Texture and shape analysis of diffusion‐weighted imaging for thyroid nodules classification using machine learning

Purpose To assess whether the integration between (a) functional imaging features that will be extracted from diffusion‐weighted imaging (DWI); and (b) shape and texture imaging features as well as volumetric features that will be extracted from T2‐weighted magnetic resonance imaging (MRI) can nonin...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 49; no. 2; pp. 988 - 999
Main Authors Sharafeldeen, Ahmed, Elsharkawy, Mohamed, Khaled, Reem, Shaffie, Ahmed, Khalifa, Fahmi, Soliman, Ahmed, Abdel Razek, Ahmed Abdel khalek, Hussein, Manar Mansour, Taman, Saher, Naglah, Ahmed, Alrahmawy, Mohammed, Elmougy, Samir, Yousaf, Jawad, Ghazal, Mohammed, El‐Baz, Ayman
Format Journal Article
LanguageEnglish
Published United States 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To assess whether the integration between (a) functional imaging features that will be extracted from diffusion‐weighted imaging (DWI); and (b) shape and texture imaging features as well as volumetric features that will be extracted from T2‐weighted magnetic resonance imaging (MRI) can noninvasively improve the diagnostic accuracy of thyroid nodules classification. Patients and methods In a retrospective study of 55 patients with pathologically proven thyroid nodules, T2‐weighted and diffusion‐weighted MRI scans of the thyroid gland were acquired. Spatial maps of the apparent diffusion coefficient (ADC) were reconstructed in all cases. To quantify the nodules' morphology, we used spherical harmonics as a new parametric shape descriptor to describe the complexity of the thyroid nodules in addition to traditional volumetric descriptors (e.g., tumor volume and cuboidal volume). To capture the inhomogeneity of the texture of the thyroid nodules, we used the histogram‐based statistics (e.g., kurtosis, entropy, skewness, etc.) of the T2‐weighted signal. To achieve the main goal of this paper, a fusion system using an artificial neural network (NN) is proposed to integrate both the functional imaging features (ADC) with the structural morphology and texture features. This framework has been tested on 55 patients (20 patients with malignant nodules and 35 patients with benign nodules), using leave‐one‐subject‐out (LOSO) for training/testing validation tests. Results The functionality, morphology, and texture imaging features were estimated for 55 patients. The accuracy of the computer‐aided diagnosis (CAD) system steadily improved as we integrate the proposed imaging features. The fusion system combining all biomarkers achieved a sensitivity, specificity, positive predictive value, negative predictive value, F1‐score, and accuracy of 92.9%$92.9\%$ (confidence interval [CI]: 78.9%--99.5%$78.9\%\text{--}99.5\%$), 95.8%$95.8\%$ (CI: 87.4%--99.7%$87.4\%\text{--}99.7\%$), 93%$93\%$ (CI: 80.7%--99.5%$80.7\%\text{--}99.5\%$), 96%$96\%$ (CI: 88.8%--99.7%$88.8\%\text{--}99.7\%$), 92.8%$92.8\%$ (CI: 83.5%--98.5%$83.5\%\text{--}98.5\%$), and 95.5%$95.5\%$ (CI: 88.8%--99.2%$88.8\%\text{--}99.2\%$), respectively, using the LOSO cross‐validation approach. Conclusion The results demonstrated in this paper show the promise that integrating the functional features with morphology as well as texture features by using the current state‐of‐the‐art machine learning approaches will be extremely useful for identifying thyroid nodules as well as diagnosing their malignancy.
AbstractList To assess whether the integration between (a) functional imaging features that will be extracted from diffusion-weighted imaging (DWI); and (b) shape and texture imaging features as well as volumetric features that will be extracted from T2-weighted magnetic resonance imaging (MRI) can noninvasively improve the diagnostic accuracy of thyroid nodules classification. In a retrospective study of 55 patients with pathologically proven thyroid nodules, T2-weighted and diffusion-weighted MRI scans of the thyroid gland were acquired. Spatial maps of the apparent diffusion coefficient (ADC) were reconstructed in all cases. To quantify the nodules' morphology, we used spherical harmonics as a new parametric shape descriptor to describe the complexity of the thyroid nodules in addition to traditional volumetric descriptors (e.g., tumor volume and cuboidal volume). To capture the inhomogeneity of the texture of the thyroid nodules, we used the histogram-based statistics (e.g., kurtosis, entropy, skewness, etc.) of the T2-weighted signal. To achieve the main goal of this paper, a fusion system using an artificial neural network (NN) is proposed to integrate both the functional imaging features (ADC) with the structural morphology and texture features. This framework has been tested on 55 patients (20 patients with malignant nodules and 35 patients with benign nodules), using leave-one-subject-out (LOSO) for training/testing validation tests. The functionality, morphology, and texture imaging features were estimated for 55 patients. The accuracy of the computer-aided diagnosis (CAD) system steadily improved as we integrate the proposed imaging features. The fusion system combining all biomarkers achieved a sensitivity, specificity, positive predictive value, negative predictive value, F1-score, and accuracy of (confidence interval [CI]: ), (CI: ), (CI: ), (CI: ), (CI: ), and (CI: ), respectively, using the LOSO cross-validation approach. The results demonstrated in this paper show the promise that integrating the functional features with morphology as well as texture features by using the current state-of-the-art machine learning approaches will be extremely useful for identifying thyroid nodules as well as diagnosing their malignancy.
Purpose To assess whether the integration between (a) functional imaging features that will be extracted from diffusion‐weighted imaging (DWI); and (b) shape and texture imaging features as well as volumetric features that will be extracted from T2‐weighted magnetic resonance imaging (MRI) can noninvasively improve the diagnostic accuracy of thyroid nodules classification. Patients and methods In a retrospective study of 55 patients with pathologically proven thyroid nodules, T2‐weighted and diffusion‐weighted MRI scans of the thyroid gland were acquired. Spatial maps of the apparent diffusion coefficient (ADC) were reconstructed in all cases. To quantify the nodules' morphology, we used spherical harmonics as a new parametric shape descriptor to describe the complexity of the thyroid nodules in addition to traditional volumetric descriptors (e.g., tumor volume and cuboidal volume). To capture the inhomogeneity of the texture of the thyroid nodules, we used the histogram‐based statistics (e.g., kurtosis, entropy, skewness, etc.) of the T2‐weighted signal. To achieve the main goal of this paper, a fusion system using an artificial neural network (NN) is proposed to integrate both the functional imaging features (ADC) with the structural morphology and texture features. This framework has been tested on 55 patients (20 patients with malignant nodules and 35 patients with benign nodules), using leave‐one‐subject‐out (LOSO) for training/testing validation tests. Results The functionality, morphology, and texture imaging features were estimated for 55 patients. The accuracy of the computer‐aided diagnosis (CAD) system steadily improved as we integrate the proposed imaging features. The fusion system combining all biomarkers achieved a sensitivity, specificity, positive predictive value, negative predictive value, F1‐score, and accuracy of 92.9%$92.9\%$ (confidence interval [CI]: 78.9%--99.5%$78.9\%\text{--}99.5\%$), 95.8%$95.8\%$ (CI: 87.4%--99.7%$87.4\%\text{--}99.7\%$), 93%$93\%$ (CI: 80.7%--99.5%$80.7\%\text{--}99.5\%$), 96%$96\%$ (CI: 88.8%--99.7%$88.8\%\text{--}99.7\%$), 92.8%$92.8\%$ (CI: 83.5%--98.5%$83.5\%\text{--}98.5\%$), and 95.5%$95.5\%$ (CI: 88.8%--99.2%$88.8\%\text{--}99.2\%$), respectively, using the LOSO cross‐validation approach. Conclusion The results demonstrated in this paper show the promise that integrating the functional features with morphology as well as texture features by using the current state‐of‐the‐art machine learning approaches will be extremely useful for identifying thyroid nodules as well as diagnosing their malignancy.
To assess whether the integration between (a) functional imaging features that will be extracted from diffusion-weighted imaging (DWI); and (b) shape and texture imaging features as well as volumetric features that will be extracted from T2-weighted magnetic resonance imaging (MRI) can noninvasively improve the diagnostic accuracy of thyroid nodules classification.PURPOSETo assess whether the integration between (a) functional imaging features that will be extracted from diffusion-weighted imaging (DWI); and (b) shape and texture imaging features as well as volumetric features that will be extracted from T2-weighted magnetic resonance imaging (MRI) can noninvasively improve the diagnostic accuracy of thyroid nodules classification.In a retrospective study of 55 patients with pathologically proven thyroid nodules, T2-weighted and diffusion-weighted MRI scans of the thyroid gland were acquired. Spatial maps of the apparent diffusion coefficient (ADC) were reconstructed in all cases. To quantify the nodules' morphology, we used spherical harmonics as a new parametric shape descriptor to describe the complexity of the thyroid nodules in addition to traditional volumetric descriptors (e.g., tumor volume and cuboidal volume). To capture the inhomogeneity of the texture of the thyroid nodules, we used the histogram-based statistics (e.g., kurtosis, entropy, skewness, etc.) of the T2-weighted signal. To achieve the main goal of this paper, a fusion system using an artificial neural network (NN) is proposed to integrate both the functional imaging features (ADC) with the structural morphology and texture features. This framework has been tested on 55 patients (20 patients with malignant nodules and 35 patients with benign nodules), using leave-one-subject-out (LOSO) for training/testing validation tests.PATIENTS AND METHODSIn a retrospective study of 55 patients with pathologically proven thyroid nodules, T2-weighted and diffusion-weighted MRI scans of the thyroid gland were acquired. Spatial maps of the apparent diffusion coefficient (ADC) were reconstructed in all cases. To quantify the nodules' morphology, we used spherical harmonics as a new parametric shape descriptor to describe the complexity of the thyroid nodules in addition to traditional volumetric descriptors (e.g., tumor volume and cuboidal volume). To capture the inhomogeneity of the texture of the thyroid nodules, we used the histogram-based statistics (e.g., kurtosis, entropy, skewness, etc.) of the T2-weighted signal. To achieve the main goal of this paper, a fusion system using an artificial neural network (NN) is proposed to integrate both the functional imaging features (ADC) with the structural morphology and texture features. This framework has been tested on 55 patients (20 patients with malignant nodules and 35 patients with benign nodules), using leave-one-subject-out (LOSO) for training/testing validation tests.The functionality, morphology, and texture imaging features were estimated for 55 patients. The accuracy of the computer-aided diagnosis (CAD) system steadily improved as we integrate the proposed imaging features. The fusion system combining all biomarkers achieved a sensitivity, specificity, positive predictive value, negative predictive value, F1-score, and accuracy of 92.9 % $92.9\%$ (confidence interval [CI]: 78.9 % -- 99.5 % $78.9\%\text{--}99.5\%$ ), 95.8 % $95.8\%$ (CI: 87.4 % -- 99.7 % $87.4\%\text{--}99.7\%$ ), 93 % $93\%$ (CI: 80.7 % -- 99.5 % $80.7\%\text{--}99.5\%$ ), 96 % $96\%$ (CI: 88.8 % -- 99.7 % $88.8\%\text{--}99.7\%$ ), 92.8 % $92.8\%$ (CI: 83.5 % -- 98.5 % $83.5\%\text{--}98.5\%$ ), and 95.5 % $95.5\%$ (CI: 88.8 % -- 99.2 % $88.8\%\text{--}99.2\%$ ), respectively, using the LOSO cross-validation approach.RESULTSThe functionality, morphology, and texture imaging features were estimated for 55 patients. The accuracy of the computer-aided diagnosis (CAD) system steadily improved as we integrate the proposed imaging features. The fusion system combining all biomarkers achieved a sensitivity, specificity, positive predictive value, negative predictive value, F1-score, and accuracy of 92.9 % $92.9\%$ (confidence interval [CI]: 78.9 % -- 99.5 % $78.9\%\text{--}99.5\%$ ), 95.8 % $95.8\%$ (CI: 87.4 % -- 99.7 % $87.4\%\text{--}99.7\%$ ), 93 % $93\%$ (CI: 80.7 % -- 99.5 % $80.7\%\text{--}99.5\%$ ), 96 % $96\%$ (CI: 88.8 % -- 99.7 % $88.8\%\text{--}99.7\%$ ), 92.8 % $92.8\%$ (CI: 83.5 % -- 98.5 % $83.5\%\text{--}98.5\%$ ), and 95.5 % $95.5\%$ (CI: 88.8 % -- 99.2 % $88.8\%\text{--}99.2\%$ ), respectively, using the LOSO cross-validation approach.The results demonstrated in this paper show the promise that integrating the functional features with morphology as well as texture features by using the current state-of-the-art machine learning approaches will be extremely useful for identifying thyroid nodules as well as diagnosing their malignancy.CONCLUSIONThe results demonstrated in this paper show the promise that integrating the functional features with morphology as well as texture features by using the current state-of-the-art machine learning approaches will be extremely useful for identifying thyroid nodules as well as diagnosing their malignancy.
Author Shaffie, Ahmed
Naglah, Ahmed
Ghazal, Mohammed
Alrahmawy, Mohammed
Soliman, Ahmed
Sharafeldeen, Ahmed
El‐Baz, Ayman
Khalifa, Fahmi
Taman, Saher
Abdel Razek, Ahmed Abdel khalek
Elmougy, Samir
Elsharkawy, Mohamed
Khaled, Reem
Yousaf, Jawad
Hussein, Manar Mansour
Author_xml – sequence: 1
  givenname: Ahmed
  surname: Sharafeldeen
  fullname: Sharafeldeen, Ahmed
  organization: University of Louisville
– sequence: 2
  givenname: Mohamed
  surname: Elsharkawy
  fullname: Elsharkawy, Mohamed
  organization: University of Louisville
– sequence: 3
  givenname: Reem
  surname: Khaled
  fullname: Khaled, Reem
  organization: Mansoura University
– sequence: 4
  givenname: Ahmed
  surname: Shaffie
  fullname: Shaffie, Ahmed
  organization: University of Louisville
– sequence: 5
  givenname: Fahmi
  surname: Khalifa
  fullname: Khalifa, Fahmi
  organization: University of Louisville
– sequence: 6
  givenname: Ahmed
  surname: Soliman
  fullname: Soliman, Ahmed
  organization: University of Louisville
– sequence: 7
  givenname: Ahmed Abdel khalek
  surname: Abdel Razek
  fullname: Abdel Razek, Ahmed Abdel khalek
  organization: Mansoura University
– sequence: 8
  givenname: Manar Mansour
  surname: Hussein
  fullname: Hussein, Manar Mansour
  organization: Mansoura University
– sequence: 9
  givenname: Saher
  surname: Taman
  fullname: Taman, Saher
  organization: Mansoura University
– sequence: 10
  givenname: Ahmed
  surname: Naglah
  fullname: Naglah, Ahmed
  organization: University of Louisville
– sequence: 11
  givenname: Mohammed
  surname: Alrahmawy
  fullname: Alrahmawy, Mohammed
  organization: Mansoura University
– sequence: 12
  givenname: Samir
  surname: Elmougy
  fullname: Elmougy, Samir
  organization: Mansoura University
– sequence: 13
  givenname: Jawad
  surname: Yousaf
  fullname: Yousaf, Jawad
  organization: Abu Dhabi University
– sequence: 14
  givenname: Mohammed
  surname: Ghazal
  fullname: Ghazal, Mohammed
  organization: Abu Dhabi University
– sequence: 15
  givenname: Ayman
  surname: El‐Baz
  fullname: El‐Baz, Ayman
  email: aselba01@louisville.edu
  organization: University of Louisville
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34890061$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAQxy1URLcFiSdAPnLJMv7KJkdUAUUqgkM5W157smvk2MFOVPbGI_CMPEndbgsXOM3X7z-jmTkjJzFFJOQlgzUD4G_Gac2U6PsnZMXlRjSSQ39CVgC9bLgEdUrOSvkGAK1Q8IycCtn1NWArMl_jj3nJSE10tOzNdOeZcCi-0DRQ54dhKT7F3z9_3aDf7Wd01I9m5-OODinTeX_IyTsak1sCFmqDKcUP3pq5qmjVVnA0du8j0oAmx5p4Tp4OJhR88WDPydf3764vLpurzx8-Xry9aqzgrG8ktMq1nQQGDFuJqIQTG8G31rJNy4yQqpe1Kpg1rei2244bVLyzUpoOnBTn5PWx75TT9wXLrEdfLIZgIqalaN5Cp8RGCajoqwd02Y7o9JTrlvmgHy9VgfURsDmVknHQ1s_3S87Z-KAZ6LtX6HHS96_4O_yP4LHnP9DmiN74gIf_cvrTlyN_CxQ-mDs
CitedBy_id crossref_primary_10_1038_s41598_023_51053_9
crossref_primary_10_1002_jbio_202200385
crossref_primary_10_3390_s24186104
crossref_primary_10_1186_s40644_024_00721_8
crossref_primary_10_1016_j_acra_2023_12_034
crossref_primary_10_3389_fonc_2024_1241776
crossref_primary_10_3390_s22093490
crossref_primary_10_1016_j_ejrad_2024_111499
crossref_primary_10_3390_cancers14071840
crossref_primary_10_3390_computers14020036
crossref_primary_10_1007_s42979_023_02504_7
crossref_primary_10_1186_s12885_024_11995_3
crossref_primary_10_1109_ACCESS_2024_3432459
crossref_primary_10_1089_thy_2023_0132
crossref_primary_10_3389_fonc_2022_976168
crossref_primary_10_3390_cancers15215216
Cites_doi 10.2214/AJR.19.21626
10.1089/thy.2015.0020
10.1016/j.ultrasmedbio.2016.01.013
10.1159/000478927
10.1613/jair.953
10.21037/gs.2018.01.03
10.1002/mrm.25743
10.2214/AJR.15.15813
10.7863/jum.2011.30.9.1259
10.1097/RMR.0b013e318572b76
10.1097/MD.0000000000014298
10.1136/bmjopen-2015-008413
10.7314/APJCP.2013.14.1.97
10.1002/cam4.2653
10.1109/ICIP.2018.8451595
10.1148/radiol.2020191145
10.2214/AJR.18.20740
10.1177/0284185118813599
10.1016/j.crad.2017.12.008
10.1016/j.acra.2019.12.015
10.1109/83.236536
10.5152/dir.2018.18130
10.1007/s00330-020-06781-1
10.1016/j.ejrad.2019.02.029
10.1097/MD.0000000000015133
10.5694/mja17.01204
10.1016/j.rcl.2019.01.001
10.1016/j.ejrad.2017.12.004
10.1097/00005537-200111000-00006
10.1016/j.cireng.2018.07.013
10.1109/TMI.2007.892519
10.2214/AJR.14.13825
10.1016/j.crad.2020.07.018
10.1016/j.ejrad.2019.07.018
10.1016/j.compmedimag.2008.10.010
10.1109/ICIP.2017.8296506
10.1007/s11548-018-1796-5
10.3174/ajnr.A0849
10.7785/tcrt.2012.500430
10.1148/rg.2019190026
10.1111/1467-9884.00122
10.1016/j.ejrad.2019.108755
10.1016/j.suc.2019.04.001
10.3174/ajnr.A1338
10.1002/j.1538-7305.1948.tb01338.x
ContentType Journal Article
Copyright 2021 American Association of Physicists in Medicine
2021 American Association of Physicists in Medicine.
Copyright_xml – notice: 2021 American Association of Physicists in Medicine
– notice: 2021 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mp.15399
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 999
ExternalDocumentID 34890061
10_1002_mp_15399
MP15399
Genre article
Journal Article
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3219-4065d6840101e64ee53d3732bcc1761a3459440131ca638bb82ae528c44a80d43
ISSN 0094-2405
2473-4209
IngestDate Fri Jul 11 03:20:31 EDT 2025
Wed Feb 19 02:27:18 EST 2025
Thu Apr 24 22:55:45 EDT 2025
Tue Jul 01 03:54:47 EDT 2025
Wed Jan 22 16:25:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords thyroid tumors
T2-MRI
apparent diffusion coefficient (ADC)
neural network (NN)
spherical harmonic (SH)
textural analysis
diffusion-weighted MRI
Language English
License 2021 American Association of Physicists in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3219-4065d6840101e64ee53d3732bcc1761a3459440131ca638bb82ae528c44a80d43
Notes Authors Ahmed Sharafeldeen, Mohamed Elsharkawy, and Reem Khaled contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34890061
PQID 2608537530
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2608537530
pubmed_primary_34890061
crossref_citationtrail_10_1002_mp_15399
crossref_primary_10_1002_mp_15399
wiley_primary_10_1002_mp_15399_MP15399
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
2022-Feb
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2022
References 2002; 16
2017; 6
2019; 99
2019; 98
2019; 57
2016; 75
2018; 209
2020; 122
2020; 12
2020; 11
1993; 2
2011; 6893
1998; 47
2018; 7
2019; 60
2013; 14
2013; 16
2020; 295
2008; 29
2016; 42
2014; 14
2019; 113
2018; 73
1985; 93
2019; 118
2007; 26
1948; 27
2019; 8
2007; 18
2016; 207
2020; 83
2019; 39
2009
2011; 30
2008
2005
2015; 205
2015; 8
2018; 24
2001; 111
2009; 33
2016; 6
2009; 30
2020; 30
2020; 27
2018
2019; 213
2017
2018; 96
2018; 99
2016; 26
2018; 13
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
Johnson RR (e_1_2_8_44_1) 2008
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
Adam A (e_1_2_8_39_1) 2020; 83
Kale S (e_1_2_8_38_1) 2013; 16
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
Mistry R (e_1_2_8_7_1) 2020; 12
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
Bihan DL (e_1_2_8_47_1) 1985; 93
e_1_2_8_16_1
e_1_2_8_37_1
Ardakani AA (e_1_2_8_8_1) 2015; 8
El‐Baz A (e_1_2_8_48_1) 2011; 6893
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 30
  start-page: 4695
  year: 2020
  end-page: 4704
  article-title: CT texture analysis of acetabular subchondral bone can discriminate between normal and cam‐positive hips
  publication-title: Eur Radiol
– year: 2018
  article-title: A Novel autoencoder‐based diagnostic system for early assessment of lung cancer
– volume: 213
  start-page: 169
  year: 2019
  end-page: 174
  article-title: Diagnostic performance evaluation of a computer‐assisted imaging analysis system for ultrasound risk stratification of thyroid nodules
  publication-title: Am J Roentgenol
– volume: 6
  year: 2016
  article-title: Diffusion‐weighted MRI in differentiating malignant from benign thyroid nodules: a meta‐analysis
  publication-title: BMJ Open
– volume: 213
  start-page: 1348
  year: 2019
  end-page: 1357
  article-title: Prediction of immunohistochemistry of suspected thyroid nodules by use of machine learning‐based radiomics
  publication-title: Am J Roentgenol
– volume: 99
  start-page: 571
  year: 2019
  end-page: 586
  article-title: Evaluation of thyroid nodules
  publication-title: Surg Clin North Am
– volume: 12
  year: 2020
  article-title: Ultrasound classification of thyroid nodules: a systematic review
  publication-title: Cureus
– volume: 14
  start-page: 97
  year: 2013
  end-page: 102
  article-title: Support vector machine based diagnostic system for thyroid cancer using statistical texture features
  publication-title: Asian Pac J Cancer Prev
– volume: 7
  start-page: 111
  year: 2018
  end-page: 116
  article-title: Which needle in the treatment of thyroid nodules?
  publication-title: Gland Surg
– volume: 111
  start-page: 1905
  year: 2001
  end-page: 1909
  article-title: MRI detection of cervical metastasis from differentiated thyroid carcinoma
  publication-title: Laryngoscope
– volume: 6893
  start-page: 175
  year: 2011
  end-page: 182
  article-title: 3D shape analysis for early diagnosis of malignant lung nodules
  publication-title: Med Image Comput Comput Assist Interv
– volume: 8
  start-page: 116
  year: 2015
  end-page: 124
  article-title: Application of texture analysis method for classification of benign and malignant thyroid nodules in ultrasound images
  publication-title: Iran J Cancer Prev
– volume: 295
  start-page: 328
  issue: 2
  year: 2020
  end-page: 338
  article-title: The image biomarker standardization initiative: Standardized quantitative radiomics for high‐throughput image‐based phenotyping
  publication-title: Radiology
– year: 2009
  article-title: Tetrahedral mesh generation from volumetric binary and grayscale images
– volume: 18
  start-page: 293
  year: 2007
  end-page: 302
  article-title: Magnetic resonance imaging of thyroid cancer
  publication-title: Top Magn Reson Imaging
– volume: 93
  start-page: 27
  year: 1985
  end-page: 34
  article-title: Imagerie de diffusion in‐vivo par résonance magnétique nucléaire
  publication-title: Comptes‐Rendus de l'Académie des Sci
– volume: 207
  start-page: 859
  year: 2016
  end-page: 864
  article-title: Classifier model based on machine learning algorithms: application to differential diagnosis of suspicious thyroid nodules via sonography
  publication-title: Am J Roentgenol
– volume: 96
  start-page: 395
  year: 2018
  end-page: 400
  article-title: Current use of molecular profiling for indeterminate thyroid nodules
  publication-title: Cirugía Española (English Edition)
– volume: 26
  start-page: 566
  year: 2007
  end-page: 581
  article-title: Weighted fourier series representation and its application to quantifying the amount of gray matter
  publication-title: IEEE Trans Med Imaging
– year: 2008
– volume: 99
  start-page: 1
  year: 2018
  end-page: 8
  article-title: Texture analysis and machine learning to characterize suspected thyroid nodules and differentiated thyroid cancer: Where do we stand?
  publication-title: Eur J Radiol
– volume: 39
  start-page: 2040
  year: 2019
  end-page: 2052
  article-title: ACR TI‐RADS: Pitfalls, solutions, and future directions
  publication-title: RadioGraphics
– volume: 27
  start-page: 379
  year: 1948
  end-page: 423
  article-title: A mathematical theory of communication
  publication-title: Bell Syst Tech J
– volume: 13
  start-page: 1617
  year: 2018
  end-page: 1627
  article-title: Comparison of the application of B‐mode and strain elastography ultrasound in the estimation of lymph node metastasis of papillary thyroid carcinoma based on a radiomics approach
  publication-title: Int J Comput Assist Radiol Surg
– volume: 209
  start-page: 92
  year: 2018
  end-page: 98
  article-title: Thyroid nodules: diagnosis and management
  publication-title: Med J Aust
– volume: 73
  start-page: 591.e1
  year: 2018
  end-page: 591.e7
  article-title: Histogram analysis of greyscale sonograms to differentiate between the subtypes of follicular variant of papillary thyroid cancer
  publication-title: Clin Radiol
– volume: 98
  year: 2019
  article-title: Diagnostic value of high b‐value (2000 s/mm2) DWI for thyroid micronodules
  publication-title: Medicine
– volume: 27
  start-page: 1422
  year: 2020
  end-page: 1429
  article-title: Prediction of benign and malignant solid renal masses: machine learning‐based CT texture analysis
  publication-title: Acad Radiol
– volume: 30
  start-page: 417
  year: 2009
  end-page: 422
  article-title: Can quantitative diffusion‐weighted MR imaging differentiate benign and malignant cold thyroid nodules? Initial results in 25 patients
  publication-title: Am J Neuroradiol
– volume: 57
  start-page: 469
  year: 2019
  end-page: 483
  article-title: Sonography of the thyroid
  publication-title: Radiol Clin North Am
– year: 2005
  article-title: Generalized nonnegative matrix approximations with Bregman divergences
– volume: 118
  start-page: 231
  year: 2019
  end-page: 238
  article-title: Radiomic analysis for preoperative prediction of cervical lymph node metastasis in patients with papillary thyroid carcinoma
  publication-title: Eur J Radiol
– volume: 14
  start-page: 653
  year: 2014
  end-page: 662
  article-title: Development of an automated medical diagnosis system for classifying thyroid tumor cells using multiple classifier fusion
  publication-title: Technol Cancer Res Treat
– volume: 26
  start-page: 1
  year: 2016
  end-page: 33
  article-title: 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer
  publication-title: Thyroid
– volume: 47
  start-page: 183
  year: 1998
  end-page: 189
  article-title: Comparing measures of sample skewness and kurtosis
  publication-title: J R Stat Soc Ser D (The Statistician)
– volume: 83
  start-page: 17489
  year: 2020
  end-page: 17497
  article-title: Injecting tissue texture and morphology comprehension into algorithm for cancer grading
  publication-title: Test Eng Manage
– volume: 98
  year: 2019
  article-title: Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules
  publication-title: Medicine
– volume: 60
  start-page: 1127
  year: 2019
  end-page: 1134
  article-title: Application of whole‐lesion intravoxel incoherent motion analysis using iZOOM DWI to differentiate malignant from benign thyroid nodules
  publication-title: Acta Radiol
– volume: 29
  start-page: 563
  year: 2008
  end-page: 568
  article-title: Role of apparent diffusion coefficient values in differentiation between malignant and benign solitary thyroid nodules
  publication-title: Am J Neuroradiol
– volume: 24
  start-page: 348
  year: 2018
  end-page: 356
  article-title: Efficacy of apparent diffusion coefficient in predicting aggressive histological features of papillary thyroid carcinoma
  publication-title: Diagn Interv Radiol
– volume: 75
  start-page: 1708
  year: 2016
  end-page: 1716
  article-title: Multi‐institutional validation of a novel textural analysis tool for preoperative stratification of suspected thyroid tumors on diffusion‐weighted MRI
  publication-title: Magn Reson Med
– volume: 11
  start-page: 878.e13
  year: 2020
  end-page: 878.e19
  article-title: Differentiation of follicular carcinomas from adenomas using histogram obtained from diffusion‐weighted MRI
  publication-title: Clin Radiol
– volume: 122
  year: 2020
  article-title: Machine learning‐based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma
  publication-title: Eur J Radiol
– volume: 2
  start-page: 296
  year: 1993
  end-page: 310
  article-title: A generalized Gaussian image model for edge‐preserving MAP estimation
  publication-title: IEEE Trans Image Process
– volume: 16
  start-page: 33
  year: 2013
  end-page: 38
  article-title: Texture analysis of thyroid ultrasound images for diagnosis of benign and malignant nodule using scaled conjugate gradient backpropagation training neural network
  publication-title: Int J Comput Eng Manage
– year: 2017
  article-title: A new framework for incorporating appearance and shape features of lung nodules for precise diagnosis of lung cancer
– volume: 205
  start-page: W343
  year: 2015
  end-page: W351
  article-title: Application of texture analysis in the differential diagnosis of benign and malignant thyroid nodules: comparison with gray‐scale ultrasound and elastography
  publication-title: Am J Roentgenol
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  article-title: SMOTE: synthetic minority over‐sampling technique
  publication-title: J Artificial Intelligence Res
– volume: 30
  start-page: 1259
  year: 2011
  end-page: 1266
  article-title: Quantitative measurement for thyroid cancer characterization based on elastography
  publication-title: J Ultrasound Med
– volume: 113
  start-page: 251
  year: 2019
  end-page: 257
  article-title: Comparison between linear and nonlinear machine‐learning algorithms for the classification of thyroid nodules
  publication-title: Eur J Radiol
– volume: 42
  start-page: 1671
  year: 2016
  end-page: 1680
  article-title: Feasibility study of texture analysis using ultrasound shear wave elastography to predict malignancy in thyroid nodules
  publication-title: Ultrasound Med Biol
– volume: 33
  start-page: 91
  year: 2009
  end-page: 99
  article-title: Morphological and wavelet features towards sonographic thyroid nodules evaluation
  publication-title: Comput Med Imaging Graph
– volume: 6
  start-page: 225
  year: 2017
  end-page: 237
  article-title: European thyroid association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: the EU‐TIRADS
  publication-title: Eur Thyroid J
– volume: 8
  start-page: 7644
  year: 2019
  end-page: 7649
  article-title: The diagnostic value of the ultrasound gray scale ratio for different sizes of thyroid nodules
  publication-title: Cancer Med
– volume: 6893
  start-page: 175
  year: 2011
  ident: e_1_2_8_48_1
  article-title: 3D shape analysis for early diagnosis of malignant lung nodules
  publication-title: Med Image Comput Comput Assist Interv
– ident: e_1_2_8_32_1
  doi: 10.2214/AJR.19.21626
– ident: e_1_2_8_15_1
  doi: 10.1089/thy.2015.0020
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ultrasmedbio.2016.01.013
– ident: e_1_2_8_16_1
  doi: 10.1159/000478927
– volume: 93
  start-page: 27
  year: 1985
  ident: e_1_2_8_47_1
  article-title: Imagerie de diffusion in‐vivo par résonance magnétique nucléaire
  publication-title: Comptes‐Rendus de l'Académie des Sci
– ident: e_1_2_8_54_1
– ident: e_1_2_8_55_1
  doi: 10.1613/jair.953
– ident: e_1_2_8_5_1
  doi: 10.21037/gs.2018.01.03
– ident: e_1_2_8_30_1
  doi: 10.1002/mrm.25743
– ident: e_1_2_8_33_1
  doi: 10.2214/AJR.15.15813
– ident: e_1_2_8_11_1
  doi: 10.7863/jum.2011.30.9.1259
– volume-title: Just the Essentials of Elementary Statistics
  year: 2008
  ident: e_1_2_8_44_1
– ident: e_1_2_8_19_1
  doi: 10.1097/RMR.0b013e318572b76
– volume: 16
  start-page: 33
  year: 2013
  ident: e_1_2_8_38_1
  article-title: Texture analysis of thyroid ultrasound images for diagnosis of benign and malignant nodule using scaled conjugate gradient backpropagation training neural network
  publication-title: Int J Comput Eng Manage
– ident: e_1_2_8_21_1
  doi: 10.1097/MD.0000000000014298
– ident: e_1_2_8_25_1
  doi: 10.1136/bmjopen-2015-008413
– ident: e_1_2_8_9_1
  doi: 10.7314/APJCP.2013.14.1.97
– ident: e_1_2_8_34_1
  doi: 10.1002/cam4.2653
– volume: 12
  year: 2020
  ident: e_1_2_8_7_1
  article-title: Ultrasound classification of thyroid nodules: a systematic review
  publication-title: Cureus
– ident: e_1_2_8_50_1
  doi: 10.1109/ICIP.2018.8451595
– ident: e_1_2_8_27_1
  doi: 10.1148/radiol.2020191145
– volume: 8
  start-page: 116
  year: 2015
  ident: e_1_2_8_8_1
  article-title: Application of texture analysis method for classification of benign and malignant thyroid nodules in ultrasound images
  publication-title: Iran J Cancer Prev
– ident: e_1_2_8_18_1
  doi: 10.2214/AJR.18.20740
– ident: e_1_2_8_24_1
  doi: 10.1177/0284185118813599
– ident: e_1_2_8_37_1
  doi: 10.1016/j.crad.2017.12.008
– ident: e_1_2_8_41_1
  doi: 10.1016/j.acra.2019.12.015
– ident: e_1_2_8_51_1
  doi: 10.1109/83.236536
– ident: e_1_2_8_22_1
  doi: 10.5152/dir.2018.18130
– ident: e_1_2_8_40_1
  doi: 10.1007/s00330-020-06781-1
– ident: e_1_2_8_35_1
  doi: 10.1016/j.ejrad.2019.02.029
– ident: e_1_2_8_28_1
  doi: 10.1097/MD.0000000000015133
– ident: e_1_2_8_2_1
  doi: 10.5694/mja17.01204
– ident: e_1_2_8_6_1
  doi: 10.1016/j.rcl.2019.01.001
– ident: e_1_2_8_29_1
  doi: 10.1016/j.ejrad.2017.12.004
– ident: e_1_2_8_20_1
  doi: 10.1097/00005537-200111000-00006
– ident: e_1_2_8_4_1
  doi: 10.1016/j.cireng.2018.07.013
– ident: e_1_2_8_53_1
  doi: 10.1109/TMI.2007.892519
– ident: e_1_2_8_14_1
  doi: 10.2214/AJR.14.13825
– ident: e_1_2_8_52_1
– ident: e_1_2_8_42_1
  doi: 10.1016/j.crad.2020.07.018
– ident: e_1_2_8_31_1
  doi: 10.1016/j.ejrad.2019.07.018
– ident: e_1_2_8_12_1
  doi: 10.1016/j.compmedimag.2008.10.010
– ident: e_1_2_8_49_1
  doi: 10.1109/ICIP.2017.8296506
– ident: e_1_2_8_36_1
  doi: 10.1007/s11548-018-1796-5
– ident: e_1_2_8_23_1
  doi: 10.3174/ajnr.A0849
– ident: e_1_2_8_10_1
  doi: 10.7785/tcrt.2012.500430
– ident: e_1_2_8_17_1
  doi: 10.1148/rg.2019190026
– volume: 83
  start-page: 17489
  year: 2020
  ident: e_1_2_8_39_1
  article-title: Injecting tissue texture and morphology comprehension into algorithm for cancer grading
  publication-title: Test Eng Manage
– ident: e_1_2_8_45_1
  doi: 10.1111/1467-9884.00122
– ident: e_1_2_8_43_1
  doi: 10.1016/j.ejrad.2019.108755
– ident: e_1_2_8_3_1
  doi: 10.1016/j.suc.2019.04.001
– ident: e_1_2_8_26_1
  doi: 10.3174/ajnr.A1338
– ident: e_1_2_8_46_1
  doi: 10.1002/j.1538-7305.1948.tb01338.x
SSID ssj0006350
Score 2.4915395
Snippet Purpose To assess whether the integration between (a) functional imaging features that will be extracted from diffusion‐weighted imaging (DWI); and (b) shape...
To assess whether the integration between (a) functional imaging features that will be extracted from diffusion-weighted imaging (DWI); and (b) shape and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 988
SubjectTerms apparent diffusion coefficient (ADC)
Diffusion Magnetic Resonance Imaging
diffusion‐weighted MRI
Humans
Machine Learning
Magnetic Resonance Imaging
neural network (NN)
Retrospective Studies
spherical harmonic (SH)
T2‐MRI
textural analysis
Thyroid Nodule - diagnostic imaging
thyroid tumors
Title Texture and shape analysis of diffusion‐weighted imaging for thyroid nodules classification using machine learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.15399
https://www.ncbi.nlm.nih.gov/pubmed/34890061
https://www.proquest.com/docview/2608537530
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJ9BeEIyvjg8ZCcHDlC2xna_HCjZN0I5JtFLfIidx6ESTVG2jAX8956-0VYs0eEkjx3Ks3K_n353Pdwi9K0RGSM5jh4o8cpgfCYcDa3UEzDoIwPKhQvo7hlfB5Zh9nviTTufnRtRSs0pPs997z5X8j1ShDeQqT8n-g2TbQaEB7kG-cAUJw_VuMgbNajcAllM-l3frHCOy9kkjnWHOrfJ_ArW8KXVRIh1b-GtR3-QnVZ03M7E8ySSPloFDGhKNciKUKtZS2OIS3ze5rN3j0c4R5b2VJ6q5rvXROhhUSuhCzHKhNVx_WpoDVSpkBOa9-MFvlayH9ZRvPPwyhdVLBwQJ42HW4xWF3lVZD2X8FmDyum0MiFJvhIXUYcTV0xF72ox-1ilNDQ7JhrKNdUHAnUVAJ5Ut56eeTLu7Xujs5v7V1-RiPBgko_PJ6B46IGBgkC466H8aDr61qzgQMemfa2dkExe75MyOvE1lduyTbXNH8ZXRI_TQGBq4r1HzGHVEdYQeDE0oxRG6f63F9gQtDIwwwAgrGGELI1wXeBdG2MAIA4ywgRE2MMLbMMIKRtjACFsYPUXji_PRx0vHlOJwMgprmgO0z89lXiDQ4CJgQvg0pyElaZZ5YeBxyvyYSVPdyzho9DSNCBc-iTLGeOTmjD5D3aquxAuEqR_n3At5IIDJhtAn9oFJhRnYzbmbemkPfbBfNclMnnpZLmWW6AzbJCnnifr-PfS27TnXuVn29bGCSUBxyt0wXom6WSZgyANVhbe6PfRcS6wdhbIoluS-h94rEf51-GR4rX6P7_Cal-hw_T94hbqrRSNeA6NdpW8M-P4Ah9yk9w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Texture+and+shape+analysis+of+diffusion-weighted+imaging+for+thyroid+nodules+classification+using+machine+learning&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Sharafeldeen%2C+Ahmed&rft.au=Elsharkawy%2C+Mohamed&rft.au=Khaled%2C+Reem&rft.au=Shaffie%2C+Ahmed&rft.date=2022-02-01&rft.issn=2473-4209&rft.eissn=2473-4209&rft.volume=49&rft.issue=2&rft.spage=988&rft_id=info:doi/10.1002%2Fmp.15399&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon