Segmentation of pulmonary nodules in CT images based on 3D‐UNET combined with three‐dimensional conditional random field optimization
Purpose Pulmonary nodules are a potential manifestation of lung cancer. In computer‐aided diagnosis (CAD) of lung cancer, it is of great significance to extract the complete boundary of the pulmonary nodules in the computed tomography (CT) scans accurately. It can provide doctors with important info...
Saved in:
Published in | Medical physics (Lancaster) Vol. 47; no. 9; pp. 4054 - 4063 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-2405 2473-4209 2473-4209 |
DOI | 10.1002/mp.14248 |
Cover
Abstract | Purpose
Pulmonary nodules are a potential manifestation of lung cancer. In computer‐aided diagnosis (CAD) of lung cancer, it is of great significance to extract the complete boundary of the pulmonary nodules in the computed tomography (CT) scans accurately. It can provide doctors with important information such as tumor size and density, which assist doctors in subsequent diagnosis and treatment. In addition to this, in the molecular subtype and radiomics of lung cancer, segmentation of lung nodules also plays a pivotal role. Existing methods are difficult to use only one model to simultaneously treat the boundaries of multiple types of lung nodules in CT images.
Method
In order to solve the problem, this paper proposed a three‐dimensional (3D)‐UNET network model optimized by a 3D conditional random field (3D‐CRF) to segment pulmonary nodules. On the basis of 3D‐UNET, the 3D‐CRF is used to optimize the sample output of the training set, so as to update the network weights in training process, reduce the model training time, and reduce the loss rate of the model. We selected 936 sets of pulmonary nodule data for the lung image database consortium and image database resource initiative (LIDC‐IDRI)1 database to train and test the model. What’s more, we used clinical data from partner hospitals for additional validation.
Results and conclusions
The results show that our method is accurate and effective. Particularly, it shows more significance for the optimization of the segmentation of adhesive pulmonary nodules (the juxta‐pleural and juxta‐vascular nodules) and ground glass pulmonary nodules (GGNs). |
---|---|
AbstractList | Pulmonary nodules are a potential manifestation of lung cancer. In computer-aided diagnosis (CAD) of lung cancer, it is of great significance to extract the complete boundary of the pulmonary nodules in the computed tomography (CT) scans accurately. It can provide doctors with important information such as tumor size and density, which assist doctors in subsequent diagnosis and treatment. In addition to this, in the molecular subtype and radiomics of lung cancer, segmentation of lung nodules also plays a pivotal role. Existing methods are difficult to use only one model to simultaneously treat the boundaries of multiple types of lung nodules in CT images.PURPOSEPulmonary nodules are a potential manifestation of lung cancer. In computer-aided diagnosis (CAD) of lung cancer, it is of great significance to extract the complete boundary of the pulmonary nodules in the computed tomography (CT) scans accurately. It can provide doctors with important information such as tumor size and density, which assist doctors in subsequent diagnosis and treatment. In addition to this, in the molecular subtype and radiomics of lung cancer, segmentation of lung nodules also plays a pivotal role. Existing methods are difficult to use only one model to simultaneously treat the boundaries of multiple types of lung nodules in CT images.In order to solve the problem, this paper proposed a three-dimensional (3D)-UNET network model optimized by a 3D conditional random field (3D-CRF) to segment pulmonary nodules. On the basis of 3D-UNET, the 3D-CRF is used to optimize the sample output of the training set, so as to update the network weights in training process, reduce the model training time, and reduce the loss rate of the model. We selected 936 sets of pulmonary nodule data for the lung image database consortium and image database resource initiative (LIDC-IDRI)1 database to train and test the model. What's more, we used clinical data from partner hospitals for additional validation.METHODIn order to solve the problem, this paper proposed a three-dimensional (3D)-UNET network model optimized by a 3D conditional random field (3D-CRF) to segment pulmonary nodules. On the basis of 3D-UNET, the 3D-CRF is used to optimize the sample output of the training set, so as to update the network weights in training process, reduce the model training time, and reduce the loss rate of the model. We selected 936 sets of pulmonary nodule data for the lung image database consortium and image database resource initiative (LIDC-IDRI)1 database to train and test the model. What's more, we used clinical data from partner hospitals for additional validation.The results show that our method is accurate and effective. Particularly, it shows more significance for the optimization of the segmentation of adhesive pulmonary nodules (the juxta-pleural and juxta-vascular nodules) and ground glass pulmonary nodules (GGNs).RESULTS AND CONCLUSIONSThe results show that our method is accurate and effective. Particularly, it shows more significance for the optimization of the segmentation of adhesive pulmonary nodules (the juxta-pleural and juxta-vascular nodules) and ground glass pulmonary nodules (GGNs). Pulmonary nodules are a potential manifestation of lung cancer. In computer-aided diagnosis (CAD) of lung cancer, it is of great significance to extract the complete boundary of the pulmonary nodules in the computed tomography (CT) scans accurately. It can provide doctors with important information such as tumor size and density, which assist doctors in subsequent diagnosis and treatment. In addition to this, in the molecular subtype and radiomics of lung cancer, segmentation of lung nodules also plays a pivotal role. Existing methods are difficult to use only one model to simultaneously treat the boundaries of multiple types of lung nodules in CT images. In order to solve the problem, this paper proposed a three-dimensional (3D)-UNET network model optimized by a 3D conditional random field (3D-CRF) to segment pulmonary nodules. On the basis of 3D-UNET, the 3D-CRF is used to optimize the sample output of the training set, so as to update the network weights in training process, reduce the model training time, and reduce the loss rate of the model. We selected 936 sets of pulmonary nodule data for the lung image database consortium and image database resource initiative (LIDC-IDRI) database to train and test the model. What's more, we used clinical data from partner hospitals for additional validation. The results show that our method is accurate and effective. Particularly, it shows more significance for the optimization of the segmentation of adhesive pulmonary nodules (the juxta-pleural and juxta-vascular nodules) and ground glass pulmonary nodules (GGNs). Purpose Pulmonary nodules are a potential manifestation of lung cancer. In computer‐aided diagnosis (CAD) of lung cancer, it is of great significance to extract the complete boundary of the pulmonary nodules in the computed tomography (CT) scans accurately. It can provide doctors with important information such as tumor size and density, which assist doctors in subsequent diagnosis and treatment. In addition to this, in the molecular subtype and radiomics of lung cancer, segmentation of lung nodules also plays a pivotal role. Existing methods are difficult to use only one model to simultaneously treat the boundaries of multiple types of lung nodules in CT images. Method In order to solve the problem, this paper proposed a three‐dimensional (3D)‐UNET network model optimized by a 3D conditional random field (3D‐CRF) to segment pulmonary nodules. On the basis of 3D‐UNET, the 3D‐CRF is used to optimize the sample output of the training set, so as to update the network weights in training process, reduce the model training time, and reduce the loss rate of the model. We selected 936 sets of pulmonary nodule data for the lung image database consortium and image database resource initiative (LIDC‐IDRI)1 database to train and test the model. What’s more, we used clinical data from partner hospitals for additional validation. Results and conclusions The results show that our method is accurate and effective. Particularly, it shows more significance for the optimization of the segmentation of adhesive pulmonary nodules (the juxta‐pleural and juxta‐vascular nodules) and ground glass pulmonary nodules (GGNs). |
Author | Gao, Lei Ye, Xiaodan Huang, Gang Nie, Shengdong Wu, Wenhao Duan, Huihong |
Author_xml | – sequence: 1 givenname: Wenhao surname: Wu fullname: Wu, Wenhao organization: University of Shanghai for Science and Technology – sequence: 2 givenname: Lei surname: Gao fullname: Gao, Lei organization: University of Shanghai for Science and Technology – sequence: 3 givenname: Huihong surname: Duan fullname: Duan, Huihong organization: University of Shanghai for Science and Technology – sequence: 4 givenname: Gang surname: Huang fullname: Huang, Gang organization: Shanghai University of Medicine & Health Science – sequence: 5 givenname: Xiaodan surname: Ye fullname: Ye, Xiaodan email: yuanyxd@163.com, nsd4647@163.com organization: Shanghai Jiao Tong University – sequence: 6 givenname: Shengdong surname: Nie fullname: Nie, Shengdong email: yuanyxd@163.com, nsd4647@163.com organization: University of Shanghai for Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32428969$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtvFSEUx4mpsbfVxE9gWLqZKwPMg6W51kdSH4m3a8LAocXwGIeZNNeVW3d-Rj-JtNPqRlfA4cf_hN85QUcxRUDoaU22NSH0RRi3Nae8f4A2lHes4pSII7QhRPCKctIco5OcvxBCWtaQR-iYUU570YoN-vEZLgPEWc0uRZwsHhcfUlTTAcdkFg8Zu4h3e-yCuiyHQWUwuKDs1a_vPy8-nO2xTmFwsVSv3XyF56sJoFwZV2JzCVW-ENG4ed1PKpoUsHXgS844u-C-3TZ_jB5a5TM8uVtP0cXrs_3ubXX-8c273cvzSjNa95USBAZFWtsrLWgjrLaN7ix0pmedElz0oHsQTdsyUf6rSGcEZ61RnbVWD4adoudr7jilrwvkWQaXNXivIqQlyxtfjNBisKDP7tBlCGDkOBUL00He6yvAdgX0lHKewErtVpXzpJyXNZE385FhlLfz-dv8z4P7zH-g1YpeOw-H_3Ly_aeV_w2rAKHw |
CitedBy_id | crossref_primary_10_3390_electronics13234636 crossref_primary_10_1016_j_ymeth_2024_04_008 crossref_primary_10_1038_s41598_021_90599_4 crossref_primary_10_1007_s11548_022_02817_7 crossref_primary_10_1016_j_cmpb_2024_108141 crossref_primary_10_1016_j_compbiomed_2024_108505 crossref_primary_10_1002_mp_15423 crossref_primary_10_1186_s13244_023_01480_z crossref_primary_10_1007_s11517_022_02667_0 crossref_primary_10_29001_2073_8552_2024_39_2_36_45 crossref_primary_10_3390_healthcare10112189 crossref_primary_10_1016_j_jvcir_2023_103909 crossref_primary_10_1007_s12553_024_00820_3 crossref_primary_10_1016_j_apt_2021_08_038 crossref_primary_10_1016_j_compbiomed_2023_107321 crossref_primary_10_1016_j_compmedimag_2023_102258 crossref_primary_10_1186_s12903_023_03279_2 crossref_primary_10_3390_app13127281 crossref_primary_10_1038_s41467_022_30841_3 crossref_primary_10_1002_acm2_13927 crossref_primary_10_1007_s11831_023_09899_9 crossref_primary_10_1016_j_coal_2025_104712 crossref_primary_10_1088_1361_6560_ac568e crossref_primary_10_1016_j_cmpb_2022_106946 crossref_primary_10_1016_j_knosys_2024_112702 crossref_primary_10_1002_mp_15351 crossref_primary_10_1002_ima_22883 crossref_primary_10_1007_s11042_023_17174_z crossref_primary_10_1016_j_bspc_2022_104104 crossref_primary_10_1109_ACCESS_2024_3447697 crossref_primary_10_1002_mp_16900 crossref_primary_10_1007_s10489_021_03038_2 crossref_primary_10_1016_j_bspc_2021_103233 crossref_primary_10_1007_s11042_024_19801_9 crossref_primary_10_1109_JBHI_2024_3355008 crossref_primary_10_1109_ACCESS_2023_3320789 crossref_primary_10_7717_peerj_cs_1802 crossref_primary_10_1002_mp_16937 crossref_primary_10_1155_2022_6357123 crossref_primary_10_3390_cancers14163856 crossref_primary_10_1109_TSMC_2024_3489029 crossref_primary_10_1002_jbio_202100151 crossref_primary_10_3390_diagnostics14141472 crossref_primary_10_1007_s00330_022_09174_8 crossref_primary_10_1016_S1470_2045_20_30751_8 |
Cites_doi | 10.1016/j.compbiomed.2017.11.013 10.1109/JBHI.2018.2794552 10.1155/2018/2183847 10.1016/j.media.2009.07.001 10.1118/1.3528204 10.1016/j.acra.2006.07.012 10.1016/j.media.2017.06.014 10.1166/mex.2016.1311 10.1109/TMI.2003.817785 10.1109/ISBI.2018.8363765 10.1109/CISP-BMEI.2018.8633056 10.1117/12.2502835 10.1109/TMI.2005.852048 10.1118/1.2207129 10.1007/978-3-319-66179-7_65 10.1109/ICPR.2010.634 10.1109/ISBI.2018.8363561 10.1148/radiol.2372041887 10.1109/JTEHM.2018.2837901 10.1016/j.ijleo.2018.08.086 10.1007/978-3-319-46723-8_48 10.1002/mp.13349 10.1016/j.jvcir.2018.11.047 10.1007/s00500-017-2608-5 |
ContentType | Journal Article |
Copyright | 2020 American Association of Physicists in Medicine 2020 American Association of Physicists in Medicine. |
Copyright_xml | – notice: 2020 American Association of Physicists in Medicine – notice: 2020 American Association of Physicists in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/mp.14248 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 2473-4209 |
EndPage | 4063 |
ExternalDocumentID | 32428969 10_1002_mp_14248 MP14248 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 81830052 – fundername: Shanghai Chest Hospital – fundername: Science and Technology Commission of Shanghai Municipality funderid: 19411965200; 18441900500 – fundername: Natural Science Foundation of Shanghai funderid: 14ZR1427900; YJXT20190203 – fundername: National Natural Science Foundation of China grantid: 81830052 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 18441900500 – fundername: Natural Science Foundation of Shanghai grantid: YJXT20190203 – fundername: Natural Science Foundation of Shanghai grantid: 14ZR1427900 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 19411965200 |
GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY LH4 |
ID | FETCH-LOGICAL-c3218-a90eba06f8ac9259fcf5c7fe7d837a9498ec8e956639006a07d9436da7fffcbd3 |
ISSN | 0094-2405 2473-4209 |
IngestDate | Fri Sep 05 11:17:08 EDT 2025 Wed Feb 19 02:29:43 EST 2025 Tue Jul 01 03:54:41 EDT 2025 Thu Apr 24 23:05:10 EDT 2025 Wed Jan 22 16:33:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | 3D-CRF CT 3D-UNET pulmonary nodule segmentation |
Language | English |
License | 2020 American Association of Physicists in Medicine. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3218-a90eba06f8ac9259fcf5c7fe7d837a9498ec8e956639006a07d9436da7fffcbd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32428969 |
PQID | 2405302209 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2405302209 pubmed_primary_32428969 crossref_citationtrail_10_1002_mp_14248 crossref_primary_10_1002_mp_14248 wiley_primary_10_1002_mp_14248_MP14248 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 2020-Sep 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Medical physics (Lancaster) |
PublicationTitleAlternate | Med Phys |
PublicationYear | 2020 |
References | 2017; 40 2018; 174 2018; 6 2016; 6 2009; 13 2018; 2018 2006; 13 2010 2006; 33 2019; 46 2005; 237 2019; 58 2018; 92 2018 2017 2016 2018; 22 2011; 38 2005; 24 2003; 22 e_1_2_6_21_1 e_1_2_6_10_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_25_1 e_1_2_6_14_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_22_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – volume: 2018 start-page: 1 year: 2018 end-page: 10 article-title: Juxta‐vascular pulmonary nodule segmentation in PET‐CT imaging based on an LBF active contour model with information entropy and joint vector publication-title: Comput Math Methods Med – volume: 38 start-page: 915 year: 2011 end-page: 931 article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans publication-title: Med Phys – volume: 6 start-page: 317 year: 2016 end-page: 327 article-title: Segmentation of ground glass opacity pulmonary nodules using an integrated active contour model with wavelet energy‐based adaptive local energy and posterior probability‐based speed function publication-title: Mater Expr – volume: 13 start-page: 757 year: 2009 end-page: 770 article-title: A large‐scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k‐nearest‐neighbour classification publication-title: Med Image Anal – volume: 174 start-page: 460 year: 2018 end-page: 469 article-title: Improved U‐NET network for pulmonary nodules segmentation publication-title: Optik – volume: 46 start-page: 1218 year: 2019 end-page: 1229 article-title: Pulmonary nodule segmentation with CT sample synthesis using adversarial networks publication-title: Med Phys – volume: 24 start-page: 1138 year: 2005 end-page: 1150 article-title: Computer‐aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low‐dose CT by use of massive training artificial neural network publication-title: IEEE Trans Med Imaging – volume: 13 start-page: 1254 year: 2006 end-page: 1265 article-title: Evaluation of lung MDCT nodule annotation across radiologists and methods publication-title: Acad Radiol – volume: 22 start-page: 1906 year: 2018 end-page: 1916 article-title: Left atrial appendage segmentation using fully convolutional neural networks and modified three‐dimensional conditional random fields publication-title: IEEE J Biomed Health Inform – volume: 237 start-page: 395 year: 2005 end-page: 400 article-title: Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society publication-title: Radiology – volume: 6 start-page: 1 year: 2018 end-page: 13 article-title: Automatic lung segmentation with Juxta‐Pleural nodule identification using active contour model and Bayesian approach publication-title: IEEE J Translat Eng Health Med – volume: 33 start-page: 2323 year: 2006 end-page: 2337 article-title: Computer‐aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours publication-title: Med Phys – volume: 58 start-page: 316 year: 2019 end-page: 322 article-title: A mix‐pooling CNN architecture with FCRF for brain tumor segmentation publication-title: J Vis Commun Image Represent – year: 2017 – volume: 92 start-page: 128 year: 2018 end-page: 138 article-title: Ground‐glass nodule segmentation in chest CT images using asymmetric multi‐phase deformable model and pulmonary vessel removal publication-title: Comput Biol Med – volume: 22 start-page: 1259 year: 2003 end-page: 1274 article-title: Three‐dimensional segmentation and growth‐rate estimation of small pulmonary nodules in helical CT images publication-title: IEEE Trans Med Imaging – year: 2016 – year: 2018 – volume: 40 start-page: 172 year: 2017 end-page: 183 article-title: Central focused convolutional neural networks: developing a data‐driven model for lung nodule segmentation publication-title: Med Image Anal – year: 2010 – volume: 22 start-page: 3983 year: 2018 end-page: 3995 article-title: A fast weak‐supervised pulmonary nodule segmentation method based on modified self‐adaptive FCM algorithm publication-title: Soft Comput – ident: e_1_2_6_20_1 doi: 10.1016/j.compbiomed.2017.11.013 – ident: e_1_2_6_16_1 doi: 10.1109/JBHI.2018.2794552 – ident: e_1_2_6_22_1 doi: 10.1155/2018/2183847 – ident: e_1_2_6_8_1 doi: 10.1016/j.media.2009.07.001 – ident: e_1_2_6_17_1 doi: 10.1118/1.3528204 – ident: e_1_2_6_18_1 doi: 10.1016/j.acra.2006.07.012 – ident: e_1_2_6_21_1 doi: 10.1016/j.media.2017.06.014 – ident: e_1_2_6_24_1 doi: 10.1166/mex.2016.1311 – ident: e_1_2_6_6_1 doi: 10.1109/TMI.2003.817785 – ident: e_1_2_6_11_1 doi: 10.1109/ISBI.2018.8363765 – ident: e_1_2_6_13_1 doi: 10.1109/CISP-BMEI.2018.8633056 – ident: e_1_2_6_3_1 doi: 10.1117/12.2502835 – ident: e_1_2_6_4_1 doi: 10.1109/TMI.2005.852048 – ident: e_1_2_6_5_1 doi: 10.1118/1.2207129 – ident: e_1_2_6_10_1 doi: 10.1007/978-3-319-66179-7_65 – ident: e_1_2_6_7_1 doi: 10.1109/ICPR.2010.634 – ident: e_1_2_6_14_1 doi: 10.1109/ISBI.2018.8363561 – ident: e_1_2_6_2_1 doi: 10.1148/radiol.2372041887 – ident: e_1_2_6_23_1 doi: 10.1109/JTEHM.2018.2837901 – ident: e_1_2_6_9_1 doi: 10.1016/j.ijleo.2018.08.086 – ident: e_1_2_6_19_1 doi: 10.1007/978-3-319-46723-8_48 – ident: e_1_2_6_12_1 doi: 10.1002/mp.13349 – ident: e_1_2_6_15_1 doi: 10.1016/j.jvcir.2018.11.047 – ident: e_1_2_6_25_1 doi: 10.1007/s00500-017-2608-5 |
SSID | ssj0006350 |
Score | 2.5333643 |
Snippet | Purpose
Pulmonary nodules are a potential manifestation of lung cancer. In computer‐aided diagnosis (CAD) of lung cancer, it is of great significance to... Pulmonary nodules are a potential manifestation of lung cancer. In computer-aided diagnosis (CAD) of lung cancer, it is of great significance to extract the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4054 |
SubjectTerms | 3D‐CRF 3D‐UNET Diagnosis, Computer-Assisted Humans Lung - diagnostic imaging Lung Neoplasms - diagnostic imaging Multiple Pulmonary Nodules - diagnostic imaging pulmonary nodule segmentation Radiographic Image Interpretation, Computer-Assisted Solitary Pulmonary Nodule - diagnostic imaging Tomography, X-Ray Computed |
Title | Segmentation of pulmonary nodules in CT images based on 3D‐UNET combined with three‐dimensional conditional random field optimization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.14248 https://www.ncbi.nlm.nih.gov/pubmed/32428969 https://www.proquest.com/docview/2405302209 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJtBeEIxbuclICB6qjDZO4-Rx6joq1JZJS0XfIscXVqlJqtHwwDv_m-NL0kwr0uAljVzLjvJ98bn4nGOE3lPBB5EMqCdjFXr6jCuPcU69YSiE7ysaK5MUNpuHk0XwZTlcdjo_W1FL1TY74b_25pX8D6rQBrjqLNl_QLYZFBrgHvCFKyAM1zthfCm_5y53yGh9m2oNc-s4uKIU1drEWvVGSW-VM13KQUssoXcHyJm3mI8THU8OhnEdgL4FWKUndLl_W6pDh6SLlXMWgkwTZd4zEW-9Ehaa3GVwttXbetvH-kuMQ1cnWTN7_Efjc_hWmdA-WVyxsgkAYsZpO5WrnW5tnbOTanVVOgFrCOhc3J-Za3ROC7BQ66gst7b5ASVe4PftxHJPm1ucbTlOR8K4tdKCohnsFQG2pGy-OdE5fNFOzNVb-_Ov6fliOk2T8TK5hw59SvX2_uHp2Wx62chwUMO0d655pLpscd__VI98U5G5ZZ3cNHaMtpI8Qg-dmYFPLWceo44sjtGDmQukOEb3LyxCT9DvNolwqXBDIuxIhFcFHiXYkggbEmHo6kiEaxJhTSJ8i0S4RSJsSYQNiXCbRE_R4nycjCaeO5vD4wS0Qo_FfZmxfqgixmMwoRVXQ06VpCIilMVBHEkeSTC-QQOG18n6VMQBCQWjSimeCfIMHRRlIV8grEQWKBYQGJAEAWHZgBI18BUjPslkRLvoY_2iU-4K1-vzU9apLbntp_kmNZB00bum58YWa9nXp8YqhZVUb4-xQpbVjxR0W32EFqDdRc8tiM0o2uyI4hD--WBQ_evw6ezC_L68wzSv0NHu23iNDrbXlXwDKu42e-v4-AdRpqro |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+pulmonary+nodules+in+CT+images+based+on+3D-UNET+combined+with+three-dimensional+conditional+random+field+optimization&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Wu%2C+Wenhao&rft.au=Gao%2C+Lei&rft.au=Duan%2C+Huihong&rft.au=Huang%2C+Gang&rft.date=2020-09-01&rft.issn=2473-4209&rft.eissn=2473-4209&rft.volume=47&rft.issue=9&rft.spage=4054&rft_id=info:doi/10.1002%2Fmp.14248&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |