LiMg(IO 3 ) 3 : an excellent SHG material designed by single-site aliovalent substitution
An excellent second harmonic generation (SHG) material, LiMg(IO 3 ) 3 (LMIO), has been elaborately designed from Li 2 M IV (IO 3 ) 6 (M IV = Ti, Sn, and Ge) by aliovalent substitution of the central M IV cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of...
Saved in:
Published in | Chemical science (Cambridge) Vol. 10; no. 47; pp. 10870 - 10875 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An excellent second harmonic generation (SHG) material, LiMg(IO
3
)
3
(LMIO), has been elaborately designed from Li
2
M
IV
(IO
3
)
6
(M
IV
= Ti, Sn, and Ge) by aliovalent substitution of the central M
IV
cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of (IO
3
)
−
groups. Importantly, LMIO exhibits an extremely strong SHG effect of roughly 24 × KH
2
PO
4
(KDP) under 1064 nm laser radiation or 1.5 × AgGaS
2
(AGS) under 2.05 μm laser radiation, which is larger than that of α-LiIO
3
(18 × KDP). The replacement of M
IV
with Mg
2+
without d–d electronic transitions induces an obviously larger band gap (4.34 eV) with a short absorption edge (285 nm). This study shows that single-site aliovalent substitution provides a new synthetic route for designing SHG materials. |
---|---|
AbstractList | An excellent SHG iodate, LiMg(IO
3
)
3
, has been obtained
via
the aliovalent substitution of defect-containing M
IV
sites with ordered Mg
2+
.
An excellent second harmonic generation (SHG) material, LiMg(IO
3
)
3
(LMIO), has been elaborately designed from Li
2
M
IV
(IO
3
)
6
(M
IV
= Ti, Sn, and Ge) by aliovalent substitution of the central M
IV
cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of (IO
3
)
–
groups. Importantly, LMIO exhibits an extremely strong SHG effect of roughly 24 × KH
2
PO
4
(KDP) under 1064 nm laser radiation or 1.5 × AgGaS
2
(AGS) under 2.05 μm laser radiation, which is larger than that of α-LiIO
3
(18 × KDP). The replacement of M
IV
with Mg
2+
without d–d electronic transitions induces an obviously larger band gap (4.34 eV) with a short absorption edge (285 nm). This study shows that single-site aliovalent substitution provides a new synthetic route for designing SHG materials. An excellent second harmonic generation (SHG) material, LiMg(IO3)3 (LMIO), has been elaborately designed from Li2MIV(IO3)6 (MIV = Ti, Sn, and Ge) by aliovalent substitution of the central MIV cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of (IO3)- groups. Importantly, LMIO exhibits an extremely strong SHG effect of roughly 24 × KH2PO4 (KDP) under 1064 nm laser radiation or 1.5 × AgGaS2 (AGS) under 2.05 μm laser radiation, which is larger than that of α-LiIO3 (18 × KDP). The replacement of MIV with Mg2+ without d-d electronic transitions induces an obviously larger band gap (4.34 eV) with a short absorption edge (285 nm). This study shows that single-site aliovalent substitution provides a new synthetic route for designing SHG materials.An excellent second harmonic generation (SHG) material, LiMg(IO3)3 (LMIO), has been elaborately designed from Li2MIV(IO3)6 (MIV = Ti, Sn, and Ge) by aliovalent substitution of the central MIV cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of (IO3)- groups. Importantly, LMIO exhibits an extremely strong SHG effect of roughly 24 × KH2PO4 (KDP) under 1064 nm laser radiation or 1.5 × AgGaS2 (AGS) under 2.05 μm laser radiation, which is larger than that of α-LiIO3 (18 × KDP). The replacement of MIV with Mg2+ without d-d electronic transitions induces an obviously larger band gap (4.34 eV) with a short absorption edge (285 nm). This study shows that single-site aliovalent substitution provides a new synthetic route for designing SHG materials. An excellent second harmonic generation (SHG) material, LiMg(IO ) (LMIO), has been elaborately designed from Li M (IO ) (M = Ti, Sn, and Ge) by aliovalent substitution of the central M cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of (IO ) groups. Importantly, LMIO exhibits an extremely strong SHG effect of roughly 24 × KH PO (KDP) under 1064 nm laser radiation or 1.5 × AgGaS (AGS) under 2.05 μm laser radiation, which is larger than that of α-LiIO (18 × KDP). The replacement of M with Mg without d-d electronic transitions induces an obviously larger band gap (4.34 eV) with a short absorption edge (285 nm). This study shows that single-site aliovalent substitution provides a new synthetic route for designing SHG materials. An excellent second harmonic generation (SHG) material, LiMg(IO3)3 (LMIO), has been elaborately designed from Li2MIV(IO3)6 (MIV = Ti, Sn, and Ge) by aliovalent substitution of the central MIV cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of (IO3)− groups. Importantly, LMIO exhibits an extremely strong SHG effect of roughly 24 × KH2PO4 (KDP) under 1064 nm laser radiation or 1.5 × AgGaS2 (AGS) under 2.05 μm laser radiation, which is larger than that of α-LiIO3 (18 × KDP). The replacement of MIV with Mg2+ without d–d electronic transitions induces an obviously larger band gap (4.34 eV) with a short absorption edge (285 nm). This study shows that single-site aliovalent substitution provides a new synthetic route for designing SHG materials. An excellent second harmonic generation (SHG) material, LiMg(IO 3 ) 3 (LMIO), has been elaborately designed from Li 2 M IV (IO 3 ) 6 (M IV = Ti, Sn, and Ge) by aliovalent substitution of the central M IV cation followed by Wyckoff position exchange. The new structure sustains the ideal-alignment of (IO 3 ) − groups. Importantly, LMIO exhibits an extremely strong SHG effect of roughly 24 × KH 2 PO 4 (KDP) under 1064 nm laser radiation or 1.5 × AgGaS 2 (AGS) under 2.05 μm laser radiation, which is larger than that of α-LiIO 3 (18 × KDP). The replacement of M IV with Mg 2+ without d–d electronic transitions induces an obviously larger band gap (4.34 eV) with a short absorption edge (285 nm). This study shows that single-site aliovalent substitution provides a new synthetic route for designing SHG materials. |
Author | Mao, Jiang-Gao Zhang, Xiao-Han Mao, Fei-Fei Hu, Chun-Li Chen, Jin Yang, Bing-Ping |
AuthorAffiliation | c Nanjing Agricultural University , Nanjing 210095 , P. R. China a State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , P. R. China . Email: mjg@fjirsm.ac.cn ; Email: clhu@fjirsm.ac.cn b University of Chinese Academy of Sciences , Beijing 100039 , P. R. China |
AuthorAffiliation_xml | – name: a State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , P. R. China . Email: mjg@fjirsm.ac.cn ; Email: clhu@fjirsm.ac.cn – name: b University of Chinese Academy of Sciences , Beijing 100039 , P. R. China – name: c Nanjing Agricultural University , Nanjing 210095 , P. R. China |
Author_xml | – sequence: 1 givenname: Jin orcidid: 0000-0003-2439-7535 surname: Chen fullname: Chen, Jin organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China – sequence: 2 givenname: Chun-Li surname: Hu fullname: Hu, Chun-Li organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China – sequence: 3 givenname: Fei-Fei orcidid: 0000-0002-8174-0646 surname: Mao fullname: Mao, Fei-Fei organization: Nanjing Agricultural University, Nanjing 210095, P. R. China – sequence: 4 givenname: Xiao-Han surname: Zhang fullname: Zhang, Xiao-Han organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China – sequence: 5 givenname: Bing-Ping surname: Yang fullname: Yang, Bing-Ping organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China – sequence: 6 givenname: Jiang-Gao orcidid: 0000-0002-5101-8898 surname: Mao fullname: Mao, Jiang-Gao organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32190241$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtLAzEUhYMoVms3_gAJuFFhNI95NC4Eqa9CxUV14SpkJndqZJroZEb035tqW7V4ISRwv3s4OXcbrVtnAaFdSo4p4eJkIMYDEvc5u1hDW4zENEoTLtaXb0Y6qOf9MwnFOU1Ytok6nFFBWEy30OPI3E4OhneY48NwTrGyGN4LqCqwDR7fXOOpaqA2qsIavJlY0Dj_wN7YSQWRNw1gVRn3pr543-a-MU3bGGd30EapKg-9-d1FD1eX94ObaHR3PRycj6IiuNBRGes45SylArKEqbhkRUJZRstYxHlKc0Z0IAqtExA5Ubmiugw9mqi8X4oCeBedfeu-tPkUdBF81KqSL7WZqvpDOmXk3441T3Li3mRG0lA8CBzMBWr32oJv5NT4WQLKgmu9ZDwLYZG-mKH7K-iza2sbvhcoRgRP07CULtr77WhpZZF6AMg3UNTO-xpKWZhGzUILBk0lKZGz3cqf3YaRo5WRheo_8CeBIaHt |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2021_162547 crossref_primary_10_3390_nano11123289 crossref_primary_10_1016_j_vacuum_2022_111084 crossref_primary_10_1039_D1QI00383F crossref_primary_10_1039_D3NJ01908J crossref_primary_10_1039_D0QM01109F crossref_primary_10_1021_acs_chemmater_0c00150 crossref_primary_10_1103_PhysRevB_106_235203 crossref_primary_10_1016_j_inoche_2022_109471 crossref_primary_10_1021_acs_inorgchem_4c00156 crossref_primary_10_1103_PhysRevMaterials_6_044603 crossref_primary_10_1002_smll_202407130 crossref_primary_10_1002_ange_202000587 crossref_primary_10_1021_acs_chemmater_0c01452 crossref_primary_10_1039_D2NJ02226E crossref_primary_10_1021_acs_chemmater_0c01054 crossref_primary_10_1021_acs_inorgchem_1c00506 crossref_primary_10_1039_D1QI00870F crossref_primary_10_1039_D3DT04343F crossref_primary_10_3390_sym15091777 crossref_primary_10_1016_j_vacuum_2020_109660 crossref_primary_10_1021_acs_inorgchem_2c04450 crossref_primary_10_31857_S0023476124040052 crossref_primary_10_1021_acs_accounts_1c00188 crossref_primary_10_1039_D1SC06026K crossref_primary_10_3390_ma14206166 crossref_primary_10_1021_acsomega_3c00421 crossref_primary_10_1016_j_ccr_2021_214038 crossref_primary_10_1021_acs_cgd_5c00075 crossref_primary_10_1016_j_ccr_2022_214950 crossref_primary_10_1039_D0DT00432D crossref_primary_10_1002_smll_202101393 crossref_primary_10_1021_acs_cgd_0c01629 crossref_primary_10_1021_acs_inorgchem_0c03697 crossref_primary_10_1039_C9TC06077D crossref_primary_10_1002_anie_202000587 crossref_primary_10_1021_acs_chemmater_1c01434 crossref_primary_10_1021_acs_inorgchem_0c00945 crossref_primary_10_1016_j_cplett_2025_141987 crossref_primary_10_1021_acs_inorgchem_2c03267 crossref_primary_10_1016_j_ccr_2024_216000 crossref_primary_10_1021_acs_inorgchem_3c04343 crossref_primary_10_1016_j_pmatsci_2023_101092 crossref_primary_10_1039_D0DT00035C crossref_primary_10_1021_acs_inorgchem_2c00759 crossref_primary_10_1039_D2QI01817A crossref_primary_10_1016_j_ccr_2023_215212 crossref_primary_10_1039_D4TC01200C crossref_primary_10_1080_08957959_2024_2428201 crossref_primary_10_1039_D4DT00470A crossref_primary_10_1021_acs_inorgchem_1c03436 crossref_primary_10_1021_acs_inorgchem_3c03928 crossref_primary_10_1002_asia_202001002 crossref_primary_10_1002_smll_202306459 crossref_primary_10_1039_D5NJ00763A |
Cites_doi | 10.1002/anie.201813968 10.1107/S0567739476001551 10.1021/ja9030566 10.1039/C4QI00243A 10.1016/j.ccr.2016.12.013 10.1021/cm902902j 10.1021/jacs.8b04762 10.1002/anie.201905558 10.1021/acs.inorgchem.5b00052 10.1039/C9TC02180A 10.1021/ja205456b 10.1021/acs.chemmater.9b00521 10.1007/s11426-011-4289-8 10.1002/anie.201900637 10.1002/anie.201904383 10.1021/ja200257a 10.1021/acs.inorgchem.5b02859 10.1039/C8TC00851E 10.1021/acs.inorgchem.9b00075 10.1021/jacs.8b11485 10.1021/jacs.6b06680 10.1021/jacs.9b05125 10.1002/ange.201611770 10.1021/ja9015099 10.1021/cm020021n 10.1002/anie.201903976 10.1107/S0108768199003961 10.1016/j.ccr.2015.01.005 10.1016/0022-4596(92)90094-C 10.1002/anie.201813122 10.1039/c3cc45747h 10.1002/anie.201902839 10.1021/acs.accounts.8b00649 10.1021/cr010308o 10.1021/acs.accounts.7b00033 10.1002/anie.201905025 10.1021/acs.accounts.6b00452 10.1021/cm500898q 10.1021/ja012190z 10.1002/anie.200460367 10.1021/ja808469a 10.1021/jacs.9b04653 10.1021/acs.chemmater.8b00630 10.1039/C9CC02774B |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry 2019. Copyright Royal Society of Chemistry 2019 This journal is © The Royal Society of Chemistry 2019 2019 |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry 2019. – notice: Copyright Royal Society of Chemistry 2019 – notice: This journal is © The Royal Society of Chemistry 2019 2019 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/C9SC04832D |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 10875 |
ExternalDocumentID | PMC7066663 32190241 10_1039_C9SC04832D |
Genre | Journal Article |
GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K CITATION D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH -JG AGSTE NPM SMJ 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c321d-f4d4632619e752a4f2c51271f494b61b20d4d4cdd5e9b0aba1dff4915ab8f9ce3 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:15:32 EDT 2025 Fri Jul 11 05:48:30 EDT 2025 Fri Jul 25 02:16:49 EDT 2025 Thu Jan 02 22:59:37 EST 2025 Tue Jul 01 03:46:32 EDT 2025 Thu Apr 24 22:57:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
License | This journal is © The Royal Society of Chemistry 2019. This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c321d-f4d4632619e752a4f2c51271f494b61b20d4d4cdd5e9b0aba1dff4915ab8f9ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5101-8898 0000-0003-2439-7535 0000-0002-8174-0646 |
OpenAccessLink | http://dx.doi.org/10.1039/c9sc04832d |
PMID | 32190241 |
PQID | 2320936610 |
PQPubID | 2047492 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7066663 proquest_miscellaneous_2379020893 proquest_journals_2320936610 pubmed_primary_32190241 crossref_citationtrail_10_1039_C9SC04832D crossref_primary_10_1039_C9SC04832D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Dec-21 |
PublicationDateYYYYMMDD | 2019-12-21 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-Dec-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Kang (C9SC04832D-(cit1d)/*[position()=1]) 2019; 58 Zhou (C9SC04832D-(cit1b)/*[position()=1]) 2019; 58 Sun (C9SC04832D-(cit5c)/*[position()=1]) 2011; 133 Xia (C9SC04832D-(cit2b)/*[position()=1]) 2017; 50 Salinas-Sanchez (C9SC04832D-(cit13b)/*[position()=1]) 1992; 100 Hu (C9SC04832D-(cit3b)/*[position()=1]) 2015; 288 Mark (C9SC04832D-(cit1f)/*[position()=1]) 2019; 141 Mao (C9SC04832D-(cit11e)/*[position()=1]) 2018; 30 Sykora (C9SC04832D-(cit5a)/*[position()=1]) 2002; 14 Guo (C9SC04832D-(cit2d)/*[position()=1]) 2017; 355 Mao (C9SC04832D-(cit8c)/*[position()=1]) 2019; 58 Yu (C9SC04832D-(cit5d)/*[position()=1]) 2018; 140 Li (C9SC04832D-(cit4b)/*[position()=1]) 2019; 31 Sun (C9SC04832D-(cit6a)/*[position()=1]) 2009; 131 Ok (C9SC04832D-(cit8a)/*[position()=1]) 2004; 43 Yang (C9SC04832D-(cit5b)/*[position()=1]) 2010; 22 Tang (C9SC04832D-(cit6c)/*[position()=1]) 2019; 58 Chang (C9SC04832D-(cit11a)/*[position()=1]) 2009; 131 Liang (C9SC04832D-(cit9a)/*[position()=1]) 2016; 128 Xu (C9SC04832D-(cit8b)/*[position()=1]) 2014; 26 Dong (C9SC04832D-(cit9d)/*[position()=1]) 2019; 58 Chen (C9SC04832D-(cit10a)/*[position()=1]) 2019; 58 Guo (C9SC04832D-(cit1a)/*[position()=1]) 2019; 58 Ok (C9SC04832D-(cit2a)/*[position()=1]) 2016; 49 Chen (C9SC04832D-(cit8d)/*[position()=1]) 2019; 58 Nguyen (C9SC04832D-(cit7a)/*[position()=1]) 2011; 133 Mao (C9SC04832D-(cit7b)/*[position()=1]) 2017; 129 Chang (C9SC04832D-(cit11b)/*[position()=1]) 2009; 131 Sykora (C9SC04832D-(cit4a)/*[position()=1]) 2002; 124 Brown (C9SC04832D-(cit13c)/*[position()=1]) 2002 Zhang (C9SC04832D-(cit1c)/*[position()=1]) 2019; 58 Wu (C9SC04832D-(cit1e)/*[position()=1]) 2019; 141 Mao (C9SC04832D-(cit6b)/*[position()=1]) 2019; 55 Preiser (C9SC04832D-(cit13a)/*[position()=1]) 1999; B55 Mutailipu (C9SC04832D-(cit2c)/*[position()=1]) 2019; 52 You (C9SC04832D-(cit10b)/*[position()=1]) 2019; 141 Sun (C9SC04832D-(cit3c)/*[position()=1]) 2011; 54 Liu (C9SC04832D-(cit11f)/*[position()=1]) 2018; 6 Wickleder (C9SC04832D-(cit3a)/*[position()=1]) 2002; 102 Cao (C9SC04832D-(cit9b)/*[position()=1]) 2015; 54 Shannon (C9SC04832D-(cit12)/*[position()=1]) 1976; 32 Kim (C9SC04832D-(cit11c)/*[position()=1]) 2015; 2 Yang (C9SC04832D-(cit9e)/*[position()=1]) 2019; 7 Cao (C9SC04832D-(cit9c)/*[position()=1]) 2013; 49 Yang (C9SC04832D-(cit11d)/*[position()=1]) 2016; 55 |
References_xml | – volume: 58 start-page: 2098 year: 2019 ident: C9SC04832D-(cit10a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813968 – volume-title: The Chemical Bond in Inorganic Chemistry: The Bond Valence Model year: 2002 ident: C9SC04832D-(cit13c)/*[position()=1] – volume: 32 start-page: 751 year: 1976 ident: C9SC04832D-(cit12)/*[position()=1] publication-title: Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. doi: 10.1107/S0567739476001551 – volume: 131 start-page: 9486 year: 2009 ident: C9SC04832D-(cit6a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9030566 – volume: 2 start-page: 361 year: 2015 ident: C9SC04832D-(cit11c)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C4QI00243A – volume: 355 start-page: 44 year: 2017 ident: C9SC04832D-(cit2d)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2016.12.013 – volume: 22 start-page: 1545 year: 2010 ident: C9SC04832D-(cit5b)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm902902j – volume: 140 start-page: 8868 year: 2018 ident: C9SC04832D-(cit5d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04762 – volume: 58 start-page: 11726 year: 2019 ident: C9SC04832D-(cit1c)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201905558 – volume: 54 start-page: 3875 year: 2015 ident: C9SC04832D-(cit9b)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b00052 – volume: 7 start-page: 8131 year: 2019 ident: C9SC04832D-(cit9e)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C9TC02180A – volume: 133 start-page: 12422 year: 2011 ident: C9SC04832D-(cit7a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205456b – volume: 31 start-page: 2992 year: 2019 ident: C9SC04832D-(cit4b)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b00521 – volume: 54 start-page: 911 year: 2011 ident: C9SC04832D-(cit3c)/*[position()=1] publication-title: Sci. China: Chem. doi: 10.1007/s11426-011-4289-8 – volume: 58 start-page: 6528 year: 2019 ident: C9SC04832D-(cit9d)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201900637 – volume: 58 start-page: 11666 year: 2019 ident: C9SC04832D-(cit8d)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904383 – volume: 133 start-page: 5561 year: 2011 ident: C9SC04832D-(cit5c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200257a – volume: 55 start-page: 2481 year: 2016 ident: C9SC04832D-(cit11d)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b02859 – volume: 6 start-page: 4698 year: 2018 ident: C9SC04832D-(cit11f)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C8TC00851E – volume: 58 start-page: 3982 year: 2019 ident: C9SC04832D-(cit8c)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b00075 – volume: 141 start-page: 748 year: 2019 ident: C9SC04832D-(cit10b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11485 – volume: 128 start-page: 9433 year: 2016 ident: C9SC04832D-(cit9a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06680 – volume: 141 start-page: 10188 year: 2019 ident: C9SC04832D-(cit1e)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05125 – volume: 129 start-page: 2183 year: 2017 ident: C9SC04832D-(cit7b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201611770 – volume: 131 start-page: 6865 year: 2009 ident: C9SC04832D-(cit11b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9015099 – volume: 14 start-page: 2741 year: 2002 ident: C9SC04832D-(cit5a)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm020021n – volume: 58 start-page: 9979 year: 2019 ident: C9SC04832D-(cit1b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201903976 – volume: B55 start-page: 698 year: 1999 ident: C9SC04832D-(cit13a)/*[position()=1] publication-title: Acta Crystallogr., Sect. B: Struct. Sci. doi: 10.1107/S0108768199003961 – volume: 288 start-page: 1 year: 2015 ident: C9SC04832D-(cit3b)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.01.005 – volume: 100 start-page: 201 year: 1992 ident: C9SC04832D-(cit13b)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(92)90094-C – volume: 58 start-page: 3824 year: 2019 ident: C9SC04832D-(cit6c)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813122 – volume: 49 start-page: 9965 year: 2013 ident: C9SC04832D-(cit9c)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc45747h – volume: 58 start-page: 8087 year: 2019 ident: C9SC04832D-(cit1a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902839 – volume: 52 start-page: 791 year: 2019 ident: C9SC04832D-(cit2c)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00649 – volume: 102 start-page: 2011 year: 2002 ident: C9SC04832D-(cit3a)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr010308o – volume: 50 start-page: 1222 year: 2017 ident: C9SC04832D-(cit2b)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00033 – volume: 58 start-page: 10250 year: 2019 ident: C9SC04832D-(cit1d)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201905025 – volume: 49 start-page: 2774 year: 2016 ident: C9SC04832D-(cit2a)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00452 – volume: 26 start-page: 3219 year: 2014 ident: C9SC04832D-(cit8b)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm500898q – volume: 124 start-page: 1951 year: 2002 ident: C9SC04832D-(cit4a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja012190z – volume: 43 start-page: 5489 year: 2004 ident: C9SC04832D-(cit8a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200460367 – volume: 131 start-page: 2426 year: 2009 ident: C9SC04832D-(cit11a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808469a – volume: 141 start-page: 11976 year: 2019 ident: C9SC04832D-(cit1f)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04653 – volume: 30 start-page: 2443 year: 2018 ident: C9SC04832D-(cit11e)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00630 – volume: 55 start-page: 6906 year: 2019 ident: C9SC04832D-(cit6b)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC02774B |
SSID | ssj0000331527 |
Score | 2.457314 |
Snippet | An excellent second harmonic generation (SHG) material, LiMg(IO
3
)
3
(LMIO), has been elaborately designed from Li
2
M
IV
(IO
3
)
6
(M
IV
= Ti, Sn, and Ge) by... An excellent second harmonic generation (SHG) material, LiMg(IO ) (LMIO), has been elaborately designed from Li M (IO ) (M = Ti, Sn, and Ge) by aliovalent... An excellent second harmonic generation (SHG) material, LiMg(IO3)3 (LMIO), has been elaborately designed from Li2MIV(IO3)6 (MIV = Ti, Sn, and Ge) by aliovalent... An excellent SHG iodate, LiMg(IO 3 ) 3 , has been obtained via the aliovalent substitution of defect-containing M IV sites with ordered Mg 2+ . An excellent... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 10870 |
SubjectTerms | Chemistry Crystallography Germanium Potassium phosphates Rapid prototyping Second harmonic generation Silver gallium sulfide Substitutes Tin |
Title | LiMg(IO 3 ) 3 : an excellent SHG material designed by single-site aliovalent substitution |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32190241 https://www.proquest.com/docview/2320936610 https://www.proquest.com/docview/2379020893 https://pubmed.ncbi.nlm.nih.gov/PMC7066663 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4AL4pvCmIzgwBSZxbET19xQYRS0MYmtqDtFduxApClFrD3AX8CfzXMSJ-naw-CQqLVf0tTvF_t9-L2H0MuMU22MoMRoqglX0hCZJYwYa-NI5lmucxeNfPw5mc74p3k8Hwz-9HYtrZb6dfZ7a1zJ_3AV2oCvLkr2Hzjb3hQa4DPwF87AYThfi8dHxfE3JyGeBCxw6j2rFHzl8vZXBvlyGZxOPwQglFZPE5hqu0YtczobwYUlznkcgCy-gOdy9JcwkVS7Bzy_fBYDn1jAxwE576-P9-qZEyY-2qMoO8TUfv1VSY6KzgJe2WgPbUHg2DBfzwu1INMGuY1RglYVFepI53ruikJOSRJHtcvF9tvq3EXt5Bv2QFbn3mymUhqORdhbl933eOukHzKXM3UiTycuP370rlvavDv_yorX7kOsPPBMpt21N9BOBApHNEQ7X77O5uetvS5krKkA3P43n-2WyYPuBuvyzYbScnXvbU-YObuDbjdaCH5bQ-ouGtjyHro58cX_7qNzB61XH08ww_twvMGqxC2oMIAKe1BhDyqsf-EeqHAHKtwH1QM0O3x_NpmSpgoHyVhEDcm54QlzirYVcaR4HmUgJAqac8l1QnUUGqDIjImt1KHSipoc-mis9DiXmWUP0bBclPYxwjQWjGuRCwtiuOBSjTOWjK2KIybGea5GaN-PXZo1KepdpZSLdJNRI_Sipf1RJ2bZSrXrWZA2L-5lCkpEKBkIpuEIPW-7YYDdKKrSLlaORkhXv1ayEXpUc6z9GRgW6ON0hMQaL1sCl7J9vacsvlep24UzFyTsybUe_im61b1bu2i4_Lmyz0AEXuq9ynS012D0LzGircA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LiMg%28IO+3+%29+3+%3A+an+excellent+SHG+material+designed+by+single-site+aliovalent+substitution&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Chen%2C+Jin&rft.au=Hu%2C+Chun-Li&rft.au=Mao%2C+Fei-Fei&rft.au=Zhang%2C+Xiao-Han&rft.date=2019-12-21&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=10&rft.issue=47&rft.spage=10870&rft.epage=10875&rft_id=info:doi/10.1039%2FC9SC04832D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9SC04832D |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |