LiMg(IO 3 ) 3 : an excellent SHG material designed by single-site aliovalent substitution

An excellent second harmonic generation (SHG) material, LiMg(IO 3 ) 3 (LMIO), has been elaborately designed from Li 2 M IV (IO 3 ) 6 (M IV = Ti, Sn, and Ge) by aliovalent substitution of the central M IV cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 10; no. 47; pp. 10870 - 10875
Main Authors Chen, Jin, Hu, Chun-Li, Mao, Fei-Fei, Zhang, Xiao-Han, Yang, Bing-Ping, Mao, Jiang-Gao
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An excellent second harmonic generation (SHG) material, LiMg(IO 3 ) 3 (LMIO), has been elaborately designed from Li 2 M IV (IO 3 ) 6 (M IV = Ti, Sn, and Ge) by aliovalent substitution of the central M IV cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of (IO 3 ) − groups. Importantly, LMIO exhibits an extremely strong SHG effect of roughly 24 × KH 2 PO 4 (KDP) under 1064 nm laser radiation or 1.5 × AgGaS 2 (AGS) under 2.05 μm laser radiation, which is larger than that of α-LiIO 3 (18 × KDP). The replacement of M IV with Mg 2+ without d–d electronic transitions induces an obviously larger band gap (4.34 eV) with a short absorption edge (285 nm). This study shows that single-site aliovalent substitution provides a new synthetic route for designing SHG materials.
AbstractList An excellent SHG iodate, LiMg(IO 3 ) 3 , has been obtained via the aliovalent substitution of defect-containing M IV sites with ordered Mg 2+ . An excellent second harmonic generation (SHG) material, LiMg(IO 3 ) 3 (LMIO), has been elaborately designed from Li 2 M IV (IO 3 ) 6 (M IV = Ti, Sn, and Ge) by aliovalent substitution of the central M IV cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of (IO 3 ) – groups. Importantly, LMIO exhibits an extremely strong SHG effect of roughly 24 × KH 2 PO 4 (KDP) under 1064 nm laser radiation or 1.5 × AgGaS 2 (AGS) under 2.05 μm laser radiation, which is larger than that of α-LiIO 3 (18 × KDP). The replacement of M IV with Mg 2+ without d–d electronic transitions induces an obviously larger band gap (4.34 eV) with a short absorption edge (285 nm). This study shows that single-site aliovalent substitution provides a new synthetic route for designing SHG materials.
An excellent second harmonic generation (SHG) material, LiMg(IO3)3 (LMIO), has been elaborately designed from Li2MIV(IO3)6 (MIV = Ti, Sn, and Ge) by aliovalent substitution of the central MIV cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of (IO3)- groups. Importantly, LMIO exhibits an extremely strong SHG effect of roughly 24 × KH2PO4 (KDP) under 1064 nm laser radiation or 1.5 × AgGaS2 (AGS) under 2.05 μm laser radiation, which is larger than that of α-LiIO3 (18 × KDP). The replacement of MIV with Mg2+ without d-d electronic transitions induces an obviously larger band gap (4.34 eV) with a short absorption edge (285 nm). This study shows that single-site aliovalent substitution provides a new synthetic route for designing SHG materials.An excellent second harmonic generation (SHG) material, LiMg(IO3)3 (LMIO), has been elaborately designed from Li2MIV(IO3)6 (MIV = Ti, Sn, and Ge) by aliovalent substitution of the central MIV cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of (IO3)- groups. Importantly, LMIO exhibits an extremely strong SHG effect of roughly 24 × KH2PO4 (KDP) under 1064 nm laser radiation or 1.5 × AgGaS2 (AGS) under 2.05 μm laser radiation, which is larger than that of α-LiIO3 (18 × KDP). The replacement of MIV with Mg2+ without d-d electronic transitions induces an obviously larger band gap (4.34 eV) with a short absorption edge (285 nm). This study shows that single-site aliovalent substitution provides a new synthetic route for designing SHG materials.
An excellent second harmonic generation (SHG) material, LiMg(IO ) (LMIO), has been elaborately designed from Li M (IO ) (M = Ti, Sn, and Ge) by aliovalent substitution of the central M cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of (IO ) groups. Importantly, LMIO exhibits an extremely strong SHG effect of roughly 24 × KH PO (KDP) under 1064 nm laser radiation or 1.5 × AgGaS (AGS) under 2.05 μm laser radiation, which is larger than that of α-LiIO (18 × KDP). The replacement of M with Mg without d-d electronic transitions induces an obviously larger band gap (4.34 eV) with a short absorption edge (285 nm). This study shows that single-site aliovalent substitution provides a new synthetic route for designing SHG materials.
An excellent second harmonic generation (SHG) material, LiMg(IO3)3 (LMIO), has been elaborately designed from Li2MIV(IO3)6 (MIV = Ti, Sn, and Ge) by aliovalent substitution of the central MIV cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of (IO3)− groups. Importantly, LMIO exhibits an extremely strong SHG effect of roughly 24 × KH2PO4 (KDP) under 1064 nm laser radiation or 1.5 × AgGaS2 (AGS) under 2.05 μm laser radiation, which is larger than that of α-LiIO3 (18 × KDP). The replacement of MIV with Mg2+ without d–d electronic transitions induces an obviously larger band gap (4.34 eV) with a short absorption edge (285 nm). This study shows that single-site aliovalent substitution provides a new synthetic route for designing SHG materials.
An excellent second harmonic generation (SHG) material, LiMg(IO 3 ) 3 (LMIO), has been elaborately designed from Li 2 M IV (IO 3 ) 6 (M IV = Ti, Sn, and Ge) by aliovalent substitution of the central M IV cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of (IO 3 ) − groups. Importantly, LMIO exhibits an extremely strong SHG effect of roughly 24 × KH 2 PO 4 (KDP) under 1064 nm laser radiation or 1.5 × AgGaS 2 (AGS) under 2.05 μm laser radiation, which is larger than that of α-LiIO 3 (18 × KDP). The replacement of M IV with Mg 2+ without d–d electronic transitions induces an obviously larger band gap (4.34 eV) with a short absorption edge (285 nm). This study shows that single-site aliovalent substitution provides a new synthetic route for designing SHG materials.
Author Mao, Jiang-Gao
Zhang, Xiao-Han
Mao, Fei-Fei
Hu, Chun-Li
Chen, Jin
Yang, Bing-Ping
AuthorAffiliation c Nanjing Agricultural University , Nanjing 210095 , P. R. China
a State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , P. R. China . Email: mjg@fjirsm.ac.cn ; Email: clhu@fjirsm.ac.cn
b University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
AuthorAffiliation_xml – name: a State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , P. R. China . Email: mjg@fjirsm.ac.cn ; Email: clhu@fjirsm.ac.cn
– name: b University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
– name: c Nanjing Agricultural University , Nanjing 210095 , P. R. China
Author_xml – sequence: 1
  givenname: Jin
  orcidid: 0000-0003-2439-7535
  surname: Chen
  fullname: Chen, Jin
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
– sequence: 2
  givenname: Chun-Li
  surname: Hu
  fullname: Hu, Chun-Li
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
– sequence: 3
  givenname: Fei-Fei
  orcidid: 0000-0002-8174-0646
  surname: Mao
  fullname: Mao, Fei-Fei
  organization: Nanjing Agricultural University, Nanjing 210095, P. R. China
– sequence: 4
  givenname: Xiao-Han
  surname: Zhang
  fullname: Zhang, Xiao-Han
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
– sequence: 5
  givenname: Bing-Ping
  surname: Yang
  fullname: Yang, Bing-Ping
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
– sequence: 6
  givenname: Jiang-Gao
  orcidid: 0000-0002-5101-8898
  surname: Mao
  fullname: Mao, Jiang-Gao
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32190241$$D View this record in MEDLINE/PubMed
BookMark eNptkUtLAzEUhYMoVms3_gAJuFFhNI95NC4Eqa9CxUV14SpkJndqZJroZEb035tqW7V4ISRwv3s4OXcbrVtnAaFdSo4p4eJkIMYDEvc5u1hDW4zENEoTLtaXb0Y6qOf9MwnFOU1Ytok6nFFBWEy30OPI3E4OhneY48NwTrGyGN4LqCqwDR7fXOOpaqA2qsIavJlY0Dj_wN7YSQWRNw1gVRn3pr543-a-MU3bGGd30EapKg-9-d1FD1eX94ObaHR3PRycj6IiuNBRGes45SylArKEqbhkRUJZRstYxHlKc0Z0IAqtExA5Ubmiugw9mqi8X4oCeBedfeu-tPkUdBF81KqSL7WZqvpDOmXk3441T3Li3mRG0lA8CBzMBWr32oJv5NT4WQLKgmu9ZDwLYZG-mKH7K-iza2sbvhcoRgRP07CULtr77WhpZZF6AMg3UNTO-xpKWZhGzUILBk0lKZGz3cqf3YaRo5WRheo_8CeBIaHt
CitedBy_id crossref_primary_10_1016_j_jallcom_2021_162547
crossref_primary_10_3390_nano11123289
crossref_primary_10_1016_j_vacuum_2022_111084
crossref_primary_10_1039_D1QI00383F
crossref_primary_10_1039_D3NJ01908J
crossref_primary_10_1039_D0QM01109F
crossref_primary_10_1021_acs_chemmater_0c00150
crossref_primary_10_1103_PhysRevB_106_235203
crossref_primary_10_1016_j_inoche_2022_109471
crossref_primary_10_1021_acs_inorgchem_4c00156
crossref_primary_10_1103_PhysRevMaterials_6_044603
crossref_primary_10_1002_smll_202407130
crossref_primary_10_1002_ange_202000587
crossref_primary_10_1021_acs_chemmater_0c01452
crossref_primary_10_1039_D2NJ02226E
crossref_primary_10_1021_acs_chemmater_0c01054
crossref_primary_10_1021_acs_inorgchem_1c00506
crossref_primary_10_1039_D1QI00870F
crossref_primary_10_1039_D3DT04343F
crossref_primary_10_3390_sym15091777
crossref_primary_10_1016_j_vacuum_2020_109660
crossref_primary_10_1021_acs_inorgchem_2c04450
crossref_primary_10_31857_S0023476124040052
crossref_primary_10_1021_acs_accounts_1c00188
crossref_primary_10_1039_D1SC06026K
crossref_primary_10_3390_ma14206166
crossref_primary_10_1021_acsomega_3c00421
crossref_primary_10_1016_j_ccr_2021_214038
crossref_primary_10_1021_acs_cgd_5c00075
crossref_primary_10_1016_j_ccr_2022_214950
crossref_primary_10_1039_D0DT00432D
crossref_primary_10_1002_smll_202101393
crossref_primary_10_1021_acs_cgd_0c01629
crossref_primary_10_1021_acs_inorgchem_0c03697
crossref_primary_10_1039_C9TC06077D
crossref_primary_10_1002_anie_202000587
crossref_primary_10_1021_acs_chemmater_1c01434
crossref_primary_10_1021_acs_inorgchem_0c00945
crossref_primary_10_1016_j_cplett_2025_141987
crossref_primary_10_1021_acs_inorgchem_2c03267
crossref_primary_10_1016_j_ccr_2024_216000
crossref_primary_10_1021_acs_inorgchem_3c04343
crossref_primary_10_1016_j_pmatsci_2023_101092
crossref_primary_10_1039_D0DT00035C
crossref_primary_10_1021_acs_inorgchem_2c00759
crossref_primary_10_1039_D2QI01817A
crossref_primary_10_1016_j_ccr_2023_215212
crossref_primary_10_1039_D4TC01200C
crossref_primary_10_1080_08957959_2024_2428201
crossref_primary_10_1039_D4DT00470A
crossref_primary_10_1021_acs_inorgchem_1c03436
crossref_primary_10_1021_acs_inorgchem_3c03928
crossref_primary_10_1002_asia_202001002
crossref_primary_10_1002_smll_202306459
crossref_primary_10_1039_D5NJ00763A
Cites_doi 10.1002/anie.201813968
10.1107/S0567739476001551
10.1021/ja9030566
10.1039/C4QI00243A
10.1016/j.ccr.2016.12.013
10.1021/cm902902j
10.1021/jacs.8b04762
10.1002/anie.201905558
10.1021/acs.inorgchem.5b00052
10.1039/C9TC02180A
10.1021/ja205456b
10.1021/acs.chemmater.9b00521
10.1007/s11426-011-4289-8
10.1002/anie.201900637
10.1002/anie.201904383
10.1021/ja200257a
10.1021/acs.inorgchem.5b02859
10.1039/C8TC00851E
10.1021/acs.inorgchem.9b00075
10.1021/jacs.8b11485
10.1021/jacs.6b06680
10.1021/jacs.9b05125
10.1002/ange.201611770
10.1021/ja9015099
10.1021/cm020021n
10.1002/anie.201903976
10.1107/S0108768199003961
10.1016/j.ccr.2015.01.005
10.1016/0022-4596(92)90094-C
10.1002/anie.201813122
10.1039/c3cc45747h
10.1002/anie.201902839
10.1021/acs.accounts.8b00649
10.1021/cr010308o
10.1021/acs.accounts.7b00033
10.1002/anie.201905025
10.1021/acs.accounts.6b00452
10.1021/cm500898q
10.1021/ja012190z
10.1002/anie.200460367
10.1021/ja808469a
10.1021/jacs.9b04653
10.1021/acs.chemmater.8b00630
10.1039/C9CC02774B
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry 2019.
Copyright Royal Society of Chemistry 2019
This journal is © The Royal Society of Chemistry 2019 2019
Copyright_xml – notice: This journal is © The Royal Society of Chemistry 2019.
– notice: Copyright Royal Society of Chemistry 2019
– notice: This journal is © The Royal Society of Chemistry 2019 2019
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/C9SC04832D
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 10875
ExternalDocumentID PMC7066663
32190241
10_1039_C9SC04832D
Genre Journal Article
GroupedDBID 0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CITATION
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
-JG
AGSTE
NPM
SMJ
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c321d-f4d4632619e752a4f2c51271f494b61b20d4d4cdd5e9b0aba1dff4915ab8f9ce3
ISSN 2041-6520
IngestDate Thu Aug 21 18:15:32 EDT 2025
Fri Jul 11 05:48:30 EDT 2025
Fri Jul 25 02:16:49 EDT 2025
Thu Jan 02 22:59:37 EST 2025
Tue Jul 01 03:46:32 EDT 2025
Thu Apr 24 22:57:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
License This journal is © The Royal Society of Chemistry 2019.
This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321d-f4d4632619e752a4f2c51271f494b61b20d4d4cdd5e9b0aba1dff4915ab8f9ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5101-8898
0000-0003-2439-7535
0000-0002-8174-0646
OpenAccessLink http://dx.doi.org/10.1039/c9sc04832d
PMID 32190241
PQID 2320936610
PQPubID 2047492
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7066663
proquest_miscellaneous_2379020893
proquest_journals_2320936610
pubmed_primary_32190241
crossref_citationtrail_10_1039_C9SC04832D
crossref_primary_10_1039_C9SC04832D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Dec-21
PublicationDateYYYYMMDD 2019-12-21
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-Dec-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Kang (C9SC04832D-(cit1d)/*[position()=1]) 2019; 58
Zhou (C9SC04832D-(cit1b)/*[position()=1]) 2019; 58
Sun (C9SC04832D-(cit5c)/*[position()=1]) 2011; 133
Xia (C9SC04832D-(cit2b)/*[position()=1]) 2017; 50
Salinas-Sanchez (C9SC04832D-(cit13b)/*[position()=1]) 1992; 100
Hu (C9SC04832D-(cit3b)/*[position()=1]) 2015; 288
Mark (C9SC04832D-(cit1f)/*[position()=1]) 2019; 141
Mao (C9SC04832D-(cit11e)/*[position()=1]) 2018; 30
Sykora (C9SC04832D-(cit5a)/*[position()=1]) 2002; 14
Guo (C9SC04832D-(cit2d)/*[position()=1]) 2017; 355
Mao (C9SC04832D-(cit8c)/*[position()=1]) 2019; 58
Yu (C9SC04832D-(cit5d)/*[position()=1]) 2018; 140
Li (C9SC04832D-(cit4b)/*[position()=1]) 2019; 31
Sun (C9SC04832D-(cit6a)/*[position()=1]) 2009; 131
Ok (C9SC04832D-(cit8a)/*[position()=1]) 2004; 43
Yang (C9SC04832D-(cit5b)/*[position()=1]) 2010; 22
Tang (C9SC04832D-(cit6c)/*[position()=1]) 2019; 58
Chang (C9SC04832D-(cit11a)/*[position()=1]) 2009; 131
Liang (C9SC04832D-(cit9a)/*[position()=1]) 2016; 128
Xu (C9SC04832D-(cit8b)/*[position()=1]) 2014; 26
Dong (C9SC04832D-(cit9d)/*[position()=1]) 2019; 58
Chen (C9SC04832D-(cit10a)/*[position()=1]) 2019; 58
Guo (C9SC04832D-(cit1a)/*[position()=1]) 2019; 58
Ok (C9SC04832D-(cit2a)/*[position()=1]) 2016; 49
Chen (C9SC04832D-(cit8d)/*[position()=1]) 2019; 58
Nguyen (C9SC04832D-(cit7a)/*[position()=1]) 2011; 133
Mao (C9SC04832D-(cit7b)/*[position()=1]) 2017; 129
Chang (C9SC04832D-(cit11b)/*[position()=1]) 2009; 131
Sykora (C9SC04832D-(cit4a)/*[position()=1]) 2002; 124
Brown (C9SC04832D-(cit13c)/*[position()=1]) 2002
Zhang (C9SC04832D-(cit1c)/*[position()=1]) 2019; 58
Wu (C9SC04832D-(cit1e)/*[position()=1]) 2019; 141
Mao (C9SC04832D-(cit6b)/*[position()=1]) 2019; 55
Preiser (C9SC04832D-(cit13a)/*[position()=1]) 1999; B55
Mutailipu (C9SC04832D-(cit2c)/*[position()=1]) 2019; 52
You (C9SC04832D-(cit10b)/*[position()=1]) 2019; 141
Sun (C9SC04832D-(cit3c)/*[position()=1]) 2011; 54
Liu (C9SC04832D-(cit11f)/*[position()=1]) 2018; 6
Wickleder (C9SC04832D-(cit3a)/*[position()=1]) 2002; 102
Cao (C9SC04832D-(cit9b)/*[position()=1]) 2015; 54
Shannon (C9SC04832D-(cit12)/*[position()=1]) 1976; 32
Kim (C9SC04832D-(cit11c)/*[position()=1]) 2015; 2
Yang (C9SC04832D-(cit9e)/*[position()=1]) 2019; 7
Cao (C9SC04832D-(cit9c)/*[position()=1]) 2013; 49
Yang (C9SC04832D-(cit11d)/*[position()=1]) 2016; 55
References_xml – volume: 58
  start-page: 2098
  year: 2019
  ident: C9SC04832D-(cit10a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813968
– volume-title: The Chemical Bond in Inorganic Chemistry: The Bond Valence Model
  year: 2002
  ident: C9SC04832D-(cit13c)/*[position()=1]
– volume: 32
  start-page: 751
  year: 1976
  ident: C9SC04832D-(cit12)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
  doi: 10.1107/S0567739476001551
– volume: 131
  start-page: 9486
  year: 2009
  ident: C9SC04832D-(cit6a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9030566
– volume: 2
  start-page: 361
  year: 2015
  ident: C9SC04832D-(cit11c)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C4QI00243A
– volume: 355
  start-page: 44
  year: 2017
  ident: C9SC04832D-(cit2d)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2016.12.013
– volume: 22
  start-page: 1545
  year: 2010
  ident: C9SC04832D-(cit5b)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm902902j
– volume: 140
  start-page: 8868
  year: 2018
  ident: C9SC04832D-(cit5d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04762
– volume: 58
  start-page: 11726
  year: 2019
  ident: C9SC04832D-(cit1c)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201905558
– volume: 54
  start-page: 3875
  year: 2015
  ident: C9SC04832D-(cit9b)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00052
– volume: 7
  start-page: 8131
  year: 2019
  ident: C9SC04832D-(cit9e)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC02180A
– volume: 133
  start-page: 12422
  year: 2011
  ident: C9SC04832D-(cit7a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205456b
– volume: 31
  start-page: 2992
  year: 2019
  ident: C9SC04832D-(cit4b)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b00521
– volume: 54
  start-page: 911
  year: 2011
  ident: C9SC04832D-(cit3c)/*[position()=1]
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-011-4289-8
– volume: 58
  start-page: 6528
  year: 2019
  ident: C9SC04832D-(cit9d)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201900637
– volume: 58
  start-page: 11666
  year: 2019
  ident: C9SC04832D-(cit8d)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201904383
– volume: 133
  start-page: 5561
  year: 2011
  ident: C9SC04832D-(cit5c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200257a
– volume: 55
  start-page: 2481
  year: 2016
  ident: C9SC04832D-(cit11d)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b02859
– volume: 6
  start-page: 4698
  year: 2018
  ident: C9SC04832D-(cit11f)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC00851E
– volume: 58
  start-page: 3982
  year: 2019
  ident: C9SC04832D-(cit8c)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b00075
– volume: 141
  start-page: 748
  year: 2019
  ident: C9SC04832D-(cit10b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11485
– volume: 128
  start-page: 9433
  year: 2016
  ident: C9SC04832D-(cit9a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06680
– volume: 141
  start-page: 10188
  year: 2019
  ident: C9SC04832D-(cit1e)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05125
– volume: 129
  start-page: 2183
  year: 2017
  ident: C9SC04832D-(cit7b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201611770
– volume: 131
  start-page: 6865
  year: 2009
  ident: C9SC04832D-(cit11b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9015099
– volume: 14
  start-page: 2741
  year: 2002
  ident: C9SC04832D-(cit5a)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm020021n
– volume: 58
  start-page: 9979
  year: 2019
  ident: C9SC04832D-(cit1b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201903976
– volume: B55
  start-page: 698
  year: 1999
  ident: C9SC04832D-(cit13a)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
  doi: 10.1107/S0108768199003961
– volume: 288
  start-page: 1
  year: 2015
  ident: C9SC04832D-(cit3b)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.01.005
– volume: 100
  start-page: 201
  year: 1992
  ident: C9SC04832D-(cit13b)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(92)90094-C
– volume: 58
  start-page: 3824
  year: 2019
  ident: C9SC04832D-(cit6c)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813122
– volume: 49
  start-page: 9965
  year: 2013
  ident: C9SC04832D-(cit9c)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc45747h
– volume: 58
  start-page: 8087
  year: 2019
  ident: C9SC04832D-(cit1a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902839
– volume: 52
  start-page: 791
  year: 2019
  ident: C9SC04832D-(cit2c)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00649
– volume: 102
  start-page: 2011
  year: 2002
  ident: C9SC04832D-(cit3a)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr010308o
– volume: 50
  start-page: 1222
  year: 2017
  ident: C9SC04832D-(cit2b)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00033
– volume: 58
  start-page: 10250
  year: 2019
  ident: C9SC04832D-(cit1d)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201905025
– volume: 49
  start-page: 2774
  year: 2016
  ident: C9SC04832D-(cit2a)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00452
– volume: 26
  start-page: 3219
  year: 2014
  ident: C9SC04832D-(cit8b)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm500898q
– volume: 124
  start-page: 1951
  year: 2002
  ident: C9SC04832D-(cit4a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja012190z
– volume: 43
  start-page: 5489
  year: 2004
  ident: C9SC04832D-(cit8a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200460367
– volume: 131
  start-page: 2426
  year: 2009
  ident: C9SC04832D-(cit11a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808469a
– volume: 141
  start-page: 11976
  year: 2019
  ident: C9SC04832D-(cit1f)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04653
– volume: 30
  start-page: 2443
  year: 2018
  ident: C9SC04832D-(cit11e)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00630
– volume: 55
  start-page: 6906
  year: 2019
  ident: C9SC04832D-(cit6b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02774B
SSID ssj0000331527
Score 2.457314
Snippet An excellent second harmonic generation (SHG) material, LiMg(IO 3 ) 3 (LMIO), has been elaborately designed from Li 2 M IV (IO 3 ) 6 (M IV = Ti, Sn, and Ge) by...
An excellent second harmonic generation (SHG) material, LiMg(IO ) (LMIO), has been elaborately designed from Li M (IO ) (M = Ti, Sn, and Ge) by aliovalent...
An excellent second harmonic generation (SHG) material, LiMg(IO3)3 (LMIO), has been elaborately designed from Li2MIV(IO3)6 (MIV = Ti, Sn, and Ge) by aliovalent...
An excellent SHG iodate, LiMg(IO 3 ) 3 , has been obtained via the aliovalent substitution of defect-containing M IV sites with ordered Mg 2+ . An excellent...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 10870
SubjectTerms Chemistry
Crystallography
Germanium
Potassium phosphates
Rapid prototyping
Second harmonic generation
Silver gallium sulfide
Substitutes
Tin
Title LiMg(IO 3 ) 3 : an excellent SHG material designed by single-site aliovalent substitution
URI https://www.ncbi.nlm.nih.gov/pubmed/32190241
https://www.proquest.com/docview/2320936610
https://www.proquest.com/docview/2379020893
https://pubmed.ncbi.nlm.nih.gov/PMC7066663
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4AL4pvCmIzgwBSZxbET19xQYRS0MYmtqDtFduxApClFrD3AX8CfzXMSJ-naw-CQqLVf0tTvF_t9-L2H0MuMU22MoMRoqglX0hCZJYwYa-NI5lmucxeNfPw5mc74p3k8Hwz-9HYtrZb6dfZ7a1zJ_3AV2oCvLkr2Hzjb3hQa4DPwF87AYThfi8dHxfE3JyGeBCxw6j2rFHzl8vZXBvlyGZxOPwQglFZPE5hqu0YtczobwYUlznkcgCy-gOdy9JcwkVS7Bzy_fBYDn1jAxwE576-P9-qZEyY-2qMoO8TUfv1VSY6KzgJe2WgPbUHg2DBfzwu1INMGuY1RglYVFepI53ruikJOSRJHtcvF9tvq3EXt5Bv2QFbn3mymUhqORdhbl933eOukHzKXM3UiTycuP370rlvavDv_yorX7kOsPPBMpt21N9BOBApHNEQ7X77O5uetvS5krKkA3P43n-2WyYPuBuvyzYbScnXvbU-YObuDbjdaCH5bQ-ouGtjyHro58cX_7qNzB61XH08ww_twvMGqxC2oMIAKe1BhDyqsf-EeqHAHKtwH1QM0O3x_NpmSpgoHyVhEDcm54QlzirYVcaR4HmUgJAqac8l1QnUUGqDIjImt1KHSipoc-mis9DiXmWUP0bBclPYxwjQWjGuRCwtiuOBSjTOWjK2KIybGea5GaN-PXZo1KepdpZSLdJNRI_Sipf1RJ2bZSrXrWZA2L-5lCkpEKBkIpuEIPW-7YYDdKKrSLlaORkhXv1ayEXpUc6z9GRgW6ON0hMQaL1sCl7J9vacsvlep24UzFyTsybUe_im61b1bu2i4_Lmyz0AEXuq9ynS012D0LzGircA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LiMg%28IO+3+%29+3+%3A+an+excellent+SHG+material+designed+by+single-site+aliovalent+substitution&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Chen%2C+Jin&rft.au=Hu%2C+Chun-Li&rft.au=Mao%2C+Fei-Fei&rft.au=Zhang%2C+Xiao-Han&rft.date=2019-12-21&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=10&rft.issue=47&rft.spage=10870&rft.epage=10875&rft_id=info:doi/10.1039%2FC9SC04832D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9SC04832D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon