Axion‐Like Interactions and CFT in Topological Matter, Anomaly Sum Rules and the Faraday Effect
Fundamental aspects of chiral anomaly‐driven interactions in conformal field theory (CFT) in four spacetime dimensions are discussed. These interactions find application in very general contexts, from early universe plasma to topological condensed matter. The key shared characteristics of these inte...
Saved in:
Published in | Advanced Physics Research Vol. 4; no. 7 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley-VCH
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2751-1200 2751-1200 |
DOI | 10.1002/apxr.202400043 |
Cover
Loading…
Abstract | Fundamental aspects of chiral anomaly‐driven interactions in conformal field theory (CFT) in four spacetime dimensions are discussed. These interactions find application in very general contexts, from early universe plasma to topological condensed matter. The key shared characteristics of these interactions are outlined, specifically addressing the case of chiral anomalies, both for vector currents and gravitons. In the case of topological materials, the gravitational chiral anomaly is generated by thermal gradients via the (Tolman–Ehrenfest) Luttinger relation. In the CFT framework, a nonlocal effective action, derived through perturbation theory, indicates that the interaction is mediated by excitation in the form of an anomaly pole, which appears in the conformal limit of the vertex. To illustrate this, it is demonstrated how conformal Ward identities (CWIs) in momentum space allow to reconstruct the entire chiral anomaly interaction in its longitudinal and transverse sectors just by inclusion of a pole in the longitudinal sector. Both sectors are coupled in amplitudes with an intermediate chiral fermion or a bilinear Chern–Simons current with intermediate photons. In the presence of fermion mass corrections, the pole transforms into a cut, but the absorption amplitude in the axial‐vector channel satisfies mass‐independent sum rules related to the anomaly in any chiral interaction. The detection of an axion‐like/quasiparticle in these materials may rely on a combined investigation of these sum rules, along with the measurement of the angle of rotation of the plane of polarization of incident light when subjected to a chiral perturbation. This phenomenon serves as an analog of a similar one in ordinary axion physics, in the presence of an axion‐like condensate, which is rederived using axion electrodynamics.
This review investigates the connection between chiral anomalies and their manifestation in topological materials, using both perturbative methods based on ordinary quantum field theory and conformal field theory (CFT). It emphasizes the role of CFT in momentum space for parity‐odd correlation functions, and their reconstruction by the inclusion of a single axion‐like interaction. Both the nonlocal and the local anomaly actions induced by the chiral anomaly vertex are discussed, together with the fundamental equations of the (local) axion electrodynamics action, and the propagation of a light beam in the presence of an axion condensate. |
---|---|
AbstractList | Fundamental aspects of chiral anomaly‐driven interactions in conformal field theory (CFT) in four spacetime dimensions are discussed. These interactions find application in very general contexts, from early universe plasma to topological condensed matter. The key shared characteristics of these interactions are outlined, specifically addressing the case of chiral anomalies, both for vector currents and gravitons. In the case of topological materials, the gravitational chiral anomaly is generated by thermal gradients via the (Tolman–Ehrenfest) Luttinger relation. In the CFT framework, a nonlocal effective action, derived through perturbation theory, indicates that the interaction is mediated by excitation in the form of an anomaly pole, which appears in the conformal limit of the vertex. To illustrate this, it is demonstrated how conformal Ward identities (CWIs) in momentum space allow to reconstruct the entire chiral anomaly interaction in its longitudinal and transverse sectors just by inclusion of a pole in the longitudinal sector. Both sectors are coupled in amplitudes with an intermediate chiral fermion or a bilinear Chern–Simons current with intermediate photons. In the presence of fermion mass corrections, the pole transforms into a cut, but the absorption amplitude in the axial‐vector channel satisfies mass‐independent sum rules related to the anomaly in any chiral interaction. The detection of an axion‐like/quasiparticle in these materials may rely on a combined investigation of these sum rules, along with the measurement of the angle of rotation of the plane of polarization of incident light when subjected to a chiral perturbation. This phenomenon serves as an analog of a similar one in ordinary axion physics, in the presence of an axion‐like condensate, which is rederived using axion electrodynamics.
This review investigates the connection between chiral anomalies and their manifestation in topological materials, using both perturbative methods based on ordinary quantum field theory and conformal field theory (CFT). It emphasizes the role of CFT in momentum space for parity‐odd correlation functions, and their reconstruction by the inclusion of a single axion‐like interaction. Both the nonlocal and the local anomaly actions induced by the chiral anomaly vertex are discussed, together with the fundamental equations of the (local) axion electrodynamics action, and the propagation of a light beam in the presence of an axion condensate. Abstract Fundamental aspects of chiral anomaly‐driven interactions in conformal field theory (CFT) in four spacetime dimensions are discussed. These interactions find application in very general contexts, from early universe plasma to topological condensed matter. The key shared characteristics of these interactions are outlined, specifically addressing the case of chiral anomalies, both for vector currents and gravitons. In the case of topological materials, the gravitational chiral anomaly is generated by thermal gradients via the (Tolman–Ehrenfest) Luttinger relation. In the CFT framework, a nonlocal effective action, derived through perturbation theory, indicates that the interaction is mediated by excitation in the form of an anomaly pole, which appears in the conformal limit of the vertex. To illustrate this, it is demonstrated how conformal Ward identities (CWIs) in momentum space allow to reconstruct the entire chiral anomaly interaction in its longitudinal and transverse sectors just by inclusion of a pole in the longitudinal sector. Both sectors are coupled in amplitudes with an intermediate chiral fermion or a bilinear Chern–Simons current with intermediate photons. In the presence of fermion mass corrections, the pole transforms into a cut, but the absorption amplitude in the axial‐vector channel satisfies mass‐independent sum rules related to the anomaly in any chiral interaction. The detection of an axion‐like/quasiparticle in these materials may rely on a combined investigation of these sum rules, along with the measurement of the angle of rotation of the plane of polarization of incident light when subjected to a chiral perturbation. This phenomenon serves as an analog of a similar one in ordinary axion physics, in the presence of an axion‐like condensate, which is rederived using axion electrodynamics. Fundamental aspects of chiral anomaly‐driven interactions in conformal field theory (CFT) in four spacetime dimensions are discussed. These interactions find application in very general contexts, from early universe plasma to topological condensed matter. The key shared characteristics of these interactions are outlined, specifically addressing the case of chiral anomalies, both for vector currents and gravitons. In the case of topological materials, the gravitational chiral anomaly is generated by thermal gradients via the (Tolman–Ehrenfest) Luttinger relation. In the CFT framework, a nonlocal effective action, derived through perturbation theory, indicates that the interaction is mediated by excitation in the form of an anomaly pole, which appears in the conformal limit of the vertex. To illustrate this, it is demonstrated how conformal Ward identities (CWIs) in momentum space allow to reconstruct the entire chiral anomaly interaction in its longitudinal and transverse sectors just by inclusion of a pole in the longitudinal sector. Both sectors are coupled in amplitudes with an intermediate chiral fermion or a bilinear Chern–Simons current with intermediate photons. In the presence of fermion mass corrections, the pole transforms into a cut, but the absorption amplitude in the axial‐vector channel satisfies mass‐independent sum rules related to the anomaly in any chiral interaction. The detection of an axion‐like/quasiparticle in these materials may rely on a combined investigation of these sum rules, along with the measurement of the angle of rotation of the plane of polarization of incident light when subjected to a chiral perturbation. This phenomenon serves as an analog of a similar one in ordinary axion physics, in the presence of an axion‐like condensate, which is rederived using axion electrodynamics. |
Author | Tommasi, Riccardo Corianò, Claudio Melle, Dario Cretì, Mario Lionetti, Stefano |
Author_xml | – sequence: 1 givenname: Claudio orcidid: 0000-0003-0479-8075 surname: Corianò fullname: Corianò, Claudio email: claudio.coriano@le.infn.it organization: National Research Council (CNR‐NANOTEC) – sequence: 2 givenname: Mario surname: Cretì fullname: Cretì, Mario organization: Istituto Italiano di Tecnologia – sequence: 3 givenname: Stefano surname: Lionetti fullname: Lionetti, Stefano organization: Università del Salento and INFN Sezione di Lecce – sequence: 4 givenname: Dario surname: Melle fullname: Melle, Dario organization: Big Data and Quantum Computing – sequence: 5 givenname: Riccardo surname: Tommasi fullname: Tommasi, Riccardo organization: Università del Salento and INFN Sezione di Lecce |
BookMark | eNqFkN1Kw0AQhRdR8PfW630AW_cvzeayFKuFiqIVvFsmm1ldTbNlE7G98xF8Rp_E1KiIIF7NMHO-w-Hsks0qVEjIIWd9zpg4hsUy9gUTijGm5AbZEWnCe1wwtvlj3yYHdf3QSoTOuFR8h8Bw6UP19vI69Y9IJ1WDEWzTnmoKVUFH4xn1FZ2FRSjDnbdQ0nNoWtERHVZhDuWKXj_N6dVTiR3Q3CMdQ4QCVvTEObTNPtlyUNZ48Dn3yM34ZDY6600vTiej4bRnpeC6l_GB6nIVGXMDCyARuUCeZmkitEtaQa7aHyTOpTpVGddMF05LlVhVMLlHJp1vEeDBLKKfQ1yZAN58HEK8MxAbb0s06KQFVCJLcquyFHSeo0KWCNA21wPReqnOy8ZQ1xGdsb6BdS1NBF8azsy6dbNu3Xy33mL9X9hXjD-BpAOefYmrf9RmeHl7xYWQWr4DKpyWOg |
CitedBy_id | crossref_primary_10_1051_epjconf_202431400026 crossref_primary_10_1103_PhysRevD_110_125008 crossref_primary_10_1103_PhysRevD_111_014013 |
Cites_doi | 10.1016/j.ppnp.2022.104016 10.1088/1126-6708/2007/07/008 10.1103/PhysRevLett.124.211301 10.1142/S0217751X04018518 10.1140/epjc/s10052-023-11661-1 10.1016/j.physrep.2021.11.005 10.1103/PhysRev.177.2426 10.1016/0370-2693(92)91363-E 10.1103/PhysRevLett.98.106803 10.1080/00018732.2014.927109 10.1103/PhysRevB.78.195424 10.1088/0264-9381/28/7/075007 10.1103/PhysRevLett.132.071601 10.1103/PhysRevB.85.184503 10.1016/j.nuclphysb.2018.11.016 10.1016/j.physrep.2022.06.002 10.1126/science.1167733 10.1103/PhysRevLett.49.405 10.1007/JHEP03(2014)111 10.1103/PhysRevB.75.121306 10.1103/PhysRevLett.58.1799 10.1103/PhysRevB.78.195125 10.1103/PhysRevB.87.134519 10.1103/PhysRevB.89.075124 10.1006/aphy.1994.1045 10.1103/PhysRevB.99.235123 10.1016/j.nuclphysb.2021.115385 10.1088/1126-6708/2004/03/035 10.1088/1126-6708/2009/12/029 10.1038/nature06843 10.1007/JHEP07(2013)011 10.1016/0550-3213(71)90264-1 10.1140/epjc/s10052-020-7782-4 10.1103/PhysRev.135.A1505 10.1063/1.3149495 10.1103/PhysRevB.55.1142 10.1103/PhysRevB.102.205407 10.1103/PhysRevB.76.165307 10.1103/PhysRev.36.1791 10.1140/epjc/s10052-023-11984-z 10.1103/PhysRevD.109.045004 10.1063/5.0038804 10.1142/S0217751X11053407 10.1103/RevModPhys.83.1057 10.1103/PhysRevLett.123.226602 10.1007/JHEP09(2019)107 10.1016/0003-4916(85)90148-4 10.1103/PhysRev.129.2786 10.1007/BF02823296 10.1103/PhysRevLett.95.146802 10.1007/JHEP05(2024)307 10.1038/nature08234 10.1103/PhysRevB.86.115133 10.1126/science.1148047 10.1103/PhysRevD.32.1029 10.1103/PhysRevLett.114.256801 10.1007/BF01035529 10.1088/0264-9381/28/14/145004 10.1088/0953-8984/27/11/113201 10.1016/j.physletb.2009.11.013 10.1126/science.1173034 10.1038/nphys1274 10.1016/j.nuclphysb.2018.10.007 10.1007/JHEP06(2015)024 10.1007/JHEP03(2016)066 10.1007/JHEP03(2023)196 10.1016/0003-4916(74)90040-2 10.1103/PhysRevB.109.134512 10.1007/JHEP11(2018)159 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/apxr.202400043 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1200 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_ef3cae4295bc497a8bbe4e052a8cb862 10_1002_apxr_202400043 APXR12238 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: INFN Lecce |
GroupedDBID | 0R~ 24P 88I AAFWJ AAMMB ABJCF ABUWG ACCMX AEFGJ AEUYN AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P M~E PCBAR PDBOC PHGZM PHGZT PIMPY PQGLB AAYXX ARCSS CITATION PUEGO WIN |
ID | FETCH-LOGICAL-c3218-9164002891d90f6caa3ee12e1797528f5916b4d90a5ff787491808df8345c4d03 |
IEDL.DBID | 24P |
ISSN | 2751-1200 |
IngestDate | Wed Aug 27 01:24:02 EDT 2025 Wed Jul 16 16:48:13 EDT 2025 Thu Apr 24 23:05:22 EDT 2025 Sat Jul 12 03:16:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3218-9164002891d90f6caa3ee12e1797528f5916b4d90a5ff787491808df8345c4d03 |
ORCID | 0000-0003-0479-8075 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400043 |
PageCount | 32 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ef3cae4295bc497a8bbe4e052a8cb862 crossref_citationtrail_10_1002_apxr_202400043 crossref_primary_10_1002_apxr_202400043 wiley_primary_10_1002_apxr_202400043_APXR12238 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2025 |
Publisher | Wiley-VCH |
Publisher_xml | – name: Wiley-VCH |
References | 1992; B289 2024; 109 2009; D79 2021; 966 2023; 2023 2021; 129 2008; 78 2020; 124 2022; 977 2014; 63 2007; 75 2007; 76 1985; 160 2019; 123 2023; 83 2019; B938 1964; 135 2009; 12 1987; 45 2015; 06 1995; C65 1974; 87 1977; D15 1997; 55 1963; 129 2014; B89 2009; 682 2024; 2024 2011; 26 2011; 28 1972; 13 2009; 323 2016; 03 2009; 325 1969; 177 1987; 58 2009; B682 1994; 231 2010; D82 2010; D81 2013; 87 2004; 03 2020; 80 1930; 36 2011; 83 1998 1996 2014; 03 2020; 102 2023; 129 2014; 06 2007; 98 2022; 952 1973; D7 1997; C76 2013; 1307 1982; 49 2015; 27 2023 2004; 19 2022 2015; 114 1969; 60 2022; 62 2019; B99 2005; 95 2019 2024; 132 2017 2019; 09 2009; 5 2009; 460 2018; B937 2008; 452 2018; 11 2018; 10 2007; 318 2007; 0707 1985; 32 2009; 1134 2012; 86 1981; 53 2012; 85 1971; B27 Jackson J. D. (e_1_2_15_58_1) 1998 Bertlmann R. A. (e_1_2_15_61_1) 1981; 53 Chanowitz M. S. (e_1_2_15_67_1) 1973; 7 e_1_2_15_21_1 e_1_2_15_42_1 e_1_2_15_88_1 e_1_2_15_40_1 e_1_2_15_69_1 Armillis R. (e_1_2_15_68_1) 2010; 82 e_1_2_15_3_1 e_1_2_15_80_1 e_1_2_15_1_1 e_1_2_15_27_1 e_1_2_15_82_1 e_1_2_15_25_1 e_1_2_15_46_1 e_1_2_15_84_1 e_1_2_15_23_1 e_1_2_15_44_1 e_1_2_15_65_1 e_1_2_15_86_1 e_1_2_15_9_1 Giannotti M. (e_1_2_15_29_1) 2009; 79 Horejsi J. (e_1_2_15_63_1) 1997; 76 e_1_2_15_7_1 Dolgov A. D. (e_1_2_15_70_1) 1987; 45 e_1_2_15_5_1 Arouca R. (e_1_2_15_48_1) 2022; 62 Bonora L. (e_1_2_15_36_1) 2023 e_1_2_15_10_1 e_1_2_15_56_1 e_1_2_15_77_1 e_1_2_15_79_1 e_1_2_15_18_1 e_1_2_15_39_1 e_1_2_15_16_1 e_1_2_15_37_1 e_1_2_15_50_1 e_1_2_15_71_1 e_1_2_15_14_1 e_1_2_15_35_1 e_1_2_15_52_1 e_1_2_15_73_1 e_1_2_15_12_1 e_1_2_15_33_1 e_1_2_15_54_1 e_1_2_15_75_1 e_1_2_15_19_1 e_1_2_15_20_1 e_1_2_15_43_1 e_1_2_15_89_1 e_1_2_15_41_1 Adler S. L. (e_1_2_15_66_1) 1977; 15 e_1_2_15_28_1 e_1_2_15_81_1 e_1_2_15_2_1 e_1_2_15_26_1 e_1_2_15_49_1 e_1_2_15_60_1 e_1_2_15_83_1 Corianò C. (e_1_2_15_87_1) 2014; 06 e_1_2_15_24_1 e_1_2_15_62_1 e_1_2_15_85_1 e_1_2_15_22_1 e_1_2_15_45_1 e_1_2_15_8_1 e_1_2_15_6_1 e_1_2_15_4_1 e_1_2_15_32_1 e_1_2_15_55_1 e_1_2_15_78_1 e_1_2_15_30_1 e_1_2_15_57_1 e_1_2_15_59_1 Horejsi J. (e_1_2_15_64_1) 1995; 65 e_1_2_15_17_1 Bertlmann R. A. (e_1_2_15_47_1) 1996 e_1_2_15_15_1 e_1_2_15_38_1 e_1_2_15_72_1 e_1_2_15_13_1 e_1_2_15_51_1 e_1_2_15_74_1 Armillis R. (e_1_2_15_31_1) 2010; 81 e_1_2_15_11_1 e_1_2_15_34_1 e_1_2_15_53_1 e_1_2_15_76_1 |
References_xml | – volume: 45 start-page: 651 year: 1987 publication-title: JETP Lett. – volume: 11 start-page: 159 year: 2018 publication-title: JHEP – volume: D81 year: 2010 publication-title: Phys. Rev. – volume: 26 start-page: 2405 year: 2011 publication-title: Int. J. Mod. Phys. A – volume: 58 start-page: 1799 year: 1987 publication-title: Phys. Rev. Lett. – volume: 129 year: 2023 publication-title: Prog. Part. Nucl. Phys. – volume: 86 year: 2012 publication-title: Phys. Rev. B – volume: 10 year: 2018 – volume: 55 start-page: 1142 year: 1997 publication-title: Phys. Rev. B – volume: 32 start-page: 1029 year: 1985 publication-title: Phys. Rev. D – volume: 95 year: 2005 publication-title: Phys. Rev. Lett. – volume: 135 year: 1964 publication-title: Phys. Rev. – volume: 80 start-page: 276 year: 2020 publication-title: Eur. Phys. J. C – volume: 0707 start-page: 008 year: 2007 publication-title: JHEP – volume: 83 start-page: 502 year: 2023 publication-title: Eur. Phys. J. C – volume: B27 start-page: 525 year: 1971 publication-title: Nucl. Phys. – volume: 109 year: 2024 publication-title: Phys. Rev. B – volume: 132 year: 2024 publication-title: Phys. Rev. Lett. – volume: 682 start-page: 322 year: 2009 publication-title: Physics Letters B – year: 1998 – volume: 03 start-page: 111 year: 2014 publication-title: JHEP – volume: C76 start-page: 561 year: 1997 publication-title: Z. Phys. – volume: 36 start-page: 1791 year: 1930 publication-title: Phys. Rev. – volume: 87 year: 2013 publication-title: Phys. Rev. B – volume: 460 start-page: 1101 year: 2009 publication-title: Nature – volume: 49 start-page: 405 year: 1982 publication-title: Phys. Rev. Lett. – volume: 83 start-page: 1057 year: 2011 publication-title: Rev. Mod. Phys. – volume: 03 start-page: 035 year: 2004 publication-title: JHEP – volume: 09 start-page: 107 year: 2019 publication-title: JHEP – volume: 952 start-page: 2198 year: 2022 publication-title: Phys. Rept. – year: 2022 – volume: 53 start-page: 305 year: 1981 publication-title: Acta Phys. Austriaca – volume: 03 start-page: 066 year: 2016 publication-title: JHEP – volume: B938 start-page: 440 year: 2019 publication-title: Nucl. Phys. – volume: 63 start-page: 1 year: 2014 publication-title: Adv. Phys. – year: 2019 – volume: 977 start-page: 1 year: 2022 publication-title: Phys. Rept. – volume: 19 start-page: 2579 year: 2004 publication-title: Int. J. Mod. Phys. A – volume: 231 start-page: 311 year: 1994 publication-title: Ann. Phys. – start-page: 1 year: 2017 end-page: 74 – volume: 75 year: 2007 publication-title: Phys. Rev. B – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. – volume: 323 start-page: 919 year: 2009 publication-title: Science – volume: 2023 start-page: 196 year: 2023 publication-title: J. High Energy Phys. – volume: 28 year: 2011 publication-title: Class. Quant. Grav. – volume: 78 year: 2008 publication-title: Phys. Rev. B – volume: 123 year: 2019 publication-title: Phys. Rev. Lett. – volume: 85 year: 2012 publication-title: Phys. Rev. B – volume: 102 year: 2020 publication-title: Phys. Rev. B – volume: 1307 start-page: 011 year: 2013 publication-title: JHEP – volume: B289 start-page: 67 year: 1992 publication-title: Phys. Lett. – volume: 325 start-page: 178 year: 2009 publication-title: Science – volume: 87 start-page: 354 year: 1974 publication-title: Ann. Phys. – volume: 109 year: 2024 publication-title: Phys. Rev. D – volume: 129 start-page: 2786 year: 1963 publication-title: Phys. Rev. – volume: 06 start-page: 136 year: 2014 publication-title: JHEP – volume: 27 year: 2015 publication-title: J. Phys. Condens. Matter – volume: D79 year: 2009 publication-title: Phys. Rev. – volume: B89 year: 2014 publication-title: Phys. Rev. – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 200 year: 1972 publication-title: Teor. Mat. Fiz. – volume: B682 start-page: 322 year: 2009 publication-title: Phys. Lett. – volume: 5 start-page: 398 year: 2009 publication-title: Nat. Phys. – volume: 1134 start-page: 22 year: 2009 publication-title: AIP Conf. Proc. – volume: 160 start-page: 355 year: 1985 publication-title: Ann. Phys. – volume: 966 year: 2021 publication-title: Nucl. Phys. B – volume: C65 start-page: 691 year: 1995 publication-title: Z. Phys. – volume: 177 start-page: 2426 year: 1969 publication-title: Phys. Rev. – start-page: 566 year: 1996 – volume: 76 year: 2007 publication-title: Phys. Rev. B – volume: 62 start-page: 1 year: 2022 publication-title: SciPost Phys. Lect. Notes – volume: 83 start-page: 839 year: 2023 publication-title: Europ. Phys. J. C – year: 2023 – volume: 124 year: 2020 publication-title: Phys. Rev. Lett. – volume: B937 start-page: 56 year: 2018 publication-title: Nucl. Phys. – volume: 06 start-page: 024 year: 2015 publication-title: JHEP – volume: 2024 start-page: 307 year: 2024 publication-title: J. High Energy Phys. – volume: 60 start-page: 47 year: 1969 publication-title: Nuovo Cim. A – volume: 452 start-page: 970 year: 2008 publication-title: Nature – volume: D82 year: 2010 publication-title: Phys. Rev. – volume: 129 year: 2021 publication-title: J. Appl. Phys. – volume: B99 year: 2019 publication-title: Phys. Rev. – volume: 12 start-page: 029 year: 2009 publication-title: JHEP – volume: D15 start-page: 1712 year: 1977 publication-title: Phys. Rev. – volume: D7 start-page: 2490 year: 1973 publication-title: Phys.Rev. – volume: 318 year: 2007 publication-title: Science – ident: e_1_2_15_51_1 doi: 10.1016/j.ppnp.2022.104016 – ident: e_1_2_15_54_1 doi: 10.1088/1126-6708/2007/07/008 – ident: e_1_2_15_60_1 doi: 10.1103/PhysRevLett.124.211301 – ident: e_1_2_15_37_1 doi: 10.1142/S0217751X04018518 – ident: e_1_2_15_81_1 doi: 10.1140/epjc/s10052-023-11661-1 – ident: e_1_2_15_33_1 doi: 10.1016/j.physrep.2021.11.005 – ident: e_1_2_15_34_1 doi: 10.1103/PhysRev.177.2426 – ident: e_1_2_15_44_1 doi: 10.1016/0370-2693(92)91363-E – ident: e_1_2_15_6_1 doi: 10.1103/PhysRevLett.98.106803 – ident: e_1_2_15_4_1 doi: 10.1080/00018732.2014.927109 – ident: e_1_2_15_20_1 doi: 10.1103/PhysRevB.78.195424 – ident: e_1_2_15_42_1 doi: 10.1088/0264-9381/28/7/075007 – volume: 45 start-page: 651 year: 1987 ident: e_1_2_15_70_1 publication-title: JETP Lett. – ident: e_1_2_15_84_1 doi: 10.1103/PhysRevLett.132.071601 – ident: e_1_2_15_88_1 doi: 10.1103/PhysRevB.85.184503 – ident: e_1_2_15_74_1 doi: 10.1016/j.nuclphysb.2018.11.016 – ident: e_1_2_15_1_1 doi: 10.1016/j.physrep.2022.06.002 – ident: e_1_2_15_16_1 doi: 10.1126/science.1167733 – volume: 81 year: 2010 ident: e_1_2_15_31_1 publication-title: Phys. Rev. – ident: e_1_2_15_9_1 doi: 10.1103/PhysRevLett.49.405 – ident: e_1_2_15_73_1 doi: 10.1007/JHEP03(2014)111 – ident: e_1_2_15_8_1 doi: 10.1103/PhysRevB.75.121306 – ident: e_1_2_15_21_1 doi: 10.1103/PhysRevLett.58.1799 – volume: 15 start-page: 1712 year: 1977 ident: e_1_2_15_66_1 publication-title: Phys. Rev. – ident: e_1_2_15_11_1 doi: 10.1103/PhysRevB.78.195125 – volume: 79 year: 2009 ident: e_1_2_15_29_1 publication-title: Phys. Rev. – ident: e_1_2_15_45_1 doi: 10.1103/PhysRevB.87.134519 – ident: e_1_2_15_49_1 doi: 10.1103/PhysRevB.89.075124 – ident: e_1_2_15_71_1 doi: 10.1006/aphy.1994.1045 – ident: e_1_2_15_50_1 doi: 10.1103/PhysRevB.99.235123 – ident: e_1_2_15_40_1 doi: 10.1016/j.nuclphysb.2021.115385 – ident: e_1_2_15_56_1 doi: 10.1088/1126-6708/2004/03/035 – volume: 76 start-page: 561 year: 1997 ident: e_1_2_15_63_1 publication-title: Z. Phys. – volume: 65 start-page: 691 year: 1995 ident: e_1_2_15_64_1 publication-title: Z. Phys. – volume: 82 year: 2010 ident: e_1_2_15_68_1 publication-title: Phys. Rev. – ident: e_1_2_15_32_1 doi: 10.1088/1126-6708/2009/12/029 – ident: e_1_2_15_15_1 doi: 10.1038/nature06843 – volume: 53 start-page: 305 year: 1981 ident: e_1_2_15_61_1 publication-title: Acta Phys. Austriaca – ident: e_1_2_15_72_1 doi: 10.1007/JHEP07(2013)011 – ident: e_1_2_15_57_1 doi: 10.1016/0550-3213(71)90264-1 – ident: e_1_2_15_83_1 doi: 10.1140/epjc/s10052-020-7782-4 – ident: e_1_2_15_53_1 doi: 10.1103/PhysRev.135.A1505 – ident: e_1_2_15_12_1 doi: 10.1063/1.3149495 – ident: e_1_2_15_13_1 doi: 10.1103/PhysRevB.55.1142 – ident: e_1_2_15_27_1 doi: 10.1103/PhysRevB.102.205407 – ident: e_1_2_15_7_1 doi: 10.1103/PhysRevB.76.165307 – ident: e_1_2_15_89_1 doi: 10.1103/PhysRev.36.1791 – ident: e_1_2_15_28_1 doi: 10.1140/epjc/s10052-023-11984-z – ident: e_1_2_15_46_1 doi: 10.1103/PhysRevD.109.045004 – volume: 7 start-page: 2490 year: 1973 ident: e_1_2_15_67_1 publication-title: Phys.Rev. – ident: e_1_2_15_25_1 doi: 10.1063/5.0038804 – ident: e_1_2_15_30_1 doi: 10.1142/S0217751X11053407 – ident: e_1_2_15_43_1 – ident: e_1_2_15_24_1 doi: 10.1103/RevModPhys.83.1057 – ident: e_1_2_15_22_1 doi: 10.1103/PhysRevLett.123.226602 – ident: e_1_2_15_52_1 – ident: e_1_2_15_79_1 doi: 10.1007/JHEP09(2019)107 – ident: e_1_2_15_10_1 doi: 10.1016/0003-4916(85)90148-4 – volume-title: Theoretical and Mathematical Physics year: 2023 ident: e_1_2_15_36_1 – ident: e_1_2_15_2_1 – ident: e_1_2_15_55_1 doi: 10.1103/PhysRev.129.2786 – volume: 06 start-page: 136 year: 2014 ident: e_1_2_15_87_1 publication-title: JHEP – ident: e_1_2_15_35_1 doi: 10.1007/BF02823296 – ident: e_1_2_15_5_1 doi: 10.1103/PhysRevLett.95.146802 – start-page: 566 volume-title: Anomalies in Quantum Field Theory year: 1996 ident: e_1_2_15_47_1 – ident: e_1_2_15_85_1 doi: 10.1007/JHEP05(2024)307 – ident: e_1_2_15_18_1 doi: 10.1038/nature08234 – ident: e_1_2_15_26_1 doi: 10.1103/PhysRevB.86.115133 – ident: e_1_2_15_14_1 doi: 10.1126/science.1148047 – volume: 62 start-page: 1 year: 2022 ident: e_1_2_15_48_1 publication-title: SciPost Phys. Lect. Notes – ident: e_1_2_15_78_1 – ident: e_1_2_15_62_1 doi: 10.1103/PhysRevD.32.1029 – ident: e_1_2_15_23_1 doi: 10.1103/PhysRevLett.114.256801 – ident: e_1_2_15_59_1 doi: 10.1007/BF01035529 – ident: e_1_2_15_39_1 doi: 10.1088/0264-9381/28/14/145004 – ident: e_1_2_15_3_1 doi: 10.1088/0953-8984/27/11/113201 – ident: e_1_2_15_69_1 doi: 10.1016/j.physletb.2009.11.013 – ident: e_1_2_15_19_1 doi: 10.1126/science.1173034 – ident: e_1_2_15_17_1 doi: 10.1038/nphys1274 – ident: e_1_2_15_86_1 – volume-title: Classical Electrodynamics year: 1998 ident: e_1_2_15_58_1 – ident: e_1_2_15_38_1 doi: 10.1016/j.physletb.2009.11.013 – ident: e_1_2_15_75_1 doi: 10.1016/j.nuclphysb.2018.10.007 – ident: e_1_2_15_82_1 doi: 10.1007/JHEP06(2015)024 – ident: e_1_2_15_76_1 doi: 10.1007/JHEP03(2016)066 – ident: e_1_2_15_80_1 doi: 10.1007/JHEP03(2023)196 – ident: e_1_2_15_65_1 doi: 10.1016/0003-4916(74)90040-2 – ident: e_1_2_15_41_1 doi: 10.1103/PhysRevB.109.134512 – ident: e_1_2_15_77_1 doi: 10.1007/JHEP11(2018)159 |
SSID | ssj0002891341 |
Score | 2.3160293 |
Snippet | Fundamental aspects of chiral anomaly‐driven interactions in conformal field theory (CFT) in four spacetime dimensions are discussed. These interactions find... Abstract Fundamental aspects of chiral anomaly‐driven interactions in conformal field theory (CFT) in four spacetime dimensions are discussed. These... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | field theory quantum anomalies topological materials |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELZQJxYEAkT5kwckFkLz4yTOWCqiClGESit1i86OLRXaUJVWajcegWfkSTjHaVUG1IU1ucjJdz7fnXP-jpArL4ox6wJMU-MIHOYDc0BC4iQCJwOmGwICcxq58xS1--xhEA42Wn2ZmjBLD2yBaygdSFC4aoZCsiQGLoRiyg194FJwu_qiz9tIpl7t7zPDVLZiaXT9BkwWhv7TlEy6LPjlhUqy_t_Baeld0n2yV4WFtGlf54DsqOKQQHOBqH1_fj0O3xQt9-7sMYQPivk_baU9Oixoz7Y5MGDTTsmWeUMxqR_DaElf5mPanY-UfQBjPZrCFHJYUstafET66X2v1XaqlgiODNAZ49IUMft1eeLqSAIESnm-QrOKQ5_rEAUEw3sQao22yBKPuzzXPGChZLkbHJNa8V6oE0JBydDXSmguEzTcSHiGqw_jOy9CZJmuE2cFUSYrvnDTtmKUWaZjPzOQZmtI6-R6LT-xTBl_St4ZxNdShuG6vIB6zyq9Z9v0Xie3pb62jJU1nwddD2Mgfvofo56RXd80AC7rdc9JbTadqwuMSmbispyAP3xL3cA priority: 102 providerName: Directory of Open Access Journals |
Title | Axion‐Like Interactions and CFT in Topological Matter, Anomaly Sum Rules and the Faraday Effect |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400043 https://doaj.org/article/ef3cae4295bc497a8bbe4e052a8cb862 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-Ll5EUbG-yEHw4uJuNtnHsYqliJVSW-htmWQTEetWqgW9iD_B3-gvcZLU1R5EvOxhd7KPyUzmsZlvCDmMkhSjLsAwNU0g4Ax4AAryIJcoDBhuSIhtNXLnKmkP-MVQDH9U8Xt8iDrhZjXDrddWwUE-nnyDhsLDs8XztHsgQx4vkmVbX2slnfFunWVh9i-ca1_JUhEFEcrEF3JjyE7mbzFnmRyA_7zD6ixOa42szlxF2vRzu04WdLVBoPmMnPx4e7-8vdPU5fN8acIjhaqkZ60-va1o37c-sBNAOw5B85hioH8Poxd6Pb2nvelI-wHo_9EWTKCEF-qRjDfJoHXeP2sHszYJgYrRQONylXD_pWUemkQBxFpHTKOqpYJlRiCB5HgNhDGonzyPsjArTRZzoXgZxltkqRpXeptQ0Eowo6XJVI7KnMjI4vehzxclmZLcNEjwxaJCzTDEbSuLUeHRj1lhWVrULG2Qo5r-waNn_Ep5ajleU1nUa3diPLkpZkpUaBMr0GhBhVQ8TyGTUnMdCgb4dhiaNYiXmD-eVTS7w16EflG2898Bu2SF2QbAbr_uHll6mkz1PnolT_LACd6Bi-nx2Hk9_wSSdNrY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4DLAgECDK0wMSCxGJY-cxFkRVoEUIisQWnR0bVZSACpVg4yfwG_klnO02qANCrMk5ic93vkfO3xGyHyUpRl2AYWqaQMAZ8AAU5EEuURgw3JAQ29PI3cukfcvP78SkmtCehfH4EHXCzWqG26-tgtuE9NEPaig8v1lAT1sEGfJ4lszzhKW2ewPjV3WahdnfcK5_JUtFFEQoFBPoxpAdTT9iyjQ5BP9pj9WZnNYyWRr7irTpF3eFzOhqlUDzDVn59fHZ6T9o6hJ6_mzCC4WqpCetHu1XtOd7H9gVoF0HoXlIMdJ_hME7vRk90uvRQPsB6ADSFgyhhHfqoYzXyG3rtHfSDsZ9EgIVo4XG_SrhfqZlHppEAcRaR0yjrqWCZUYggeR4D4QxqKA8j7IwK00Wc6F4GcbrZK56qvQGoaCVYEZLk6kctTmRkQXwQ6cvSjIluWmQYMKiQo1BxG0vi0Hh4Y9ZYVla1CxtkIOa_tnDZ_xKeWw5XlNZ2Gt34Wl4X4y1qNAmVqDRhAqpeJ5CJqXmOhQM8OswNmsQLzJ_vKtoXt1dR-gYZZv_HbBHFtq9bqfonF1ebJFFZrsBu-LdbTL3OhzpHXRRXuWuE8JvIPPcHg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-swELZYJMTlCQSIwgN8QOJCROLYWY5lidhVQZF6i8aOjRAlVH1Ugtv7CfxGfgljuwR6QIhrMs4ynvEs9nxDyHaUpBh1AYapaQIBZ8ADUJAHuURhwHBDQmyrkS8uk-MbftoTvS9V_B4fokm4Wc1w67VV8EFl9j5BQ2HwbPE87RnIkMfTZNbu-FkZZ7zTZFmY3YVz7StZKqIgQpn4QG4M2d7kIyYskwPwn3RYncUpFsifsatI235uF8mUrpcItJ-Rk2__X8_v7jV1-TxfmvCPQl3Rg6JL72ra9a0P7ATQC4eguUsx0H-A_gu9Hj3Qq1Ff-wHo_9EChlDBC_VIxsvkpjjqHhwH4zYJgYrRQONylXD_p1UemkQBxFpHTKOqpYJlRiCB5HgPhDGonzyPsjCrTBZzoXgVxitkpn6s9SqhoJVgRkuTqRyVOZGRxe9Dny9KMiW5aZHgg0WlGmOI21YW_dKjH7PSsrRsWNoiOw39wKNnfEu5bzneUFnUa3fhcXhbjpWo1CZWoNGCCql4nkImpeY6FAzw6zA0axEvMT-8q2x3elcR-kXZ2m8HbJG5zmFRnp9cnq2TeWZ7Abuju3_JzNNwpDfQQXmSm04G3wHyGNtQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Axion%E2%80%90Like+Interactions+and+CFT+in+Topological+Matter%2C+Anomaly+Sum+Rules+and+the+Faraday+Effect&rft.jtitle=Advanced+Physics+Research&rft.au=Corian%C3%B2%2C+Claudio&rft.au=Cret%C3%AC%2C+Mario&rft.au=Lionetti%2C+Stefano&rft.au=Melle%2C+Dario&rft.date=2025-07-01&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=4&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202400043&rft.externalDBID=10.1002%252Fapxr.202400043&rft.externalDocID=APXR12238 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |