Segmentation of pulmonary nodules in CT images based on 3D‐UNET combined with three‐dimensional conditional random field optimization

Purpose Pulmonary nodules are a potential manifestation of lung cancer. In computer‐aided diagnosis (CAD) of lung cancer, it is of great significance to extract the complete boundary of the pulmonary nodules in the computed tomography (CT) scans accurately. It can provide doctors with important info...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 47; no. 9; pp. 4054 - 4063
Main Authors Wu, Wenhao, Gao, Lei, Duan, Huihong, Huang, Gang, Ye, Xiaodan, Nie, Shengdong
Format Journal Article
LanguageEnglish
Published United States 01.09.2020
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
2473-4209
DOI10.1002/mp.14248

Cover

Abstract Purpose Pulmonary nodules are a potential manifestation of lung cancer. In computer‐aided diagnosis (CAD) of lung cancer, it is of great significance to extract the complete boundary of the pulmonary nodules in the computed tomography (CT) scans accurately. It can provide doctors with important information such as tumor size and density, which assist doctors in subsequent diagnosis and treatment. In addition to this, in the molecular subtype and radiomics of lung cancer, segmentation of lung nodules also plays a pivotal role. Existing methods are difficult to use only one model to simultaneously treat the boundaries of multiple types of lung nodules in CT images. Method In order to solve the problem, this paper proposed a three‐dimensional (3D)‐UNET network model optimized by a 3D conditional random field (3D‐CRF) to segment pulmonary nodules. On the basis of 3D‐UNET, the 3D‐CRF is used to optimize the sample output of the training set, so as to update the network weights in training process, reduce the model training time, and reduce the loss rate of the model. We selected 936 sets of pulmonary nodule data for the lung image database consortium and image database resource initiative (LIDC‐IDRI)1 database to train and test the model. What’s more, we used clinical data from partner hospitals for additional validation. Results and conclusions The results show that our method is accurate and effective. Particularly, it shows more significance for the optimization of the segmentation of adhesive pulmonary nodules (the juxta‐pleural and juxta‐vascular nodules) and ground glass pulmonary nodules (GGNs).
AbstractList Pulmonary nodules are a potential manifestation of lung cancer. In computer-aided diagnosis (CAD) of lung cancer, it is of great significance to extract the complete boundary of the pulmonary nodules in the computed tomography (CT) scans accurately. It can provide doctors with important information such as tumor size and density, which assist doctors in subsequent diagnosis and treatment. In addition to this, in the molecular subtype and radiomics of lung cancer, segmentation of lung nodules also plays a pivotal role. Existing methods are difficult to use only one model to simultaneously treat the boundaries of multiple types of lung nodules in CT images.PURPOSEPulmonary nodules are a potential manifestation of lung cancer. In computer-aided diagnosis (CAD) of lung cancer, it is of great significance to extract the complete boundary of the pulmonary nodules in the computed tomography (CT) scans accurately. It can provide doctors with important information such as tumor size and density, which assist doctors in subsequent diagnosis and treatment. In addition to this, in the molecular subtype and radiomics of lung cancer, segmentation of lung nodules also plays a pivotal role. Existing methods are difficult to use only one model to simultaneously treat the boundaries of multiple types of lung nodules in CT images.In order to solve the problem, this paper proposed a three-dimensional (3D)-UNET network model optimized by a 3D conditional random field (3D-CRF) to segment pulmonary nodules. On the basis of 3D-UNET, the 3D-CRF is used to optimize the sample output of the training set, so as to update the network weights in training process, reduce the model training time, and reduce the loss rate of the model. We selected 936 sets of pulmonary nodule data for the lung image database consortium and image database resource initiative (LIDC-IDRI)1 database to train and test the model. What's more, we used clinical data from partner hospitals for additional validation.METHODIn order to solve the problem, this paper proposed a three-dimensional (3D)-UNET network model optimized by a 3D conditional random field (3D-CRF) to segment pulmonary nodules. On the basis of 3D-UNET, the 3D-CRF is used to optimize the sample output of the training set, so as to update the network weights in training process, reduce the model training time, and reduce the loss rate of the model. We selected 936 sets of pulmonary nodule data for the lung image database consortium and image database resource initiative (LIDC-IDRI)1 database to train and test the model. What's more, we used clinical data from partner hospitals for additional validation.The results show that our method is accurate and effective. Particularly, it shows more significance for the optimization of the segmentation of adhesive pulmonary nodules (the juxta-pleural and juxta-vascular nodules) and ground glass pulmonary nodules (GGNs).RESULTS AND CONCLUSIONSThe results show that our method is accurate and effective. Particularly, it shows more significance for the optimization of the segmentation of adhesive pulmonary nodules (the juxta-pleural and juxta-vascular nodules) and ground glass pulmonary nodules (GGNs).
Pulmonary nodules are a potential manifestation of lung cancer. In computer-aided diagnosis (CAD) of lung cancer, it is of great significance to extract the complete boundary of the pulmonary nodules in the computed tomography (CT) scans accurately. It can provide doctors with important information such as tumor size and density, which assist doctors in subsequent diagnosis and treatment. In addition to this, in the molecular subtype and radiomics of lung cancer, segmentation of lung nodules also plays a pivotal role. Existing methods are difficult to use only one model to simultaneously treat the boundaries of multiple types of lung nodules in CT images. In order to solve the problem, this paper proposed a three-dimensional (3D)-UNET network model optimized by a 3D conditional random field (3D-CRF) to segment pulmonary nodules. On the basis of 3D-UNET, the 3D-CRF is used to optimize the sample output of the training set, so as to update the network weights in training process, reduce the model training time, and reduce the loss rate of the model. We selected 936 sets of pulmonary nodule data for the lung image database consortium and image database resource initiative (LIDC-IDRI) database to train and test the model. What's more, we used clinical data from partner hospitals for additional validation. The results show that our method is accurate and effective. Particularly, it shows more significance for the optimization of the segmentation of adhesive pulmonary nodules (the juxta-pleural and juxta-vascular nodules) and ground glass pulmonary nodules (GGNs).
Purpose Pulmonary nodules are a potential manifestation of lung cancer. In computer‐aided diagnosis (CAD) of lung cancer, it is of great significance to extract the complete boundary of the pulmonary nodules in the computed tomography (CT) scans accurately. It can provide doctors with important information such as tumor size and density, which assist doctors in subsequent diagnosis and treatment. In addition to this, in the molecular subtype and radiomics of lung cancer, segmentation of lung nodules also plays a pivotal role. Existing methods are difficult to use only one model to simultaneously treat the boundaries of multiple types of lung nodules in CT images. Method In order to solve the problem, this paper proposed a three‐dimensional (3D)‐UNET network model optimized by a 3D conditional random field (3D‐CRF) to segment pulmonary nodules. On the basis of 3D‐UNET, the 3D‐CRF is used to optimize the sample output of the training set, so as to update the network weights in training process, reduce the model training time, and reduce the loss rate of the model. We selected 936 sets of pulmonary nodule data for the lung image database consortium and image database resource initiative (LIDC‐IDRI)1 database to train and test the model. What’s more, we used clinical data from partner hospitals for additional validation. Results and conclusions The results show that our method is accurate and effective. Particularly, it shows more significance for the optimization of the segmentation of adhesive pulmonary nodules (the juxta‐pleural and juxta‐vascular nodules) and ground glass pulmonary nodules (GGNs).
Author Gao, Lei
Ye, Xiaodan
Huang, Gang
Nie, Shengdong
Wu, Wenhao
Duan, Huihong
Author_xml – sequence: 1
  givenname: Wenhao
  surname: Wu
  fullname: Wu, Wenhao
  organization: University of Shanghai for Science and Technology
– sequence: 2
  givenname: Lei
  surname: Gao
  fullname: Gao, Lei
  organization: University of Shanghai for Science and Technology
– sequence: 3
  givenname: Huihong
  surname: Duan
  fullname: Duan, Huihong
  organization: University of Shanghai for Science and Technology
– sequence: 4
  givenname: Gang
  surname: Huang
  fullname: Huang, Gang
  organization: Shanghai University of Medicine & Health Science
– sequence: 5
  givenname: Xiaodan
  surname: Ye
  fullname: Ye, Xiaodan
  email: yuanyxd@163.com, nsd4647@163.com
  organization: Shanghai Jiao Tong University
– sequence: 6
  givenname: Shengdong
  surname: Nie
  fullname: Nie, Shengdong
  email: yuanyxd@163.com, nsd4647@163.com
  organization: University of Shanghai for Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32428969$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtvFSEUx4mpsbfVxE9gWLqZKwPMg6W51kdSH4m3a8LAocXwGIeZNNeVW3d-Rj-JtNPqRlfA4cf_hN85QUcxRUDoaU22NSH0RRi3Nae8f4A2lHes4pSII7QhRPCKctIco5OcvxBCWtaQR-iYUU570YoN-vEZLgPEWc0uRZwsHhcfUlTTAcdkFg8Zu4h3e-yCuiyHQWUwuKDs1a_vPy8-nO2xTmFwsVSv3XyF56sJoFwZV2JzCVW-ENG4ed1PKpoUsHXgS844u-C-3TZ_jB5a5TM8uVtP0cXrs_3ubXX-8c273cvzSjNa95USBAZFWtsrLWgjrLaN7ix0pmedElz0oHsQTdsyUf6rSGcEZ61RnbVWD4adoudr7jilrwvkWQaXNXivIqQlyxtfjNBisKDP7tBlCGDkOBUL00He6yvAdgX0lHKewErtVpXzpJyXNZE385FhlLfz-dv8z4P7zH-g1YpeOw-H_3Ly_aeV_w2rAKHw
CitedBy_id crossref_primary_10_3390_electronics13234636
crossref_primary_10_1016_j_ymeth_2024_04_008
crossref_primary_10_1038_s41598_021_90599_4
crossref_primary_10_1007_s11548_022_02817_7
crossref_primary_10_1016_j_cmpb_2024_108141
crossref_primary_10_1016_j_compbiomed_2024_108505
crossref_primary_10_1002_mp_15423
crossref_primary_10_1186_s13244_023_01480_z
crossref_primary_10_1007_s11517_022_02667_0
crossref_primary_10_29001_2073_8552_2024_39_2_36_45
crossref_primary_10_3390_healthcare10112189
crossref_primary_10_1016_j_jvcir_2023_103909
crossref_primary_10_1007_s12553_024_00820_3
crossref_primary_10_1016_j_apt_2021_08_038
crossref_primary_10_1016_j_compbiomed_2023_107321
crossref_primary_10_1016_j_compmedimag_2023_102258
crossref_primary_10_1186_s12903_023_03279_2
crossref_primary_10_3390_app13127281
crossref_primary_10_1038_s41467_022_30841_3
crossref_primary_10_1002_acm2_13927
crossref_primary_10_1007_s11831_023_09899_9
crossref_primary_10_1016_j_coal_2025_104712
crossref_primary_10_1088_1361_6560_ac568e
crossref_primary_10_1016_j_cmpb_2022_106946
crossref_primary_10_1016_j_knosys_2024_112702
crossref_primary_10_1002_mp_15351
crossref_primary_10_1002_ima_22883
crossref_primary_10_1007_s11042_023_17174_z
crossref_primary_10_1016_j_bspc_2022_104104
crossref_primary_10_1109_ACCESS_2024_3447697
crossref_primary_10_1002_mp_16900
crossref_primary_10_1007_s10489_021_03038_2
crossref_primary_10_1016_j_bspc_2021_103233
crossref_primary_10_1007_s11042_024_19801_9
crossref_primary_10_1109_JBHI_2024_3355008
crossref_primary_10_1109_ACCESS_2023_3320789
crossref_primary_10_7717_peerj_cs_1802
crossref_primary_10_1002_mp_16937
crossref_primary_10_1155_2022_6357123
crossref_primary_10_3390_cancers14163856
crossref_primary_10_1109_TSMC_2024_3489029
crossref_primary_10_1002_jbio_202100151
crossref_primary_10_3390_diagnostics14141472
crossref_primary_10_1007_s00330_022_09174_8
crossref_primary_10_1016_S1470_2045_20_30751_8
Cites_doi 10.1016/j.compbiomed.2017.11.013
10.1109/JBHI.2018.2794552
10.1155/2018/2183847
10.1016/j.media.2009.07.001
10.1118/1.3528204
10.1016/j.acra.2006.07.012
10.1016/j.media.2017.06.014
10.1166/mex.2016.1311
10.1109/TMI.2003.817785
10.1109/ISBI.2018.8363765
10.1109/CISP-BMEI.2018.8633056
10.1117/12.2502835
10.1109/TMI.2005.852048
10.1118/1.2207129
10.1007/978-3-319-66179-7_65
10.1109/ICPR.2010.634
10.1109/ISBI.2018.8363561
10.1148/radiol.2372041887
10.1109/JTEHM.2018.2837901
10.1016/j.ijleo.2018.08.086
10.1007/978-3-319-46723-8_48
10.1002/mp.13349
10.1016/j.jvcir.2018.11.047
10.1007/s00500-017-2608-5
ContentType Journal Article
Copyright 2020 American Association of Physicists in Medicine
2020 American Association of Physicists in Medicine.
Copyright_xml – notice: 2020 American Association of Physicists in Medicine
– notice: 2020 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mp.14248
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 4063
ExternalDocumentID 32428969
10_1002_mp_14248
MP14248
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 81830052
– fundername: Shanghai Chest Hospital
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 19411965200; 18441900500
– fundername: Natural Science Foundation of Shanghai
  funderid: 14ZR1427900; YJXT20190203
– fundername: National Natural Science Foundation of China
  grantid: 81830052
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 18441900500
– fundername: Natural Science Foundation of Shanghai
  grantid: YJXT20190203
– fundername: Natural Science Foundation of Shanghai
  grantid: 14ZR1427900
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 19411965200
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
LH4
ID FETCH-LOGICAL-c3218-a90eba06f8ac9259fcf5c7fe7d837a9498ec8e956639006a07d9436da7fffcbd3
ISSN 0094-2405
2473-4209
IngestDate Fri Sep 05 11:17:08 EDT 2025
Wed Feb 19 02:29:43 EST 2025
Tue Jul 01 03:54:41 EDT 2025
Thu Apr 24 23:05:10 EDT 2025
Wed Jan 22 16:33:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 3D-CRF
CT
3D-UNET
pulmonary nodule segmentation
Language English
License 2020 American Association of Physicists in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3218-a90eba06f8ac9259fcf5c7fe7d837a9498ec8e956639006a07d9436da7fffcbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32428969
PQID 2405302209
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2405302209
pubmed_primary_32428969
crossref_citationtrail_10_1002_mp_14248
crossref_primary_10_1002_mp_14248
wiley_primary_10_1002_mp_14248_MP14248
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
2020-Sep
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2020
References 2017; 40
2018; 174
2018; 6
2016; 6
2009; 13
2018; 2018
2006; 13
2010
2006; 33
2019; 46
2005; 237
2019; 58
2018; 92
2018
2017
2016
2018; 22
2011; 38
2005; 24
2003; 22
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_25_1
e_1_2_6_14_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_22_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – volume: 2018
  start-page: 1
  year: 2018
  end-page: 10
  article-title: Juxta‐vascular pulmonary nodule segmentation in PET‐CT imaging based on an LBF active contour model with information entropy and joint vector
  publication-title: Comput Math Methods Med
– volume: 38
  start-page: 915
  year: 2011
  end-page: 931
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
  publication-title: Med Phys
– volume: 6
  start-page: 317
  year: 2016
  end-page: 327
  article-title: Segmentation of ground glass opacity pulmonary nodules using an integrated active contour model with wavelet energy‐based adaptive local energy and posterior probability‐based speed function
  publication-title: Mater Expr
– volume: 13
  start-page: 757
  year: 2009
  end-page: 770
  article-title: A large‐scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k‐nearest‐neighbour classification
  publication-title: Med Image Anal
– volume: 174
  start-page: 460
  year: 2018
  end-page: 469
  article-title: Improved U‐NET network for pulmonary nodules segmentation
  publication-title: Optik
– volume: 46
  start-page: 1218
  year: 2019
  end-page: 1229
  article-title: Pulmonary nodule segmentation with CT sample synthesis using adversarial networks
  publication-title: Med Phys
– volume: 24
  start-page: 1138
  year: 2005
  end-page: 1150
  article-title: Computer‐aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low‐dose CT by use of massive training artificial neural network
  publication-title: IEEE Trans Med Imaging
– volume: 13
  start-page: 1254
  year: 2006
  end-page: 1265
  article-title: Evaluation of lung MDCT nodule annotation across radiologists and methods
  publication-title: Acad Radiol
– volume: 22
  start-page: 1906
  year: 2018
  end-page: 1916
  article-title: Left atrial appendage segmentation using fully convolutional neural networks and modified three‐dimensional conditional random fields
  publication-title: IEEE J Biomed Health Inform
– volume: 237
  start-page: 395
  year: 2005
  end-page: 400
  article-title: Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society
  publication-title: Radiology
– volume: 6
  start-page: 1
  year: 2018
  end-page: 13
  article-title: Automatic lung segmentation with Juxta‐Pleural nodule identification using active contour model and Bayesian approach
  publication-title: IEEE J Translat Eng Health Med
– volume: 33
  start-page: 2323
  year: 2006
  end-page: 2337
  article-title: Computer‐aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours
  publication-title: Med Phys
– volume: 58
  start-page: 316
  year: 2019
  end-page: 322
  article-title: A mix‐pooling CNN architecture with FCRF for brain tumor segmentation
  publication-title: J Vis Commun Image Represent
– year: 2017
– volume: 92
  start-page: 128
  year: 2018
  end-page: 138
  article-title: Ground‐glass nodule segmentation in chest CT images using asymmetric multi‐phase deformable model and pulmonary vessel removal
  publication-title: Comput Biol Med
– volume: 22
  start-page: 1259
  year: 2003
  end-page: 1274
  article-title: Three‐dimensional segmentation and growth‐rate estimation of small pulmonary nodules in helical CT images
  publication-title: IEEE Trans Med Imaging
– year: 2016
– year: 2018
– volume: 40
  start-page: 172
  year: 2017
  end-page: 183
  article-title: Central focused convolutional neural networks: developing a data‐driven model for lung nodule segmentation
  publication-title: Med Image Anal
– year: 2010
– volume: 22
  start-page: 3983
  year: 2018
  end-page: 3995
  article-title: A fast weak‐supervised pulmonary nodule segmentation method based on modified self‐adaptive FCM algorithm
  publication-title: Soft Comput
– ident: e_1_2_6_20_1
  doi: 10.1016/j.compbiomed.2017.11.013
– ident: e_1_2_6_16_1
  doi: 10.1109/JBHI.2018.2794552
– ident: e_1_2_6_22_1
  doi: 10.1155/2018/2183847
– ident: e_1_2_6_8_1
  doi: 10.1016/j.media.2009.07.001
– ident: e_1_2_6_17_1
  doi: 10.1118/1.3528204
– ident: e_1_2_6_18_1
  doi: 10.1016/j.acra.2006.07.012
– ident: e_1_2_6_21_1
  doi: 10.1016/j.media.2017.06.014
– ident: e_1_2_6_24_1
  doi: 10.1166/mex.2016.1311
– ident: e_1_2_6_6_1
  doi: 10.1109/TMI.2003.817785
– ident: e_1_2_6_11_1
  doi: 10.1109/ISBI.2018.8363765
– ident: e_1_2_6_13_1
  doi: 10.1109/CISP-BMEI.2018.8633056
– ident: e_1_2_6_3_1
  doi: 10.1117/12.2502835
– ident: e_1_2_6_4_1
  doi: 10.1109/TMI.2005.852048
– ident: e_1_2_6_5_1
  doi: 10.1118/1.2207129
– ident: e_1_2_6_10_1
  doi: 10.1007/978-3-319-66179-7_65
– ident: e_1_2_6_7_1
  doi: 10.1109/ICPR.2010.634
– ident: e_1_2_6_14_1
  doi: 10.1109/ISBI.2018.8363561
– ident: e_1_2_6_2_1
  doi: 10.1148/radiol.2372041887
– ident: e_1_2_6_23_1
  doi: 10.1109/JTEHM.2018.2837901
– ident: e_1_2_6_9_1
  doi: 10.1016/j.ijleo.2018.08.086
– ident: e_1_2_6_19_1
  doi: 10.1007/978-3-319-46723-8_48
– ident: e_1_2_6_12_1
  doi: 10.1002/mp.13349
– ident: e_1_2_6_15_1
  doi: 10.1016/j.jvcir.2018.11.047
– ident: e_1_2_6_25_1
  doi: 10.1007/s00500-017-2608-5
SSID ssj0006350
Score 2.5333643
Snippet Purpose Pulmonary nodules are a potential manifestation of lung cancer. In computer‐aided diagnosis (CAD) of lung cancer, it is of great significance to...
Pulmonary nodules are a potential manifestation of lung cancer. In computer-aided diagnosis (CAD) of lung cancer, it is of great significance to extract the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4054
SubjectTerms 3D‐CRF
3D‐UNET
Diagnosis, Computer-Assisted
Humans
Lung - diagnostic imaging
Lung Neoplasms - diagnostic imaging
Multiple Pulmonary Nodules - diagnostic imaging
pulmonary nodule segmentation
Radiographic Image Interpretation, Computer-Assisted
Solitary Pulmonary Nodule - diagnostic imaging
Tomography, X-Ray Computed
Title Segmentation of pulmonary nodules in CT images based on 3D‐UNET combined with three‐dimensional conditional random field optimization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.14248
https://www.ncbi.nlm.nih.gov/pubmed/32428969
https://www.proquest.com/docview/2405302209
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJtBeEIxbuclICB6qjDZO4-Rx6joq1JZJS0XfIscXVqlJqtHwwDv_m-NL0kwr0uAljVzLjvJ98bn4nGOE3lPBB5EMqCdjFXr6jCuPcU69YSiE7ysaK5MUNpuHk0XwZTlcdjo_W1FL1TY74b_25pX8D6rQBrjqLNl_QLYZFBrgHvCFKyAM1zthfCm_5y53yGh9m2oNc-s4uKIU1drEWvVGSW-VM13KQUssoXcHyJm3mI8THU8OhnEdgL4FWKUndLl_W6pDh6SLlXMWgkwTZd4zEW-9Ehaa3GVwttXbetvH-kuMQ1cnWTN7_Efjc_hWmdA-WVyxsgkAYsZpO5WrnW5tnbOTanVVOgFrCOhc3J-Za3ROC7BQ66gst7b5ASVe4PftxHJPm1ucbTlOR8K4tdKCohnsFQG2pGy-OdE5fNFOzNVb-_Ov6fliOk2T8TK5hw59SvX2_uHp2Wx62chwUMO0d655pLpscd__VI98U5G5ZZ3cNHaMtpI8Qg-dmYFPLWceo44sjtGDmQukOEb3LyxCT9DvNolwqXBDIuxIhFcFHiXYkggbEmHo6kiEaxJhTSJ8i0S4RSJsSYQNiXCbRE_R4nycjCaeO5vD4wS0Qo_FfZmxfqgixmMwoRVXQ06VpCIilMVBHEkeSTC-QQOG18n6VMQBCQWjSimeCfIMHRRlIV8grEQWKBYQGJAEAWHZgBI18BUjPslkRLvoY_2iU-4K1-vzU9apLbntp_kmNZB00bum58YWa9nXp8YqhZVUb4-xQpbVjxR0W32EFqDdRc8tiM0o2uyI4hD--WBQ_evw6ezC_L68wzSv0NHu23iNDrbXlXwDKu42e-v4-AdRpqro
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+pulmonary+nodules+in+CT+images+based+on+3D-UNET+combined+with+three-dimensional+conditional+random+field+optimization&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Wu%2C+Wenhao&rft.au=Gao%2C+Lei&rft.au=Duan%2C+Huihong&rft.au=Huang%2C+Gang&rft.date=2020-09-01&rft.issn=2473-4209&rft.eissn=2473-4209&rft.volume=47&rft.issue=9&rft.spage=4054&rft_id=info:doi/10.1002%2Fmp.14248&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon