start-page: 54
  year: 2018
  ident: 10.1016/j.enganabound.2023.08.018_bib0020
  article-title: A review of studies using nanofluids in flat-plate and direct absorption solar collectors
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.10.012
– year: 2021
  ident: 10.1016/j.enganabound.2023.08.018_bib0017
  article-title: Charging process of thermal energy storage system under varying incident heat flux: interaction the fluid neighbour nodes and particles in order to heat transfer
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-020-10539-8
– volume: 650
  start-page: 106
  year: 2017
  ident: 10.1016/j.enganabound.2023.08.018_bib0028
  article-title: Viscosity, thermal and electrical conductivity of silicon dioxide–ethylene glycol transparent nanofluids: an experimental studies
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2017.02.001
– volume: 36
  start-page: 1329
  year: 2011
  ident: 10.1016/j.enganabound.2023.08.018_bib0022
  article-title: Solar cooling for small office buildings: comparison of solar thermal and photovoltaic options for two different European climates
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2010.11.006
– volume: 90
  start-page: 309
  year: 2012
  ident: 10.1016/j.enganabound.2023.08.018_bib0025
  article-title: An active cooling system for photovoltaic modules
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.01.017
– volume: 335
  year: 2021
  ident: 10.1016/j.enganabound.2023.08.018_bib0018
  article-title: Investigation of nanofluid convective flow through a solar system equipped with mirrors
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2021.116198
– volume: 72
  start-page: 217
  year: 2002
  ident: 10.1016/j.enganabound.2023.08.018_bib0027
  article-title: Hybrid photovoltaic/thermal solar systems
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(01)00096-2
– volume: 145
  start-page: 1799
  year: 2020
  ident: 10.1016/j.enganabound.2023.08.018_bib0008
  article-title: Feasibility study of MgSO4 + zeolite based composite thermochemical energy stores charged by vacuum flat plate solar thermal collectors for seasonal thermal energy storage
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.05.135
SSID ssj0013006
Score 2.580908
Snippet This study numerically investigated the effect of applying different shapes of nanofluid-conveying pipes on a thermal solar panel system. Two pipes with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 71
SubjectTerms Circular pipe
Elliptical pipe
Meshless
Nanofluid
Square pipe
Thermal solar panel
Title Optimizing and using AI to study of the cross-section of finned tubes for nanofluid-conveying in solar panel cooling with phase change materials
URI https://dx.doi.org/10.1016/j.enganabound.2023.08.018
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhbE9lHbdWNcPbrBXLf6QYxn6EkJD0rAM1oXmzejLmUcmh8Z56UP_hv3J08lOm0Khgz0ZCZ1tdOfTyfrd_Qj5HOtAGM1SaoJuRpnSnHKjU5pxbgplGEsyzEb-OukOp-xqlsx2SH-TC4Owytb3Nz7de-u2p9POZmdZlp1rLJ6WYt5n7AkjMKOcsRSt_Mt9-HiSEHh-TRxMcfQr8ukR42XsXFhEAFssGhrFvpon8n88t0ZtrTuDA7LfBozQa97pkOwY-5a82SojeET-fHPf_e_yzjVAWA2IZZ9DbwR1Bb58LFQFuEAP_OPoyqOvLHYWyLyloV5LswIXvoIVtioW61JTD0fHHCgoLaxwAwzOcZgFqAp5fuaAf3Bh-dOtgtBkD4MLfht7fkemg8sf_SFtmRaoiqOwpqHbNERG6iRUImRadlUgA93NWBqpWLLQ7alcJM5CKVSsXQyk0zgRhQnwVFZwGcXvya6trPlAQIjIGExfVanTBldC8UJJyRMj8Q7JMeGbuc1VW4Yc2TAW-QZv9ivfUkuOasmRKTPkxyR6EF02tTj-Rehio8D8iWHlbs14Wfzj_4mfkNfYavAvp2S3vl2bMxfF1PLcm-k52euNxsMJXsffb8Z_AdbT-Jc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhU4IJ5qSwuDBEezeTgbr1QOFbTapQ8OtFJvwY_JErQ4q25WCA78Bv4Lf7AeJ9tuJSSQUI9xNEk0Y8-M42_mY-xlaiOFVuQco_6AC2Mll2hzPpASS4NCZAOqRj467g9Pxfuz7GyF_V7UwhCssvP9rU8P3rob6XXa7E2rqveRmqflVPeZBsKIvENWHuD3b37fNnszeueN_CpJ9vdO3g55Ry3ATZrEDY99lpygtllsVCys7ptIR7Y_EHliUi1iv4nwqaeItTKp9UHf5mmmSozoGFJJTd0OvN-_Jby7INqE1z_jq6OLKBB60tdx-rw19uIKVIZurBxBjh11KU3S0D6UCEf-FBSXAt3-fXavy1Bht1XCA7aC7iG7u9S38BH79cE7mq_VD38Bylkg8PwYdkfQ1BD61UJdgs8sIbyOzwLcy9FgSVRfFpq5xhn4fBmccnU5mVeWB_w7FV1B5WBGO27wngonYGoiFhoD_TKG6WcfdqEtVwafbbcL6DE7vRH9P2Grrna4zkCpBJHqZU0uRC6NMrI0WssMNT0h22ByodvCdH3PiX5jUiwAbl-KJbMUZJaCqDljucGSS9Fp2_zjX4R2FgYsrs3kwgepv4tv_p_4c3Z7eHJ0WByOjg-esjt0pwXfbLHV5nyO2z6FavSzMGWBfbrpNXIB8PQxYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+and+using+AI+to+study+of+the+cross-section+of+finned+tubes+for+nanofluid-conveying+in+solar+panel+cooling+with+phase+change+materials&rft.jtitle=Engineering+analysis+with+boundary+elements&rft.au=Zhu%2C+Chaoyang&rft.date=2023-12-01&rft.pub=Elsevier+Ltd&rft.issn=0955-7997&rft.eissn=1873-197X&rft.volume=157&rft.spage=71&rft.epage=81&rft_id=info:doi/10.1016%2Fj.enganabound.2023.08.018&rft.externalDocID=S0955799723004277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-7997&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-7997&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-7997&client=summon