Biology of telomeres: lessons from budding yeast
Abstract Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double-s...
Saved in:
Published in | FEMS microbiology reviews Vol. 38; no. 2; pp. 144 - 171 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.03.2014
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double-stranded breaks. In addition, telomeres are replicated by a special reverse transcriptase called telomerase, in a complex mechanism that is coordinated with the genome's replication. Telomeres also play an important role in tethering the chromosomes to the nuclear envelope, thus helping in positioning the chromosomes within the nucleus. The special chromatin configuration of telomeres affects the expression of nearby genes; nonetheless, telomeres are transcribed, creating noncoding RNA molecules that hybridize to the chromosomal ends and seem to play regulatory roles. The yeast Saccharomyces cerevisiae, with its sophisticated genetics and molecular biology, has provided many fundamental concepts in telomere biology, which were later found to be conserved in all organisms. Here, we present an overview of all the aspects of telomere biology investigated in yeast, which continues to provide new insights into this complex and important subject, which has significant medical implications, especially in the fields of aging and cancer.
Telomeres, the eukaryotic chromosomal ends, preserve genome stability and help duplicate the genome. They play important roles in aging and cancer. Here, we summarize our knowledge on the telomeres of the yeast Saccharomyces cerevisiae, a widely used model organism. |
---|---|
AbstractList | Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double-stranded breaks. In addition, telomeres are replicated by a special reverse transcriptase called telomerase, in a complex mechanism that is coordinated with the genome's replication. Telomeres also play an important role in tethering the chromosomes to the nuclear envelope, thus helping in positioning the chromosomes within the nucleus. The special chromatin configuration of telomeres affects the expression of nearby genes; nonetheless, telomeres are transcribed, creating noncoding RNA molecules that hybridize to the chromosomal ends and seem to play regulatory roles. The yeast Saccharomyces cerevisiae, with its sophisticated genetics and molecular biology, has provided many fundamental concepts in telomere biology, which were later found to be conserved in all organisms. Here, we present an overview of all the aspects of telomere biology investigated in yeast, which continues to provide new insights into this complex and important subject, which has significant medical implications, especially in the fields of aging and cancer.Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double-stranded breaks. In addition, telomeres are replicated by a special reverse transcriptase called telomerase, in a complex mechanism that is coordinated with the genome's replication. Telomeres also play an important role in tethering the chromosomes to the nuclear envelope, thus helping in positioning the chromosomes within the nucleus. The special chromatin configuration of telomeres affects the expression of nearby genes; nonetheless, telomeres are transcribed, creating noncoding RNA molecules that hybridize to the chromosomal ends and seem to play regulatory roles. The yeast Saccharomyces cerevisiae, with its sophisticated genetics and molecular biology, has provided many fundamental concepts in telomere biology, which were later found to be conserved in all organisms. Here, we present an overview of all the aspects of telomere biology investigated in yeast, which continues to provide new insights into this complex and important subject, which has significant medical implications, especially in the fields of aging and cancer. Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double-stranded breaks. In addition, telomeres are replicated by a special reverse transcriptase called telomerase, in a complex mechanism that is coordinated with the genome's replication. Telomeres also play an important role in tethering the chromosomes to the nuclear envelope, thus helping in positioning the chromosomes within the nucleus. The special chromatin configuration of telomeres affects the expression of nearby genes; nonetheless, telomeres are transcribed, creating noncoding RNA molecules that hybridize to the chromosomal ends and seem to play regulatory roles. The yeast Saccharomyces cerevisiae, with its sophisticated genetics and molecular biology, has provided many fundamental concepts in telomere biology, which were later found to be conserved in all organisms. Here, we present an overview of all the aspects of telomere biology investigated in yeast, which continues to provide new insights into this complex and important subject, which has significant medical implications, especially in the fields of aging and cancer. [PUBLICATION ABSTRACT] Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double‐stranded breaks. In addition, telomeres are replicated by a special reverse transcriptase called telomerase, in a complex mechanism that is coordinated with the genome's replication. Telomeres also play an important role in tethering the chromosomes to the nuclear envelope, thus helping in positioning the chromosomes within the nucleus. The special chromatin configuration of telomeres affects the expression of nearby genes; nonetheless, telomeres are transcribed, creating noncoding RNA molecules that hybridize to the chromosomal ends and seem to play regulatory roles. The yeast Saccharomyces cerevisiae, with its sophisticated genetics and molecular biology, has provided many fundamental concepts in telomere biology, which were later found to be conserved in all organisms. Here, we present an overview of all the aspects of telomere biology investigated in yeast, which continues to provide new insights into this complex and important subject, which has significant medical implications, especially in the fields of aging and cancer. Telomeres, the eukaryotic chromosomal ends, preserve genome stability and help duplicate the genome. They play important roles in aging and cancer. Here, we summarize our knowledge on the telomeres of the yeast Saccharomyces cerevisiae, a widely used model organism. Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double-stranded breaks. In addition, telomeres are replicated by a special reverse transcriptase called telomerase, in a complex mechanism that is coordinated with the genome's replication. Telomeres also play an important role in tethering the chromosomes to the nuclear envelope, thus helping in positioning the chromosomes within the nucleus. The special chromatin configuration of telomeres affects the expression of nearby genes; nonetheless, telomeres are transcribed, creating noncoding RNA molecules that hybridize to the chromosomal ends and seem to play regulatory roles. The yeast Saccharomyces cerevisiae, with its sophisticated genetics and molecular biology, has provided many fundamental concepts in telomere biology, which were later found to be conserved in all organisms. Here, we present an overview of all the aspects of telomere biology investigated in yeast, which continues to provide new insights into this complex and important subject, which has significant medical implications, especially in the fields of aging and cancer. Abstract Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double-stranded breaks. In addition, telomeres are replicated by a special reverse transcriptase called telomerase, in a complex mechanism that is coordinated with the genome's replication. Telomeres also play an important role in tethering the chromosomes to the nuclear envelope, thus helping in positioning the chromosomes within the nucleus. The special chromatin configuration of telomeres affects the expression of nearby genes; nonetheless, telomeres are transcribed, creating noncoding RNA molecules that hybridize to the chromosomal ends and seem to play regulatory roles. The yeast Saccharomyces cerevisiae, with its sophisticated genetics and molecular biology, has provided many fundamental concepts in telomere biology, which were later found to be conserved in all organisms. Here, we present an overview of all the aspects of telomere biology investigated in yeast, which continues to provide new insights into this complex and important subject, which has significant medical implications, especially in the fields of aging and cancer. Telomeres, the eukaryotic chromosomal ends, preserve genome stability and help duplicate the genome. They play important roles in aging and cancer. Here, we summarize our knowledge on the telomeres of the yeast Saccharomyces cerevisiae, a widely used model organism. |
Author | Kupiec, Martin |
Author_xml | – sequence: 1 givenname: Martin surname: Kupiec fullname: Kupiec, Martin email: martin@post.tau.ac.il organization: Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24754043$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkFtLwzAYQINM3EWffZOCLyJ0S7pcfdPhVJgIos8hbb-OjraZSYvs39u5CzKE5SUQzsmXnD7qVLYChC4JHpJ2jQgTNORK8CGJMKMnqLc_6aAeJlyGnFLWRX3vFxhjphg7Q92ICkYxHfcQfshtYeerwGZBDYUtwYG_Cwrw3lY-yJwtg7hJ07yaByswvj5Hp5kpPFxs9wH6nD5-TJ7D2dvTy-R-FibjiNDQpBkknAqQIhMy4zwWRspEsJhTRiOWxSnloGIOhmNgKlUsUZIqUClLUhaNB-hmc-_S2a8GfK3L3CdQFKYC23hNGJE8an9EWvT6AF3YxlXt61oKUyGF4LSlrrZUE5eQ6qXLS-NWeteiBUYbIHHWewfZHiFYr2vrdVu9bqt_a7cGOzCSvDZ1bqvambw47n3nBayOjdHT1_edd7vxbLP81wr_DPkB5LKbVA |
CODEN | FMREE4 |
CitedBy_id | crossref_primary_10_1016_j_dnarep_2017_11_010 crossref_primary_10_1038_s42003_024_06464_3 crossref_primary_10_1038_s41598_021_01599_3 crossref_primary_10_1007_s00294_017_0728_1 crossref_primary_10_1534_genetics_118_300950 crossref_primary_10_3389_fgene_2022_1033113 crossref_primary_10_1371_journal_pgen_1009660 crossref_primary_10_3389_fgene_2015_00358 crossref_primary_10_1371_journal_pgen_1010641 crossref_primary_10_1016_j_dnarep_2018_09_007 crossref_primary_10_1021_acssynbio_2c00424 crossref_primary_10_15252_embj_2021108736 crossref_primary_10_1007_s00294_020_01125_4 crossref_primary_10_1534_genetics_112_145805 crossref_primary_10_1007_s00294_019_00976_w crossref_primary_10_1007_s00294_019_00933_7 crossref_primary_10_1007_s10709_016_9886_1 crossref_primary_10_3390_genes10110866 crossref_primary_10_3390_cells10040778 crossref_primary_10_1093_g3journal_jkad153 crossref_primary_10_1016_j_mayocp_2019_04_007 crossref_primary_10_18632_aging_101095 crossref_primary_10_1038_s41467_025_56196_z crossref_primary_10_1007_s00294_017_0779_3 crossref_primary_10_1083_jcb_202103036 crossref_primary_10_3390_cells8020199 crossref_primary_10_3390_cells8010030 crossref_primary_10_3390_genes10020118 crossref_primary_10_1093_femsyr_fow085 crossref_primary_10_1093_nar_gkw111 crossref_primary_10_1091_mbc_e16_01_0069 crossref_primary_10_1371_journal_pgen_1005966 crossref_primary_10_1371_journal_pone_0118987 crossref_primary_10_3390_ijms231810757 crossref_primary_10_1073_pnas_2119588119 crossref_primary_10_1083_jcb_201609049 crossref_primary_10_1093_plcell_koab022 crossref_primary_10_1007_s00294_017_0680_0 crossref_primary_10_1038_s41598_019_46840_2 crossref_primary_10_1534_genetics_115_177451 crossref_primary_10_1093_g3journal_jkac283 crossref_primary_10_1186_s12863_018_0617_8 crossref_primary_10_1371_journal_pgen_1010986 crossref_primary_10_1038_s41467_023_38499_1 crossref_primary_10_1371_journal_pgen_1007853 crossref_primary_10_1186_s12864_016_2876_y crossref_primary_10_1016_j_jmb_2020_01_026 crossref_primary_10_1186_s12864_017_3889_x crossref_primary_10_1042_BST20231555 crossref_primary_10_1016_j_funbio_2019_09_003 crossref_primary_10_1080_15384101_2017_1312235 crossref_primary_10_1534_genetics_116_194027 crossref_primary_10_1016_j_eujim_2021_101303 crossref_primary_10_1091_mbc_E22_06_0213 crossref_primary_10_1007_s00294_017_0778_4 crossref_primary_10_1186_s12915_016_0325_7 crossref_primary_10_1128_mBio_01314_17 crossref_primary_10_26907_2542_064X_2024_2_297_311 crossref_primary_10_3390_ijms22094510 crossref_primary_10_1016_j_mad_2017_09_001 crossref_primary_10_3390_bios14110540 crossref_primary_10_1002_yea_3517 crossref_primary_10_1093_nar_gkx101 crossref_primary_10_1016_j_isci_2021_102231 crossref_primary_10_1093_genetics_iyac186 crossref_primary_10_1371_journal_pgen_1007326 crossref_primary_10_1002_yea_3511 crossref_primary_10_1016_j_mrrev_2014_11_007 crossref_primary_10_1093_eep_dvw006 crossref_primary_10_1146_annurev_biophys_062215_011140 crossref_primary_10_1038_s41417_022_00464_3 crossref_primary_10_3390_cells8010054 crossref_primary_10_1007_s12013_014_0476_5 |
Cites_doi | 10.1128/MCB.4.11.2509 10.1093/nar/gkj415 10.1002/0470862637.ch4 10.1074/jbc.M110.170167 10.1101/gad.1851909 10.1016/S0092-8674(85)80120-3 10.1093/nar/gkl786 10.1007/978-1-4684-5251-8_37 10.1016/j.molcel.2009.05.015 10.1016/j.molcel.2013.01.002 10.1091/mbc.E03-10-0740 10.1038/cr.2010.138 10.1038/ncb1428 10.1101/gad.477208 10.1091/mbc.11.7.2221 10.1371/journal.pone.0066756 10.1101/gad.1588807 10.4161/cc.4.2.1429 10.1038/ng569 10.1073/pnas.91.16.7623 10.1038/embor.2008.121 10.1371/journal.pgen.1002421 10.1534/genetics.109.102939 10.1126/science.1074968 10.1134/S0006297912100045 10.1093/nar/23.9.1454 10.1016/S1097-2765(01)00270-2 10.1038/sj.emboj.7600778 10.1093/emboj/19.21.5801 10.1101/gad.6.5.801 10.1101/gad.1787509 10.1128/MCB.21.13.4233-4245.2001 10.1038/emboj.2012.214 10.1128/MCB.00817-08 10.1093/emboj/18.9.2522 10.1073/pnas.1320030110 10.1016/S0960-9822(02)01338-6 10.1101/gad.1146603 10.1101/gad.400907 10.1093/carcin/bgp268 10.1038/345458a0 10.1016/j.dnarep.2012.12.002 10.1038/ncb1429 10.4161/cc.26625 10.1091/mbc.E11-06-0568 10.1038/nature07312 10.1128/MCB.21.5.1819-1827.2001 10.1093/nar/gkl1081 10.1016/S0960-9822(01)00021-5 10.1126/science.280.5364.741 10.1093/emboj/20.5.1173 10.1073/pnas.91.25.12061 10.1073/pnas.0401263101 10.1128/MCB.25.19.8430-8443.2005 10.1016/j.cell.2012.01.033 10.1126/science.281.5374.272 10.1534/genetics.113.149849 10.1038/msb.2009.3 10.1093/nar/gkq296 10.1093/embo-reports/kve038 10.1074/jbc.M306783200 10.1038/emboj.2012.215 10.1128/MCB.00195-09 10.1016/j.molcel.2011.09.020 10.1126/science.8073286 10.1016/j.dnarep.2006.03.005 10.1016/j.cell.2004.11.008 10.1038/nature06047 10.1128/MCB.8.1.210 10.1101/gad.503108 10.1016/0092-8674(93)90234-H 10.1101/gad.225102 10.1038/emboj.2009.176 10.1534/g3.111.000216 10.1534/genetics.166.4.1641 10.1128/MCB.00512-08 10.1093/genetics/152.1.143 10.1038/sj.emboj.7600144 10.1016/S0006-291X(03)00333-4 10.1093/nar/gkt365 10.1073/pnas.0806621105 10.1101/gad.1869110 10.1093/emboj/20.21.6127 10.1016/j.cub.2011.11.024 10.1101/gad.438907 10.1038/emboj.2011.30 10.1242/jcs.00907 10.1016/S0092-8674(00)80760-6 10.1371/journal.pgen.1000236 10.1016/0092-8674(89)90132-3 10.1534/genetics.104.027904 10.1093/nar/24.4.582 10.1038/nature02964 10.1093/genetics/155.1.475 10.1038/310157a0 10.1016/j.cell.2007.01.041 10.1371/journal.pgen.1000966 10.1101/gad.316504 10.1038/emboj.2008.171 10.1101/gr.6687808 10.1016/j.tcb.2008.04.004 10.1261/rna.1748309 10.1016/j.molcel.2008.12.027 10.1101/gad.1125903 10.1038/ncb1685 10.1101/gad.903501 10.1038/emboj.2009.195 10.1038/383092a0 10.1126/science.270.5241.1488 10.1038/nmeth.1234 10.1128/MCB.20.3.786-796.2000 10.1146/annurev.biochem.72.121801.161547 10.1016/0092-8674(93)90321-G 10.1101/gad.1199404 10.1111/1523-1747.ep12532752 10.1126/science.274.5285.249 10.1126/science.286.5442.1166 10.1128/MCB.24.22.9887-9898.2004 10.1038/nrm2450 10.1038/emboj.2013.88 10.1091/mbc.E06-12-1074 10.1101/gad.218776.113 10.1038/nsmb.1957 10.1038/nsmb1214 10.1007/s00412-011-0357-2 10.1128/MCB.19.12.8083 10.1016/j.molcel.2004.12.003 10.1093/nar/26.23.5365 10.1038/ng1284 10.1371/journal.pgen.1001072 10.1093/genetics/124.3.547 10.1534/genetics.109.106682 10.1128/MCB.20.7.2378-2384.2000 10.1093/embo-reports/kve024 10.1073/pnas.83.5.1398 10.1038/sj.embor.7401082 10.1126/science.1147182 10.1038/nature12149 10.1093/nar/gkl561 10.1073/pnas.91.8.3453 10.1073/pnas.0914187107 10.1101/gad.7.7a.1146 10.1126/science.294.5540.115 10.1093/genetics/144.4.1399 10.1128/MCB.15.11.6128 10.1093/emboj/18.9.2538 10.1038/nsmb.2225 10.1038/ncb2263 10.1016/0092-8674(87)90576-9 10.1016/j.dnarep.2006.04.005 10.1101/gad.8.19.2257 10.1083/jcb.200409091 10.1126/science.2237406 10.1073/pnas.0909203106 10.1038/emboj.2008.81 10.1038/29100 10.1016/j.mrfmmm.2011.10.013 10.1126/science.285.5429.901 10.1126/science.289.5480.771 10.1073/pnas.0437148100 10.1126/science.279.5349.349 10.1007/BF00352248 10.1038/35001622 10.1002/j.1460-2075.1993.tb05897.x 10.1534/genetics.110.122044 10.1016/0092-8674(90)90140-A 10.1038/nrm3505 10.1126/science.1083430 10.1128/MCB.21.21.7277-7286.2001 10.1093/emboj/20.4.905 10.1016/S0092-8674(00)81120-4 10.1038/ncb1430 10.1016/S0092-8674(01)00226-4 10.1038/310154a0 10.1038/nsmb.2662 10.1128/MCB.02367-05 10.1101/gad.231602 10.1371/journal.pone.0014142 10.1016/j.molcel.2013.08.029 10.1016/j.cell.2005.12.044 10.1016/j.trsl.2013.05.003 10.1038/nsmb.1947 10.1371/journal.pgen.0020035 10.3389/fonc.2013.00027 10.1073/pnas.0905703106 10.1073/pnas.93.24.13902 10.1101/gad.14.16.2046 10.1016/0092-8674(93)90493-A 10.1007/BF01952113 10.1016/j.cell.2013.05.007 10.1038/nature09355 10.1093/nar/gkq552 10.1093/nar/gks270 10.1128/MCB.23.18.6585-6596.2003 10.1128/MCB.21.19.6559-6573.2001 10.1101/gad.1099003 10.1093/nar/24.23.4639 10.1074/jbc.C000133200 10.1093/nar/29.21.4414 10.1126/science.1218498 10.1016/j.molcel.2009.06.025 10.1016/j.canlet.2009.08.003 10.1016/S0092-8674(00)81671-2 10.1371/journal.pgen.1003208 10.1016/S0092-8674(01)00580-3 10.1128/MCB.22.13.4512-4521.2002 10.1016/j.molcel.2007.07.016 10.1128/MCB.23.4.1403-1417.2003 10.1016/j.molcel.2006.10.020 10.1128/MCB.24.8.3277-3285.2004 10.1016/j.molcel.2006.10.005 10.1093/nar/gkp259 10.1016/j.celrep.2012.10.007 10.1371/journal.pgen.1002233 10.1091/mbc.E02-08-0457 10.1038/383354a0 10.1016/j.cell.2008.08.037 10.1016/j.molcel.2010.05.016 10.1074/jbc.M306841200 10.1038/emboj.2010.155 10.1038/nsmb854 10.1371/journal.pgen.1002271 10.1007/978-3-642-16502-3_4 10.1126/science.1063827 10.1038/emboj.2010.267 10.1038/83778 10.1016/j.semcdb.2009.09.015 10.1534/genetics.109.106674 10.1016/0092-8674(92)90474-Q 10.1371/journal.pgen.1003721 10.1038/sj.emboj.7600469 10.1016/j.molcel.2008.10.019 10.1038/nature09318 10.1534/genetics.111.137851 10.1021/bi2005448 10.1038/ncb1910 10.1007/s00294-004-0548-y 10.1016/S0960-9822(98)70252-0 10.1038/35082608 10.1093/ajcp/107.5.548 10.1126/science.286.5437.117 10.1534/genetics.112.140608 10.1371/journal.pgen.1001362 10.1101/gad.208140.112 10.1534/genetics.108.092577 10.1016/S0092-8674(00)81670-0 10.1073/pnas.95.21.12486 10.1101/gad.11.1.83 10.1016/S0092-8674(04)00334-4 10.1074/jbc.273.50.33360 10.1128/MCB.22.23.8292-8301.2002 10.1101/gad.13.2.146 10.1016/j.molcel.2006.02.006 10.1091/mbc.E10-06-0549 10.1038/ncb1911 10.1016/0092-8674(93)90388-7 10.1083/jcb.134.6.1349 10.1038/emboj.2011.349 10.1371/journal.pgen.1002024 10.1038/nsmb1205 10.1128/MCB.12.3.1209 10.1128/MCB.12.11.5159 10.1371/journal.pgen.0030105 10.1016/j.molcel.2013.01.001 10.1111/j.1755-0998.2011.03012.x 10.1074/jbc.M410346200 10.1038/nrg2224 10.1038/sj.embor.7401036 10.1016/j.molcel.2008.02.021 10.1146/annurev.genet.41.110306.130350 10.1038/sj.emboj.7601235 10.1101/gad.14.14.1777 10.3389/fonc.2013.000309 10.1038/embor.2011.73 10.1038/sj.onc.1208332 10.1038/nsmb.2585 10.1128/MCB.23.11.3721-3734.2003 10.1016/S0960-9822(99)80483-7 10.1016/j.cell.2008.11.027 10.1016/j.mrfmmm.2011.08.011 10.1038/emboj.2012.40 10.1073/pnas.97.12.6658 10.1016/j.molcel.2008.12.022 10.1074/jbc.M112.415984 10.1101/gad.300004 10.1128/MCB.24.16.6931-6946.2004 10.1073/pnas.062502299 10.1038/nsmb1125 10.1093/emboj/18.12.3509 10.1101/gad.2003811 10.1371/journal.pgen.1002960 10.1016/j.molcel.2010.08.024 10.1038/sj.embor.7400911 10.1093/nar/gkh309 10.1016/j.molcel.2006.07.035 10.1016/j.cell.2005.03.035 10.1016/j.yexcr.2012.09.005 10.1016/S0092-8674(00)80773-4 10.1056/NEJMra0903373 10.1101/gad.178491.111 10.1159/000167804 10.1101/gad.455108 10.1126/science.1170633 10.1016/0092-8674(94)90179-1 10.1038/22780 10.1016/S0092-8674(00)81088-0 10.1128/MCB.24.24.10857-10867.2004 10.1006/jmbi.1993.1283 10.1128/MCB.19.11.7481 10.1038/239197a0 10.1093/emboj/18.11.3173 10.1073/pnas.93.24.13760 10.4161/cc.6.10.4224 10.1128/MCB.00994-10 10.1371/journal.pgen.1002417 10.1093/emboj/20.16.4522 10.1038/nrm3546 10.1016/S0960-9822(00)00562-5 10.1534/genetics.166.2.753 10.1038/emboj.2010.193 10.1073/pnas.1319313110 10.1016/0092-8674(83)90437-3 10.1126/science.1230624 10.1093/genetics/162.3.1101 10.1038/emboj.2011.345 10.1101/gad.11.6.748 10.1038/emboj.2012.180 10.4161/cc.6.1.3647 10.1002/j.1460-2075.1996.tb00890.x 10.1016/j.cell.2009.06.021 10.1101/gad.11.4.512 10.1038/msb.2008.13 10.1016/0092-8674(82)90109-X 10.1126/science.1231573 10.1038/nsmb.2100 10.1073/pnas.1934561100 10.1083/jcb.200505159 10.1038/ng1917 10.1016/S0960-9822(00)00450-4 10.1371/journal.pgen.1002060 10.1038/ncb2745 10.1101/gad.10.11.1310 10.3389/fonc.2013.00101 10.1038/emboj.2008.93 10.1128/MCB.20.22.8397-8408.2000 10.1083/jcb.200706040 |
ContentType | Journal Article |
Copyright | 2014 Federation of European Microbiological Societies. 2014 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved Copyright © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved |
Copyright_xml | – notice: 2014 Federation of European Microbiological Societies. 2014 – notice: 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved – notice: Copyright © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 |
DOI | 10.1111/1574-6976.12054 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Yeasts as models in cell biology |
EISSN | 1574-6976 |
EndPage | 171 |
ExternalDocumentID | 3239237961 24754043 10_1111_1574_6976_12054 FMR12054 10.1111/1574-6976.12054 |
Genre | reviewArticle Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Israel Cancer Research Fund – fundername: Israel Science Foundation – fundername: Israeli Ministry of Science and Technology – fundername: US‐Israel Bi‐national Fund |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1OC 1TH 29H 36B 4.4 48X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 A8Z AAHBH AAHHS AAIMJ AAMDB AAMVS AAOGV AAONW AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABEUO ABIXL ABJNI ABLJU ABPTD ABQLI ABXVV ACCFJ ACFRR ACGFO ACGFS ACPRK ACUFI ACXQS ADBBV ADEZT ADGZP ADHKW ADHZD ADQBN ADRIX ADRTK ADVEK ADYVW AEEZP AEGPL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFBPY AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AFZJQ AGINJ AGSYK AHMBA AIWBW AJAOE AJBDE AJEEA AKRWK AKWXX ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APWMN ARIXL AVWKF AXUDD AYOIW AZBYB BAFTC BAYMD BBNVY BCRHZ BDRZF BENPR BEYMZ BHONS BHPHI BQDIO BSWAC BY8 C45 CDBKE CS3 D-E D-F DAKXR DCZOG DILTD DR2 DU5 EBS EDH EJD EMB EMOBN ESTFP F00 F01 F04 F5P FDB FHSFR FLUFQ FOEOM FYUFA G-S G.N GAUVT GJXCC GODZA H.T H.X H13 HAR HOLLA HZI HZ~ IX1 J0M J21 K48 KAQDR KBUDW KOP KSI KSN LC2 LC3 LH4 LP6 LP7 LW6 M7P MK4 MM. N04 N05 N9A NF~ NLBLG NOMLY NVLIB O9- OAWHX ODMLO OIG OJQWA OK1 OVD P2P P2X P4D PAFKI PEELM Q.N Q11 Q5Y QB0 R.K RIG ROL ROX ROZ RUSNO RX1 RXO SUPJJ SV3 TEORI TLC TOX UB1 V8K W8V W99 WH7 WQJ WRC WYUIH XG1 YAYTL YKOAZ YXANX ZCN ZMT ~02 ~IA ~KM ~WT --K 1B1 1~5 31~ 3V. 4G. 7-5 88E 8CJ 8FE 8FH 8FI 8FJ AAEDT AAJQQ AALRI AANHP AAQFI AAQXK AAWDT AAXUO ABEFU ABEJV ABMAC ABSAR ABSMQ ABUWG ABWVN ACBWZ ACIUM ACRPL ACSCC ACUTJ ACYXJ ADMUD ADNMO ADZOD AEQDE AEUYN AFKRA AFULF AFYAG AHEFC AI. AMNDL ANFBD ASAOO ATDFG BPHCQ BVXVI CAG CCPQU COF CXTWN D1J DC6 DFGAJ FEDTE FGOYB FIRID FZ0 HCIFZ HF~ HMCUK HVGLF IAG IAO IEP IHE IHR ISR ITC LK8 LW9 M1P M41 NQ- PQQKQ PROAC PSQYO R2- RPM RPZ SEW SIN SSZ TCN UKHRP VH1 XPP Y6R ZXP AAYXX ABGNP ABIME ABPIB ABXZS ACVFH ADCNI ADGKP AEUPX AFPUW AGQPQ AHGBF AIGII ALXQX APJGH CITATION JXSIZ NU- PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7T7 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N P64 RC3 WIN 7X8 |
ID | FETCH-LOGICAL-c3214-adfec647e87f78f66b7a88c75b645425fbd46e9b6ea60e59d95c9849e9d5cd523 |
IEDL.DBID | DR2 |
ISSN | 0168-6445 1574-6976 |
IngestDate | Sun Aug 24 03:47:39 EDT 2025 Wed Aug 13 10:39:50 EDT 2025 Wed Feb 19 02:42:31 EST 2025 Tue Jul 01 01:56:20 EDT 2025 Thu Apr 24 22:51:22 EDT 2025 Wed Jan 22 16:56:37 EST 2025 Wed Sep 11 04:52:20 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | genome stability DNA replication cancer aging DNA damage response |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3214-adfec647e87f78f66b7a88c75b645425fbd46e9b6ea60e59d95c9849e9d5cd523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 24754043 |
PQID | 1504787764 |
PQPubID | 986349 |
PageCount | 28 |
ParticipantIDs | proquest_miscellaneous_1518620051 proquest_journals_1504787764 pubmed_primary_24754043 crossref_primary_10_1111_1574_6976_12054 crossref_citationtrail_10_1111_1574_6976_12054 wiley_primary_10_1111_1574_6976_12054_FMR12054 oup_primary_10_1111_1574-6976_12054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140301 March 2014 2014-03-00 2014-Mar |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 20140301 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Delft |
PublicationTitle | FEMS microbiology reviews |
PublicationTitleAlternate | FEMS Microbiol Rev |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Oxford University Press |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Oxford University Press |
References | 1998; 281 1998; 280 1990; 345 2004; 23 2004; 24 2002; 99 2010; 186 1971; 201 2012; 19 1996; 144 2008; 32 2008; 105 1998; 279 2008; 30 1996; 383 2003; 278 2007b; 21 1998; 394 1998; 273 2004; 32 2007; 179 1994; 265 2000; 19 2000; 14 2013; 51 2000; 10 2000; 403 2004; 36 2000; 11 1995; 23 2008; 27 2008; 28 2009a; 183 2008; 22 2013; 110 2012; 26 2012; 23 1996; 134 2012b; 31 2010; 6 2007; 18 1996b; 15 1987; 51 2011; 1 2009; 182 2010; 289 1997; 211 1996; 93 2010; 285 2001; 27 2001; 28 2001; 29 2008; 122 1990; 124 2011; 7 2012; 31 2007; 14 2001; 20 2001; 21 2012a; 730 2004; 431 2004a; 18 2013; 339 2012; 191 2012; 192 2005; 4 1996; 85 2008; 42 2010a; 5 2008; 134 2012; 40 1998; 8 2013; 27 2013; 20 2008; 9 2008; 5 2008; 4 2001; 107 2007; 35 2001; 104 1979; 73 2013; 15 2013; 14 1994; 103 1986; 40 1993; 73 2000; 289 1999; 19 1999; 18 2013; 12 2013; 319 1993; 75 1999; 13 2001; 15 1992b; 12 2001; 11 2007; 21 1996; 24 2012; 336 2009; 326 2006; 124 2007; 27 2013; 49 2006; 13 1995; 15 2013; 41 1996; 52 2000; 275 2000; 155 2003; 72 1985; 42 2009b; 183 2003; 303 2013; 32 2005; 168 2002; 22 1999; 152 1992; 68 2008; 455 2009; 5 2003; 300 2002; 16 2004; 166 2013; 3 2012; 121 2004; 168 2006; 34 2010; 107 2010; 17 2006; 38 2002; 12 2010; 467 1999; 285 1999; 286 1996a; 24 2001a; 20 2006; 172 2013; 8 2013; 9 2009; 11 2010; 21 1986; 83 2010; 24 2006; 24 2006; 21 2010; 29 1984; 310 2006; 25 2000; 97 2006; 26 2007; 8 2007; 6 2009; 361 2007; 3 1998; 95 2013; 193 2001; 411 2009; 15 1994; 76 2010; 31 2010; 38 2007; 448 2010; 39 1996; 10 1995; 270 2004; 279 1984; 4 2005; 121 1994; 91 2007; 318 1989; 57 1993; 231 2003; 100 2003; 23 2009; 106 1993; 7 2012; 287 2003; 14 2011; 11 2003; 17 2011; 13 2013; 162 1999; 400 2011; 12 2001b; 20 2011; 18 1992; 12 2005; 24 2005; 25 2001; 294 2004; 259 1997; 107 2007a; 128 1982; 29 1997; 11 1999; 99 2011; 22 2011; 21 1999; 97 2011; 25 2013; 153 2012; 730 1990; 250 2004; 101 2009; 23 1998; 26 1972; 239 2002; 297 2008; 18 2000; 20 2011; 31 2006; 8 2011; 30 2006; 5 2008; 10 2006; 2 2010b; 6 2012; 148 2012; 77 2009; 136 2009; 29 1983; 33 2004b; 166 2009; 138 1992a; 6 2009; 28 1999; 9 2005; 47 2008; 180 1990; 63 2004; 11 2009; 33 1994; 8 2009; 35 1993; 12 2012; 2 2004; 18 2001; 7 2004; 16 2002; 162 2004; 15 2011; 51 1988; 8 2011; 50 2013; 497 2011; 44 2001; 2 1996; 274 2004; 119 2004; 117 2009; 37 2012; 8 2015070909421538000_38.2.144.14 2015070909421538000_38.2.144.135 2015070909421538000_38.2.144.256 2015070909421538000_38.2.144.15 2015070909421538000_38.2.144.136 2015070909421538000_38.2.144.257 2015070909421538000_38.2.144.16 2015070909421538000_38.2.144.133 2015070909421538000_38.2.144.254 2015070909421538000_38.2.144.17 2015070909421538000_38.2.144.134 2015070909421538000_38.2.144.255 2015070909421538000_38.2.144.10 2015070909421538000_38.2.144.139 2015070909421538000_38.2.144.11 2015070909421538000_38.2.144.12 2015070909421538000_38.2.144.137 2015070909421538000_38.2.144.258 2015070909421538000_38.2.144.13 2015070909421538000_38.2.144.138 2015070909421538000_38.2.144.259 2015070909421538000_38.2.144.18 2015070909421538000_38.2.144.19 2015070909421538000_38.2.144.260 2015070909421538000_38.2.144.142 2015070909421538000_38.2.144.263 2015070909421538000_38.2.144.143 2015070909421538000_38.2.144.264 2015070909421538000_38.2.144.140 2015070909421538000_38.2.144.261 2015070909421538000_38.2.144.141 2015070909421538000_38.2.144.262 2015070909421538000_38.2.144.25 2015070909421538000_38.2.144.146 2015070909421538000_38.2.144.267 2015070909421538000_38.2.144.26 2015070909421538000_38.2.144.147 2015070909421538000_38.2.144.268 2015070909421538000_38.2.144.27 2015070909421538000_38.2.144.144 2015070909421538000_38.2.144.265 2015070909421538000_38.2.144.28 2015070909421538000_38.2.144.145 2015070909421538000_38.2.144.266 2015070909421538000_38.2.144.21 2015070909421538000_38.2.144.22 2015070909421538000_38.2.144.23 2015070909421538000_38.2.144.148 2015070909421538000_38.2.144.269 2015070909421538000_38.2.144.24 2015070909421538000_38.2.144.149 2015070909421538000_38.2.144.29 2015070909421538000_38.2.144.270 2015070909421538000_38.2.144.150 2015070909421538000_38.2.144.271 2015070909421538000_38.2.144.20 2015070909421538000_38.2.144.153 2015070909421538000_38.2.144.274 2015070909421538000_38.2.144.154 2015070909421538000_38.2.144.275 2015070909421538000_38.2.144.151 2015070909421538000_38.2.144.272 2015070909421538000_38.2.144.152 2015070909421538000_38.2.144.273 2015070909421538000_38.2.144.36 2015070909421538000_38.2.144.157 2015070909421538000_38.2.144.278 2015070909421538000_38.2.144.37 2015070909421538000_38.2.144.158 2015070909421538000_38.2.144.279 2015070909421538000_38.2.144.38 2015070909421538000_38.2.144.155 2015070909421538000_38.2.144.276 2015070909421538000_38.2.144.39 2015070909421538000_38.2.144.156 2015070909421538000_38.2.144.277 2015070909421538000_38.2.144.32 2015070909421538000_38.2.144.33 2015070909421538000_38.2.144.34 2015070909421538000_38.2.144.159 2015070909421538000_38.2.144.35 2015070909421538000_38.2.144.160 2015070909421538000_38.2.144.281 2015070909421538000_38.2.144.161 2015070909421538000_38.2.144.282 2015070909421538000_38.2.144.30 2015070909421538000_38.2.144.31 2015070909421538000_38.2.144.280 2015070909421538000_38.2.144.164 2015070909421538000_38.2.144.285 2015070909421538000_38.2.144.165 2015070909421538000_38.2.144.286 2015070909421538000_38.2.144.162 2015070909421538000_38.2.144.283 2015070909421538000_38.2.144.163 2015070909421538000_38.2.144.284 2015070909421538000_38.2.144.47 2015070909421538000_38.2.144.168 2015070909421538000_38.2.144.289 2015070909421538000_38.2.144.48 2015070909421538000_38.2.144.169 2015070909421538000_38.2.144.49 2015070909421538000_38.2.144.166 2015070909421538000_38.2.144.287 2015070909421538000_38.2.144.167 2015070909421538000_38.2.144.288 2015070909421538000_38.2.144.43 2015070909421538000_38.2.144.44 2015070909421538000_38.2.144.45 2015070909421538000_38.2.144.46 2015070909421538000_38.2.144.171 2015070909421538000_38.2.144.292 2015070909421538000_38.2.144.40 2015070909421538000_38.2.144.172 2015070909421538000_38.2.144.293 2015070909421538000_38.2.144.41 2015070909421538000_38.2.144.290 2015070909421538000_38.2.144.42 2015070909421538000_38.2.144.170 2015070909421538000_38.2.144.291 2015070909421538000_38.2.144.175 2015070909421538000_38.2.144.296 2015070909421538000_38.2.144.176 2015070909421538000_38.2.144.297 2015070909421538000_38.2.144.173 2015070909421538000_38.2.144.294 2015070909421538000_38.2.144.174 2015070909421538000_38.2.144.295 2015070909421538000_38.2.144.58 2015070909421538000_38.2.144.212 2015070909421538000_38.2.144.333 2015070909421538000_38.2.144.59 2015070909421538000_38.2.144.213 2015070909421538000_38.2.144.334 2015070909421538000_38.2.144.210 2015070909421538000_38.2.144.331 2015070909421538000_38.2.144.211 2015070909421538000_38.2.144.332 2015070909421538000_38.2.144.54 2015070909421538000_38.2.144.216 2015070909421538000_38.2.144.337 2015070909421538000_38.2.144.55 2015070909421538000_38.2.144.217 2015070909421538000_38.2.144.338 2015070909421538000_38.2.144.56 2015070909421538000_38.2.144.214 2015070909421538000_38.2.144.335 2015070909421538000_38.2.144.57 2015070909421538000_38.2.144.215 2015070909421538000_38.2.144.336 2015070909421538000_38.2.144.218 2015070909421538000_38.2.144.339 2015070909421538000_38.2.144.219 2015070909421538000_38.2.144.50 2015070909421538000_38.2.144.51 2015070909421538000_38.2.144.52 2015070909421538000_38.2.144.53 2015070909421538000_38.2.144.340 2015070909421538000_38.2.144.220 2015070909421538000_38.2.144.341 2015070909421538000_38.2.144.69 2015070909421538000_38.2.144.102 2015070909421538000_38.2.144.223 2015070909421538000_38.2.144.344 2015070909421538000_38.2.144.103 2015070909421538000_38.2.144.224 2015070909421538000_38.2.144.345 2015070909421538000_38.2.144.100 2015070909421538000_38.2.144.221 2015070909421538000_38.2.144.342 2015070909421538000_38.2.144.101 2015070909421538000_38.2.144.222 2015070909421538000_38.2.144.343 2015070909421538000_38.2.144.65 2015070909421538000_38.2.144.106 2015070909421538000_38.2.144.227 2015070909421538000_38.2.144.348 2015070909421538000_38.2.144.66 2015070909421538000_38.2.144.107 2015070909421538000_38.2.144.228 2015070909421538000_38.2.144.67 2015070909421538000_38.2.144.104 2015070909421538000_38.2.144.225 2015070909421538000_38.2.144.346 2015070909421538000_38.2.144.68 2015070909421538000_38.2.144.105 2015070909421538000_38.2.144.226 2015070909421538000_38.2.144.347 2015070909421538000_38.2.144.108 2015070909421538000_38.2.144.229 2015070909421538000_38.2.144.109 2015070909421538000_38.2.144.61 2015070909421538000_38.2.144.62 2015070909421538000_38.2.144.63 2015070909421538000_38.2.144.64 2015070909421538000_38.2.144.230 2015070909421538000_38.2.144.110 2015070909421538000_38.2.144.231 2015070909421538000_38.2.144.60 2015070909421538000_38.2.144.113 2015070909421538000_38.2.144.234 2015070909421538000_38.2.144.114 2015070909421538000_38.2.144.235 2015070909421538000_38.2.144.111 2015070909421538000_38.2.144.232 2015070909421538000_38.2.144.112 2015070909421538000_38.2.144.233 2015070909421538000_38.2.144.76 2015070909421538000_38.2.144.117 2015070909421538000_38.2.144.238 2015070909421538000_38.2.144.77 2015070909421538000_38.2.144.118 2015070909421538000_38.2.144.239 2015070909421538000_38.2.144.78 2015070909421538000_38.2.144.115 2015070909421538000_38.2.144.236 2015070909421538000_38.2.144.79 2015070909421538000_38.2.144.116 2015070909421538000_38.2.144.237 2015070909421538000_38.2.144.119 2015070909421538000_38.2.144.72 2015070909421538000_38.2.144.73 2015070909421538000_38.2.144.74 2015070909421538000_38.2.144.75 2015070909421538000_38.2.144.120 2015070909421538000_38.2.144.241 2015070909421538000_38.2.144.121 2015070909421538000_38.2.144.242 2015070909421538000_38.2.144.70 2015070909421538000_38.2.144.71 2015070909421538000_38.2.144.240 2015070909421538000_38.2.144.124 2015070909421538000_38.2.144.245 2015070909421538000_38.2.144.125 2015070909421538000_38.2.144.246 2015070909421538000_38.2.144.122 2015070909421538000_38.2.144.243 2015070909421538000_38.2.144.123 2015070909421538000_38.2.144.244 2015070909421538000_38.2.144.87 2015070909421538000_38.2.144.128 2015070909421538000_38.2.144.249 2015070909421538000_38.2.144.88 2015070909421538000_38.2.144.129 2015070909421538000_38.2.144.89 2015070909421538000_38.2.144.126 2015070909421538000_38.2.144.247 2015070909421538000_38.2.144.127 2015070909421538000_38.2.144.248 2015070909421538000_38.2.144.83 2015070909421538000_38.2.144.84 2015070909421538000_38.2.144.85 2015070909421538000_38.2.144.86 2015070909421538000_38.2.144.131 2015070909421538000_38.2.144.252 2015070909421538000_38.2.144.80 2015070909421538000_38.2.144.132 2015070909421538000_38.2.144.253 2015070909421538000_38.2.144.81 2015070909421538000_38.2.144.250 2015070909421538000_38.2.144.82 2015070909421538000_38.2.144.130 2015070909421538000_38.2.144.251 2015070909421538000_38.2.144.98 2015070909421538000_38.2.144.99 2015070909421538000_38.2.144.94 2015070909421538000_38.2.144.95 2015070909421538000_38.2.144.96 2015070909421538000_38.2.144.97 2015070909421538000_38.2.144.90 2015070909421538000_38.2.144.91 2015070909421538000_38.2.144.92 2015070909421538000_38.2.144.93 2015070909421538000_38.2.144.9 2015070909421538000_38.2.144.300 2015070909421538000_38.2.144.301 2015070909421538000_38.2.144.304 2015070909421538000_38.2.144.305 2015070909421538000_38.2.144.302 2015070909421538000_38.2.144.303 2015070909421538000_38.2.144.1 2015070909421538000_38.2.144.308 2015070909421538000_38.2.144.2 2015070909421538000_38.2.144.309 2015070909421538000_38.2.144.3 2015070909421538000_38.2.144.306 2015070909421538000_38.2.144.4 2015070909421538000_38.2.144.307 2015070909421538000_38.2.144.5 2015070909421538000_38.2.144.6 2015070909421538000_38.2.144.7 2015070909421538000_38.2.144.8 2015070909421538000_38.2.144.311 2015070909421538000_38.2.144.312 2015070909421538000_38.2.144.310 2015070909421538000_38.2.144.315 2015070909421538000_38.2.144.316 2015070909421538000_38.2.144.313 2015070909421538000_38.2.144.314 2015070909421538000_38.2.144.319 2015070909421538000_38.2.144.317 2015070909421538000_38.2.144.318 2015070909421538000_38.2.144.201 2015070909421538000_38.2.144.322 2015070909421538000_38.2.144.202 2015070909421538000_38.2.144.323 2015070909421538000_38.2.144.320 2015070909421538000_38.2.144.200 2015070909421538000_38.2.144.321 2015070909421538000_38.2.144.205 2015070909421538000_38.2.144.326 2015070909421538000_38.2.144.206 2015070909421538000_38.2.144.327 2015070909421538000_38.2.144.203 2015070909421538000_38.2.144.324 2015070909421538000_38.2.144 |
References_xml | – volume: 8 start-page: 748 year: 2006 end-page: 755 article-title: Chromosome end protection plasticity revealed by Stn1p and Ten1p bypass of Cdc13p publication-title: Nat Cell Biol – volume: 76 start-page: 145 year: 1994 end-page: 155 article-title: The PIF1 DNA helicase inhibits telomere elongation and telomere formation publication-title: Cell – volume: 38 start-page: 6490 year: 2010 end-page: 6501 article-title: The ribonucleotide reductase inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response to DNA damage publication-title: Nucleic Acids Res – volume: 17 start-page: 1957 year: 2003 end-page: 1962 article-title: ATM‐related Tel1 associates with double‐strand breaks through an Xrs2‐dependent mechanism publication-title: Genes Dev – volume: 23 start-page: 6585 year: 2003 end-page: 6596 article-title: The checkpoint protein Rad24 of is involved in processing double‐strand break ends and in recombination partner choice publication-title: Mol Cell Biol – volume: 730 start-page: 52 year: 2012 end-page: 58 article-title: Telomerase and idiopathic pulmonary fibrosis publication-title: Mutat Res – volume: 231 start-page: 293 year: 1993 end-page: 310 article-title: Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites publication-title: J Mol Biol – volume: 47 start-page: 18 year: 2005 end-page: 28 article-title: The yeast VPS genes affect telomere length regulation publication-title: Curr Genet – volume: 8 start-page: e66756 year: 2013 article-title: Structure of the human telomeric stn1‐ten1 capping complex publication-title: PLoS ONE – volume: 16 start-page: 2485 year: 2002 end-page: 2490 article-title: Ku complex controls the replication time of DNA in telomere regions publication-title: Genes Dev – volume: 12 start-page: 587 year: 2011 end-page: 593 article-title: Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast publication-title: EMBO Rep – volume: 105 start-page: 18730 year: 2008 end-page: 18734 article-title: Dpb11 activates the Mec1‐Ddc2 complex publication-title: P Natl Acad Sci USA – volume: 7 start-page: e1002417 year: 2011 article-title: A novel checkpoint and RPA inhibitory pathway regulated by Rif1 publication-title: PLoS Genet – volume: 278 start-page: 45027 year: 2003 end-page: 45033 article-title: Two distinct pathways for inhibiting pds1 ubiquitination in response to DNA damage publication-title: J Biol Chem – volume: 6 start-page: 75 year: 2007 end-page: 79 article-title: The nuclear envelope and spindle pole body‐associated Mps3 protein bind telomere regulators and function in telomere clustering publication-title: Cell Cycle – volume: 259 start-page: 48 year: 2004 end-page: 56 article-title: A model for step‐wise assembly of heterochromatin in yeast publication-title: Novartis Found Symp – volume: 40 start-page: 5795 year: 2012 end-page: 5818 article-title: Homologous recombination and its regulation publication-title: Nucleic Acids Res – volume: 294 start-page: 115 year: 2001 end-page: 121 article-title: Replication dynamics of the yeast genome publication-title: Science – volume: 21 start-page: 292 year: 2007 end-page: 302 article-title: DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation publication-title: Genes Dev – volume: 28 start-page: 327 year: 2001 end-page: 334 article-title: Promoter‐specific binding of Rap1 revealed by genome‐wide maps of protein‐DNA association publication-title: Nat Genet – volume: 103 start-page: 237 year: 1994 end-page: 250 article-title: TEL + CEN antagonism on plasmids involves telomere repeat sequences tracts and gene products that interact with chromosomal telomeres publication-title: Chromosoma – volume: 8 start-page: 210 year: 1988 end-page: 225 article-title: Two DNA‐binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in publication-title: Mol Cell Biol – volume: 20 start-page: 1173 year: 2001b end-page: 1183 article-title: Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13 publication-title: EMBO J – volume: 7 start-page: e1002233 year: 2011 article-title: Ku must load directly onto the chromosome end in order to mediate its telomeric functions publication-title: PLoS Genet – volume: 15 start-page: 694 year: 2013 end-page: 699 article-title: Effect of nuclear architecture on the efficiency of double‐strand break repair publication-title: Nat Cell Biol – volume: 10 start-page: 809 year: 2000 end-page: 812 article-title: The Est3 protein is a subunit of yeast telomerase publication-title: Curr Biol – volume: 28 start-page: 2174 year: 2009 end-page: 2187 article-title: Taming the tiger by the tail: modulation of DNA damage responses by telomeres publication-title: EMBO J – volume: 279 start-page: 349 year: 1998 end-page: 352 article-title: Extension of life‐span by introduction of telomerase into normal human cells publication-title: Science – volume: 24 start-page: 949 year: 2005 end-page: 961 article-title: The life and death of DNA‐PK publication-title: Oncogene – volume: 361 start-page: 2353 year: 2009 end-page: 2365 article-title: Telomere diseases publication-title: N Engl J Med – volume: 50 start-page: 6289 year: 2011 end-page: 6291 article-title: Sequence‐specific binding to telomeric DNA is not a conserved property of the Cdc13 DNA binding domain publication-title: Biochemistry – volume: 18 start-page: 920 year: 2011 end-page: 926 article-title: SUMOylation regulates telomere length homeostasis by targeting Cdc13 publication-title: Nat Struct Mol Biol – volume: 21 start-page: 7277 year: 2001 end-page: 7286 article-title: Molecular basis for telomere repeat divergence in budding yeast publication-title: Mol Cell Biol – volume: 403 start-page: 795 year: 2000 end-page: 800 article-title: Transcriptional silencing and longevity protein Sir2 is an NAD‐dependent histone deacetylase publication-title: Nature – volume: 75 start-page: 1119 year: 1993 end-page: 1127 article-title: DUN1 encodes a protein kinase that controls the DNA damage response in yeast publication-title: Cell – volume: 21 start-page: 186 year: 2010 end-page: 193 article-title: Chromatin regulation and non‐coding RNAs at mammalian telomeres publication-title: Semin Cell Dev Biol – volume: 20 start-page: 4522 year: 2001 end-page: 4535 article-title: Sir2p exists in two nucleosome‐binding complexes with distinct deacetylase activities publication-title: EMBO J – volume: 22 start-page: 8292 year: 2002 end-page: 8301 article-title: Esc1, a nuclear periphery protein required for Sir4‐based plasmid anchoring and partitioning publication-title: Mol Cell Biol – volume: 275 start-page: 30833 year: 2000 end-page: 30838 article-title: The relationship between homology length and crossing over during the repair of a broken chromosome publication-title: J Biol Chem – volume: 85 start-page: 125 year: 1996 end-page: 136 article-title: The crystal structure of the DNA‐binding domain of yeast RAP1 in complex with telomeric DNA publication-title: Cell – volume: 27 start-page: 2400 year: 2008 end-page: 2410 article-title: Checkpoint‐dependent phosphorylation of Exo1 modulates the DNA damage response publication-title: EMBO J – volume: 18 start-page: 992 year: 2004 end-page: 1006 article-title: Pol12, the B subunit of DNA polymerase alpha, functions in both telomere capping and length regulation publication-title: Genes Dev – volume: 25 start-page: 350 year: 2011 end-page: 362 article-title: BLM‐DNA2‐RPA‐MRN and EXO1‐BLM‐RPA‐MRN constitute two DNA end resection machineries for human DNA break repair publication-title: Genes Dev – volume: 4 start-page: 259 year: 2005 end-page: 261 article-title: Cell cycle‐dependent regulation of double‐strand break repair: a role for the CDK publication-title: Cell Cycle – volume: 24 start-page: 10857 year: 2004 end-page: 10867 article-title: Counting of Rif1p and Rif2p on telomeres regulates telomere length publication-title: Mol Cell Biol – volume: 14 start-page: 2046 year: 2000 end-page: 2059 article-title: The checkpoint protein Ddc2, functionally related to Rad26, interacts with Mec1 and is regulated by Mec1‐dependent phosphorylation in budding yeast publication-title: Genes Dev – volume: 310 start-page: 154 year: 1984 end-page: 157 article-title: DNA sequences of telomeres maintained in yeast publication-title: Nature – volume: 17 start-page: 2347 year: 2003 end-page: 2350 article-title: Which end: dissecting Ku's function at telomeres and double‐strand breaks publication-title: Genes Dev – volume: 63 start-page: 739 year: 1990 end-page: 750 article-title: RAP1 protein interacts with yeast telomeres : overproduction alters telomere structure and decreases chromosome stability publication-title: Cell – volume: 18 start-page: 3173 year: 1999 end-page: 3185 article-title: RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast publication-title: EMBO J – volume: 326 start-page: 948 year: 2009 end-page: 952 article-title: How telomeres solve the end‐protection problem publication-title: Science – volume: 8 start-page: 851 year: 2007 end-page: 857 article-title: Rad9 BRCT domain interaction with phosphorylated H2AX regulates the G1 checkpoint in budding yeast publication-title: EMBO Rep – volume: 8 start-page: 2257 year: 1994 end-page: 2269 article-title: Evidence that a complex of SIR proteins interacts with the silencer and telomere‐binding protein RAP1 publication-title: Genes Dev – volume: 339 start-page: 700 year: 2013 end-page: 704 article-title: 53BP1 regulates DSB repair using Rif1 to control 5′ end resection publication-title: Science – volume: 25 start-page: 3576 year: 2006 end-page: 3585 article-title: Yeast homolog of a cancer‐testis antigen defines a new transcription complex publication-title: EMBO J – volume: 15 start-page: 2809 year: 2001 end-page: 2821 article-title: Two checkpoint complexes are independently recruited to sites of DNA damage publication-title: Genes Dev – volume: 281 start-page: 272 year: 1998 end-page: 274 article-title: Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint publication-title: Science – volume: 411 start-page: 1073 year: 2001 end-page: 1076 article-title: Multiple pathways cooperate in the suppression of genome instability in publication-title: Nature – volume: 27 start-page: 550 year: 2007 end-page: 561 article-title: Telomerase and Tel1p preferentially associate with short telomeres in publication-title: Mol Cell – volume: 319 start-page: 133 year: 2013 end-page: 141 article-title: Telomeres‐structure, function, and regulation publication-title: Exp Cell Res – volume: 8 start-page: 380 year: 2007 end-page: 387 article-title: Dual role for Tel1 in the checkpoint response to double‐strand breaks publication-title: EMBO Rep – volume: 11 start-page: 83 year: 1997 end-page: 93 article-title: SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast publication-title: Genes Dev – volume: 3 start-page: 27 year: 2013 article-title: Alternative lengthening of telomeres: remodeling the telomere architecture publication-title: Front Oncol – volume: 183 start-page: 453 year: 2009b end-page: 467 article-title: The association of yKu with subtelomeric core X sequences prevents recombination involving telomeric sequences publication-title: Genetics – volume: 107 start-page: 2025 year: 2010 end-page: 2030 article-title: Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres publication-title: P Natl Acad Sci USA – volume: 24 start-page: 502 year: 2010 end-page: 515 article-title: telomere formation is suppressed by the Mec1‐dependent inhibition of Cdc13 accumulation at DNA breaks publication-title: Genes Dev – volume: 14 start-page: 301 year: 2007 end-page: 307 article-title: Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions publication-title: Nat Struct Mol Biol – volume: 8 start-page: 734 year: 2006 end-page: 740 article-title: Linear chromosome maintenance in the absence of essential telomere‐capping proteins publication-title: Nat Cell Biol – volume: 91 start-page: 12061 year: 1994 end-page: 12065 article-title: Transcription of a yeast telomere alleviates telomere position effect without affecting chromosome stability publication-title: P Natl Acad Sci USA – volume: 144 start-page: 1399 year: 1996 end-page: 1412 article-title: Senescence mutants of with a defect in telomere replication identify three additional EST genes publication-title: Genetics – volume: 18 start-page: 261 year: 2008 end-page: 271 article-title: Controlled exchange of chromosomal arms reveals principles driving telomere interactions in yeast publication-title: Genome Res – volume: 2 start-page: 197 year: 2001 end-page: 202 article-title: Telomerase subunit overexpression suppresses telomere‐specific checkpoint activation in the yeast yku80 mutant publication-title: EMBO Rep – volume: 19 start-page: 5801 year: 2000 end-page: 5812 article-title: LCD1: an essential gene involved in checkpoint control and regulation of the MEC1 signalling pathway in publication-title: EMBO J – volume: 2 start-page: 1096 year: 2012 end-page: 1103 article-title: Human CST has independent functions during telomere duplex replication and C‐strand fill‐in publication-title: Cell Rep – volume: 122 start-page: 194 year: 2008 end-page: 201 article-title: The telomeric transcriptome and SMG proteins at the crossroads publication-title: Cytogenet Genome Res – volume: 39 start-page: 665 year: 2010 end-page: 676 article-title: CST meets shelterin to keep telomeres in check publication-title: Mol Cell – volume: 18 start-page: 2663 year: 2004a end-page: 2675 article-title: Telomerase‐ and recombination‐independent immortalization of budding yeast publication-title: Genes Dev – volume: 12 start-page: 212 year: 2013 end-page: 226 article-title: RPA provides checkpoint‐independent cell cycle arrest and prevents recombination at uncapped telomeres of publication-title: DNA Repair (Amst) – volume: 6 start-page: 801 year: 1992a end-page: 814 article-title: A RAP1‐interacting protein involved in transcriptional silencing and telomere length regulation publication-title: Genes Dev – volume: 497 start-page: 458 year: 2013 end-page: 462 article-title: Pif1 family helicases suppress genome instability at G‐quadruplex motifs publication-title: Nature – volume: 23 start-page: 2900 year: 2009 end-page: 2914 article-title: Stn1‐Ten1 is an Rpa2‐Rpa3‐like complex at telomeres publication-title: Genes Dev – volume: 11 start-page: 988 year: 2009 end-page: 993 article-title: A two‐step model for senescence triggered by a single critically short telomere publication-title: Nat Cell Biol – volume: 467 start-page: 112 year: 2010 end-page: 116 article-title: DNA end resection by Dna2‐Sgs1‐RPA and its stimulation by Top3‐Rmi1 and Mre11‐Rad50‐Xrs2 publication-title: Nature – volume: 29 start-page: 4414 year: 2001 end-page: 4422 article-title: Quantitative amplification of single‐stranded DNA (QAOS) demonstrates that cdc13‐1 mutants generate ssDNA in a telomere to centromere direction publication-title: Nucleic Acids Res – volume: 211 start-page: 76 year: 1997 end-page: 93 article-title: Rap1p and telomere length regulation in yeast publication-title: Ciba Found Symp – volume: 17 start-page: 2384 year: 2003 end-page: 2395 article-title: Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends publication-title: Genes Dev – volume: 289 start-page: 81 year: 2010 end-page: 90 article-title: Differential tumor‐targeting abilities of three single‐domain antibody formats publication-title: Cancer Lett – volume: 37 start-page: 3840 year: 2009 end-page: 3849 article-title: A genome‐wide screen for essential yeast genes that affect telomere length maintenance publication-title: Nucleic Acids Res – volume: 383 start-page: 354 year: 1996 end-page: 357 article-title: Control of telomere growth by interactions of RAP1 with the most distal telomeric repeats publication-title: Nature – volume: 21 start-page: 6559 year: 2001 end-page: 6573 article-title: Intrachromatid excision of telomeric DNA as a mechanism for telomere size control in publication-title: Mol Cell Biol – volume: 286 start-page: 1166 year: 1999 end-page: 1171 article-title: Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms publication-title: Science – volume: 152 start-page: 143 year: 1999 end-page: 152 article-title: RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase publication-title: Genetics – volume: 31 start-page: 138 year: 2012 end-page: 149 article-title: DNA‐end capping by the budding yeast transcription factor and subtelomeric binding protein Tbf1 publication-title: EMBO J – volume: 32 start-page: 465 year: 2008 end-page: 477 article-title: The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat‐containing RNA and promotes telomere elongation in publication-title: Mol Cell – volume: 100 start-page: 10854 year: 2003 end-page: 10859 article-title: Genetic regulation of telomere–telomere fusions in the yeast publication-title: P Natl Acad Sci USA – volume: 27 start-page: 1502 year: 2008 end-page: 1512 article-title: Histone methyltransferase Dot1 and Rad9 inhibit single‐stranded DNA accumulation at DSBs and uncapped telomeres publication-title: EMBO J – volume: 93 start-page: 13902 year: 1996 end-page: 13907 article-title: Cell cycle‐regulated generation of single‐stranded G‐rich DNA in the absence of telomerase publication-title: P Natl Acad Sci USA – volume: 9 start-page: 810 year: 2008 end-page: 818 article-title: The Yku70‐Yku80 complex contributes to regulate double‐strand break processing and checkpoint activation during the cell cycle publication-title: EMBO Rep – volume: 18 start-page: 3509 year: 1999 end-page: 3519 article-title: Progressive cis‐inhibition of telomerase upon telomere elongation publication-title: EMBO J – volume: 730 start-page: 12 year: 2012a end-page: 19 article-title: Maintaining the end: roles of telomere proteins in end‐protection, telomere replication and length regulation publication-title: Mutat Res – volume: 16 start-page: 1919 year: 2002 end-page: 1933 article-title: EXO1‐dependent single‐stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants publication-title: Genes Dev – volume: 51 start-page: 780 year: 2013 end-page: 791 article-title: Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres publication-title: Mol Cell – volume: 2 start-page: e35 year: 2006 article-title: Telomere length as a quantitative trait: genome‐wide survey and genetic mapping of telomere length‐control genes in yeast publication-title: PLoS Genet – volume: 14 start-page: 197 year: 2013 end-page: 210 article-title: The ATM protein kinase: regulating the cellular response to genotoxic stress, and more publication-title: Nat Rev Mol Cell Biol – volume: 29 start-page: 245 year: 1982 end-page: 255 article-title: Cloning yeast telomeres on linear plasmid vectors publication-title: Cell – volume: 9 start-page: e1003208 year: 2013 article-title: Telomerase‐null survivor screening identifies novel telomere recombination regulators publication-title: PLoS Genet – volume: 34 start-page: 6327 year: 2006 end-page: 6336 article-title: The telomerase‐recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p‐dependent phosphorylation publication-title: Nucleic Acids Res – volume: 30 start-page: 4897 year: 2011 end-page: 4907 article-title: Dpb11 coordinates Mec1 kinase activation with cell cycle‐regulated Rad9 recruitment publication-title: EMBO J – volume: 11 start-page: 512 year: 1997 end-page: 527 article-title: Stn1, a new protein, is implicated in telomere size regulation in association with Cdc13 publication-title: Genes Dev – volume: 11 start-page: 125 year: 2001 end-page: 129 article-title: SGS1 is required for telomere elongation in the absence of telomerase publication-title: Curr Biol – volume: 11 start-page: 980 year: 2009 end-page: 987 article-title: The DNA damage response at eroded telomeres and tethering to the nuclear pore complex publication-title: Nat Cell Biol – volume: 22 start-page: 1816 year: 2008 end-page: 1827 article-title: Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks publication-title: Genes Dev – volume: 31 start-page: 3537 year: 2012b end-page: 3549 article-title: Human CST promotes telomere duplex replication and general replication restart after fork stalling publication-title: EMBO J – volume: 9 start-page: 616 year: 2008 end-page: 627 article-title: ATR: an essential regulator of genome integrity publication-title: Nat Rev Mol Cell Biol – volume: 8 start-page: 653 year: 1998 end-page: 656 article-title: Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres publication-title: Curr Biol – volume: 33 start-page: 147 year: 2009 end-page: 159 article-title: Maintenance of the DNA‐damage checkpoint requires DNA‐damage‐induced mediator protein oligomerization publication-title: Mol Cell – volume: 5 start-page: e14142 year: 2010a article-title: The MRX complex plays multiple functions in resection of Yku‐ and Rif2‐protected DNA ends publication-title: PLoS ONE – volume: 273 start-page: 33360 year: 1998 end-page: 33366 article-title: Y′‐Help1, a DNA helicase encoded by the yeast subtelomeric Y′ element, is induced in survivors defective for telomerase publication-title: J Biol Chem – volume: 286 start-page: 117 year: 1999 end-page: 120 article-title: Est1 and Cdc13 as comediators of telomerase access publication-title: Science – volume: 100 start-page: 2249 year: 2003 end-page: 2254 article-title: Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint publication-title: P Natl Acad Sci USA – volume: 192 start-page: 107 year: 2012 end-page: 129 article-title: Structure and function in the budding yeast nucleus publication-title: Genetics – volume: 49 start-page: 858 year: 2013 end-page: 871 article-title: RIF1 is essential for 53BP1‐dependent nonhomologous end joining and suppression of DNA double‐strand break resection publication-title: Mol Cell – volume: 7 start-page: e1002271 year: 2011 article-title: Release of Ku and MRN from DNA ends by Mre11 nuclease activity and Ctp1 is required for homologous recombination repair of double‐strand breaks publication-title: PLoS Genet – volume: 24 start-page: 423 year: 2006 end-page: 432 article-title: Regulation of telomere elongation by the cyclin‐dependent kinase CDK1 publication-title: Mol Cell – volume: 83 start-page: 1398 year: 1986 end-page: 1402 article-title: Identification of yeast mutants with altered telomere structure publication-title: P Natl Acad Sci USA – volume: 19 start-page: 8083 year: 1999 end-page: 8093 article-title: Telomere–telomere recombination is an efficient bypass pathway for telomere maintenance in publication-title: Mol Cell Biol – volume: 5 start-page: 693 year: 2006 end-page: 703 article-title: Histone H2A phosphorylation and H3 methylation are required for a novel Rad9 DSB repair function following checkpoint activation publication-title: DNA Repair (Amst) – volume: 18 start-page: 2522 year: 1999 end-page: 2537 article-title: Cohabitation of insulators and silencing elements in yeast subtelomeric regions publication-title: EMBO J – volume: 10 start-page: 228 year: 2008 end-page: 236 article-title: Developmentally regulated transcription of mammalian telomeres by DNA‐dependent RNA polymerase II publication-title: Nat Cell Biol – volume: 91 start-page: 7623 year: 1994 end-page: 7627 article-title: Involvement of the Ku autoantigen in the cellular response to DNA double‐strand breaks publication-title: P Natl Acad Sci USA – volume: 121 start-page: 117 year: 2012 end-page: 130 article-title: Similarities and differences between “uncapped” telomeres and DNA double‐strand breaks publication-title: Chromosoma – volume: 15 start-page: 6128 year: 1995 end-page: 6138 article-title: Single‐stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint publication-title: Mol Cell Biol – volume: 193 start-page: 1117 year: 2013 end-page: 1133 article-title: Novel connections between DNA replication, telomere homeostasis, and the DNA damage response revealed by a genome‐wide screen for TEL1/ATM interactions in publication-title: Genetics – volume: 20 start-page: 836 year: 2013 end-page: 842 article-title: Nucleosome dynamics regulates DNA processing publication-title: Nat Struct Mol Biol – volume: 8 start-page: e1002960 year: 2012 article-title: Rif2 promotes a telomere fold‐back structure through Rpd3L recruitment in budding yeast publication-title: PLoS Genet – volume: 7 start-page: e1002060 year: 2011 article-title: The telomerase subunit Est3 binds telomeres in a cell cycle‐ and Est1‐dependent manner and interacts directly with Est1 publication-title: PLoS Genet – volume: 25 start-page: 8430 year: 2005 end-page: 8443 article-title: Role of Dot1‐dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9 publication-title: Mol Cell Biol – volume: 35 start-page: 403 year: 2009 end-page: 413 article-title: TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres publication-title: Mol Cell – volume: 12 start-page: 3465 year: 2013 end-page: 3470 article-title: Nature vs nurture: interplay between the genetic control of telomere length and environmental factors publication-title: Cell Cycle – volume: 11 start-page: 1198 year: 2004 end-page: 1205 article-title: Cell cycle‐dependent regulation of yeast telomerase by Ku publication-title: Nat Struct Mol Biol – volume: 400 start-page: 464 year: 1999 end-page: 468 article-title: Creation of human tumour cells with defined genetic elements publication-title: Nature – volume: 38 start-page: 5797 year: 2010 end-page: 5806 article-title: The non‐coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase publication-title: Nucleic Acids Res – volume: 75 start-page: 729 year: 1993 end-page: 739 article-title: Loss of a yeast telomere: arrest, recovery, and chromosome loss publication-title: Cell – volume: 180 start-page: 2251 year: 2008 end-page: 2266 article-title: A genomewide suppressor and enhancer analysis of cdc13‐1 reveals varied cellular processes influencing telomere capping in publication-title: Genetics – volume: 51 start-page: 65 year: 2011 end-page: 94 article-title: TERRA: long noncoding RNA at eukaryotic telomeres publication-title: Prog Mol Subcell Biol – volume: 15 start-page: 1623 year: 2004 end-page: 1634 article-title: Mutant telomere sequences lead to impaired chromosome separation and a unique checkpoint response publication-title: Mol Biol Cell – volume: 30 start-page: 1012 year: 2011 end-page: 1026 article-title: Dynamics of Sir3 spreading in budding yeast: secondary recruitment sites and euchromatic localization publication-title: EMBO J – volume: 11 start-page: 725 year: 2011 end-page: 732 article-title: Microsatellite loci for dreissenid mussels (Mollusca: Bivalvia: Dreissenidae) and relatives: markers for assessing exotic and native populations publication-title: Mol Ecol Resour – volume: 4 start-page: 2509 year: 1984 end-page: 2517 article-title: Rearrangements of highly polymorphic regions near telomeres of publication-title: Mol Cell Biol – volume: 6 start-page: 1161 year: 2007 end-page: 1167 article-title: The cell division cycle puts up with unprotected telomeres: cell cycle regulated telomere uncapping as a means to achieve telomere homeostasis publication-title: Cell Cycle – volume: 23 start-page: 4868 year: 2004 end-page: 4875 article-title: The CDK regulates repair of double‐strand breaks by homologous recombination during the cell cycle publication-title: EMBO J – volume: 24 start-page: 6931 year: 2004 end-page: 6946 article-title: Budding yeast silencing complexes and regulation of Sir2 activity by protein–protein interactions publication-title: Mol Cell Biol – volume: 73 start-page: 347 year: 1993 end-page: 360 article-title: An alternative pathway for yeast telomere maintenance rescues est1‐ senescence publication-title: Cell – volume: 134 start-page: 981 year: 2008 end-page: 994 article-title: Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double‐strand break ends publication-title: Cell – volume: 38 start-page: 842 year: 2010 end-page: 852 article-title: Cdc13 and telomerase bind through different mechanisms at the lagging‐ and leading‐strand telomeres publication-title: Mol Cell – volume: 20 start-page: 905 year: 2001 end-page: 913 article-title: The WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase publication-title: EMBO J – volume: 22 start-page: 1753 year: 2011 end-page: 1765 article-title: The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation publication-title: Mol Biol Cell – volume: 124 start-page: 1155 year: 2006 end-page: 1168 article-title: A genome‐wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator publication-title: Cell – volume: 20 start-page: 8397 year: 2000 end-page: 8408 article-title: Cdc13 cooperates with the yeast Ku proteins and Stn1 to regulate telomerase recruitment publication-title: Mol Cell Biol – volume: 106 start-page: 19298 year: 2009 end-page: 19303 article-title: Telomere capping proteins are structurally related to RPA with an additional telomere‐specific domain publication-title: P Natl Acad Sci USA – volume: 12 start-page: 1209 year: 1992b end-page: 1217 article-title: Dissection of a carboxy‐terminal region of the yeast regulatory protein RAP1 with effects on both transcriptional activation and silencing publication-title: Mol Cell Biol – volume: 26 start-page: 137 year: 2012 end-page: 150 article-title: Rif1 is a global regulator of timing of replication origin firing in fission yeast publication-title: Genes Dev – volume: 431 start-page: 1011 year: 2004 end-page: 1017 article-title: DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1 publication-title: Nature – volume: 36 start-page: 46 year: 2004 end-page: 54 article-title: RPA regulates telomerase action by providing Est1p access to chromosome ends publication-title: Nat Genet – volume: 110 start-page: 19866 year: 2013 end-page: 19871 article-title: Genome rearrangements caused by interstitial telomeric sequences in yeast publication-title: P Natl Acad Sci USA – volume: 27 start-page: 1575 year: 2008 end-page: 1584 article-title: Yeast Rap1 contributes to genomic integrity by activating DNA damage repair genes publication-title: EMBO J – volume: 14 start-page: 69 year: 2013 end-page: 82 article-title: Finding the end: recruitment of telomerase to telomeres publication-title: Nat Rev Mol Cell Biol – volume: 239 start-page: 197 year: 1972 end-page: 201 article-title: Origin of concatemeric T7 DNA publication-title: Nat New Biol – volume: 99 start-page: 723 year: 1999 end-page: 733 article-title: Telomerase‐mediated telomere addition requires DNA primase and DNA polymerases alpha and delta publication-title: Cell – volume: 21 start-page: 2115 year: 2011 end-page: 2120 article-title: Tor complex 1 controls telomere length by affecting the level of Ku publication-title: Curr Biol – volume: 285 start-page: 35814 year: 2010 end-page: 35824 article-title: Characterization of the yeast telomere nucleoprotein core: Rap1 binds independently to each recognition site publication-title: J Biol Chem – volume: 7 start-page: 1255 year: 2001 end-page: 1266 article-title: A DNA damage response pathway controlled by Tel1 and the Mre11 complex publication-title: Mol Cell – volume: 8 start-page: 741 year: 2006 end-page: 747 article-title: Telomerase‐ and capping‐independent yeast survivors with alternate telomere states publication-title: Nat Cell Biol – volume: 20 start-page: 2378 year: 2000 end-page: 2384 article-title: Involvement of the checkpoint protein Mec1p in silencing of gene expression at telomeres in publication-title: Mol Cell Biol – volume: 42 start-page: 249 year: 1985 end-page: 257 article-title: CDC17: an essential gene that prevents telomere elongation in yeast publication-title: Cell – volume: 24 start-page: 3117 year: 2005 end-page: 3127 article-title: Rap1 prevents telomere fusions by nonhomologous end joining publication-title: EMBO J – volume: 29 start-page: 4519 year: 2009 end-page: 4526 article-title: MLL associates with telomeres and regulates telomeric repeat‐containing RNA transcription publication-title: Mol Cell Biol – volume: 23 start-page: 347 year: 2012 end-page: 359 article-title: Subtelomere‐binding protein Tbf1 and telomere‐binding protein Rap1 collaborate to inhibit localization of the Mre11 complex to DNA ends in budding yeast publication-title: Mol Biol Cell – volume: 201 start-page: 1496 year: 1971 end-page: 1499 article-title: [Principle of marginotomy in template synthesis of polynucleotides] publication-title: Dokl Akad Nauk SSSR – volume: 182 start-page: 671 year: 2009 end-page: 684 article-title: Telomere maintenance and survival in in the absence of telomerase and RAD52 publication-title: Genetics – volume: 280 start-page: 741 year: 1998 end-page: 744 article-title: Yeast Ku as a regulator of chromosomal DNA end structure publication-title: Science – volume: 17 start-page: 1438 year: 2010 end-page: 1445 article-title: Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double‐strand break repair publication-title: Nat Struct Mol Biol – volume: 41 start-page: 6490 year: 2013 end-page: 6500 article-title: Tel1 and Rad51 are involved in the maintenance of telomeres with capping deficiency publication-title: Nucleic Acids Res – volume: 26 start-page: 5365 year: 1998 end-page: 5371 article-title: Processing of telomeric DNA ends requires the passage of a replication fork publication-title: Nucleic Acids Res – volume: 97 start-page: 621 year: 1999 end-page: 633 article-title: Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast publication-title: Cell – volume: 85 start-page: 423 year: 1996 end-page: 433 article-title: Evidence for a new step in telomere maintenance publication-title: Cell – volume: 23 start-page: 928 year: 2009 end-page: 938 article-title: Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination publication-title: Genes Dev – volume: 11 start-page: 748 year: 1997 end-page: 760 article-title: A novel Rap1p‐interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in publication-title: Genes Dev – volume: 7 start-page: e1002024 year: 2011 article-title: Rif1 supports the function of the CST complex in yeast telomere capping publication-title: PLoS Genet – volume: 168 start-page: 375 year: 2005 end-page: 387 article-title: Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization publication-title: J Cell Biol – volume: 21 start-page: 2485 year: 2007 end-page: 2494 article-title: Telomerase repeat addition processivity is increased at critically short telomeres in a Tel1‐dependent manner in publication-title: Genes Dev – volume: 22 start-page: 4512 year: 2002 end-page: 4521 article-title: Recombinational telomere elongation promoted by DNA circles publication-title: Mol Cell Biol – volume: 28 start-page: 2309 year: 2009 end-page: 2322 article-title: Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase publication-title: EMBO J – volume: 49 start-page: 872 year: 2013 end-page: 883 article-title: A cell cycle‐dependent regulatory circuit composed of 53BP1‐RIF1 and BRCA1‐CtIP controls DNA repair pathway choice publication-title: Mol Cell – volume: 191 start-page: 1073 year: 2012 end-page: 1105 article-title: Everything you ever wanted to know about telomeres: beginning to end publication-title: Genetics – volume: 21 start-page: 1819 year: 2001 end-page: 1827 article-title: Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events publication-title: Mol Cell Biol – volume: 77 start-page: 1120 year: 2012 end-page: 1128 article-title: Telomerase RNA biosynthesis and processing publication-title: Biochemistry (Mosc) – volume: 17 start-page: 1478 year: 2010 end-page: 1485 article-title: Mre11‐Rad50‐Xrs2 and Sae2 promote 5′ strand resection of DNA double‐strand breaks publication-title: Nat Struct Mol Biol – volume: 179 start-page: 845 year: 2007 end-page: 854 article-title: Telomere anchoring at the nuclear periphery requires the budding yeast Sad1‐UNC‐84 domain protein Mps3 publication-title: J Cell Biol – volume: 7 start-page: e1001362 year: 2011 article-title: Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects publication-title: PLoS Genet – volume: 31 start-page: 3678 year: 2012 end-page: 3690 article-title: Mouse Rif1 is a key regulator of the replication‐timing programme in mammalian cells publication-title: EMBO J – volume: 162 start-page: 353 year: 2013 end-page: 363 article-title: Short telomeres: from dyskeratosis congenita to sporadic aplastic anemia and malignancy publication-title: Transl Res – volume: 10 start-page: 1310 year: 1996 end-page: 1326 article-title: A novel mechanism for telomere size control in publication-title: Genes Dev – volume: 44 start-page: 819 year: 2011 end-page: 827 article-title: Live cell imaging of telomerase RNA dynamics reveals cell cycle‐dependent clustering of telomerase at elongating telomeres publication-title: Mol Cell – volume: 33 start-page: 312 year: 2009 end-page: 322 article-title: Rif1 and rif2 inhibit localization of tel1 to DNA ends publication-title: Mol Cell – volume: 8 start-page: 1080 year: 2007 end-page: 1085 article-title: Tel1 kinase and subtelomere‐bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast publication-title: EMBO Rep – volume: 26 start-page: 4853 year: 2006 end-page: 4862 article-title: Fine‐structure analysis of ribosomal protein gene transcription publication-title: Mol Cell Biol – volume: 13 start-page: 146 year: 1999 end-page: 151 article-title: Telomeric chromatin modulates replication timing near chromosome ends publication-title: Genes Dev – volume: 279 start-page: 86 year: 2004 end-page: 94 article-title: Separation‐of‐function mutants of yeast Ku80 reveal a Yku80p‐Sir4p interaction involved in telomeric silencing publication-title: J Biol Chem – volume: 5 start-page: 711 year: 2008 end-page: 718 article-title: A comprehensive strategy enabling high‐resolution functional analysis of the yeast genome publication-title: Nat Methods – volume: 20 start-page: 6127 year: 2001a end-page: 6139 article-title: Cdc13 prevents telomere uncapping and Rad50‐dependent homologous recombination publication-title: EMBO J – volume: 5 start-page: 840 year: 2006 end-page: 851 article-title: MRX protects telomeric DNA at uncapped telomeres of budding yeast cdc13‐1 mutants publication-title: DNA Repair (Amst) – volume: 3 start-page: 101 year: 2013 article-title: as a model to study replicative senescence triggered by telomere shortening publication-title: Front Oncol – volume: 10 start-page: 487 year: 2000 end-page: 490 article-title: Cell cycle restriction of telomere elongation publication-title: Curr Biol – volume: 9 start-page: 1123 year: 1999 end-page: 1126 article-title: Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by rif proteins publication-title: Curr Biol – volume: 104 start-page: 387 year: 2001 end-page: 396 article-title: Cdc13 delivers separate complexes to the telomere for end protection and replication publication-title: Cell – volume: 336 start-page: 593 year: 2012 end-page: 597 article-title: Removal of shelterin reveals the telomere end‐protection problem publication-title: Science – volume: 134 start-page: 1349 year: 1996 end-page: 1363 article-title: The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild‐type publication-title: J Cell Biol – volume: 12 start-page: 2431 year: 1993 end-page: 2437 article-title: GCR1, a transcriptional activator in , complexes with RAP1 and can function without its DNA binding domain publication-title: EMBO J – volume: 138 start-page: 90 year: 2009 end-page: 103 article-title: Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication publication-title: Cell – volume: 4 start-page: 172 year: 2008 article-title: A systems‐level approach to mapping the telomere length maintenance gene circuitry publication-title: Mol Syst Biol – volume: 27 start-page: 64 year: 2001 end-page: 67 article-title: The function of a stem‐loop in telomerase RNA is linked to the DNA repair protein Ku publication-title: Nat Genet – volume: 38 start-page: 1446 year: 2006 end-page: 1451 article-title: A chromatin‐mediated mechanism for specification of conditional transcription factor targets publication-title: Nat Genet – volume: 168 start-page: 103 year: 2004 end-page: 115 article-title: Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of cdc13‐1 mutants publication-title: Genetics – volume: 4 start-page: e1000236 year: 2008 article-title: Two pathways recruit telomerase to telomeres publication-title: PLoS Genet – volume: 300 start-page: 1542 year: 2003 end-page: 1548 article-title: Sensing DNA damage through ATRIP recognition of RPA‐ssDNA complexes publication-title: Science – volume: 99 start-page: 3746 year: 2002 end-page: 3751 article-title: The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1 publication-title: P Natl Acad Sci USA – volume: 155 start-page: 475 year: 2000 end-page: 479 article-title: The Mre11p/Rad50p/Xrs2p complex and the Tel1p function in a single pathway for telomere maintenance in yeast publication-title: Genetics – volume: 72 start-page: 481 year: 2003 end-page: 516 article-title: The establishment, inheritance, and function of silenced chromatin in publication-title: Annu Rev Biochem – volume: 29 start-page: 4020 year: 2010 end-page: 4034 article-title: Pif1‐ and Exo1‐dependent nucleases coordinate checkpoint activation following telomere uncapping publication-title: EMBO J – volume: 2 start-page: 124 year: 2001 end-page: 132 article-title: An activation‐independent role of transcription factors in insulator function publication-title: EMBO Rep – volume: 303 start-page: 399 year: 2003 end-page: 405 article-title: Identification of CGI‐121, a novel PRPK (p53‐related protein kinase)‐binding protein publication-title: Biochem Biophys Res Commun – volume: 21 start-page: 258 year: 2011 end-page: 274 article-title: Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase alpha publication-title: Cell Res – volume: 107 start-page: 655 year: 2001 end-page: 665 article-title: Regulation of the Bub2/Bfa1 GAP complex by Cdc5 and cell cycle checkpoints publication-title: Cell – volume: 32 start-page: 1425 year: 2013 end-page: 1439 article-title: Mammalian DNA2 helicase/nuclease cleaves G‐quadruplex DNA and is required for telomere integrity publication-title: EMBO J – volume: 183 start-page: 441 year: 2009a end-page: 451 article-title: In , yKu and subtelomeric core X sequences repress homologous recombination near telomeres as part of the same pathway publication-title: Genetics – volume: 318 start-page: 798 year: 2007 end-page: 801 article-title: Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends publication-title: Science – volume: 40 start-page: 493 year: 1986 end-page: 498 article-title: Distribution of telomere‐associated sequences in yeast publication-title: Basic Life Sci – volume: 186 start-page: 1147 year: 2010 end-page: 1159 article-title: Telomerase recruitment in is not dependent on Tel1‐mediated phosphorylation of Cdc13 publication-title: Genetics – volume: 121 start-page: 515 year: 2005 end-page: 527 article-title: Assembly of the SIR complex and its regulation by ‐acetyl‐ADP‐ribose, a product of NAD‐dependent histone deacetylation publication-title: Cell – volume: 30 start-page: 248 year: 2008 end-page: 258 article-title: Toward a comprehensive temperature‐sensitive mutant repository of the essential genes of publication-title: Mol Cell – volume: 35 start-page: 822 year: 2007 end-page: 838 article-title: Control of the yeast telomeric senescence survival pathways of recombination by the Mec1 and Mec3 DNA damage sensors and RPA publication-title: Nucleic Acids Res – volume: 29 start-page: 3358 year: 2010 end-page: 3369 article-title: Ku prevents Exo1 and Sgs1‐dependent resection of DNA ends in the absence of a functional MRX complex or Sae2 publication-title: EMBO J – volume: 15 start-page: 5093 year: 1996b end-page: 5103 article-title: Ku70 potentiates illegitimate DNA double‐strand break repair and serves as a barrier to error‐prone DNA repair pathways publication-title: EMBO J – volume: 24 start-page: 603 year: 2006 end-page: 610 article-title: Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association publication-title: Mol Cell – volume: 73 start-page: 8 year: 1979 end-page: 14 article-title: The cell biology of aging publication-title: J Invest Dermatol – volume: 124 start-page: 547 year: 1990 end-page: 559 article-title: Mitotic recombination among subtelomeric Y′ repeats in publication-title: Genetics – volume: 287 start-page: 41583 year: 2012 end-page: 41594 article-title: Human Rap1 interacts directly with telomeric DNA and regulates TRF2 localization at the telomere publication-title: J Biol Chem – volume: 345 start-page: 458 year: 1990 end-page: 460 article-title: Telomeres shorten during ageing of human fibroblasts publication-title: Nature – volume: 3 start-page: 39 year: 2013 article-title: Cdc13 at a crossroads of telomerase action publication-title: Front Oncol – volume: 394 start-page: 592 year: 1998 end-page: 595 article-title: Perinuclear localization of chromatin facilitates transcriptional silencing publication-title: Nature – volume: 35 start-page: 70 year: 2009 end-page: 81 article-title: Multiple pathways regulate 3′ overhang generation at telomeres publication-title: Mol Cell – volume: 20 start-page: 786 year: 2000 end-page: 796 article-title: The function of DNA polymerase alpha at telomeric G tails is important for telomere homeostasis publication-title: Mol Cell Biol – volume: 101 start-page: 8658 year: 2004 end-page: 8663 article-title: A genome‐wide screen for deletion mutants that affect telomere length publication-title: P Natl Acad Sci USA – volume: 91 start-page: 3453 year: 1994 end-page: 3457 article-title: A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts publication-title: P Natl Acad Sci USA – volume: 119 start-page: 955 year: 2004 end-page: 967 article-title: Sir‐mediated repression can occur independently of chromosomal and subnuclear contexts publication-title: Cell – volume: 153 start-page: 1340 year: 2013 end-page: 1353 article-title: Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions publication-title: Cell – volume: 31 start-page: 2034 year: 2012 end-page: 2046 article-title: RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts publication-title: EMBO J – volume: 68 start-page: 333 year: 1992 end-page: 339 article-title: A position effect on the time of replication origin activation in yeast publication-title: Cell – volume: 274 start-page: 249 year: 1996 end-page: 252 article-title: Cdc13p: a single‐strand telomeric DNA‐binding protein with a dual role in yeast telomere maintenance publication-title: Science – volume: 18 start-page: 2026 year: 2007 end-page: 2036 article-title: Cdc13 telomere capping decreases Mec1 association but does not affect Tel1 association with DNA ends publication-title: Mol Biol Cell – volume: 128 start-page: 1051 year: 2007a end-page: 1062 article-title: Early replication of short telomeres in budding yeast publication-title: Cell – volume: 24 start-page: 582 year: 1996 end-page: 585 article-title: The DNA‐binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in publication-title: Nucleic Acids Res – volume: 7 start-page: e1002421 year: 2011 article-title: An anti‐checkpoint activity for rif1 publication-title: PLoS Genet – volume: 455 start-page: 770 year: 2008 end-page: 774 article-title: Sae2, Exo1 and Sgs1 collaborate in DNA double‐strand break processing publication-title: Nature – volume: 23 start-page: 1454 year: 1995 end-page: 1460 article-title: Protein‐DNA interactions in soluble telosomes from publication-title: Nucleic Acids Res – volume: 7 start-page: 1146 year: 1993 end-page: 1159 article-title: RAP1 and telomere structure regulate telomere position effects in publication-title: Genes Dev – volume: 95 start-page: 12486 year: 1998 end-page: 12491 article-title: Rap1 protein regulates telomere turnover in yeast publication-title: P Natl Acad Sci USA – volume: 106 start-page: 17337 year: 2009 end-page: 17342 article-title: The conserved Est1 protein stimulates telomerase DNA extension activity publication-title: P Natl Acad Sci USA – volume: 52 start-page: 1136 year: 1996 end-page: 1147 article-title: Nuclear organization and transcriptional silencing in yeast publication-title: Experientia – volume: 148 start-page: 922 year: 2012 end-page: 932 article-title: Mutually exclusive binding of telomerase RNA and DNA by Ku alters telomerase recruitment model publication-title: Cell – volume: 24 start-page: 3277 year: 2004 end-page: 3285 article-title: Association of Rad9 with double‐strand breaks through a Mec1‐dependent mechanism publication-title: Mol Cell Biol – volume: 9 start-page: 27 year: 2008 end-page: 37 article-title: Finding a match: how do homologous sequences get together for recombination? publication-title: Nat Rev Genet – volume: 99 start-page: 735 year: 1999 end-page: 745 article-title: An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing publication-title: Cell – volume: 97 start-page: 503 year: 1999 end-page: 514 article-title: Mammalian telomeres end in a large duplex loop publication-title: Cell – volume: 21 start-page: 825 year: 2006 end-page: 836 article-title: A homotrimer‐heterotrimer switch in Sir2 structure differentiates rDNA and telomeric silencing publication-title: Mol Cell – volume: 136 start-page: 50 year: 2009 end-page: 61 article-title: Cdk1‐dependent phosphorylation of Cdc13 coordinates telomere elongation during cell‐cycle progression publication-title: Cell – volume: 13 start-page: 867 year: 2011 end-page: 874 article-title: The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast publication-title: Nat Cell Biol – volume: 23 start-page: 1301 year: 2004 end-page: 1312 article-title: Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins publication-title: EMBO J – volume: 5 start-page: 248 year: 2009 article-title: Toward accurate reconstruction of functional protein networks publication-title: Mol Syst Biol – volume: 51 start-page: 887 year: 1987 end-page: 898 article-title: The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity publication-title: Cell – volume: 14 start-page: 1777 year: 2000 end-page: 1788 article-title: The telomere‐binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase‐associated est1 protein publication-title: Genes Dev – volume: 34 start-page: 78 year: 2006 end-page: 88 article-title: Evolutionary‐conserved telomere‐linked helicase genes of fission yeast are repressed by silencing factors, RNAi components and the telomere‐binding protein Taz1 publication-title: Nucleic Acids Res – volume: 166 start-page: 753 year: 2004 end-page: 764 article-title: Mec1 and Rad53 inhibit formation of single‐stranded DNA at telomeres of cdc13‐1 mutants publication-title: Genetics – volume: 28 start-page: 4152 year: 2008 end-page: 4161 article-title: Multiple yeast genes, including Paf1 complex genes, affect telomere length via telomerase RNA abundance publication-title: Mol Cell Biol – volume: 29 start-page: 965 year: 2009 end-page: 985 article-title: Telomerase‐ and Rad52‐independent immortalization of budding yeast by an inherited‐long‐telomere pathway of telomeric repeat amplification publication-title: Mol Cell Biol – volume: 14 start-page: 208 year: 2007 end-page: 214 article-title: RPA‐like proteins mediate yeast telomere function publication-title: Nat Struct Mol Biol – volume: 27 start-page: 1406 year: 2013 end-page: 1420 article-title: Rap1 relocalization contributes to the chromatin‐mediated gene expression profile and pace of cell senescence publication-title: Genes Dev – volume: 22 start-page: 1153 year: 2008 end-page: 1158 article-title: Multiple pathways inhibit NHEJ at telomeres publication-title: Genes Dev – volume: 270 start-page: 1488 year: 1995 end-page: 1491 article-title: Yeast checkpoint genes in DNA damage processing: implications for repair and arrest publication-title: Science – volume: 285 start-page: 901 year: 1999 end-page: 906 article-title: Functional characterization of the genome by gene deletion and parallel analysis publication-title: Science – volume: 166 start-page: 1641 year: 2004b end-page: 1649 article-title: EXO1 plays a role in generating type I and type II survivors in budding yeast publication-title: Genetics – volume: 34 start-page: 4147 year: 2006 end-page: 4153 article-title: Roles of Pif1‐like helicases in the maintenance of genomic stability publication-title: Nucleic Acids Res – volume: 93 start-page: 13760 year: 1996 end-page: 13765 article-title: The CDC13 protein is a single‐strand TG1‐3 telomeric DNA‐binding protein that affects telomere behavior publication-title: P Natl Acad Sci USA – volume: 448 start-page: 820 year: 2007 end-page: 823 article-title: Break‐induced replication and telomerase‐independent telomere maintenance require Pol32 publication-title: Nature – volume: 289 start-page: 771 year: 2000 end-page: 774 article-title: Pif1p helicase, a catalytic inhibitor of telomerase in yeast publication-title: Science – volume: 11 start-page: 2221 year: 2000 end-page: 2233 article-title: Exo1 roles for repair of DNA double‐strand breaks and meiotic crossing over in publication-title: Mol Biol Cell – volume: 33 start-page: 563 year: 1983 end-page: 573 article-title: Organization of DNA sequences and replication origins at yeast telomeres publication-title: Cell – volume: 250 start-page: 549 year: 1990 end-page: 553 article-title: Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length publication-title: Science – volume: 9 start-page: e1003721 year: 2013 article-title: Environmental stresses disrupt telomere length homeostasis publication-title: PLoS Genet – volume: 21 start-page: 4233 year: 2001 end-page: 4245 article-title: New function of CDC13 in positive telomere length regulation publication-title: Mol Cell Biol – volume: 294 start-page: 867 year: 2001 end-page: 870 article-title: Recruitment of Mec1 and Ddc1 checkpoint proteins to double‐strand breaks through distinct mechanisms publication-title: Science – volume: 117 start-page: 323 year: 2004 end-page: 335 article-title: Telomere length homeostasis is achieved via a switch between telomerase‐ extendible and ‐nonextendible states publication-title: Cell – volume: 3 start-page: e105 year: 2007 article-title: Sensitivity of yeast strains with long G‐tails to levels of telomere‐bound telomerase publication-title: PLoS Genet – volume: 23 start-page: 1403 year: 2003 end-page: 1417 article-title: Molecular dissection of mitotic recombination in the yeast publication-title: Mol Cell Biol – volume: 29 start-page: 3007 year: 2010 end-page: 3019 article-title: Telomere capping in non‐dividing yeast cells requires Yku and Rap1 publication-title: EMBO J – volume: 97 start-page: 6658 year: 2000 end-page: 6663 article-title: A phylogenetically conserved NAD+‐dependent protein deacetylase activity in the Sir2 protein family publication-title: P Natl Acad Sci USA – volume: 6 start-page: e1001072 year: 2010 article-title: Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9 publication-title: PLoS Genet – volume: 42 start-page: 301 year: 2008 end-page: 334 article-title: How shelterin protects mammalian telomeres publication-title: Annu Rev Genet – volume: 172 start-page: 189 year: 2006 end-page: 199 article-title: Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region publication-title: J Cell Biol – volume: 16 start-page: 979 year: 2004 end-page: 990 article-title: Binding of chromatin‐modifying activities to phosphorylated histone H2A at DNA damage sites publication-title: Mol Cell – volume: 24 start-page: 127 year: 2006 end-page: 137 article-title: DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell‐cycle kinase publication-title: Mol Cell – volume: 24 start-page: 4639 year: 1996a end-page: 4648 article-title: Identification of a Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance publication-title: Nucleic Acids Res – volume: 1 start-page: 197 year: 2011 end-page: 208 article-title: Genome‐wide analysis to identify pathways affecting telomere‐initiated senescence in budding yeast publication-title: G3 (Bethesda) – volume: 279 start-page: 55520 year: 2004 end-page: 55530 article-title: Chromatin domain boundaries delimited by a histone‐binding protein in yeast publication-title: J Biol Chem – volume: 15 start-page: 2186 year: 2009 end-page: 2194 article-title: CpG‐island promoters drive transcription of human telomeres publication-title: RNA – volume: 19 start-page: 7481 year: 1999 end-page: 7490 article-title: analysis of functional regions within yeast Rap1p publication-title: Mol Cell Biol – volume: 110 start-page: 19664 year: 2013 end-page: 19665 article-title: Genomic instability and repair mediated by common repeated sequences publication-title: P Natl Acad Sci USA – volume: 162 start-page: 1101 year: 2002 end-page: 1115 article-title: The Est1 subunit of telomerase makes multiple contributions to telomere length maintenance publication-title: Genetics – volume: 310 start-page: 157 year: 1984 end-page: 160 article-title: Unusual DNA sequences associated with the ends of yeast chromosomes publication-title: Nature – volume: 297 start-page: 1023 year: 2002 end-page: 1026 article-title: Est1p as a cell cycle‐regulated activator of telomere‐bound telomerase publication-title: Science – volume: 57 start-page: 633 year: 1989 end-page: 643 article-title: A mutant with a defect in telomere elongation leads to senescence in yeast publication-title: Cell – volume: 24 start-page: 9887 year: 2004 end-page: 9898 article-title: Ty1 mobilizes subtelomeric Y′ elements in telomerase‐negative survivors publication-title: Mol Cell Biol – volume: 12 start-page: 2076 year: 2002 end-page: 2089 article-title: Live imaging of telomeres: yKu and Sir proteins define redundant telomere‐anchoring pathways in yeast publication-title: Curr Biol – volume: 18 start-page: 1391 year: 2004 end-page: 1396 article-title: The generation of proper constitutive G‐tails on yeast telomeres is dependent on the MRX complex publication-title: Genes Dev – volume: 265 start-page: 1442 year: 1994 end-page: 1445 article-title: Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination publication-title: Science – volume: 31 start-page: 9 year: 2010 end-page: 18 article-title: Telomeres and telomerase in cancer publication-title: Carcinogenesis – volume: 6 start-page: e1000966 year: 2010b article-title: Shelterin‐like proteins and Yku inhibit nucleolytic processing of telomeres publication-title: PLoS Genet – volume: 22 start-page: 2767 year: 2008 end-page: 2772 article-title: DNA helicases Sgs1 and BLM promote DNA double‐strand break resection publication-title: Genes Dev – volume: 27 start-page: 64 year: 2013 end-page: 73 article-title: Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding publication-title: Genes Dev – volume: 13 start-page: 720 year: 2006 end-page: 728 article-title: Proteasome‐dependent degradation of Est1p regulates the cell cycle‐restricted assembly of telomerase in publication-title: Nat Struct Mol Biol – volume: 19 start-page: 307 year: 2012 end-page: 313 article-title: Anticheckpoint pathways at telomeres in yeast publication-title: Nat Struct Mol Biol – volume: 383 start-page: 92 year: 1996 end-page: 96 article-title: Spreading of transcriptional repressor SIR3 from telomeric heterochromatin publication-title: Nature – volume: 107 start-page: 548 year: 1997 end-page: 554 article-title: Differential telomerase expression in human primary intracranial tumors publication-title: Am J Clin Pathol – volume: 31 start-page: 573 year: 2011 end-page: 583 article-title: Mre11 nuclease activity and Ctp1 regulate Chk1 activation by Rad3ATR and Tel1ATM checkpoint kinases at double‐strand breaks publication-title: Mol Cell Biol – volume: 14 start-page: 556 year: 2003 end-page: 570 article-title: Telomeric protein distributions and remodeling through the cell cycle in publication-title: Mol Biol Cell – volume: 18 start-page: 337 year: 2008 end-page: 346 article-title: ATM‐like kinases and regulation of telomerase: lessons from yeast and mammals publication-title: Trends Cell Biol – volume: 23 start-page: 3721 year: 2003 end-page: 3734 article-title: The Rad51 pathway of telomerase‐independent maintenance of telomeres can amplify TG1‐3 sequences in yku and cdc13 mutants of publication-title: Mol Cell Biol – volume: 75 start-page: 543 year: 1993 end-page: 555 article-title: SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres publication-title: Cell – volume: 32 start-page: 1627 year: 2004 end-page: 1637 article-title: Telomere‐bound TRF1 and TRF2 stall the replication fork at telomeric repeats publication-title: Nucleic Acids Res – volume: 18 start-page: 2538 year: 1999 end-page: 2550 article-title: Limitations of silencing at native yeast telomeres publication-title: EMBO J – volume: 467 start-page: 108 year: 2010 end-page: 111 article-title: Mechanism of the ATP‐dependent DNA end‐resection machinery from publication-title: Nature – volume: 117 start-page: 601 year: 2004 end-page: 608 article-title: A domain of Rad9 specifically required for activation of Chk1 in budding yeast publication-title: J Cell Sci – volume: 339 start-page: 711 year: 2013 end-page: 715 article-title: Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching publication-title: Science – volume: 21 start-page: 1726 year: 2007b end-page: 1730 article-title: Increased association of telomerase with short telomeres in yeast publication-title: Genes Dev – volume: 20 start-page: 1199 year: 2013 end-page: 1205 article-title: Telomeric RNA‐DNA hybrids affect telomere‐length dynamics and senescence publication-title: Nat Struct Mol Biol – volume: 31 start-page: 3667 year: 2012 end-page: 3677 article-title: Rif1 regulates the replication timing domains on the human genome publication-title: EMBO J – volume: 12 start-page: 5159 year: 1992 end-page: 5173 article-title: C‐terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in publication-title: Mol Cell Biol – ident: 2015070909421538000_38.2.144.144 doi: 10.1128/MCB.4.11.2509 – ident: 2015070909421538000_38.2.144.132 doi: 10.1093/nar/gkj415 – ident: 2015070909421538000_38.2.144.218 doi: 10.1002/0470862637.ch4 – ident: 2015070909421538000_38.2.144.329 doi: 10.1074/jbc.M110.170167 – ident: 2015070909421538000_38.2.144.295 doi: 10.1101/gad.1851909 – ident: 2015070909421538000_38.2.144.49 doi: 10.1016/S0092-8674(85)80120-3 – ident: 2015070909421538000_38.2.144.313 doi: 10.1093/nar/gkl786 – ident: 2015070909421538000_38.2.144.338 doi: 10.1007/978-1-4684-5251-8_37 – ident: 2015070909421538000_38.2.144.34 doi: 10.1016/j.molcel.2009.05.015 – ident: 2015070909421538000_38.2.144.56 doi: 10.1016/j.molcel.2013.01.002 – ident: 2015070909421538000_38.2.144.180 doi: 10.1091/mbc.E03-10-0740 – ident: 2015070909421538000_38.2.144.296 doi: 10.1038/cr.2010.138 – ident: 2015070909421538000_38.2.144.347 doi: 10.1038/ncb1428 – ident: 2015070909421538000_38.2.144.278 doi: 10.1101/gad.477208 – ident: 2015070909421538000_38.2.144.314 doi: 10.1091/mbc.11.7.2221 – ident: 2015070909421538000_38.2.144.42 doi: 10.1371/journal.pone.0066756 – ident: 2015070909421538000_38.2.144.54 doi: 10.1101/gad.1588807 – ident: 2015070909421538000_38.2.144.21 doi: 10.4161/cc.4.2.1429 – ident: 2015070909421538000_38.2.144.177 doi: 10.1038/ng569 – ident: 2015070909421538000_38.2.144.256 doi: 10.1073/pnas.91.16.7623 – ident: 2015070909421538000_38.2.144.61 doi: 10.1038/embor.2008.121 – ident: 2015070909421538000_38.2.144.133 doi: 10.1371/journal.pgen.1002421 – ident: 2015070909421538000_38.2.144.171 doi: 10.1534/genetics.109.102939 – ident: 2015070909421538000_38.2.144.301 doi: 10.1126/science.1074968 – ident: 2015070909421538000_38.2.144.286 doi: 10.1134/S0006297912100045 – ident: 2015070909421538000_38.2.144.332 doi: 10.1093/nar/23.9.1454 – ident: 2015070909421538000_38.2.144.318 doi: 10.1016/S1097-2765(01)00270-2 – ident: 2015070909421538000_38.2.144.242 doi: 10.1038/sj.emboj.7600778 – ident: 2015070909421538000_38.2.144.264 doi: 10.1093/emboj/19.21.5801 – ident: 2015070909421538000_38.2.144.135 doi: 10.1101/gad.6.5.801 – ident: 2015070909421538000_38.2.144.273 doi: 10.1101/gad.1787509 – ident: 2015070909421538000_38.2.144.211 doi: 10.1128/MCB.21.13.4233-4245.2001 – ident: 2015070909421538000_38.2.144.65 doi: 10.1038/emboj.2012.214 – ident: 2015070909421538000_38.2.144.118 doi: 10.1128/MCB.00817-08 – ident: 2015070909421538000_38.2.144.95 doi: 10.1093/emboj/18.9.2522 – ident: 2015070909421538000_38.2.144.106 doi: 10.1073/pnas.1320030110 – ident: 2015070909421538000_38.2.144.141 doi: 10.1016/S0960-9822(02)01338-6 – ident: 2015070909421538000_38.2.144.29 doi: 10.1101/gad.1146603 – ident: 2015070909421538000_38.2.144.228 doi: 10.1101/gad.400907 – ident: 2015070909421538000_38.2.144.18 doi: 10.1093/carcin/bgp268 – ident: 2015070909421538000_38.2.144.137 doi: 10.1038/345458a0 – ident: 2015070909421538000_38.2.144.119 doi: 10.1016/j.dnarep.2012.12.002 – ident: 2015070909421538000_38.2.144.167 doi: 10.1038/ncb1429 – ident: 2015070909421538000_38.2.144.134 doi: 10.4161/cc.26625 – ident: 2015070909421538000_38.2.144.98 doi: 10.1091/mbc.E11-06-0568 – ident: 2015070909421538000_38.2.144.214 doi: 10.1038/nature07312 – ident: 2015070909421538000_38.2.144.58 doi: 10.1128/MCB.21.5.1819-1827.2001 – ident: 2015070909421538000_38.2.144.117 doi: 10.1093/nar/gkl1081 – ident: 2015070909421538000_38.2.144.148 doi: 10.1016/S0960-9822(01)00021-5 – ident: 2015070909421538000_38.2.144.124 doi: 10.1126/science.280.5364.741 – ident: 2015070909421538000_38.2.144.123 doi: 10.1093/emboj/20.5.1173 – ident: 2015070909421538000_38.2.144.271 doi: 10.1073/pnas.91.25.12061 – ident: 2015070909421538000_38.2.144.19 doi: 10.1073/pnas.0401263101 – ident: 2015070909421538000_38.2.144.333 doi: 10.1128/MCB.25.19.8430-8443.2005 – ident: 2015070909421538000_38.2.144.247 doi: 10.1016/j.cell.2012.01.033 – ident: 2015070909421538000_38.2.144.294 doi: 10.1126/science.281.5374.272 – ident: 2015070909421538000_38.2.144.248 doi: 10.1534/genetics.113.149849 – ident: 2015070909421538000_38.2.144.337 doi: 10.1038/msb.2009.3 – ident: 2015070909421538000_38.2.144.257 doi: 10.1093/nar/gkq296 – ident: 2015070909421538000_38.2.144.307 doi: 10.1093/embo-reports/kve038 – ident: 2015070909421538000_38.2.144.6 doi: 10.1074/jbc.M306783200 – ident: 2015070909421538000_38.2.144.292 doi: 10.1038/emboj.2012.215 – ident: 2015070909421538000_38.2.144.50 doi: 10.1128/MCB.00195-09 – ident: 2015070909421538000_38.2.144.99 doi: 10.1016/j.molcel.2011.09.020 – ident: 2015070909421538000_38.2.144.298 doi: 10.1126/science.8073286 – ident: 2015070909421538000_38.2.144.310 doi: 10.1016/j.dnarep.2006.03.005 – ident: 2015070909421538000_38.2.144.103 doi: 10.1016/j.cell.2004.11.008 – ident: 2015070909421538000_38.2.144.194 doi: 10.1038/nature06047 – ident: 2015070909421538000_38.2.144.43 doi: 10.1128/MCB.8.1.210 – ident: 2015070909421538000_38.2.144.125 doi: 10.1101/gad.503108 – ident: 2015070909421538000_38.2.144.188 doi: 10.1016/0092-8674(93)90234-H – ident: 2015070909421538000_38.2.144.202 doi: 10.1101/gad.225102 – ident: 2015070909421538000_38.2.144.192 doi: 10.1038/emboj.2009.176 – ident: 2015070909421538000_38.2.144.55 doi: 10.1534/g3.111.000216 – ident: 2015070909421538000_38.2.144.204 doi: 10.1534/genetics.166.4.1641 – ident: 2015070909421538000_38.2.144.222 doi: 10.1128/MCB.00512-08 – ident: 2015070909421538000_38.2.144.170 doi: 10.1093/genetics/152.1.143 – ident: 2015070909421538000_38.2.144.300 doi: 10.1038/sj.emboj.7600144 – ident: 2015070909421538000_38.2.144.217 doi: 10.1016/S0006-291X(03)00333-4 – ident: 2015070909421538000_38.2.144.76 doi: 10.1093/nar/gkt365 – ident: 2015070909421538000_38.2.144.198 – ident: 2015070909421538000_38.2.144.219 doi: 10.1073/pnas.0806621105 – ident: 2015070909421538000_38.2.144.339 doi: 10.1101/gad.1869110 – ident: 2015070909421538000_38.2.144.122 doi: 10.1093/emboj/20.21.6127 – ident: 2015070909421538000_38.2.144.317 doi: 10.1016/j.cub.2011.11.024 – ident: 2015070909421538000_38.2.144.31 doi: 10.1101/gad.438907 – ident: 2015070909421538000_38.2.144.254 doi: 10.1038/emboj.2011.30 – ident: 2015070909421538000_38.2.144.32 doi: 10.1242/jcs.00907 – ident: 2015070909421538000_38.2.144.127 doi: 10.1016/S0092-8674(00)80760-6 – ident: 2015070909421538000_38.2.144.53 doi: 10.1371/journal.pgen.1000236 – ident: 2015070909421538000_38.2.144.189 doi: 10.1016/0092-8674(89)90132-3 – ident: 2015070909421538000_38.2.144.348 doi: 10.1534/genetics.104.027904 – ident: 2015070909421538000_38.2.144.250 doi: 10.1093/nar/24.4.582 – ident: 2015070909421538000_38.2.144.153 doi: 10.1038/nature02964 – ident: 2015070909421538000_38.2.144.261 doi: 10.1093/genetics/155.1.475 – ident: 2015070909421538000_38.2.144.324 doi: 10.1038/310157a0 – ident: 2015070909421538000_38.2.144.30 doi: 10.1016/j.cell.2007.01.041 – ident: 2015070909421538000_38.2.144.36 doi: 10.1371/journal.pgen.1000966 – ident: 2015070909421538000_38.2.144.203 doi: 10.1101/gad.316504 – ident: 2015070909421538000_38.2.144.221 doi: 10.1038/emboj.2008.171 – ident: 2015070909421538000_38.2.144.272 doi: 10.1101/gr.6687808 – ident: 2015070909421538000_38.2.144.267 doi: 10.1016/j.tcb.2008.04.004 – ident: 2015070909421538000_38.2.144.229 doi: 10.1261/rna.1748309 – ident: 2015070909421538000_38.2.144.143 doi: 10.1016/j.molcel.2008.12.027 – ident: 2015070909421538000_38.2.144.289 doi: 10.1101/gad.1125903 – ident: 2015070909421538000_38.2.144.274 doi: 10.1038/ncb1685 – ident: 2015070909421538000_38.2.144.212 doi: 10.1101/gad.903501 – ident: 2015070909421538000_38.2.144.285 doi: 10.1038/emboj.2009.195 – ident: 2015070909421538000_38.2.144.140 doi: 10.1038/383092a0 – ident: 2015070909421538000_38.2.144.193 doi: 10.1126/science.270.5241.1488 – ident: 2015070909421538000_38.2.144.41 doi: 10.1038/nmeth.1234 – ident: 2015070909421538000_38.2.144.2 doi: 10.1128/MCB.20.3.786-796.2000 – ident: 2015070909421538000_38.2.144.266 doi: 10.1146/annurev.biochem.72.121801.161547 – ident: 2015070909421538000_38.2.144.342 doi: 10.1016/0092-8674(93)90321-G – ident: 2015070909421538000_38.2.144.168 doi: 10.1101/gad.1199404 – ident: 2015070909421538000_38.2.144.139 doi: 10.1111/1523-1747.ep12532752 – ident: 2015070909421538000_38.2.144.234 doi: 10.1126/science.274.5285.249 – ident: 2015070909421538000_38.2.144.269 doi: 10.1126/science.286.5442.1166 – ident: 2015070909421538000_38.2.144.208 doi: 10.1128/MCB.24.22.9887-9898.2004 – ident: 2015070909421538000_38.2.144.60 doi: 10.1038/nrm2450 – ident: 2015070909421538000_38.2.144.181 doi: 10.1038/emboj.2013.88 – ident: 2015070909421538000_38.2.144.142 doi: 10.1091/mbc.E06-12-1074 – ident: 2015070909421538000_38.2.144.249 doi: 10.1101/gad.218776.113 – ident: 2015070909421538000_38.2.144.231 doi: 10.1038/nsmb.1957 – ident: 2015070909421538000_38.2.144.259 doi: 10.1038/nsmb1214 – ident: 2015070909421538000_38.2.144.74 doi: 10.1007/s00412-011-0357-2 – ident: 2015070909421538000_38.2.144.306 doi: 10.1128/MCB.19.12.8083 – ident: 2015070909421538000_38.2.144.82 doi: 10.1016/j.molcel.2004.12.003 – ident: 2015070909421538000_38.2.144.80 doi: 10.1093/nar/26.23.5365 – ident: 2015070909421538000_38.2.144.276 doi: 10.1038/ng1284 – ident: 2015070909421538000_38.2.144.230 doi: 10.1371/journal.pgen.1001072 – ident: 2015070909421538000_38.2.144.184 doi: 10.1093/genetics/124.3.547 – ident: 2015070909421538000_38.2.144.207 doi: 10.1534/genetics.109.106682 – ident: 2015070909421538000_38.2.144.67 doi: 10.1128/MCB.20.7.2378-2384.2000 – ident: 2015070909421538000_38.2.144.96 doi: 10.1093/embo-reports/kve024 – ident: 2015070909421538000_38.2.144.190 doi: 10.1073/pnas.83.5.1398 – ident: 2015070909421538000_38.2.144.16 doi: 10.1038/sj.embor.7401082 – ident: 2015070909421538000_38.2.144.24 doi: 10.1126/science.1147182 – ident: 2015070909421538000_38.2.144.239 doi: 10.1038/nature12149 – ident: 2015070909421538000_38.2.144.38 doi: 10.1093/nar/gkl561 – ident: 2015070909421538000_38.2.144.209 doi: 10.1073/pnas.91.8.3453 – ident: 2015070909421538000_38.2.144.309 doi: 10.1073/pnas.0914187107 – ident: 2015070909421538000_38.2.144.164 doi: 10.1101/gad.7.7a.1146 – ident: 2015070909421538000_38.2.144.255 doi: 10.1126/science.294.5540.115 – ident: 2015070909421538000_38.2.144.172 doi: 10.1093/genetics/144.4.1399 – ident: 2015070909421538000_38.2.144.104 doi: 10.1128/MCB.15.11.6128 – ident: 2015070909421538000_38.2.144.252 doi: 10.1093/emboj/18.9.2538 – ident: 2015070909421538000_38.2.144.260 doi: 10.1038/nsmb.2225 – ident: 2015070909421538000_38.2.144.91 doi: 10.1038/ncb2263 – ident: 2015070909421538000_38.2.144.126 doi: 10.1016/0092-8674(87)90576-9 – ident: 2015070909421538000_38.2.144.94 doi: 10.1016/j.dnarep.2006.04.005 – ident: 2015070909421538000_38.2.144.220 doi: 10.1101/gad.8.19.2257 – ident: 2015070909421538000_38.2.144.47 doi: 10.1083/jcb.200409091 – ident: 2015070909421538000_38.2.144.191 doi: 10.1126/science.2237406 – ident: 2015070909421538000_38.2.144.107 doi: 10.1073/pnas.0909203106 – ident: 2015070909421538000_38.2.144.169 doi: 10.1038/emboj.2008.81 – ident: 2015070909421538000_38.2.144.11 doi: 10.1038/29100 – ident: 2015070909421538000_38.2.144.15 doi: 10.1016/j.mrfmmm.2011.10.013 – ident: 2015070909421538000_38.2.144.330 doi: 10.1126/science.285.5429.901 – ident: 2015070909421538000_38.2.144.343 doi: 10.1126/science.289.5480.771 – ident: 2015070909421538000_38.2.144.195 doi: 10.1073/pnas.0437148100 – ident: 2015070909421538000_38.2.144.33 doi: 10.1126/science.279.5349.349 – ident: 2015070909421538000_38.2.144.83 doi: 10.1007/BF00352248 – ident: 2015070909421538000_38.2.144.151 doi: 10.1038/35001622 – ident: 2015070909421538000_38.2.144.312 doi: 10.1002/j.1460-2075.1993.tb05897.x – ident: 2015070909421538000_38.2.144.101 doi: 10.1534/genetics.110.122044 – ident: 2015070909421538000_38.2.144.64 doi: 10.1016/0092-8674(90)90140-A – ident: 2015070909421538000_38.2.144.226 doi: 10.1038/nrm3505 – ident: 2015070909421538000_38.2.144.346 doi: 10.1126/science.1083430 – ident: 2015070909421538000_38.2.144.93 doi: 10.1128/MCB.21.21.7277-7286.2001 – ident: 2015070909421538000_38.2.144.155 doi: 10.1093/emboj/20.4.905 – ident: 2015070909421538000_38.2.144.328 doi: 10.1016/S0092-8674(00)81120-4 – ident: 2015070909421538000_38.2.144.245 doi: 10.1038/ncb1430 – ident: 2015070909421538000_38.2.144.243 doi: 10.1016/S0092-8674(01)00226-4 – ident: 2015070909421538000_38.2.144.282 doi: 10.1038/310154a0 – ident: 2015070909421538000_38.2.144.25 doi: 10.1038/nsmb.2662 – ident: 2015070909421538000_38.2.144.341 doi: 10.1128/MCB.02367-05 – ident: 2015070909421538000_38.2.144.66 doi: 10.1101/gad.231602 – ident: 2015070909421538000_38.2.144.35 doi: 10.1371/journal.pone.0014142 – ident: 2015070909421538000_38.2.144.69 doi: 10.1016/j.molcel.2013.08.029 – ident: 2015070909421538000_38.2.144.81 doi: 10.1016/j.cell.2005.12.044 – ident: 2015070909421538000_38.2.144.115 doi: 10.1016/j.trsl.2013.05.003 – ident: 2015070909421538000_38.2.144.210 doi: 10.1038/nsmb.1947 – ident: 2015070909421538000_38.2.144.105 doi: 10.1371/journal.pgen.0020035 – ident: 2015070909421538000_38.2.144.63 doi: 10.3389/fonc.2013.00027 – ident: 2015070909421538000_38.2.144.75 doi: 10.1073/pnas.0905703106 – ident: 2015070909421538000_38.2.144.79 doi: 10.1073/pnas.93.24.13902 – ident: 2015070909421538000_38.2.144.238 doi: 10.1101/gad.14.16.2046 – ident: 2015070909421538000_38.2.144.270 doi: 10.1016/0092-8674(93)90493-A – ident: 2015070909421538000_38.2.144.111 doi: 10.1007/BF01952113 – ident: 2015070909421538000_38.2.144.283 doi: 10.1016/j.cell.2013.05.007 – ident: 2015070909421538000_38.2.144.51 doi: 10.1038/nature09355 – ident: 2015070909421538000_38.2.144.10 doi: 10.1093/nar/gkq552 – ident: 2015070909421538000_38.2.144.162 doi: 10.1093/nar/gks270 – ident: 2015070909421538000_38.2.144.20 doi: 10.1128/MCB.23.18.6585-6596.2003 – ident: 2015070909421538000_38.2.144.44 doi: 10.1128/MCB.21.19.6559-6573.2001 – ident: 2015070909421538000_38.2.144.225 doi: 10.1101/gad.1099003 – ident: 2015070909421538000_38.2.144.39 doi: 10.1093/nar/24.23.4639 – ident: 2015070909421538000_38.2.144.152 doi: 10.1074/jbc.C000133200 – ident: 2015070909421538000_38.2.144.37 doi: 10.1093/nar/29.21.4414 – ident: 2015070909421538000_38.2.144.279 doi: 10.1126/science.1218498 – ident: 2015070909421538000_38.2.144.72 doi: 10.1016/j.molcel.2009.06.025 – ident: 2015070909421538000_38.2.144.27 doi: 10.1016/j.canlet.2009.08.003 – ident: 2015070909421538000_38.2.144.302 doi: 10.1016/S0092-8674(00)81671-2 – ident: 2015070909421538000_38.2.144.147 doi: 10.1371/journal.pgen.1003208 – ident: 2015070909421538000_38.2.144.146 doi: 10.1016/S0092-8674(01)00580-3 – ident: 2015070909421538000_38.2.144.227 doi: 10.1128/MCB.22.13.4512-4521.2002 – ident: 2015070909421538000_38.2.144.268 doi: 10.1016/j.molcel.2007.07.016 – ident: 2015070909421538000_38.2.144.22 doi: 10.1128/MCB.23.4.1403-1417.2003 – ident: 2015070909421538000_38.2.144.97 doi: 10.1016/j.molcel.2006.10.020 – ident: 2015070909421538000_38.2.144.224 doi: 10.1128/MCB.24.8.3277-3285.2004 – ident: 2015070909421538000_38.2.144.113 doi: 10.1016/j.molcel.2006.10.005 – ident: 2015070909421538000_38.2.144.316 doi: 10.1093/nar/gkp259 – ident: 2015070909421538000_38.2.144.325 doi: 10.1016/j.celrep.2012.10.007 – ident: 2015070909421538000_38.2.144.236 – ident: 2015070909421538000_38.2.144.183 doi: 10.1371/journal.pgen.1002233 – ident: 2015070909421538000_38.2.144.288 doi: 10.1091/mbc.E02-08-0457 – ident: 2015070909421538000_38.2.144.160 doi: 10.1038/383354a0 – ident: 2015070909421538000_38.2.144.344 doi: 10.1016/j.cell.2008.08.037 – ident: 2015070909421538000_38.2.144.87 doi: 10.1016/j.molcel.2010.05.016 – ident: 2015070909421538000_38.2.144.265 doi: 10.1074/jbc.M306841200 – ident: 2015070909421538000_38.2.144.323 doi: 10.1038/emboj.2010.155 – ident: 2015070909421538000_38.2.144.92 doi: 10.1038/nsmb854 – ident: 2015070909421538000_38.2.144.165 doi: 10.1371/journal.pgen.1002271 – ident: 2015070909421538000_38.2.144.17 doi: 10.1007/978-3-642-16502-3_4 – ident: 2015070909421538000_38.2.144.158 doi: 10.1126/science.1063827 – ident: 2015070909421538000_38.2.144.73 doi: 10.1038/emboj.2010.267 – ident: 2015070909421538000_38.2.144.244 doi: 10.1038/83778 – ident: 2015070909421538000_38.2.144.275 doi: 10.1016/j.semcdb.2009.09.015 – ident: 2015070909421538000_38.2.144.206 doi: 10.1534/genetics.109.106674 – ident: 2015070909421538000_38.2.144.89 doi: 10.1016/0092-8674(92)90474-Q – ident: 2015070909421538000_38.2.144.263 doi: 10.1371/journal.pgen.1003721 – ident: 2015070909421538000_38.2.144.23 doi: 10.1038/sj.emboj.7600469 – ident: 2015070909421538000_38.2.144.187 doi: 10.1016/j.molcel.2008.10.019 – ident: 2015070909421538000_38.2.144.233 doi: 10.1038/nature09318 – ident: 2015070909421538000_38.2.144.327 doi: 10.1534/genetics.111.137851 – ident: 2015070909421538000_38.2.144.196 doi: 10.1021/bi2005448 – ident: 2015070909421538000_38.2.144.156 doi: 10.1038/ncb1910 – ident: 2015070909421538000_38.2.144.262 doi: 10.1007/s00294-004-0548-y – ident: 2015070909421538000_38.2.144.166 doi: 10.1016/S0960-9822(98)70252-0 – ident: 2015070909421538000_38.2.144.223 doi: 10.1038/35082608 – ident: 2015070909421538000_38.2.144.71 doi: 10.1093/ajcp/107.5.548 – ident: 2015070909421538000_38.2.144.85 doi: 10.1126/science.286.5437.117 – ident: 2015070909421538000_38.2.144.299 doi: 10.1534/genetics.112.140608 – ident: 2015070909421538000_38.2.144.4 doi: 10.1371/journal.pgen.1001362 – ident: 2015070909421538000_38.2.144.145 doi: 10.1101/gad.208140.112 – ident: 2015070909421538000_38.2.144.3 doi: 10.1534/genetics.108.092577 – ident: 2015070909421538000_38.2.144.78 doi: 10.1016/S0092-8674(00)81670-0 – ident: 2015070909421538000_38.2.144.161 doi: 10.1073/pnas.95.21.12486 – ident: 2015070909421538000_38.2.144.293 doi: 10.1101/gad.11.1.83 – ident: 2015070909421538000_38.2.144.305 doi: 10.1016/S0092-8674(04)00334-4 – ident: 2015070909421538000_38.2.144.335 doi: 10.1074/jbc.273.50.33360 – ident: 2015070909421538000_38.2.144.12 doi: 10.1128/MCB.22.23.8292-8301.2002 – ident: 2015070909421538000_38.2.144.290 doi: 10.1101/gad.13.2.146 – ident: 2015070909421538000_38.2.144.68 doi: 10.1016/j.molcel.2006.02.006 – ident: 2015070909421538000_38.2.144.176 doi: 10.1091/mbc.E10-06-0549 – ident: 2015070909421538000_38.2.144.1 doi: 10.1038/ncb1911 – ident: 2015070909421538000_38.2.144.240 doi: 10.1016/0092-8674(93)90388-7 – ident: 2015070909421538000_38.2.144.112 doi: 10.1083/jcb.134.6.1349 – ident: 2015070909421538000_38.2.144.258 doi: 10.1038/emboj.2011.349 – ident: 2015070909421538000_38.2.144.9 doi: 10.1371/journal.pgen.1002024 – ident: 2015070909421538000_38.2.144.100 doi: 10.1038/nsmb1205 – ident: 2015070909421538000_38.2.144.136 doi: 10.1128/MCB.12.3.1209 – ident: 2015070909421538000_38.2.144.163 doi: 10.1128/MCB.12.11.5159 – ident: 2015070909421538000_38.2.144.320 doi: 10.1371/journal.pgen.0030105 – ident: 2015070909421538000_38.2.144.84 doi: 10.1016/j.molcel.2013.01.001 – ident: 2015070909421538000_38.2.144.88 doi: 10.1111/j.1755-0998.2011.03012.x – ident: 2015070909421538000_38.2.144.90 doi: 10.1074/jbc.M410346200 – ident: 2015070909421538000_38.2.144.26 doi: 10.1038/nrg2224 – ident: 2015070909421538000_38.2.144.130 doi: 10.1038/sj.embor.7401036 – ident: 2015070909421538000_38.2.144.28 doi: 10.1016/j.molcel.2008.02.021 – ident: 2015070909421538000_38.2.144.241 doi: 10.1146/annurev.genet.41.110306.130350 – ident: 2015070909421538000_38.2.144.157 doi: 10.1038/sj.emboj.7601235 – ident: 2015070909421538000_38.2.144.253 doi: 10.1101/gad.14.14.1777 – ident: 2015070909421538000_38.2.144.59 doi: 10.3389/fonc.2013.000309 – ident: 2015070909421538000_38.2.144.150 doi: 10.1038/embor.2011.73 – ident: 2015070909421538000_38.2.144.62 doi: 10.1038/sj.onc.1208332 – ident: 2015070909421538000_38.2.144.5 doi: 10.1038/nsmb.2585 – ident: 2015070909421538000_38.2.144.116 doi: 10.1128/MCB.23.11.3721-3734.2003 – ident: 2015070909421538000_38.2.144.216 doi: 10.1016/S0960-9822(99)80483-7 – ident: 2015070909421538000_38.2.144.175 doi: 10.1016/j.cell.2008.11.027 – ident: 2015070909421538000_38.2.144.291 doi: 10.1016/j.mrfmmm.2011.08.011 – ident: 2015070909421538000_38.2.144.186 doi: 10.1038/emboj.2012.40 – ident: 2015070909421538000_38.2.144.287 doi: 10.1073/pnas.97.12.6658 – ident: 2015070909421538000_38.2.144.319 doi: 10.1016/j.molcel.2008.12.022 – ident: 2015070909421538000_38.2.144.14 doi: 10.1074/jbc.M112.415984 – ident: 2015070909421538000_38.2.144.128 doi: 10.1101/gad.300004 – ident: 2015070909421538000_38.2.144.303 doi: 10.1128/MCB.24.16.6931-6946.2004 – ident: 2015070909421538000_38.2.144.340 doi: 10.1073/pnas.062502299 – ident: 2015070909421538000_38.2.144.237 doi: 10.1038/nsmb1125 – ident: 2015070909421538000_38.2.144.199 doi: 10.1093/emboj/18.12.3509 – ident: 2015070909421538000_38.2.144.232 doi: 10.1101/gad.2003811 – ident: 2015070909421538000_38.2.144.251 doi: 10.1371/journal.pgen.1002960 – ident: 2015070909421538000_38.2.144.110 doi: 10.1016/j.molcel.2010.08.024 – ident: 2015070909421538000_38.2.144.197 doi: 10.1038/sj.embor.7400911 – ident: 2015070909421538000_38.2.144.235 doi: 10.1093/nar/gkh309 – ident: 2015070909421538000_38.2.144.321 doi: 10.1016/j.molcel.2006.07.035 – ident: 2015070909421538000_38.2.144.182 doi: 10.1016/j.cell.2005.03.035 – ident: 2015070909421538000_38.2.144.185 doi: 10.1016/j.yexcr.2012.09.005 – ident: 2015070909421538000_38.2.144.205 doi: 10.1016/S0092-8674(00)80773-4 – ident: 2015070909421538000_38.2.144.48 doi: 10.1056/NEJMra0903373 – ident: 2015070909421538000_38.2.144.138 doi: 10.1101/gad.178491.111 – ident: 2015070909421538000_38.2.144.57 doi: 10.1159/000167804 – ident: 2015070909421538000_38.2.144.201 doi: 10.1101/gad.455108 – ident: 2015070909421538000_38.2.144.70 doi: 10.1126/science.1170633 – ident: 2015070909421538000_38.2.144.277 doi: 10.1016/0092-8674(94)90179-1 – ident: 2015070909421538000_38.2.144.129 doi: 10.1038/22780 – ident: 2015070909421538000_38.2.144.159 doi: 10.1016/S0092-8674(00)81088-0 – ident: 2015070909421538000_38.2.144.173 doi: 10.1128/MCB.24.24.10857-10867.2004 – ident: 2015070909421538000_38.2.144.109 doi: 10.1006/jmbi.1993.1283 – ident: 2015070909421538000_38.2.144.114 doi: 10.1128/MCB.19.11.7481 – ident: 2015070909421538000_38.2.144.326 doi: 10.1038/239197a0 – ident: 2015070909421538000_38.2.144.102 doi: 10.1093/emboj/18.11.3173 – ident: 2015070909421538000_38.2.144.179 doi: 10.1073/pnas.93.24.13760 – ident: 2015070909421538000_38.2.144.322 doi: 10.4161/cc.6.10.4224 – ident: 2015070909421538000_38.2.144.178 doi: 10.1128/MCB.00994-10 – ident: 2015070909421538000_38.2.144.334 doi: 10.1371/journal.pgen.1002417 – ident: 2015070909421538000_38.2.144.108 doi: 10.1093/emboj/20.16.4522 – ident: 2015070909421538000_38.2.144.284 doi: 10.1038/nrm3546 – ident: 2015070909421538000_38.2.144.149 doi: 10.1016/S0960-9822(00)00562-5 – ident: 2015070909421538000_38.2.144.154 doi: 10.1534/genetics.166.2.753 – ident: 2015070909421538000_38.2.144.215 doi: 10.1038/emboj.2010.193 – ident: 2015070909421538000_38.2.144.8 doi: 10.1073/pnas.1319313110 – ident: 2015070909421538000_38.2.144.52 doi: 10.1016/0092-8674(83)90437-3 – ident: 2015070909421538000_38.2.144.77 doi: 10.1126/science.1230624 – ident: 2015070909421538000_38.2.144.86 doi: 10.1093/genetics/162.3.1101 – ident: 2015070909421538000_38.2.144.246 doi: 10.1038/emboj.2011.345 – ident: 2015070909421538000_38.2.144.331 doi: 10.1101/gad.11.6.748 – ident: 2015070909421538000_38.2.144.336 doi: 10.1038/emboj.2012.180 – ident: 2015070909421538000_38.2.144.13 doi: 10.4161/cc.6.1.3647 – ident: 2015070909421538000_38.2.144.40 doi: 10.1002/j.1460-2075.1996.tb00890.x – ident: 2015070909421538000_38.2.144.280 doi: 10.1016/j.cell.2009.06.021 – ident: 2015070909421538000_38.2.144.120 doi: 10.1101/gad.11.4.512 – ident: 2015070909421538000_38.2.144.281 doi: 10.1038/msb.2008.13 – ident: 2015070909421538000_38.2.144.297 doi: 10.1016/0092-8674(82)90109-X – ident: 2015070909421538000_38.2.144.345 doi: 10.1126/science.1231573 – ident: 2015070909421538000_38.2.144.131 doi: 10.1038/nsmb.2100 – ident: 2015070909421538000_38.2.144.213 doi: 10.1073/pnas.1934561100 – ident: 2015070909421538000_38.2.144.308 doi: 10.1083/jcb.200505159 – ident: 2015070909421538000_38.2.144.45 doi: 10.1038/ng1917 – ident: 2015070909421538000_38.2.144.200 doi: 10.1016/S0960-9822(00)00450-4 – ident: 2015070909421538000_38.2.144.315 doi: 10.1371/journal.pgen.1002060 – ident: 2015070909421538000_38.2.144.7 doi: 10.1038/ncb2745 – ident: 2015070909421538000_38.2.144.174 doi: 10.1101/gad.10.11.1310 – ident: 2015070909421538000_38.2.144.304 doi: 10.3389/fonc.2013.00101 – ident: 2015070909421538000_38.2.144.311 doi: 10.1038/emboj.2008.93 – ident: 2015070909421538000_38.2.144.121 doi: 10.1128/MCB.20.22.8397-8408.2000 – ident: 2015070909421538000_38.2.144.46 doi: 10.1083/jcb.200706040 |
SSID | ssj0005955 |
Score | 2.3441472 |
SecondaryResourceType | review_article |
Snippet | Abstract
Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity.... Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play... |
SourceID | proquest pubmed crossref wiley oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 144 |
SubjectTerms | aging Animals Biology cancer Chromosomes DNA damage response DNA Replication Genetics genome stability Genomes Mammals Molecular biology Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - physiology Telomerase Telomere - genetics Telomere - metabolism Telomere - physiology Telomere Homeostasis - physiology Telomere-Binding Proteins - genetics Telomere-Binding Proteins - metabolism Yeast Yeasts |
Title | Biology of telomeres: lessons from budding yeast |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1574-6976.12054 https://www.ncbi.nlm.nih.gov/pubmed/24754043 https://www.proquest.com/docview/1504787764 https://www.proquest.com/docview/1518620051 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA4iCF58P-qLFT14Sdlu89h4E7GIoAex4G3JJNmLtRXbHuqvd2YftS2KiLdAJmw2ycx8szv5hrFzARraceo4eOO4AGe4xbCAOwWi7WJsp3TB-f5B3XbF3bOsswnpLkzJDzH94EaaUdhrUnALwxklb0ktuEJv2mwliDvQClPGFsGixy8CKWlkmcSoUo6eX1bkPpTLszB-zi_N3XWbgZzzCLZwQZ11BvXky8yTl-Z4BE33scDr-K-322BrFUCNrsoTtcmWQn-LrZQlKyfbLK5a0SCPRqE3eA0Yr19GPTSYeH4juq0SwdiTR4wmVBdoh3U7N0_Xt7yqusAdFS3i1ufBKaFDqnOd5kqBtmnqtAQi_0pkDl6oYEAFq-IgjTfSmVSYYLx0HuPaXbbcH_TDPovASrAhQUSQeOEN2grEH1r7uAVGSKsbrFmveeYqSnKqjNHL6tCEliGjZciKZWiwi-mAt5KN42fRM9zEb6X4rNRRvclZpbxDlCkoi7TC7tNpN6od_Uux_TAYk0wLY0EyaQ22Vx6O6bMSoSWRFuHrFVv821Szzv1j0Tj464BDtooATpQ5cUdsefQ-DscIkkZwUujBJ1oD_yU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3HTsNAEB1RhOBCL6EawYHLRo6zxcsNAVEo4YBA4mZ5iy-EBEFygK9nxnZCgkAIcVtpZ21vmbaeeQNwyI0y9TC2zDhtGTdWsxTdAmal4XUbYjumBOfWjWze88sH8TCSC1PgQwwv3IgzcnlNDE4X0iNcXhOKM4nqtFqL0PCYhGmq6034-We3nxBSQosijFHGDHW_KOF9KJrnywPGNNNYttuI0Tluw-ZKqLEAdvD5RezJY7XfM1X7_gXZ8X_zW4T50kYNTopDtQQTvrMMM0XVyrcVCMtW0M2Cnm93nzy67MdBG2UmHuGAElYC03ekFIM3Kg20CveN87vTJisLLzBLdYtY6jJvJVc-VpmKMymNSuPYKmEI_ysSmXFcem2kT2XohXZaWB1z7bUT1qFruwZTnW7Hb0BgUmFSH6FREDnuNIoLNEGUcmHNaC5SVYHqYNETW6KSU3GMdjLwTmgZElqGJF-GChwNBzwXgBw_kx7gLn5LxUaptge7nJT8-4o0OWqRkti9P-xGzqPfKWnHd_tEU0N3kKRaBdaL0zF8V8SVINwinF6-x799atJo3eaNzb8O2IPZ5l3rOrm-uLnagjm053gRIrcNU72Xvt9Bm6lndnOm-ABxqgNQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT8MwDLY4BOKF-xhnETzwkqkrORreEDBxCyGQeKuaoy-MDcH2AL8eu8fYEAgh3iLFaRMnju3W_gywy40y-2FsmXHaMm6sZim6BcxKw_dtiO2YEpyvruXpPT9_EFU0IeXCFPgQ_Q9uJBn5fU0C_uyyASFvCMWZRG1ab0Rod4zCOJehpuoNx7efCFJCiyKKUcYMVb8o0X0omOfLA4YU01Cy24DNOWzC5jqoOQOmmn0RevJY73VN3b5_AXb81_JmYbq0UIPD4kjNwYhvz8NEUbPybQHCshV0sqDrW50njw77QdDCGxMPcEDpKoHpOVKJwRsVBlqE--bJ3dEpK8suMEtVi1jqMm8lVz5WmYozKY1K49gqYQj9KxKZcVx6baRPZeiFdlpYHXPttRPWoWO7BGPtTtuvQGBSYVIfoUkQOe40XhZogCjlwobRXKSqBvWK54ktMcmpNEYrqXwTYkNCbEhyNtRgrz_guYDj-Jl0BzfxWyo2SLVebXJSSu8r0uSYRUpi93a_G-WOfqakbd_pEU0DnUG602qwXByO_rsirgShFuHy8i3-bapJ8-o2b6z-dcAWTN4cN5PLs-uLNZhCY44X8XHrMNZ96fkNNJi6ZjMXiQ9HzAH_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biology+of+telomeres%3A+lessons+from+budding+yeast&rft.jtitle=FEMS+microbiology+reviews&rft.au=Kupiec%2C+Martin&rft.date=2014-03-01&rft.issn=0168-6445&rft.eissn=1574-6976&rft.volume=38&rft.issue=2&rft.spage=144&rft.epage=171&rft_id=info:doi/10.1111%2F1574-6976.12054&rft.externalDBID=10.1111%252F1574-6976.12054&rft.externalDocID=FMR12054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-6445&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-6445&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-6445&client=summon |