Axion‐Like Interactions and CFT in Topological Matter, Anomaly Sum Rules and the Faraday Effect

Fundamental aspects of chiral anomaly‐driven interactions in conformal field theory (CFT) in four spacetime dimensions are discussed. These interactions find application in very general contexts, from early universe plasma to topological condensed matter. The key shared characteristics of these inte...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Physics Research Vol. 4; no. 7
Main Authors Corianò, Claudio, Cretì, Mario, Lionetti, Stefano, Melle, Dario, Tommasi, Riccardo
Format Journal Article
LanguageEnglish
Published Wiley-VCH 01.07.2025
Subjects
Online AccessGet full text
ISSN2751-1200
2751-1200
DOI10.1002/apxr.202400043

Cover

Loading…
Abstract Fundamental aspects of chiral anomaly‐driven interactions in conformal field theory (CFT) in four spacetime dimensions are discussed. These interactions find application in very general contexts, from early universe plasma to topological condensed matter. The key shared characteristics of these interactions are outlined, specifically addressing the case of chiral anomalies, both for vector currents and gravitons. In the case of topological materials, the gravitational chiral anomaly is generated by thermal gradients via the (Tolman–Ehrenfest) Luttinger relation. In the CFT framework, a nonlocal effective action, derived through perturbation theory, indicates that the interaction is mediated by excitation in the form of an anomaly pole, which appears in the conformal limit of the vertex. To illustrate this, it is demonstrated how conformal Ward identities (CWIs) in momentum space allow to reconstruct the entire chiral anomaly interaction in its longitudinal and transverse sectors just by inclusion of a pole in the longitudinal sector. Both sectors are coupled in amplitudes with an intermediate chiral fermion or a bilinear Chern–Simons current with intermediate photons. In the presence of fermion mass corrections, the pole transforms into a cut, but the absorption amplitude in the axial‐vector channel satisfies mass‐independent sum rules related to the anomaly in any chiral interaction. The detection of an axion‐like/quasiparticle in these materials may rely on a combined investigation of these sum rules, along with the measurement of the angle of rotation of the plane of polarization of incident light when subjected to a chiral perturbation. This phenomenon serves as an analog of a similar one in ordinary axion physics, in the presence of an axion‐like condensate, which is rederived using axion electrodynamics. This review investigates the connection between chiral anomalies and their manifestation in topological materials, using both perturbative methods based on ordinary quantum field theory and conformal field theory (CFT). It emphasizes the role of CFT in momentum space for parity‐odd correlation functions, and their reconstruction by the inclusion of a single axion‐like interaction. Both the nonlocal and the local anomaly actions induced by the chiral anomaly vertex are discussed, together with the fundamental equations of the (local) axion electrodynamics action, and the propagation of a light beam in the presence of an axion condensate.
AbstractList Fundamental aspects of chiral anomaly‐driven interactions in conformal field theory (CFT) in four spacetime dimensions are discussed. These interactions find application in very general contexts, from early universe plasma to topological condensed matter. The key shared characteristics of these interactions are outlined, specifically addressing the case of chiral anomalies, both for vector currents and gravitons. In the case of topological materials, the gravitational chiral anomaly is generated by thermal gradients via the (Tolman–Ehrenfest) Luttinger relation. In the CFT framework, a nonlocal effective action, derived through perturbation theory, indicates that the interaction is mediated by excitation in the form of an anomaly pole, which appears in the conformal limit of the vertex. To illustrate this, it is demonstrated how conformal Ward identities (CWIs) in momentum space allow to reconstruct the entire chiral anomaly interaction in its longitudinal and transverse sectors just by inclusion of a pole in the longitudinal sector. Both sectors are coupled in amplitudes with an intermediate chiral fermion or a bilinear Chern–Simons current with intermediate photons. In the presence of fermion mass corrections, the pole transforms into a cut, but the absorption amplitude in the axial‐vector channel satisfies mass‐independent sum rules related to the anomaly in any chiral interaction. The detection of an axion‐like/quasiparticle in these materials may rely on a combined investigation of these sum rules, along with the measurement of the angle of rotation of the plane of polarization of incident light when subjected to a chiral perturbation. This phenomenon serves as an analog of a similar one in ordinary axion physics, in the presence of an axion‐like condensate, which is rederived using axion electrodynamics. This review investigates the connection between chiral anomalies and their manifestation in topological materials, using both perturbative methods based on ordinary quantum field theory and conformal field theory (CFT). It emphasizes the role of CFT in momentum space for parity‐odd correlation functions, and their reconstruction by the inclusion of a single axion‐like interaction. Both the nonlocal and the local anomaly actions induced by the chiral anomaly vertex are discussed, together with the fundamental equations of the (local) axion electrodynamics action, and the propagation of a light beam in the presence of an axion condensate.
Abstract Fundamental aspects of chiral anomaly‐driven interactions in conformal field theory (CFT) in four spacetime dimensions are discussed. These interactions find application in very general contexts, from early universe plasma to topological condensed matter. The key shared characteristics of these interactions are outlined, specifically addressing the case of chiral anomalies, both for vector currents and gravitons. In the case of topological materials, the gravitational chiral anomaly is generated by thermal gradients via the (Tolman–Ehrenfest) Luttinger relation. In the CFT framework, a nonlocal effective action, derived through perturbation theory, indicates that the interaction is mediated by excitation in the form of an anomaly pole, which appears in the conformal limit of the vertex. To illustrate this, it is demonstrated how conformal Ward identities (CWIs) in momentum space allow to reconstruct the entire chiral anomaly interaction in its longitudinal and transverse sectors just by inclusion of a pole in the longitudinal sector. Both sectors are coupled in amplitudes with an intermediate chiral fermion or a bilinear Chern–Simons current with intermediate photons. In the presence of fermion mass corrections, the pole transforms into a cut, but the absorption amplitude in the axial‐vector channel satisfies mass‐independent sum rules related to the anomaly in any chiral interaction. The detection of an axion‐like/quasiparticle in these materials may rely on a combined investigation of these sum rules, along with the measurement of the angle of rotation of the plane of polarization of incident light when subjected to a chiral perturbation. This phenomenon serves as an analog of a similar one in ordinary axion physics, in the presence of an axion‐like condensate, which is rederived using axion electrodynamics.
Fundamental aspects of chiral anomaly‐driven interactions in conformal field theory (CFT) in four spacetime dimensions are discussed. These interactions find application in very general contexts, from early universe plasma to topological condensed matter. The key shared characteristics of these interactions are outlined, specifically addressing the case of chiral anomalies, both for vector currents and gravitons. In the case of topological materials, the gravitational chiral anomaly is generated by thermal gradients via the (Tolman–Ehrenfest) Luttinger relation. In the CFT framework, a nonlocal effective action, derived through perturbation theory, indicates that the interaction is mediated by excitation in the form of an anomaly pole, which appears in the conformal limit of the vertex. To illustrate this, it is demonstrated how conformal Ward identities (CWIs) in momentum space allow to reconstruct the entire chiral anomaly interaction in its longitudinal and transverse sectors just by inclusion of a pole in the longitudinal sector. Both sectors are coupled in amplitudes with an intermediate chiral fermion or a bilinear Chern–Simons current with intermediate photons. In the presence of fermion mass corrections, the pole transforms into a cut, but the absorption amplitude in the axial‐vector channel satisfies mass‐independent sum rules related to the anomaly in any chiral interaction. The detection of an axion‐like/quasiparticle in these materials may rely on a combined investigation of these sum rules, along with the measurement of the angle of rotation of the plane of polarization of incident light when subjected to a chiral perturbation. This phenomenon serves as an analog of a similar one in ordinary axion physics, in the presence of an axion‐like condensate, which is rederived using axion electrodynamics.
Author Tommasi, Riccardo
Corianò, Claudio
Melle, Dario
Cretì, Mario
Lionetti, Stefano
Author_xml – sequence: 1
  givenname: Claudio
  orcidid: 0000-0003-0479-8075
  surname: Corianò
  fullname: Corianò, Claudio
  email: claudio.coriano@le.infn.it
  organization: National Research Council (CNR‐NANOTEC)
– sequence: 2
  givenname: Mario
  surname: Cretì
  fullname: Cretì, Mario
  organization: Istituto Italiano di Tecnologia
– sequence: 3
  givenname: Stefano
  surname: Lionetti
  fullname: Lionetti, Stefano
  organization: Università del Salento and INFN Sezione di Lecce
– sequence: 4
  givenname: Dario
  surname: Melle
  fullname: Melle, Dario
  organization: Big Data and Quantum Computing
– sequence: 5
  givenname: Riccardo
  surname: Tommasi
  fullname: Tommasi, Riccardo
  organization: Università del Salento and INFN Sezione di Lecce
BookMark eNqFkN1Kw0AQhRdR8PfW630AW_cvzeayFKuFiqIVvFsmm1ldTbNlE7G98xF8Rp_E1KiIIF7NMHO-w-Hsks0qVEjIIWd9zpg4hsUy9gUTijGm5AbZEWnCe1wwtvlj3yYHdf3QSoTOuFR8h8Bw6UP19vI69Y9IJ1WDEWzTnmoKVUFH4xn1FZ2FRSjDnbdQ0nNoWtERHVZhDuWKXj_N6dVTiR3Q3CMdQ4QCVvTEObTNPtlyUNZ48Dn3yM34ZDY6600vTiej4bRnpeC6l_GB6nIVGXMDCyARuUCeZmkitEtaQa7aHyTOpTpVGddMF05LlVhVMLlHJp1vEeDBLKKfQ1yZAN58HEK8MxAbb0s06KQFVCJLcquyFHSeo0KWCNA21wPReqnOy8ZQ1xGdsb6BdS1NBF8azsy6dbNu3Xy33mL9X9hXjD-BpAOefYmrf9RmeHl7xYWQWr4DKpyWOg
CitedBy_id crossref_primary_10_1051_epjconf_202431400026
crossref_primary_10_1103_PhysRevD_110_125008
crossref_primary_10_1103_PhysRevD_111_014013
Cites_doi 10.1016/j.ppnp.2022.104016
10.1088/1126-6708/2007/07/008
10.1103/PhysRevLett.124.211301
10.1142/S0217751X04018518
10.1140/epjc/s10052-023-11661-1
10.1016/j.physrep.2021.11.005
10.1103/PhysRev.177.2426
10.1016/0370-2693(92)91363-E
10.1103/PhysRevLett.98.106803
10.1080/00018732.2014.927109
10.1103/PhysRevB.78.195424
10.1088/0264-9381/28/7/075007
10.1103/PhysRevLett.132.071601
10.1103/PhysRevB.85.184503
10.1016/j.nuclphysb.2018.11.016
10.1016/j.physrep.2022.06.002
10.1126/science.1167733
10.1103/PhysRevLett.49.405
10.1007/JHEP03(2014)111
10.1103/PhysRevB.75.121306
10.1103/PhysRevLett.58.1799
10.1103/PhysRevB.78.195125
10.1103/PhysRevB.87.134519
10.1103/PhysRevB.89.075124
10.1006/aphy.1994.1045
10.1103/PhysRevB.99.235123
10.1016/j.nuclphysb.2021.115385
10.1088/1126-6708/2004/03/035
10.1088/1126-6708/2009/12/029
10.1038/nature06843
10.1007/JHEP07(2013)011
10.1016/0550-3213(71)90264-1
10.1140/epjc/s10052-020-7782-4
10.1103/PhysRev.135.A1505
10.1063/1.3149495
10.1103/PhysRevB.55.1142
10.1103/PhysRevB.102.205407
10.1103/PhysRevB.76.165307
10.1103/PhysRev.36.1791
10.1140/epjc/s10052-023-11984-z
10.1103/PhysRevD.109.045004
10.1063/5.0038804
10.1142/S0217751X11053407
10.1103/RevModPhys.83.1057
10.1103/PhysRevLett.123.226602
10.1007/JHEP09(2019)107
10.1016/0003-4916(85)90148-4
10.1103/PhysRev.129.2786
10.1007/BF02823296
10.1103/PhysRevLett.95.146802
10.1007/JHEP05(2024)307
10.1038/nature08234
10.1103/PhysRevB.86.115133
10.1126/science.1148047
10.1103/PhysRevD.32.1029
10.1103/PhysRevLett.114.256801
10.1007/BF01035529
10.1088/0264-9381/28/14/145004
10.1088/0953-8984/27/11/113201
10.1016/j.physletb.2009.11.013
10.1126/science.1173034
10.1038/nphys1274
10.1016/j.nuclphysb.2018.10.007
10.1007/JHEP06(2015)024
10.1007/JHEP03(2016)066
10.1007/JHEP03(2023)196
10.1016/0003-4916(74)90040-2
10.1103/PhysRevB.109.134512
10.1007/JHEP11(2018)159
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
Copyright_xml – notice: 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/apxr.202400043
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2751-1200
EndPage n/a
ExternalDocumentID oai_doaj_org_article_ef3cae4295bc497a8bbe4e052a8cb862
10_1002_apxr_202400043
APXR12238
Genre reviewArticle
GrantInformation_xml – fundername: INFN Lecce
GroupedDBID 0R~
24P
88I
AAFWJ
AAMMB
ABJCF
ABUWG
ACCMX
AEFGJ
AEUYN
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
KB.
M2P
M~E
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
AAYXX
ARCSS
CITATION
PUEGO
WIN
ID FETCH-LOGICAL-c3218-9164002891d90f6caa3ee12e1797528f5916b4d90a5ff787491808df8345c4d03
IEDL.DBID 24P
ISSN 2751-1200
IngestDate Wed Aug 27 01:24:02 EDT 2025
Wed Jul 16 16:48:13 EDT 2025
Thu Apr 24 23:05:22 EDT 2025
Sat Jul 12 03:16:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3218-9164002891d90f6caa3ee12e1797528f5916b4d90a5ff787491808df8345c4d03
ORCID 0000-0003-0479-8075
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400043
PageCount 32
ParticipantIDs doaj_primary_oai_doaj_org_article_ef3cae4295bc497a8bbe4e052a8cb862
crossref_citationtrail_10_1002_apxr_202400043
crossref_primary_10_1002_apxr_202400043
wiley_primary_10_1002_apxr_202400043_APXR12238
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Advanced Physics Research
PublicationYear 2025
Publisher Wiley-VCH
Publisher_xml – name: Wiley-VCH
References 1992; B289
2024; 109
2009; D79
2021; 966
2023; 2023
2021; 129
2008; 78
2020; 124
2022; 977
2014; 63
2007; 75
2007; 76
1985; 160
2019; 123
2023; 83
2019; B938
1964; 135
2009; 12
1987; 45
2015; 06
1995; C65
1974; 87
1977; D15
1997; 55
1963; 129
2014; B89
2009; 682
2024; 2024
2011; 26
2011; 28
1972; 13
2009; 323
2016; 03
2009; 325
1969; 177
1987; 58
2009; B682
1994; 231
2010; D82
2010; D81
2013; 87
2004; 03
2020; 80
1930; 36
2011; 83
1998
1996
2014; 03
2020; 102
2023; 129
2014; 06
2007; 98
2022; 952
1973; D7
1997; C76
2013; 1307
1982; 49
2015; 27
2023
2004; 19
2022
2015; 114
1969; 60
2022; 62
2019; B99
2005; 95
2019
2024; 132
2017
2019; 09
2009; 5
2009; 460
2018; B937
2008; 452
2018; 11
2018; 10
2007; 318
2007; 0707
1985; 32
2009; 1134
2012; 86
1981; 53
2012; 85
1971; B27
Jackson J. D. (e_1_2_15_58_1) 1998
Bertlmann R. A. (e_1_2_15_61_1) 1981; 53
Chanowitz M. S. (e_1_2_15_67_1) 1973; 7
e_1_2_15_21_1
e_1_2_15_42_1
e_1_2_15_88_1
e_1_2_15_40_1
e_1_2_15_69_1
Armillis R. (e_1_2_15_68_1) 2010; 82
e_1_2_15_3_1
e_1_2_15_80_1
e_1_2_15_1_1
e_1_2_15_27_1
e_1_2_15_82_1
e_1_2_15_25_1
e_1_2_15_46_1
e_1_2_15_84_1
e_1_2_15_23_1
e_1_2_15_44_1
e_1_2_15_65_1
e_1_2_15_86_1
e_1_2_15_9_1
Giannotti M. (e_1_2_15_29_1) 2009; 79
Horejsi J. (e_1_2_15_63_1) 1997; 76
e_1_2_15_7_1
Dolgov A. D. (e_1_2_15_70_1) 1987; 45
e_1_2_15_5_1
Arouca R. (e_1_2_15_48_1) 2022; 62
Bonora L. (e_1_2_15_36_1) 2023
e_1_2_15_10_1
e_1_2_15_56_1
e_1_2_15_77_1
e_1_2_15_79_1
e_1_2_15_18_1
e_1_2_15_39_1
e_1_2_15_16_1
e_1_2_15_37_1
e_1_2_15_50_1
e_1_2_15_71_1
e_1_2_15_14_1
e_1_2_15_35_1
e_1_2_15_52_1
e_1_2_15_73_1
e_1_2_15_12_1
e_1_2_15_33_1
e_1_2_15_54_1
e_1_2_15_75_1
e_1_2_15_19_1
e_1_2_15_20_1
e_1_2_15_43_1
e_1_2_15_89_1
e_1_2_15_41_1
Adler S. L. (e_1_2_15_66_1) 1977; 15
e_1_2_15_28_1
e_1_2_15_81_1
e_1_2_15_2_1
e_1_2_15_26_1
e_1_2_15_49_1
e_1_2_15_60_1
e_1_2_15_83_1
Corianò C. (e_1_2_15_87_1) 2014; 06
e_1_2_15_24_1
e_1_2_15_62_1
e_1_2_15_85_1
e_1_2_15_22_1
e_1_2_15_45_1
e_1_2_15_8_1
e_1_2_15_6_1
e_1_2_15_4_1
e_1_2_15_32_1
e_1_2_15_55_1
e_1_2_15_78_1
e_1_2_15_30_1
e_1_2_15_57_1
e_1_2_15_59_1
Horejsi J. (e_1_2_15_64_1) 1995; 65
e_1_2_15_17_1
Bertlmann R. A. (e_1_2_15_47_1) 1996
e_1_2_15_15_1
e_1_2_15_38_1
e_1_2_15_72_1
e_1_2_15_13_1
e_1_2_15_51_1
e_1_2_15_74_1
Armillis R. (e_1_2_15_31_1) 2010; 81
e_1_2_15_11_1
e_1_2_15_34_1
e_1_2_15_53_1
e_1_2_15_76_1
References_xml – volume: 45
  start-page: 651
  year: 1987
  publication-title: JETP Lett.
– volume: 11
  start-page: 159
  year: 2018
  publication-title: JHEP
– volume: D81
  year: 2010
  publication-title: Phys. Rev.
– volume: 26
  start-page: 2405
  year: 2011
  publication-title: Int. J. Mod. Phys. A
– volume: 58
  start-page: 1799
  year: 1987
  publication-title: Phys. Rev. Lett.
– volume: 129
  year: 2023
  publication-title: Prog. Part. Nucl. Phys.
– volume: 86
  year: 2012
  publication-title: Phys. Rev. B
– volume: 10
  year: 2018
– volume: 55
  start-page: 1142
  year: 1997
  publication-title: Phys. Rev. B
– volume: 32
  start-page: 1029
  year: 1985
  publication-title: Phys. Rev. D
– volume: 95
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 135
  year: 1964
  publication-title: Phys. Rev.
– volume: 80
  start-page: 276
  year: 2020
  publication-title: Eur. Phys. J. C
– volume: 0707
  start-page: 008
  year: 2007
  publication-title: JHEP
– volume: 83
  start-page: 502
  year: 2023
  publication-title: Eur. Phys. J. C
– volume: B27
  start-page: 525
  year: 1971
  publication-title: Nucl. Phys.
– volume: 109
  year: 2024
  publication-title: Phys. Rev. B
– volume: 132
  year: 2024
  publication-title: Phys. Rev. Lett.
– volume: 682
  start-page: 322
  year: 2009
  publication-title: Physics Letters B
– year: 1998
– volume: 03
  start-page: 111
  year: 2014
  publication-title: JHEP
– volume: C76
  start-page: 561
  year: 1997
  publication-title: Z. Phys.
– volume: 36
  start-page: 1791
  year: 1930
  publication-title: Phys. Rev.
– volume: 87
  year: 2013
  publication-title: Phys. Rev. B
– volume: 460
  start-page: 1101
  year: 2009
  publication-title: Nature
– volume: 49
  start-page: 405
  year: 1982
  publication-title: Phys. Rev. Lett.
– volume: 83
  start-page: 1057
  year: 2011
  publication-title: Rev. Mod. Phys.
– volume: 03
  start-page: 035
  year: 2004
  publication-title: JHEP
– volume: 09
  start-page: 107
  year: 2019
  publication-title: JHEP
– volume: 952
  start-page: 2198
  year: 2022
  publication-title: Phys. Rept.
– year: 2022
– volume: 53
  start-page: 305
  year: 1981
  publication-title: Acta Phys. Austriaca
– volume: 03
  start-page: 066
  year: 2016
  publication-title: JHEP
– volume: B938
  start-page: 440
  year: 2019
  publication-title: Nucl. Phys.
– volume: 63
  start-page: 1
  year: 2014
  publication-title: Adv. Phys.
– year: 2019
– volume: 977
  start-page: 1
  year: 2022
  publication-title: Phys. Rept.
– volume: 19
  start-page: 2579
  year: 2004
  publication-title: Int. J. Mod. Phys. A
– volume: 231
  start-page: 311
  year: 1994
  publication-title: Ann. Phys.
– start-page: 1
  year: 2017
  end-page: 74
– volume: 75
  year: 2007
  publication-title: Phys. Rev. B
– volume: 98
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 323
  start-page: 919
  year: 2009
  publication-title: Science
– volume: 2023
  start-page: 196
  year: 2023
  publication-title: J. High Energy Phys.
– volume: 28
  year: 2011
  publication-title: Class. Quant. Grav.
– volume: 78
  year: 2008
  publication-title: Phys. Rev. B
– volume: 123
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 85
  year: 2012
  publication-title: Phys. Rev. B
– volume: 102
  year: 2020
  publication-title: Phys. Rev. B
– volume: 1307
  start-page: 011
  year: 2013
  publication-title: JHEP
– volume: B289
  start-page: 67
  year: 1992
  publication-title: Phys. Lett.
– volume: 325
  start-page: 178
  year: 2009
  publication-title: Science
– volume: 87
  start-page: 354
  year: 1974
  publication-title: Ann. Phys.
– volume: 109
  year: 2024
  publication-title: Phys. Rev. D
– volume: 129
  start-page: 2786
  year: 1963
  publication-title: Phys. Rev.
– volume: 06
  start-page: 136
  year: 2014
  publication-title: JHEP
– volume: 27
  year: 2015
  publication-title: J. Phys. Condens. Matter
– volume: D79
  year: 2009
  publication-title: Phys. Rev.
– volume: B89
  year: 2014
  publication-title: Phys. Rev.
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 200
  year: 1972
  publication-title: Teor. Mat. Fiz.
– volume: B682
  start-page: 322
  year: 2009
  publication-title: Phys. Lett.
– volume: 5
  start-page: 398
  year: 2009
  publication-title: Nat. Phys.
– volume: 1134
  start-page: 22
  year: 2009
  publication-title: AIP Conf. Proc.
– volume: 160
  start-page: 355
  year: 1985
  publication-title: Ann. Phys.
– volume: 966
  year: 2021
  publication-title: Nucl. Phys. B
– volume: C65
  start-page: 691
  year: 1995
  publication-title: Z. Phys.
– volume: 177
  start-page: 2426
  year: 1969
  publication-title: Phys. Rev.
– start-page: 566
  year: 1996
– volume: 76
  year: 2007
  publication-title: Phys. Rev. B
– volume: 62
  start-page: 1
  year: 2022
  publication-title: SciPost Phys. Lect. Notes
– volume: 83
  start-page: 839
  year: 2023
  publication-title: Europ. Phys. J. C
– year: 2023
– volume: 124
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: B937
  start-page: 56
  year: 2018
  publication-title: Nucl. Phys.
– volume: 06
  start-page: 024
  year: 2015
  publication-title: JHEP
– volume: 2024
  start-page: 307
  year: 2024
  publication-title: J. High Energy Phys.
– volume: 60
  start-page: 47
  year: 1969
  publication-title: Nuovo Cim. A
– volume: 452
  start-page: 970
  year: 2008
  publication-title: Nature
– volume: D82
  year: 2010
  publication-title: Phys. Rev.
– volume: 129
  year: 2021
  publication-title: J. Appl. Phys.
– volume: B99
  year: 2019
  publication-title: Phys. Rev.
– volume: 12
  start-page: 029
  year: 2009
  publication-title: JHEP
– volume: D15
  start-page: 1712
  year: 1977
  publication-title: Phys. Rev.
– volume: D7
  start-page: 2490
  year: 1973
  publication-title: Phys.Rev.
– volume: 318
  year: 2007
  publication-title: Science
– ident: e_1_2_15_51_1
  doi: 10.1016/j.ppnp.2022.104016
– ident: e_1_2_15_54_1
  doi: 10.1088/1126-6708/2007/07/008
– ident: e_1_2_15_60_1
  doi: 10.1103/PhysRevLett.124.211301
– ident: e_1_2_15_37_1
  doi: 10.1142/S0217751X04018518
– ident: e_1_2_15_81_1
  doi: 10.1140/epjc/s10052-023-11661-1
– ident: e_1_2_15_33_1
  doi: 10.1016/j.physrep.2021.11.005
– ident: e_1_2_15_34_1
  doi: 10.1103/PhysRev.177.2426
– ident: e_1_2_15_44_1
  doi: 10.1016/0370-2693(92)91363-E
– ident: e_1_2_15_6_1
  doi: 10.1103/PhysRevLett.98.106803
– ident: e_1_2_15_4_1
  doi: 10.1080/00018732.2014.927109
– ident: e_1_2_15_20_1
  doi: 10.1103/PhysRevB.78.195424
– ident: e_1_2_15_42_1
  doi: 10.1088/0264-9381/28/7/075007
– volume: 45
  start-page: 651
  year: 1987
  ident: e_1_2_15_70_1
  publication-title: JETP Lett.
– ident: e_1_2_15_84_1
  doi: 10.1103/PhysRevLett.132.071601
– ident: e_1_2_15_88_1
  doi: 10.1103/PhysRevB.85.184503
– ident: e_1_2_15_74_1
  doi: 10.1016/j.nuclphysb.2018.11.016
– ident: e_1_2_15_1_1
  doi: 10.1016/j.physrep.2022.06.002
– ident: e_1_2_15_16_1
  doi: 10.1126/science.1167733
– volume: 81
  year: 2010
  ident: e_1_2_15_31_1
  publication-title: Phys. Rev.
– ident: e_1_2_15_9_1
  doi: 10.1103/PhysRevLett.49.405
– ident: e_1_2_15_73_1
  doi: 10.1007/JHEP03(2014)111
– ident: e_1_2_15_8_1
  doi: 10.1103/PhysRevB.75.121306
– ident: e_1_2_15_21_1
  doi: 10.1103/PhysRevLett.58.1799
– volume: 15
  start-page: 1712
  year: 1977
  ident: e_1_2_15_66_1
  publication-title: Phys. Rev.
– ident: e_1_2_15_11_1
  doi: 10.1103/PhysRevB.78.195125
– volume: 79
  year: 2009
  ident: e_1_2_15_29_1
  publication-title: Phys. Rev.
– ident: e_1_2_15_45_1
  doi: 10.1103/PhysRevB.87.134519
– ident: e_1_2_15_49_1
  doi: 10.1103/PhysRevB.89.075124
– ident: e_1_2_15_71_1
  doi: 10.1006/aphy.1994.1045
– ident: e_1_2_15_50_1
  doi: 10.1103/PhysRevB.99.235123
– ident: e_1_2_15_40_1
  doi: 10.1016/j.nuclphysb.2021.115385
– ident: e_1_2_15_56_1
  doi: 10.1088/1126-6708/2004/03/035
– volume: 76
  start-page: 561
  year: 1997
  ident: e_1_2_15_63_1
  publication-title: Z. Phys.
– volume: 65
  start-page: 691
  year: 1995
  ident: e_1_2_15_64_1
  publication-title: Z. Phys.
– volume: 82
  year: 2010
  ident: e_1_2_15_68_1
  publication-title: Phys. Rev.
– ident: e_1_2_15_32_1
  doi: 10.1088/1126-6708/2009/12/029
– ident: e_1_2_15_15_1
  doi: 10.1038/nature06843
– volume: 53
  start-page: 305
  year: 1981
  ident: e_1_2_15_61_1
  publication-title: Acta Phys. Austriaca
– ident: e_1_2_15_72_1
  doi: 10.1007/JHEP07(2013)011
– ident: e_1_2_15_57_1
  doi: 10.1016/0550-3213(71)90264-1
– ident: e_1_2_15_83_1
  doi: 10.1140/epjc/s10052-020-7782-4
– ident: e_1_2_15_53_1
  doi: 10.1103/PhysRev.135.A1505
– ident: e_1_2_15_12_1
  doi: 10.1063/1.3149495
– ident: e_1_2_15_13_1
  doi: 10.1103/PhysRevB.55.1142
– ident: e_1_2_15_27_1
  doi: 10.1103/PhysRevB.102.205407
– ident: e_1_2_15_7_1
  doi: 10.1103/PhysRevB.76.165307
– ident: e_1_2_15_89_1
  doi: 10.1103/PhysRev.36.1791
– ident: e_1_2_15_28_1
  doi: 10.1140/epjc/s10052-023-11984-z
– ident: e_1_2_15_46_1
  doi: 10.1103/PhysRevD.109.045004
– volume: 7
  start-page: 2490
  year: 1973
  ident: e_1_2_15_67_1
  publication-title: Phys.Rev.
– ident: e_1_2_15_25_1
  doi: 10.1063/5.0038804
– ident: e_1_2_15_30_1
  doi: 10.1142/S0217751X11053407
– ident: e_1_2_15_43_1
– ident: e_1_2_15_24_1
  doi: 10.1103/RevModPhys.83.1057
– ident: e_1_2_15_22_1
  doi: 10.1103/PhysRevLett.123.226602
– ident: e_1_2_15_52_1
– ident: e_1_2_15_79_1
  doi: 10.1007/JHEP09(2019)107
– ident: e_1_2_15_10_1
  doi: 10.1016/0003-4916(85)90148-4
– volume-title: Theoretical and Mathematical Physics
  year: 2023
  ident: e_1_2_15_36_1
– ident: e_1_2_15_2_1
– ident: e_1_2_15_55_1
  doi: 10.1103/PhysRev.129.2786
– volume: 06
  start-page: 136
  year: 2014
  ident: e_1_2_15_87_1
  publication-title: JHEP
– ident: e_1_2_15_35_1
  doi: 10.1007/BF02823296
– ident: e_1_2_15_5_1
  doi: 10.1103/PhysRevLett.95.146802
– start-page: 566
  volume-title: Anomalies in Quantum Field Theory
  year: 1996
  ident: e_1_2_15_47_1
– ident: e_1_2_15_85_1
  doi: 10.1007/JHEP05(2024)307
– ident: e_1_2_15_18_1
  doi: 10.1038/nature08234
– ident: e_1_2_15_26_1
  doi: 10.1103/PhysRevB.86.115133
– ident: e_1_2_15_14_1
  doi: 10.1126/science.1148047
– volume: 62
  start-page: 1
  year: 2022
  ident: e_1_2_15_48_1
  publication-title: SciPost Phys. Lect. Notes
– ident: e_1_2_15_78_1
– ident: e_1_2_15_62_1
  doi: 10.1103/PhysRevD.32.1029
– ident: e_1_2_15_23_1
  doi: 10.1103/PhysRevLett.114.256801
– ident: e_1_2_15_59_1
  doi: 10.1007/BF01035529
– ident: e_1_2_15_39_1
  doi: 10.1088/0264-9381/28/14/145004
– ident: e_1_2_15_3_1
  doi: 10.1088/0953-8984/27/11/113201
– ident: e_1_2_15_69_1
  doi: 10.1016/j.physletb.2009.11.013
– ident: e_1_2_15_19_1
  doi: 10.1126/science.1173034
– ident: e_1_2_15_17_1
  doi: 10.1038/nphys1274
– ident: e_1_2_15_86_1
– volume-title: Classical Electrodynamics
  year: 1998
  ident: e_1_2_15_58_1
– ident: e_1_2_15_38_1
  doi: 10.1016/j.physletb.2009.11.013
– ident: e_1_2_15_75_1
  doi: 10.1016/j.nuclphysb.2018.10.007
– ident: e_1_2_15_82_1
  doi: 10.1007/JHEP06(2015)024
– ident: e_1_2_15_76_1
  doi: 10.1007/JHEP03(2016)066
– ident: e_1_2_15_80_1
  doi: 10.1007/JHEP03(2023)196
– ident: e_1_2_15_65_1
  doi: 10.1016/0003-4916(74)90040-2
– ident: e_1_2_15_41_1
  doi: 10.1103/PhysRevB.109.134512
– ident: e_1_2_15_77_1
  doi: 10.1007/JHEP11(2018)159
SSID ssj0002891341
Score 2.3160293
Snippet Fundamental aspects of chiral anomaly‐driven interactions in conformal field theory (CFT) in four spacetime dimensions are discussed. These interactions find...
Abstract Fundamental aspects of chiral anomaly‐driven interactions in conformal field theory (CFT) in four spacetime dimensions are discussed. These...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms field theory
quantum anomalies
topological materials
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELZQJxYEAkT5kwckFkLz4yTOWCqiClGESit1i86OLRXaUJVWajcegWfkSTjHaVUG1IU1ucjJdz7fnXP-jpArL4ox6wJMU-MIHOYDc0BC4iQCJwOmGwICcxq58xS1--xhEA42Wn2ZmjBLD2yBaygdSFC4aoZCsiQGLoRiyg194FJwu_qiz9tIpl7t7zPDVLZiaXT9BkwWhv7TlEy6LPjlhUqy_t_Baeld0n2yV4WFtGlf54DsqOKQQHOBqH1_fj0O3xQt9-7sMYQPivk_baU9Oixoz7Y5MGDTTsmWeUMxqR_DaElf5mPanY-UfQBjPZrCFHJYUstafET66X2v1XaqlgiODNAZ49IUMft1eeLqSAIESnm-QrOKQ5_rEAUEw3sQao22yBKPuzzXPGChZLkbHJNa8V6oE0JBydDXSmguEzTcSHiGqw_jOy9CZJmuE2cFUSYrvnDTtmKUWaZjPzOQZmtI6-R6LT-xTBl_St4ZxNdShuG6vIB6zyq9Z9v0Xie3pb62jJU1nwddD2Mgfvofo56RXd80AC7rdc9JbTadqwuMSmbispyAP3xL3cA
  priority: 102
  providerName: Directory of Open Access Journals
Title Axion‐Like Interactions and CFT in Topological Matter, Anomaly Sum Rules and the Faraday Effect
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400043
https://doaj.org/article/ef3cae4295bc497a8bbe4e052a8cb862
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-Ll5EUbG-yEHw4uJuNtnHsYqliJVSW-htmWQTEetWqgW9iD_B3-gvcZLU1R5EvOxhd7KPyUzmsZlvCDmMkhSjLsAwNU0g4Ax4AAryIJcoDBhuSIhtNXLnKmkP-MVQDH9U8Xt8iDrhZjXDrddWwUE-nnyDhsLDs8XztHsgQx4vkmVbX2slnfFunWVh9i-ca1_JUhEFEcrEF3JjyE7mbzFnmRyA_7zD6ixOa42szlxF2vRzu04WdLVBoPmMnPx4e7-8vdPU5fN8acIjhaqkZ60-va1o37c-sBNAOw5B85hioH8Poxd6Pb2nvelI-wHo_9EWTKCEF-qRjDfJoHXeP2sHszYJgYrRQONylXD_pWUemkQBxFpHTKOqpYJlRiCB5HgNhDGonzyPsjArTRZzoXgZxltkqRpXeptQ0Eowo6XJVI7KnMjI4vehzxclmZLcNEjwxaJCzTDEbSuLUeHRj1lhWVrULG2Qo5r-waNn_Ep5ajleU1nUa3diPLkpZkpUaBMr0GhBhVQ8TyGTUnMdCgb4dhiaNYiXmD-eVTS7w16EflG2898Bu2SF2QbAbr_uHll6mkz1PnolT_LACd6Bi-nx2Hk9_wSSdNrY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4DLAgECDK0wMSCxGJY-cxFkRVoEUIisQWnR0bVZSACpVg4yfwG_klnO02qANCrMk5ic93vkfO3xGyHyUpRl2AYWqaQMAZ8AAU5EEuURgw3JAQ29PI3cukfcvP78SkmtCehfH4EHXCzWqG26-tgtuE9NEPaig8v1lAT1sEGfJ4lszzhKW2ewPjV3WahdnfcK5_JUtFFEQoFBPoxpAdTT9iyjQ5BP9pj9WZnNYyWRr7irTpF3eFzOhqlUDzDVn59fHZ6T9o6hJ6_mzCC4WqpCetHu1XtOd7H9gVoF0HoXlIMdJ_hME7vRk90uvRQPsB6ADSFgyhhHfqoYzXyG3rtHfSDsZ9EgIVo4XG_SrhfqZlHppEAcRaR0yjrqWCZUYggeR4D4QxqKA8j7IwK00Wc6F4GcbrZK56qvQGoaCVYEZLk6kctTmRkQXwQ6cvSjIluWmQYMKiQo1BxG0vi0Hh4Y9ZYVla1CxtkIOa_tnDZ_xKeWw5XlNZ2Gt34Wl4X4y1qNAmVqDRhAqpeJ5CJqXmOhQM8OswNmsQLzJ_vKtoXt1dR-gYZZv_HbBHFtq9bqfonF1ebJFFZrsBu-LdbTL3OhzpHXRRXuWuE8JvIPPcHg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-swELZYJMTlCQSIwgN8QOJCROLYWY5lidhVQZF6i8aOjRAlVH1Ugtv7CfxGfgljuwR6QIhrMs4ynvEs9nxDyHaUpBh1AYapaQIBZ8ADUJAHuURhwHBDQmyrkS8uk-MbftoTvS9V_B4fokm4Wc1w67VV8EFl9j5BQ2HwbPE87RnIkMfTZNbu-FkZZ7zTZFmY3YVz7StZKqIgQpn4QG4M2d7kIyYskwPwn3RYncUpFsifsatI235uF8mUrpcItJ-Rk2__X8_v7jV1-TxfmvCPQl3Rg6JL72ra9a0P7ATQC4eguUsx0H-A_gu9Hj3Qq1Ff-wHo_9EChlDBC_VIxsvkpjjqHhwH4zYJgYrRQONylXD_p1UemkQBxFpHTKOqpYJlRiCB5HgPhDGonzyPsjCrTBZzoXgVxitkpn6s9SqhoJVgRkuTqRyVOZGRxe9Dny9KMiW5aZHgg0WlGmOI21YW_dKjH7PSsrRsWNoiOw39wKNnfEu5bzneUFnUa3fhcXhbjpWo1CZWoNGCCql4nkImpeY6FAzw6zA0axEvMT-8q2x3elcR-kXZ2m8HbJG5zmFRnp9cnq2TeWZ7Abuju3_JzNNwpDfQQXmSm04G3wHyGNtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Axion%E2%80%90Like+Interactions+and+CFT+in+Topological+Matter%2C+Anomaly+Sum+Rules+and+the+Faraday+Effect&rft.jtitle=Advanced+Physics+Research&rft.au=Corian%C3%B2%2C+Claudio&rft.au=Cret%C3%AC%2C+Mario&rft.au=Lionetti%2C+Stefano&rft.au=Melle%2C+Dario&rft.date=2025-07-01&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=4&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202400043&rft.externalDBID=10.1002%252Fapxr.202400043&rft.externalDocID=APXR12238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon