Texture and shape analysis of diffusion‐weighted imaging for thyroid nodules classification using machine learning
Purpose To assess whether the integration between (a) functional imaging features that will be extracted from diffusion‐weighted imaging (DWI); and (b) shape and texture imaging features as well as volumetric features that will be extracted from T2‐weighted magnetic resonance imaging (MRI) can nonin...
Saved in:
Published in | Medical physics (Lancaster) Vol. 49; no. 2; pp. 988 - 999 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To assess whether the integration between (a) functional imaging features that will be extracted from diffusion‐weighted imaging (DWI); and (b) shape and texture imaging features as well as volumetric features that will be extracted from T2‐weighted magnetic resonance imaging (MRI) can noninvasively improve the diagnostic accuracy of thyroid nodules classification.
Patients and methods
In a retrospective study of 55 patients with pathologically proven thyroid nodules, T2‐weighted and diffusion‐weighted MRI scans of the thyroid gland were acquired. Spatial maps of the apparent diffusion coefficient (ADC) were reconstructed in all cases. To quantify the nodules' morphology, we used spherical harmonics as a new parametric shape descriptor to describe the complexity of the thyroid nodules in addition to traditional volumetric descriptors (e.g., tumor volume and cuboidal volume). To capture the inhomogeneity of the texture of the thyroid nodules, we used the histogram‐based statistics (e.g., kurtosis, entropy, skewness, etc.) of the T2‐weighted signal. To achieve the main goal of this paper, a fusion system using an artificial neural network (NN) is proposed to integrate both the functional imaging features (ADC) with the structural morphology and texture features. This framework has been tested on 55 patients (20 patients with malignant nodules and 35 patients with benign nodules), using leave‐one‐subject‐out (LOSO) for training/testing validation tests.
Results
The functionality, morphology, and texture imaging features were estimated for 55 patients. The accuracy of the computer‐aided diagnosis (CAD) system steadily improved as we integrate the proposed imaging features. The fusion system combining all biomarkers achieved a sensitivity, specificity, positive predictive value, negative predictive value, F1‐score, and accuracy of 92.9%$92.9\%$ (confidence interval [CI]: 78.9%--99.5%$78.9\%\text{--}99.5\%$), 95.8%$95.8\%$ (CI: 87.4%--99.7%$87.4\%\text{--}99.7\%$), 93%$93\%$ (CI: 80.7%--99.5%$80.7\%\text{--}99.5\%$), 96%$96\%$ (CI: 88.8%--99.7%$88.8\%\text{--}99.7\%$), 92.8%$92.8\%$ (CI: 83.5%--98.5%$83.5\%\text{--}98.5\%$), and 95.5%$95.5\%$ (CI: 88.8%--99.2%$88.8\%\text{--}99.2\%$), respectively, using the LOSO cross‐validation approach.
Conclusion
The results demonstrated in this paper show the promise that integrating the functional features with morphology as well as texture features by using the current state‐of‐the‐art machine learning approaches will be extremely useful for identifying thyroid nodules as well as diagnosing their malignancy. |
---|---|
AbstractList | To assess whether the integration between (a) functional imaging features that will be extracted from diffusion-weighted imaging (DWI); and (b) shape and texture imaging features as well as volumetric features that will be extracted from T2-weighted magnetic resonance imaging (MRI) can noninvasively improve the diagnostic accuracy of thyroid nodules classification.
In a retrospective study of 55 patients with pathologically proven thyroid nodules, T2-weighted and diffusion-weighted MRI scans of the thyroid gland were acquired. Spatial maps of the apparent diffusion coefficient (ADC) were reconstructed in all cases. To quantify the nodules' morphology, we used spherical harmonics as a new parametric shape descriptor to describe the complexity of the thyroid nodules in addition to traditional volumetric descriptors (e.g., tumor volume and cuboidal volume). To capture the inhomogeneity of the texture of the thyroid nodules, we used the histogram-based statistics (e.g., kurtosis, entropy, skewness, etc.) of the T2-weighted signal. To achieve the main goal of this paper, a fusion system using an artificial neural network (NN) is proposed to integrate both the functional imaging features (ADC) with the structural morphology and texture features. This framework has been tested on 55 patients (20 patients with malignant nodules and 35 patients with benign nodules), using leave-one-subject-out (LOSO) for training/testing validation tests.
The functionality, morphology, and texture imaging features were estimated for 55 patients. The accuracy of the computer-aided diagnosis (CAD) system steadily improved as we integrate the proposed imaging features. The fusion system combining all biomarkers achieved a sensitivity, specificity, positive predictive value, negative predictive value, F1-score, and accuracy of
(confidence interval [CI]:
),
(CI:
),
(CI:
),
(CI:
),
(CI:
), and
(CI:
), respectively, using the LOSO cross-validation approach.
The results demonstrated in this paper show the promise that integrating the functional features with morphology as well as texture features by using the current state-of-the-art machine learning approaches will be extremely useful for identifying thyroid nodules as well as diagnosing their malignancy. Purpose To assess whether the integration between (a) functional imaging features that will be extracted from diffusion‐weighted imaging (DWI); and (b) shape and texture imaging features as well as volumetric features that will be extracted from T2‐weighted magnetic resonance imaging (MRI) can noninvasively improve the diagnostic accuracy of thyroid nodules classification. Patients and methods In a retrospective study of 55 patients with pathologically proven thyroid nodules, T2‐weighted and diffusion‐weighted MRI scans of the thyroid gland were acquired. Spatial maps of the apparent diffusion coefficient (ADC) were reconstructed in all cases. To quantify the nodules' morphology, we used spherical harmonics as a new parametric shape descriptor to describe the complexity of the thyroid nodules in addition to traditional volumetric descriptors (e.g., tumor volume and cuboidal volume). To capture the inhomogeneity of the texture of the thyroid nodules, we used the histogram‐based statistics (e.g., kurtosis, entropy, skewness, etc.) of the T2‐weighted signal. To achieve the main goal of this paper, a fusion system using an artificial neural network (NN) is proposed to integrate both the functional imaging features (ADC) with the structural morphology and texture features. This framework has been tested on 55 patients (20 patients with malignant nodules and 35 patients with benign nodules), using leave‐one‐subject‐out (LOSO) for training/testing validation tests. Results The functionality, morphology, and texture imaging features were estimated for 55 patients. The accuracy of the computer‐aided diagnosis (CAD) system steadily improved as we integrate the proposed imaging features. The fusion system combining all biomarkers achieved a sensitivity, specificity, positive predictive value, negative predictive value, F1‐score, and accuracy of 92.9%$92.9\%$ (confidence interval [CI]: 78.9%--99.5%$78.9\%\text{--}99.5\%$), 95.8%$95.8\%$ (CI: 87.4%--99.7%$87.4\%\text{--}99.7\%$), 93%$93\%$ (CI: 80.7%--99.5%$80.7\%\text{--}99.5\%$), 96%$96\%$ (CI: 88.8%--99.7%$88.8\%\text{--}99.7\%$), 92.8%$92.8\%$ (CI: 83.5%--98.5%$83.5\%\text{--}98.5\%$), and 95.5%$95.5\%$ (CI: 88.8%--99.2%$88.8\%\text{--}99.2\%$), respectively, using the LOSO cross‐validation approach. Conclusion The results demonstrated in this paper show the promise that integrating the functional features with morphology as well as texture features by using the current state‐of‐the‐art machine learning approaches will be extremely useful for identifying thyroid nodules as well as diagnosing their malignancy. To assess whether the integration between (a) functional imaging features that will be extracted from diffusion-weighted imaging (DWI); and (b) shape and texture imaging features as well as volumetric features that will be extracted from T2-weighted magnetic resonance imaging (MRI) can noninvasively improve the diagnostic accuracy of thyroid nodules classification.PURPOSETo assess whether the integration between (a) functional imaging features that will be extracted from diffusion-weighted imaging (DWI); and (b) shape and texture imaging features as well as volumetric features that will be extracted from T2-weighted magnetic resonance imaging (MRI) can noninvasively improve the diagnostic accuracy of thyroid nodules classification.In a retrospective study of 55 patients with pathologically proven thyroid nodules, T2-weighted and diffusion-weighted MRI scans of the thyroid gland were acquired. Spatial maps of the apparent diffusion coefficient (ADC) were reconstructed in all cases. To quantify the nodules' morphology, we used spherical harmonics as a new parametric shape descriptor to describe the complexity of the thyroid nodules in addition to traditional volumetric descriptors (e.g., tumor volume and cuboidal volume). To capture the inhomogeneity of the texture of the thyroid nodules, we used the histogram-based statistics (e.g., kurtosis, entropy, skewness, etc.) of the T2-weighted signal. To achieve the main goal of this paper, a fusion system using an artificial neural network (NN) is proposed to integrate both the functional imaging features (ADC) with the structural morphology and texture features. This framework has been tested on 55 patients (20 patients with malignant nodules and 35 patients with benign nodules), using leave-one-subject-out (LOSO) for training/testing validation tests.PATIENTS AND METHODSIn a retrospective study of 55 patients with pathologically proven thyroid nodules, T2-weighted and diffusion-weighted MRI scans of the thyroid gland were acquired. Spatial maps of the apparent diffusion coefficient (ADC) were reconstructed in all cases. To quantify the nodules' morphology, we used spherical harmonics as a new parametric shape descriptor to describe the complexity of the thyroid nodules in addition to traditional volumetric descriptors (e.g., tumor volume and cuboidal volume). To capture the inhomogeneity of the texture of the thyroid nodules, we used the histogram-based statistics (e.g., kurtosis, entropy, skewness, etc.) of the T2-weighted signal. To achieve the main goal of this paper, a fusion system using an artificial neural network (NN) is proposed to integrate both the functional imaging features (ADC) with the structural morphology and texture features. This framework has been tested on 55 patients (20 patients with malignant nodules and 35 patients with benign nodules), using leave-one-subject-out (LOSO) for training/testing validation tests.The functionality, morphology, and texture imaging features were estimated for 55 patients. The accuracy of the computer-aided diagnosis (CAD) system steadily improved as we integrate the proposed imaging features. The fusion system combining all biomarkers achieved a sensitivity, specificity, positive predictive value, negative predictive value, F1-score, and accuracy of 92.9 % $92.9\%$ (confidence interval [CI]: 78.9 % -- 99.5 % $78.9\%\text{--}99.5\%$ ), 95.8 % $95.8\%$ (CI: 87.4 % -- 99.7 % $87.4\%\text{--}99.7\%$ ), 93 % $93\%$ (CI: 80.7 % -- 99.5 % $80.7\%\text{--}99.5\%$ ), 96 % $96\%$ (CI: 88.8 % -- 99.7 % $88.8\%\text{--}99.7\%$ ), 92.8 % $92.8\%$ (CI: 83.5 % -- 98.5 % $83.5\%\text{--}98.5\%$ ), and 95.5 % $95.5\%$ (CI: 88.8 % -- 99.2 % $88.8\%\text{--}99.2\%$ ), respectively, using the LOSO cross-validation approach.RESULTSThe functionality, morphology, and texture imaging features were estimated for 55 patients. The accuracy of the computer-aided diagnosis (CAD) system steadily improved as we integrate the proposed imaging features. The fusion system combining all biomarkers achieved a sensitivity, specificity, positive predictive value, negative predictive value, F1-score, and accuracy of 92.9 % $92.9\%$ (confidence interval [CI]: 78.9 % -- 99.5 % $78.9\%\text{--}99.5\%$ ), 95.8 % $95.8\%$ (CI: 87.4 % -- 99.7 % $87.4\%\text{--}99.7\%$ ), 93 % $93\%$ (CI: 80.7 % -- 99.5 % $80.7\%\text{--}99.5\%$ ), 96 % $96\%$ (CI: 88.8 % -- 99.7 % $88.8\%\text{--}99.7\%$ ), 92.8 % $92.8\%$ (CI: 83.5 % -- 98.5 % $83.5\%\text{--}98.5\%$ ), and 95.5 % $95.5\%$ (CI: 88.8 % -- 99.2 % $88.8\%\text{--}99.2\%$ ), respectively, using the LOSO cross-validation approach.The results demonstrated in this paper show the promise that integrating the functional features with morphology as well as texture features by using the current state-of-the-art machine learning approaches will be extremely useful for identifying thyroid nodules as well as diagnosing their malignancy.CONCLUSIONThe results demonstrated in this paper show the promise that integrating the functional features with morphology as well as texture features by using the current state-of-the-art machine learning approaches will be extremely useful for identifying thyroid nodules as well as diagnosing their malignancy. |
Author | Shaffie, Ahmed Naglah, Ahmed Ghazal, Mohammed Alrahmawy, Mohammed Soliman, Ahmed Sharafeldeen, Ahmed El‐Baz, Ayman Khalifa, Fahmi Taman, Saher Abdel Razek, Ahmed Abdel khalek Elmougy, Samir Elsharkawy, Mohamed Khaled, Reem Yousaf, Jawad Hussein, Manar Mansour |
Author_xml | – sequence: 1 givenname: Ahmed surname: Sharafeldeen fullname: Sharafeldeen, Ahmed organization: University of Louisville – sequence: 2 givenname: Mohamed surname: Elsharkawy fullname: Elsharkawy, Mohamed organization: University of Louisville – sequence: 3 givenname: Reem surname: Khaled fullname: Khaled, Reem organization: Mansoura University – sequence: 4 givenname: Ahmed surname: Shaffie fullname: Shaffie, Ahmed organization: University of Louisville – sequence: 5 givenname: Fahmi surname: Khalifa fullname: Khalifa, Fahmi organization: University of Louisville – sequence: 6 givenname: Ahmed surname: Soliman fullname: Soliman, Ahmed organization: University of Louisville – sequence: 7 givenname: Ahmed Abdel khalek surname: Abdel Razek fullname: Abdel Razek, Ahmed Abdel khalek organization: Mansoura University – sequence: 8 givenname: Manar Mansour surname: Hussein fullname: Hussein, Manar Mansour organization: Mansoura University – sequence: 9 givenname: Saher surname: Taman fullname: Taman, Saher organization: Mansoura University – sequence: 10 givenname: Ahmed surname: Naglah fullname: Naglah, Ahmed organization: University of Louisville – sequence: 11 givenname: Mohammed surname: Alrahmawy fullname: Alrahmawy, Mohammed organization: Mansoura University – sequence: 12 givenname: Samir surname: Elmougy fullname: Elmougy, Samir organization: Mansoura University – sequence: 13 givenname: Jawad surname: Yousaf fullname: Yousaf, Jawad organization: Abu Dhabi University – sequence: 14 givenname: Mohammed surname: Ghazal fullname: Ghazal, Mohammed organization: Abu Dhabi University – sequence: 15 givenname: Ayman surname: El‐Baz fullname: El‐Baz, Ayman email: aselba01@louisville.edu organization: University of Louisville |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34890061$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u1DAQxy1URLcFiSdAPnLJMv7KJkdUAUUqgkM5W157smvk2MFOVPbGI_CMPEndbgsXOM3X7z-jmTkjJzFFJOQlgzUD4G_Gac2U6PsnZMXlRjSSQ39CVgC9bLgEdUrOSvkGAK1Q8IycCtn1NWArMl_jj3nJSE10tOzNdOeZcCi-0DRQ54dhKT7F3z9_3aDf7Wd01I9m5-OODinTeX_IyTsak1sCFmqDKcUP3pq5qmjVVnA0du8j0oAmx5p4Tp4OJhR88WDPydf3764vLpurzx8-Xry9aqzgrG8ktMq1nQQGDFuJqIQTG8G31rJNy4yQqpe1Kpg1rei2244bVLyzUpoOnBTn5PWx75TT9wXLrEdfLIZgIqalaN5Cp8RGCajoqwd02Y7o9JTrlvmgHy9VgfURsDmVknHQ1s_3S87Z-KAZ6LtX6HHS96_4O_yP4LHnP9DmiN74gIf_cvrTlyN_CxQ-mDs |
CitedBy_id | crossref_primary_10_1038_s41598_023_51053_9 crossref_primary_10_1002_jbio_202200385 crossref_primary_10_3390_s24186104 crossref_primary_10_1186_s40644_024_00721_8 crossref_primary_10_1016_j_acra_2023_12_034 crossref_primary_10_3389_fonc_2024_1241776 crossref_primary_10_3390_s22093490 crossref_primary_10_1016_j_ejrad_2024_111499 crossref_primary_10_3390_cancers14071840 crossref_primary_10_3390_computers14020036 crossref_primary_10_1007_s42979_023_02504_7 crossref_primary_10_1186_s12885_024_11995_3 crossref_primary_10_1109_ACCESS_2024_3432459 crossref_primary_10_1089_thy_2023_0132 crossref_primary_10_3389_fonc_2022_976168 crossref_primary_10_3390_cancers15215216 |
Cites_doi | 10.2214/AJR.19.21626 10.1089/thy.2015.0020 10.1016/j.ultrasmedbio.2016.01.013 10.1159/000478927 10.1613/jair.953 10.21037/gs.2018.01.03 10.1002/mrm.25743 10.2214/AJR.15.15813 10.7863/jum.2011.30.9.1259 10.1097/RMR.0b013e318572b76 10.1097/MD.0000000000014298 10.1136/bmjopen-2015-008413 10.7314/APJCP.2013.14.1.97 10.1002/cam4.2653 10.1109/ICIP.2018.8451595 10.1148/radiol.2020191145 10.2214/AJR.18.20740 10.1177/0284185118813599 10.1016/j.crad.2017.12.008 10.1016/j.acra.2019.12.015 10.1109/83.236536 10.5152/dir.2018.18130 10.1007/s00330-020-06781-1 10.1016/j.ejrad.2019.02.029 10.1097/MD.0000000000015133 10.5694/mja17.01204 10.1016/j.rcl.2019.01.001 10.1016/j.ejrad.2017.12.004 10.1097/00005537-200111000-00006 10.1016/j.cireng.2018.07.013 10.1109/TMI.2007.892519 10.2214/AJR.14.13825 10.1016/j.crad.2020.07.018 10.1016/j.ejrad.2019.07.018 10.1016/j.compmedimag.2008.10.010 10.1109/ICIP.2017.8296506 10.1007/s11548-018-1796-5 10.3174/ajnr.A0849 10.7785/tcrt.2012.500430 10.1148/rg.2019190026 10.1111/1467-9884.00122 10.1016/j.ejrad.2019.108755 10.1016/j.suc.2019.04.001 10.3174/ajnr.A1338 10.1002/j.1538-7305.1948.tb01338.x |
ContentType | Journal Article |
Copyright | 2021 American Association of Physicists in Medicine 2021 American Association of Physicists in Medicine. |
Copyright_xml | – notice: 2021 American Association of Physicists in Medicine – notice: 2021 American Association of Physicists in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/mp.15399 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 2473-4209 |
EndPage | 999 |
ExternalDocumentID | 34890061 10_1002_mp_15399 MP15399 |
Genre | article Journal Article |
GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3219-4065d6840101e64ee53d3732bcc1761a3459440131ca638bb82ae528c44a80d43 |
ISSN | 0094-2405 2473-4209 |
IngestDate | Fri Jul 11 03:20:31 EDT 2025 Wed Feb 19 02:27:18 EST 2025 Thu Apr 24 22:55:45 EDT 2025 Tue Jul 01 03:54:47 EDT 2025 Wed Jan 22 16:25:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | thyroid tumors T2-MRI apparent diffusion coefficient (ADC) neural network (NN) spherical harmonic (SH) textural analysis diffusion-weighted MRI |
Language | English |
License | 2021 American Association of Physicists in Medicine. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3219-4065d6840101e64ee53d3732bcc1761a3459440131ca638bb82ae528c44a80d43 |
Notes | Authors Ahmed Sharafeldeen, Mohamed Elsharkawy, and Reem Khaled contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34890061 |
PQID | 2608537530 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2608537530 pubmed_primary_34890061 crossref_citationtrail_10_1002_mp_15399 crossref_primary_10_1002_mp_15399 wiley_primary_10_1002_mp_15399_MP15399 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 2022-Feb 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Medical physics (Lancaster) |
PublicationTitleAlternate | Med Phys |
PublicationYear | 2022 |
References | 2002; 16 2017; 6 2019; 99 2019; 98 2019; 57 2016; 75 2018; 209 2020; 122 2020; 12 2020; 11 1993; 2 2011; 6893 1998; 47 2018; 7 2019; 60 2013; 14 2013; 16 2020; 295 2008; 29 2016; 42 2014; 14 2019; 113 2018; 73 1985; 93 2019; 118 2007; 26 1948; 27 2019; 8 2007; 18 2016; 207 2020; 83 2019; 39 2009 2011; 30 2008 2005 2015; 205 2015; 8 2018; 24 2001; 111 2009; 33 2016; 6 2009; 30 2020; 30 2020; 27 2018 2019; 213 2017 2018; 96 2018; 99 2016; 26 2018; 13 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 Johnson RR (e_1_2_8_44_1) 2008 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 Adam A (e_1_2_8_39_1) 2020; 83 Kale S (e_1_2_8_38_1) 2013; 16 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 Mistry R (e_1_2_8_7_1) 2020; 12 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 Bihan DL (e_1_2_8_47_1) 1985; 93 e_1_2_8_16_1 e_1_2_8_37_1 Ardakani AA (e_1_2_8_8_1) 2015; 8 El‐Baz A (e_1_2_8_48_1) 2011; 6893 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 30 start-page: 4695 year: 2020 end-page: 4704 article-title: CT texture analysis of acetabular subchondral bone can discriminate between normal and cam‐positive hips publication-title: Eur Radiol – year: 2018 article-title: A Novel autoencoder‐based diagnostic system for early assessment of lung cancer – volume: 213 start-page: 169 year: 2019 end-page: 174 article-title: Diagnostic performance evaluation of a computer‐assisted imaging analysis system for ultrasound risk stratification of thyroid nodules publication-title: Am J Roentgenol – volume: 6 year: 2016 article-title: Diffusion‐weighted MRI in differentiating malignant from benign thyroid nodules: a meta‐analysis publication-title: BMJ Open – volume: 213 start-page: 1348 year: 2019 end-page: 1357 article-title: Prediction of immunohistochemistry of suspected thyroid nodules by use of machine learning‐based radiomics publication-title: Am J Roentgenol – volume: 99 start-page: 571 year: 2019 end-page: 586 article-title: Evaluation of thyroid nodules publication-title: Surg Clin North Am – volume: 12 year: 2020 article-title: Ultrasound classification of thyroid nodules: a systematic review publication-title: Cureus – volume: 14 start-page: 97 year: 2013 end-page: 102 article-title: Support vector machine based diagnostic system for thyroid cancer using statistical texture features publication-title: Asian Pac J Cancer Prev – volume: 7 start-page: 111 year: 2018 end-page: 116 article-title: Which needle in the treatment of thyroid nodules? publication-title: Gland Surg – volume: 111 start-page: 1905 year: 2001 end-page: 1909 article-title: MRI detection of cervical metastasis from differentiated thyroid carcinoma publication-title: Laryngoscope – volume: 6893 start-page: 175 year: 2011 end-page: 182 article-title: 3D shape analysis for early diagnosis of malignant lung nodules publication-title: Med Image Comput Comput Assist Interv – volume: 8 start-page: 116 year: 2015 end-page: 124 article-title: Application of texture analysis method for classification of benign and malignant thyroid nodules in ultrasound images publication-title: Iran J Cancer Prev – volume: 295 start-page: 328 issue: 2 year: 2020 end-page: 338 article-title: The image biomarker standardization initiative: Standardized quantitative radiomics for high‐throughput image‐based phenotyping publication-title: Radiology – year: 2009 article-title: Tetrahedral mesh generation from volumetric binary and grayscale images – volume: 18 start-page: 293 year: 2007 end-page: 302 article-title: Magnetic resonance imaging of thyroid cancer publication-title: Top Magn Reson Imaging – volume: 93 start-page: 27 year: 1985 end-page: 34 article-title: Imagerie de diffusion in‐vivo par résonance magnétique nucléaire publication-title: Comptes‐Rendus de l'Académie des Sci – volume: 207 start-page: 859 year: 2016 end-page: 864 article-title: Classifier model based on machine learning algorithms: application to differential diagnosis of suspicious thyroid nodules via sonography publication-title: Am J Roentgenol – volume: 96 start-page: 395 year: 2018 end-page: 400 article-title: Current use of molecular profiling for indeterminate thyroid nodules publication-title: Cirugía Española (English Edition) – volume: 26 start-page: 566 year: 2007 end-page: 581 article-title: Weighted fourier series representation and its application to quantifying the amount of gray matter publication-title: IEEE Trans Med Imaging – year: 2008 – volume: 99 start-page: 1 year: 2018 end-page: 8 article-title: Texture analysis and machine learning to characterize suspected thyroid nodules and differentiated thyroid cancer: Where do we stand? publication-title: Eur J Radiol – volume: 39 start-page: 2040 year: 2019 end-page: 2052 article-title: ACR TI‐RADS: Pitfalls, solutions, and future directions publication-title: RadioGraphics – volume: 27 start-page: 379 year: 1948 end-page: 423 article-title: A mathematical theory of communication publication-title: Bell Syst Tech J – volume: 13 start-page: 1617 year: 2018 end-page: 1627 article-title: Comparison of the application of B‐mode and strain elastography ultrasound in the estimation of lymph node metastasis of papillary thyroid carcinoma based on a radiomics approach publication-title: Int J Comput Assist Radiol Surg – volume: 209 start-page: 92 year: 2018 end-page: 98 article-title: Thyroid nodules: diagnosis and management publication-title: Med J Aust – volume: 73 start-page: 591.e1 year: 2018 end-page: 591.e7 article-title: Histogram analysis of greyscale sonograms to differentiate between the subtypes of follicular variant of papillary thyroid cancer publication-title: Clin Radiol – volume: 98 year: 2019 article-title: Diagnostic value of high b‐value (2000 s/mm2) DWI for thyroid micronodules publication-title: Medicine – volume: 27 start-page: 1422 year: 2020 end-page: 1429 article-title: Prediction of benign and malignant solid renal masses: machine learning‐based CT texture analysis publication-title: Acad Radiol – volume: 30 start-page: 417 year: 2009 end-page: 422 article-title: Can quantitative diffusion‐weighted MR imaging differentiate benign and malignant cold thyroid nodules? Initial results in 25 patients publication-title: Am J Neuroradiol – volume: 57 start-page: 469 year: 2019 end-page: 483 article-title: Sonography of the thyroid publication-title: Radiol Clin North Am – year: 2005 article-title: Generalized nonnegative matrix approximations with Bregman divergences – volume: 118 start-page: 231 year: 2019 end-page: 238 article-title: Radiomic analysis for preoperative prediction of cervical lymph node metastasis in patients with papillary thyroid carcinoma publication-title: Eur J Radiol – volume: 14 start-page: 653 year: 2014 end-page: 662 article-title: Development of an automated medical diagnosis system for classifying thyroid tumor cells using multiple classifier fusion publication-title: Technol Cancer Res Treat – volume: 26 start-page: 1 year: 2016 end-page: 33 article-title: 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer publication-title: Thyroid – volume: 47 start-page: 183 year: 1998 end-page: 189 article-title: Comparing measures of sample skewness and kurtosis publication-title: J R Stat Soc Ser D (The Statistician) – volume: 83 start-page: 17489 year: 2020 end-page: 17497 article-title: Injecting tissue texture and morphology comprehension into algorithm for cancer grading publication-title: Test Eng Manage – volume: 98 year: 2019 article-title: Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules publication-title: Medicine – volume: 60 start-page: 1127 year: 2019 end-page: 1134 article-title: Application of whole‐lesion intravoxel incoherent motion analysis using iZOOM DWI to differentiate malignant from benign thyroid nodules publication-title: Acta Radiol – volume: 29 start-page: 563 year: 2008 end-page: 568 article-title: Role of apparent diffusion coefficient values in differentiation between malignant and benign solitary thyroid nodules publication-title: Am J Neuroradiol – volume: 24 start-page: 348 year: 2018 end-page: 356 article-title: Efficacy of apparent diffusion coefficient in predicting aggressive histological features of papillary thyroid carcinoma publication-title: Diagn Interv Radiol – volume: 75 start-page: 1708 year: 2016 end-page: 1716 article-title: Multi‐institutional validation of a novel textural analysis tool for preoperative stratification of suspected thyroid tumors on diffusion‐weighted MRI publication-title: Magn Reson Med – volume: 11 start-page: 878.e13 year: 2020 end-page: 878.e19 article-title: Differentiation of follicular carcinomas from adenomas using histogram obtained from diffusion‐weighted MRI publication-title: Clin Radiol – volume: 122 year: 2020 article-title: Machine learning‐based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma publication-title: Eur J Radiol – volume: 2 start-page: 296 year: 1993 end-page: 310 article-title: A generalized Gaussian image model for edge‐preserving MAP estimation publication-title: IEEE Trans Image Process – volume: 16 start-page: 33 year: 2013 end-page: 38 article-title: Texture analysis of thyroid ultrasound images for diagnosis of benign and malignant nodule using scaled conjugate gradient backpropagation training neural network publication-title: Int J Comput Eng Manage – year: 2017 article-title: A new framework for incorporating appearance and shape features of lung nodules for precise diagnosis of lung cancer – volume: 205 start-page: W343 year: 2015 end-page: W351 article-title: Application of texture analysis in the differential diagnosis of benign and malignant thyroid nodules: comparison with gray‐scale ultrasound and elastography publication-title: Am J Roentgenol – volume: 16 start-page: 321 year: 2002 end-page: 357 article-title: SMOTE: synthetic minority over‐sampling technique publication-title: J Artificial Intelligence Res – volume: 30 start-page: 1259 year: 2011 end-page: 1266 article-title: Quantitative measurement for thyroid cancer characterization based on elastography publication-title: J Ultrasound Med – volume: 113 start-page: 251 year: 2019 end-page: 257 article-title: Comparison between linear and nonlinear machine‐learning algorithms for the classification of thyroid nodules publication-title: Eur J Radiol – volume: 42 start-page: 1671 year: 2016 end-page: 1680 article-title: Feasibility study of texture analysis using ultrasound shear wave elastography to predict malignancy in thyroid nodules publication-title: Ultrasound Med Biol – volume: 33 start-page: 91 year: 2009 end-page: 99 article-title: Morphological and wavelet features towards sonographic thyroid nodules evaluation publication-title: Comput Med Imaging Graph – volume: 6 start-page: 225 year: 2017 end-page: 237 article-title: European thyroid association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: the EU‐TIRADS publication-title: Eur Thyroid J – volume: 8 start-page: 7644 year: 2019 end-page: 7649 article-title: The diagnostic value of the ultrasound gray scale ratio for different sizes of thyroid nodules publication-title: Cancer Med – volume: 6893 start-page: 175 year: 2011 ident: e_1_2_8_48_1 article-title: 3D shape analysis for early diagnosis of malignant lung nodules publication-title: Med Image Comput Comput Assist Interv – ident: e_1_2_8_32_1 doi: 10.2214/AJR.19.21626 – ident: e_1_2_8_15_1 doi: 10.1089/thy.2015.0020 – ident: e_1_2_8_13_1 doi: 10.1016/j.ultrasmedbio.2016.01.013 – ident: e_1_2_8_16_1 doi: 10.1159/000478927 – volume: 93 start-page: 27 year: 1985 ident: e_1_2_8_47_1 article-title: Imagerie de diffusion in‐vivo par résonance magnétique nucléaire publication-title: Comptes‐Rendus de l'Académie des Sci – ident: e_1_2_8_54_1 – ident: e_1_2_8_55_1 doi: 10.1613/jair.953 – ident: e_1_2_8_5_1 doi: 10.21037/gs.2018.01.03 – ident: e_1_2_8_30_1 doi: 10.1002/mrm.25743 – ident: e_1_2_8_33_1 doi: 10.2214/AJR.15.15813 – ident: e_1_2_8_11_1 doi: 10.7863/jum.2011.30.9.1259 – volume-title: Just the Essentials of Elementary Statistics year: 2008 ident: e_1_2_8_44_1 – ident: e_1_2_8_19_1 doi: 10.1097/RMR.0b013e318572b76 – volume: 16 start-page: 33 year: 2013 ident: e_1_2_8_38_1 article-title: Texture analysis of thyroid ultrasound images for diagnosis of benign and malignant nodule using scaled conjugate gradient backpropagation training neural network publication-title: Int J Comput Eng Manage – ident: e_1_2_8_21_1 doi: 10.1097/MD.0000000000014298 – ident: e_1_2_8_25_1 doi: 10.1136/bmjopen-2015-008413 – ident: e_1_2_8_9_1 doi: 10.7314/APJCP.2013.14.1.97 – ident: e_1_2_8_34_1 doi: 10.1002/cam4.2653 – volume: 12 year: 2020 ident: e_1_2_8_7_1 article-title: Ultrasound classification of thyroid nodules: a systematic review publication-title: Cureus – ident: e_1_2_8_50_1 doi: 10.1109/ICIP.2018.8451595 – ident: e_1_2_8_27_1 doi: 10.1148/radiol.2020191145 – volume: 8 start-page: 116 year: 2015 ident: e_1_2_8_8_1 article-title: Application of texture analysis method for classification of benign and malignant thyroid nodules in ultrasound images publication-title: Iran J Cancer Prev – ident: e_1_2_8_18_1 doi: 10.2214/AJR.18.20740 – ident: e_1_2_8_24_1 doi: 10.1177/0284185118813599 – ident: e_1_2_8_37_1 doi: 10.1016/j.crad.2017.12.008 – ident: e_1_2_8_41_1 doi: 10.1016/j.acra.2019.12.015 – ident: e_1_2_8_51_1 doi: 10.1109/83.236536 – ident: e_1_2_8_22_1 doi: 10.5152/dir.2018.18130 – ident: e_1_2_8_40_1 doi: 10.1007/s00330-020-06781-1 – ident: e_1_2_8_35_1 doi: 10.1016/j.ejrad.2019.02.029 – ident: e_1_2_8_28_1 doi: 10.1097/MD.0000000000015133 – ident: e_1_2_8_2_1 doi: 10.5694/mja17.01204 – ident: e_1_2_8_6_1 doi: 10.1016/j.rcl.2019.01.001 – ident: e_1_2_8_29_1 doi: 10.1016/j.ejrad.2017.12.004 – ident: e_1_2_8_20_1 doi: 10.1097/00005537-200111000-00006 – ident: e_1_2_8_4_1 doi: 10.1016/j.cireng.2018.07.013 – ident: e_1_2_8_53_1 doi: 10.1109/TMI.2007.892519 – ident: e_1_2_8_14_1 doi: 10.2214/AJR.14.13825 – ident: e_1_2_8_52_1 – ident: e_1_2_8_42_1 doi: 10.1016/j.crad.2020.07.018 – ident: e_1_2_8_31_1 doi: 10.1016/j.ejrad.2019.07.018 – ident: e_1_2_8_12_1 doi: 10.1016/j.compmedimag.2008.10.010 – ident: e_1_2_8_49_1 doi: 10.1109/ICIP.2017.8296506 – ident: e_1_2_8_36_1 doi: 10.1007/s11548-018-1796-5 – ident: e_1_2_8_23_1 doi: 10.3174/ajnr.A0849 – ident: e_1_2_8_10_1 doi: 10.7785/tcrt.2012.500430 – ident: e_1_2_8_17_1 doi: 10.1148/rg.2019190026 – volume: 83 start-page: 17489 year: 2020 ident: e_1_2_8_39_1 article-title: Injecting tissue texture and morphology comprehension into algorithm for cancer grading publication-title: Test Eng Manage – ident: e_1_2_8_45_1 doi: 10.1111/1467-9884.00122 – ident: e_1_2_8_43_1 doi: 10.1016/j.ejrad.2019.108755 – ident: e_1_2_8_3_1 doi: 10.1016/j.suc.2019.04.001 – ident: e_1_2_8_26_1 doi: 10.3174/ajnr.A1338 – ident: e_1_2_8_46_1 doi: 10.1002/j.1538-7305.1948.tb01338.x |
SSID | ssj0006350 |
Score | 2.4915395 |
Snippet | Purpose
To assess whether the integration between (a) functional imaging features that will be extracted from diffusion‐weighted imaging (DWI); and (b) shape... To assess whether the integration between (a) functional imaging features that will be extracted from diffusion-weighted imaging (DWI); and (b) shape and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 988 |
SubjectTerms | apparent diffusion coefficient (ADC) Diffusion Magnetic Resonance Imaging diffusion‐weighted MRI Humans Machine Learning Magnetic Resonance Imaging neural network (NN) Retrospective Studies spherical harmonic (SH) T2‐MRI textural analysis Thyroid Nodule - diagnostic imaging thyroid tumors |
Title | Texture and shape analysis of diffusion‐weighted imaging for thyroid nodules classification using machine learning |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.15399 https://www.ncbi.nlm.nih.gov/pubmed/34890061 https://www.proquest.com/docview/2608537530 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJ9BeEIyvjg8ZCcHDlC2xna_HCjZN0I5JtFLfIidx6ESTVG2jAX8956-0VYs0eEkjx3Ks3K_n353Pdwi9K0RGSM5jh4o8cpgfCYcDa3UEzDoIwPKhQvo7hlfB5Zh9nviTTufnRtRSs0pPs997z5X8j1ShDeQqT8n-g2TbQaEB7kG-cAUJw_VuMgbNajcAllM-l3frHCOy9kkjnWHOrfJ_ArW8KXVRIh1b-GtR3-QnVZ03M7E8ySSPloFDGhKNciKUKtZS2OIS3ze5rN3j0c4R5b2VJ6q5rvXROhhUSuhCzHKhNVx_WpoDVSpkBOa9-MFvlayH9ZRvPPwyhdVLBwQJ42HW4xWF3lVZD2X8FmDyum0MiFJvhIXUYcTV0xF72ox-1ilNDQ7JhrKNdUHAnUVAJ5Ut56eeTLu7Xujs5v7V1-RiPBgko_PJ6B46IGBgkC466H8aDr61qzgQMemfa2dkExe75MyOvE1lduyTbXNH8ZXRI_TQGBq4r1HzGHVEdYQeDE0oxRG6f63F9gQtDIwwwAgrGGELI1wXeBdG2MAIA4ywgRE2MMLbMMIKRtjACFsYPUXji_PRx0vHlOJwMgprmgO0z89lXiDQ4CJgQvg0pyElaZZ5YeBxyvyYSVPdyzho9DSNCBc-iTLGeOTmjD5D3aquxAuEqR_n3At5IIDJhtAn9oFJhRnYzbmbemkPfbBfNclMnnpZLmWW6AzbJCnnifr-PfS27TnXuVn29bGCSUBxyt0wXom6WSZgyANVhbe6PfRcS6wdhbIoluS-h94rEf51-GR4rX6P7_Cal-hw_T94hbqrRSNeA6NdpW8M-P4Ah9yk9w |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Texture+and+shape+analysis+of+diffusion-weighted+imaging+for+thyroid+nodules+classification+using+machine+learning&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Sharafeldeen%2C+Ahmed&rft.au=Elsharkawy%2C+Mohamed&rft.au=Khaled%2C+Reem&rft.au=Shaffie%2C+Ahmed&rft.date=2022-02-01&rft.issn=2473-4209&rft.eissn=2473-4209&rft.volume=49&rft.issue=2&rft.spage=988&rft_id=info:doi/10.1002%2Fmp.15399&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |