Biology of telomeres: lessons from budding yeast

Abstract Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double-s...

Full description

Saved in:
Bibliographic Details
Published inFEMS microbiology reviews Vol. 38; no. 2; pp. 144 - 171
Main Author Kupiec, Martin
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.03.2014
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double-stranded breaks. In addition, telomeres are replicated by a special reverse transcriptase called telomerase, in a complex mechanism that is coordinated with the genome's replication. Telomeres also play an important role in tethering the chromosomes to the nuclear envelope, thus helping in positioning the chromosomes within the nucleus. The special chromatin configuration of telomeres affects the expression of nearby genes; nonetheless, telomeres are transcribed, creating noncoding RNA molecules that hybridize to the chromosomal ends and seem to play regulatory roles. The yeast Saccharomyces cerevisiae, with its sophisticated genetics and molecular biology, has provided many fundamental concepts in telomere biology, which were later found to be conserved in all organisms. Here, we present an overview of all the aspects of telomere biology investigated in yeast, which continues to provide new insights into this complex and important subject, which has significant medical implications, especially in the fields of aging and cancer. Telomeres, the eukaryotic chromosomal ends, preserve genome stability and help duplicate the genome. They play important roles in aging and cancer. Here, we summarize our knowledge on the telomeres of the yeast Saccharomyces cerevisiae, a widely used model organism.
AbstractList Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double-stranded breaks. In addition, telomeres are replicated by a special reverse transcriptase called telomerase, in a complex mechanism that is coordinated with the genome's replication. Telomeres also play an important role in tethering the chromosomes to the nuclear envelope, thus helping in positioning the chromosomes within the nucleus. The special chromatin configuration of telomeres affects the expression of nearby genes; nonetheless, telomeres are transcribed, creating noncoding RNA molecules that hybridize to the chromosomal ends and seem to play regulatory roles. The yeast Saccharomyces cerevisiae, with its sophisticated genetics and molecular biology, has provided many fundamental concepts in telomere biology, which were later found to be conserved in all organisms. Here, we present an overview of all the aspects of telomere biology investigated in yeast, which continues to provide new insights into this complex and important subject, which has significant medical implications, especially in the fields of aging and cancer.Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double-stranded breaks. In addition, telomeres are replicated by a special reverse transcriptase called telomerase, in a complex mechanism that is coordinated with the genome's replication. Telomeres also play an important role in tethering the chromosomes to the nuclear envelope, thus helping in positioning the chromosomes within the nucleus. The special chromatin configuration of telomeres affects the expression of nearby genes; nonetheless, telomeres are transcribed, creating noncoding RNA molecules that hybridize to the chromosomal ends and seem to play regulatory roles. The yeast Saccharomyces cerevisiae, with its sophisticated genetics and molecular biology, has provided many fundamental concepts in telomere biology, which were later found to be conserved in all organisms. Here, we present an overview of all the aspects of telomere biology investigated in yeast, which continues to provide new insights into this complex and important subject, which has significant medical implications, especially in the fields of aging and cancer.
Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double-stranded breaks. In addition, telomeres are replicated by a special reverse transcriptase called telomerase, in a complex mechanism that is coordinated with the genome's replication. Telomeres also play an important role in tethering the chromosomes to the nuclear envelope, thus helping in positioning the chromosomes within the nucleus. The special chromatin configuration of telomeres affects the expression of nearby genes; nonetheless, telomeres are transcribed, creating noncoding RNA molecules that hybridize to the chromosomal ends and seem to play regulatory roles. The yeast Saccharomyces cerevisiae, with its sophisticated genetics and molecular biology, has provided many fundamental concepts in telomere biology, which were later found to be conserved in all organisms. Here, we present an overview of all the aspects of telomere biology investigated in yeast, which continues to provide new insights into this complex and important subject, which has significant medical implications, especially in the fields of aging and cancer. [PUBLICATION ABSTRACT]
Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double‐stranded breaks. In addition, telomeres are replicated by a special reverse transcriptase called telomerase, in a complex mechanism that is coordinated with the genome's replication. Telomeres also play an important role in tethering the chromosomes to the nuclear envelope, thus helping in positioning the chromosomes within the nucleus. The special chromatin configuration of telomeres affects the expression of nearby genes; nonetheless, telomeres are transcribed, creating noncoding RNA molecules that hybridize to the chromosomal ends and seem to play regulatory roles. The yeast Saccharomyces cerevisiae, with its sophisticated genetics and molecular biology, has provided many fundamental concepts in telomere biology, which were later found to be conserved in all organisms. Here, we present an overview of all the aspects of telomere biology investigated in yeast, which continues to provide new insights into this complex and important subject, which has significant medical implications, especially in the fields of aging and cancer. Telomeres, the eukaryotic chromosomal ends, preserve genome stability and help duplicate the genome. They play important roles in aging and cancer. Here, we summarize our knowledge on the telomeres of the yeast Saccharomyces cerevisiae, a widely used model organism.
Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double-stranded breaks. In addition, telomeres are replicated by a special reverse transcriptase called telomerase, in a complex mechanism that is coordinated with the genome's replication. Telomeres also play an important role in tethering the chromosomes to the nuclear envelope, thus helping in positioning the chromosomes within the nucleus. The special chromatin configuration of telomeres affects the expression of nearby genes; nonetheless, telomeres are transcribed, creating noncoding RNA molecules that hybridize to the chromosomal ends and seem to play regulatory roles. The yeast Saccharomyces cerevisiae, with its sophisticated genetics and molecular biology, has provided many fundamental concepts in telomere biology, which were later found to be conserved in all organisms. Here, we present an overview of all the aspects of telomere biology investigated in yeast, which continues to provide new insights into this complex and important subject, which has significant medical implications, especially in the fields of aging and cancer.
Abstract Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play central roles in maintaining the genome's integrity, distinguishing between the natural chromosomal ends and unwanted double-stranded breaks. In addition, telomeres are replicated by a special reverse transcriptase called telomerase, in a complex mechanism that is coordinated with the genome's replication. Telomeres also play an important role in tethering the chromosomes to the nuclear envelope, thus helping in positioning the chromosomes within the nucleus. The special chromatin configuration of telomeres affects the expression of nearby genes; nonetheless, telomeres are transcribed, creating noncoding RNA molecules that hybridize to the chromosomal ends and seem to play regulatory roles. The yeast Saccharomyces cerevisiae, with its sophisticated genetics and molecular biology, has provided many fundamental concepts in telomere biology, which were later found to be conserved in all organisms. Here, we present an overview of all the aspects of telomere biology investigated in yeast, which continues to provide new insights into this complex and important subject, which has significant medical implications, especially in the fields of aging and cancer. Telomeres, the eukaryotic chromosomal ends, preserve genome stability and help duplicate the genome. They play important roles in aging and cancer. Here, we summarize our knowledge on the telomeres of the yeast Saccharomyces cerevisiae, a widely used model organism.
Author Kupiec, Martin
Author_xml – sequence: 1
  givenname: Martin
  surname: Kupiec
  fullname: Kupiec, Martin
  email: martin@post.tau.ac.il
  organization: Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24754043$$D View this record in MEDLINE/PubMed
BookMark eNqFkFtLwzAYQINM3EWffZOCLyJ0S7pcfdPhVJgIos8hbb-OjraZSYvs39u5CzKE5SUQzsmXnD7qVLYChC4JHpJ2jQgTNORK8CGJMKMnqLc_6aAeJlyGnFLWRX3vFxhjphg7Q92ICkYxHfcQfshtYeerwGZBDYUtwYG_Cwrw3lY-yJwtg7hJ07yaByswvj5Hp5kpPFxs9wH6nD5-TJ7D2dvTy-R-FibjiNDQpBkknAqQIhMy4zwWRspEsJhTRiOWxSnloGIOhmNgKlUsUZIqUClLUhaNB-hmc-_S2a8GfK3L3CdQFKYC23hNGJE8an9EWvT6AF3YxlXt61oKUyGF4LSlrrZUE5eQ6qXLS-NWeteiBUYbIHHWewfZHiFYr2vrdVu9bqt_a7cGOzCSvDZ1bqvambw47n3nBayOjdHT1_edd7vxbLP81wr_DPkB5LKbVA
CODEN FMREE4
CitedBy_id crossref_primary_10_1016_j_dnarep_2017_11_010
crossref_primary_10_1038_s42003_024_06464_3
crossref_primary_10_1038_s41598_021_01599_3
crossref_primary_10_1007_s00294_017_0728_1
crossref_primary_10_1534_genetics_118_300950
crossref_primary_10_3389_fgene_2022_1033113
crossref_primary_10_1371_journal_pgen_1009660
crossref_primary_10_3389_fgene_2015_00358
crossref_primary_10_1371_journal_pgen_1010641
crossref_primary_10_1016_j_dnarep_2018_09_007
crossref_primary_10_1021_acssynbio_2c00424
crossref_primary_10_15252_embj_2021108736
crossref_primary_10_1007_s00294_020_01125_4
crossref_primary_10_1534_genetics_112_145805
crossref_primary_10_1007_s00294_019_00976_w
crossref_primary_10_1007_s00294_019_00933_7
crossref_primary_10_1007_s10709_016_9886_1
crossref_primary_10_3390_genes10110866
crossref_primary_10_3390_cells10040778
crossref_primary_10_1093_g3journal_jkad153
crossref_primary_10_1016_j_mayocp_2019_04_007
crossref_primary_10_18632_aging_101095
crossref_primary_10_1038_s41467_025_56196_z
crossref_primary_10_1007_s00294_017_0779_3
crossref_primary_10_1083_jcb_202103036
crossref_primary_10_3390_cells8020199
crossref_primary_10_3390_cells8010030
crossref_primary_10_3390_genes10020118
crossref_primary_10_1093_femsyr_fow085
crossref_primary_10_1093_nar_gkw111
crossref_primary_10_1091_mbc_e16_01_0069
crossref_primary_10_1371_journal_pgen_1005966
crossref_primary_10_1371_journal_pone_0118987
crossref_primary_10_3390_ijms231810757
crossref_primary_10_1073_pnas_2119588119
crossref_primary_10_1083_jcb_201609049
crossref_primary_10_1093_plcell_koab022
crossref_primary_10_1007_s00294_017_0680_0
crossref_primary_10_1038_s41598_019_46840_2
crossref_primary_10_1534_genetics_115_177451
crossref_primary_10_1093_g3journal_jkac283
crossref_primary_10_1186_s12863_018_0617_8
crossref_primary_10_1371_journal_pgen_1010986
crossref_primary_10_1038_s41467_023_38499_1
crossref_primary_10_1371_journal_pgen_1007853
crossref_primary_10_1186_s12864_016_2876_y
crossref_primary_10_1016_j_jmb_2020_01_026
crossref_primary_10_1186_s12864_017_3889_x
crossref_primary_10_1042_BST20231555
crossref_primary_10_1016_j_funbio_2019_09_003
crossref_primary_10_1080_15384101_2017_1312235
crossref_primary_10_1534_genetics_116_194027
crossref_primary_10_1016_j_eujim_2021_101303
crossref_primary_10_1091_mbc_E22_06_0213
crossref_primary_10_1007_s00294_017_0778_4
crossref_primary_10_1186_s12915_016_0325_7
crossref_primary_10_1128_mBio_01314_17
crossref_primary_10_26907_2542_064X_2024_2_297_311
crossref_primary_10_3390_ijms22094510
crossref_primary_10_1016_j_mad_2017_09_001
crossref_primary_10_3390_bios14110540
crossref_primary_10_1002_yea_3517
crossref_primary_10_1093_nar_gkx101
crossref_primary_10_1016_j_isci_2021_102231
crossref_primary_10_1093_genetics_iyac186
crossref_primary_10_1371_journal_pgen_1007326
crossref_primary_10_1002_yea_3511
crossref_primary_10_1016_j_mrrev_2014_11_007
crossref_primary_10_1093_eep_dvw006
crossref_primary_10_1146_annurev_biophys_062215_011140
crossref_primary_10_1038_s41417_022_00464_3
crossref_primary_10_3390_cells8010054
crossref_primary_10_1007_s12013_014_0476_5
Cites_doi 10.1128/MCB.4.11.2509
10.1093/nar/gkj415
10.1002/0470862637.ch4
10.1074/jbc.M110.170167
10.1101/gad.1851909
10.1016/S0092-8674(85)80120-3
10.1093/nar/gkl786
10.1007/978-1-4684-5251-8_37
10.1016/j.molcel.2009.05.015
10.1016/j.molcel.2013.01.002
10.1091/mbc.E03-10-0740
10.1038/cr.2010.138
10.1038/ncb1428
10.1101/gad.477208
10.1091/mbc.11.7.2221
10.1371/journal.pone.0066756
10.1101/gad.1588807
10.4161/cc.4.2.1429
10.1038/ng569
10.1073/pnas.91.16.7623
10.1038/embor.2008.121
10.1371/journal.pgen.1002421
10.1534/genetics.109.102939
10.1126/science.1074968
10.1134/S0006297912100045
10.1093/nar/23.9.1454
10.1016/S1097-2765(01)00270-2
10.1038/sj.emboj.7600778
10.1093/emboj/19.21.5801
10.1101/gad.6.5.801
10.1101/gad.1787509
10.1128/MCB.21.13.4233-4245.2001
10.1038/emboj.2012.214
10.1128/MCB.00817-08
10.1093/emboj/18.9.2522
10.1073/pnas.1320030110
10.1016/S0960-9822(02)01338-6
10.1101/gad.1146603
10.1101/gad.400907
10.1093/carcin/bgp268
10.1038/345458a0
10.1016/j.dnarep.2012.12.002
10.1038/ncb1429
10.4161/cc.26625
10.1091/mbc.E11-06-0568
10.1038/nature07312
10.1128/MCB.21.5.1819-1827.2001
10.1093/nar/gkl1081
10.1016/S0960-9822(01)00021-5
10.1126/science.280.5364.741
10.1093/emboj/20.5.1173
10.1073/pnas.91.25.12061
10.1073/pnas.0401263101
10.1128/MCB.25.19.8430-8443.2005
10.1016/j.cell.2012.01.033
10.1126/science.281.5374.272
10.1534/genetics.113.149849
10.1038/msb.2009.3
10.1093/nar/gkq296
10.1093/embo-reports/kve038
10.1074/jbc.M306783200
10.1038/emboj.2012.215
10.1128/MCB.00195-09
10.1016/j.molcel.2011.09.020
10.1126/science.8073286
10.1016/j.dnarep.2006.03.005
10.1016/j.cell.2004.11.008
10.1038/nature06047
10.1128/MCB.8.1.210
10.1101/gad.503108
10.1016/0092-8674(93)90234-H
10.1101/gad.225102
10.1038/emboj.2009.176
10.1534/g3.111.000216
10.1534/genetics.166.4.1641
10.1128/MCB.00512-08
10.1093/genetics/152.1.143
10.1038/sj.emboj.7600144
10.1016/S0006-291X(03)00333-4
10.1093/nar/gkt365
10.1073/pnas.0806621105
10.1101/gad.1869110
10.1093/emboj/20.21.6127
10.1016/j.cub.2011.11.024
10.1101/gad.438907
10.1038/emboj.2011.30
10.1242/jcs.00907
10.1016/S0092-8674(00)80760-6
10.1371/journal.pgen.1000236
10.1016/0092-8674(89)90132-3
10.1534/genetics.104.027904
10.1093/nar/24.4.582
10.1038/nature02964
10.1093/genetics/155.1.475
10.1038/310157a0
10.1016/j.cell.2007.01.041
10.1371/journal.pgen.1000966
10.1101/gad.316504
10.1038/emboj.2008.171
10.1101/gr.6687808
10.1016/j.tcb.2008.04.004
10.1261/rna.1748309
10.1016/j.molcel.2008.12.027
10.1101/gad.1125903
10.1038/ncb1685
10.1101/gad.903501
10.1038/emboj.2009.195
10.1038/383092a0
10.1126/science.270.5241.1488
10.1038/nmeth.1234
10.1128/MCB.20.3.786-796.2000
10.1146/annurev.biochem.72.121801.161547
10.1016/0092-8674(93)90321-G
10.1101/gad.1199404
10.1111/1523-1747.ep12532752
10.1126/science.274.5285.249
10.1126/science.286.5442.1166
10.1128/MCB.24.22.9887-9898.2004
10.1038/nrm2450
10.1038/emboj.2013.88
10.1091/mbc.E06-12-1074
10.1101/gad.218776.113
10.1038/nsmb.1957
10.1038/nsmb1214
10.1007/s00412-011-0357-2
10.1128/MCB.19.12.8083
10.1016/j.molcel.2004.12.003
10.1093/nar/26.23.5365
10.1038/ng1284
10.1371/journal.pgen.1001072
10.1093/genetics/124.3.547
10.1534/genetics.109.106682
10.1128/MCB.20.7.2378-2384.2000
10.1093/embo-reports/kve024
10.1073/pnas.83.5.1398
10.1038/sj.embor.7401082
10.1126/science.1147182
10.1038/nature12149
10.1093/nar/gkl561
10.1073/pnas.91.8.3453
10.1073/pnas.0914187107
10.1101/gad.7.7a.1146
10.1126/science.294.5540.115
10.1093/genetics/144.4.1399
10.1128/MCB.15.11.6128
10.1093/emboj/18.9.2538
10.1038/nsmb.2225
10.1038/ncb2263
10.1016/0092-8674(87)90576-9
10.1016/j.dnarep.2006.04.005
10.1101/gad.8.19.2257
10.1083/jcb.200409091
10.1126/science.2237406
10.1073/pnas.0909203106
10.1038/emboj.2008.81
10.1038/29100
10.1016/j.mrfmmm.2011.10.013
10.1126/science.285.5429.901
10.1126/science.289.5480.771
10.1073/pnas.0437148100
10.1126/science.279.5349.349
10.1007/BF00352248
10.1038/35001622
10.1002/j.1460-2075.1993.tb05897.x
10.1534/genetics.110.122044
10.1016/0092-8674(90)90140-A
10.1038/nrm3505
10.1126/science.1083430
10.1128/MCB.21.21.7277-7286.2001
10.1093/emboj/20.4.905
10.1016/S0092-8674(00)81120-4
10.1038/ncb1430
10.1016/S0092-8674(01)00226-4
10.1038/310154a0
10.1038/nsmb.2662
10.1128/MCB.02367-05
10.1101/gad.231602
10.1371/journal.pone.0014142
10.1016/j.molcel.2013.08.029
10.1016/j.cell.2005.12.044
10.1016/j.trsl.2013.05.003
10.1038/nsmb.1947
10.1371/journal.pgen.0020035
10.3389/fonc.2013.00027
10.1073/pnas.0905703106
10.1073/pnas.93.24.13902
10.1101/gad.14.16.2046
10.1016/0092-8674(93)90493-A
10.1007/BF01952113
10.1016/j.cell.2013.05.007
10.1038/nature09355
10.1093/nar/gkq552
10.1093/nar/gks270
10.1128/MCB.23.18.6585-6596.2003
10.1128/MCB.21.19.6559-6573.2001
10.1101/gad.1099003
10.1093/nar/24.23.4639
10.1074/jbc.C000133200
10.1093/nar/29.21.4414
10.1126/science.1218498
10.1016/j.molcel.2009.06.025
10.1016/j.canlet.2009.08.003
10.1016/S0092-8674(00)81671-2
10.1371/journal.pgen.1003208
10.1016/S0092-8674(01)00580-3
10.1128/MCB.22.13.4512-4521.2002
10.1016/j.molcel.2007.07.016
10.1128/MCB.23.4.1403-1417.2003
10.1016/j.molcel.2006.10.020
10.1128/MCB.24.8.3277-3285.2004
10.1016/j.molcel.2006.10.005
10.1093/nar/gkp259
10.1016/j.celrep.2012.10.007
10.1371/journal.pgen.1002233
10.1091/mbc.E02-08-0457
10.1038/383354a0
10.1016/j.cell.2008.08.037
10.1016/j.molcel.2010.05.016
10.1074/jbc.M306841200
10.1038/emboj.2010.155
10.1038/nsmb854
10.1371/journal.pgen.1002271
10.1007/978-3-642-16502-3_4
10.1126/science.1063827
10.1038/emboj.2010.267
10.1038/83778
10.1016/j.semcdb.2009.09.015
10.1534/genetics.109.106674
10.1016/0092-8674(92)90474-Q
10.1371/journal.pgen.1003721
10.1038/sj.emboj.7600469
10.1016/j.molcel.2008.10.019
10.1038/nature09318
10.1534/genetics.111.137851
10.1021/bi2005448
10.1038/ncb1910
10.1007/s00294-004-0548-y
10.1016/S0960-9822(98)70252-0
10.1038/35082608
10.1093/ajcp/107.5.548
10.1126/science.286.5437.117
10.1534/genetics.112.140608
10.1371/journal.pgen.1001362
10.1101/gad.208140.112
10.1534/genetics.108.092577
10.1016/S0092-8674(00)81670-0
10.1073/pnas.95.21.12486
10.1101/gad.11.1.83
10.1016/S0092-8674(04)00334-4
10.1074/jbc.273.50.33360
10.1128/MCB.22.23.8292-8301.2002
10.1101/gad.13.2.146
10.1016/j.molcel.2006.02.006
10.1091/mbc.E10-06-0549
10.1038/ncb1911
10.1016/0092-8674(93)90388-7
10.1083/jcb.134.6.1349
10.1038/emboj.2011.349
10.1371/journal.pgen.1002024
10.1038/nsmb1205
10.1128/MCB.12.3.1209
10.1128/MCB.12.11.5159
10.1371/journal.pgen.0030105
10.1016/j.molcel.2013.01.001
10.1111/j.1755-0998.2011.03012.x
10.1074/jbc.M410346200
10.1038/nrg2224
10.1038/sj.embor.7401036
10.1016/j.molcel.2008.02.021
10.1146/annurev.genet.41.110306.130350
10.1038/sj.emboj.7601235
10.1101/gad.14.14.1777
10.3389/fonc.2013.000309
10.1038/embor.2011.73
10.1038/sj.onc.1208332
10.1038/nsmb.2585
10.1128/MCB.23.11.3721-3734.2003
10.1016/S0960-9822(99)80483-7
10.1016/j.cell.2008.11.027
10.1016/j.mrfmmm.2011.08.011
10.1038/emboj.2012.40
10.1073/pnas.97.12.6658
10.1016/j.molcel.2008.12.022
10.1074/jbc.M112.415984
10.1101/gad.300004
10.1128/MCB.24.16.6931-6946.2004
10.1073/pnas.062502299
10.1038/nsmb1125
10.1093/emboj/18.12.3509
10.1101/gad.2003811
10.1371/journal.pgen.1002960
10.1016/j.molcel.2010.08.024
10.1038/sj.embor.7400911
10.1093/nar/gkh309
10.1016/j.molcel.2006.07.035
10.1016/j.cell.2005.03.035
10.1016/j.yexcr.2012.09.005
10.1016/S0092-8674(00)80773-4
10.1056/NEJMra0903373
10.1101/gad.178491.111
10.1159/000167804
10.1101/gad.455108
10.1126/science.1170633
10.1016/0092-8674(94)90179-1
10.1038/22780
10.1016/S0092-8674(00)81088-0
10.1128/MCB.24.24.10857-10867.2004
10.1006/jmbi.1993.1283
10.1128/MCB.19.11.7481
10.1038/239197a0
10.1093/emboj/18.11.3173
10.1073/pnas.93.24.13760
10.4161/cc.6.10.4224
10.1128/MCB.00994-10
10.1371/journal.pgen.1002417
10.1093/emboj/20.16.4522
10.1038/nrm3546
10.1016/S0960-9822(00)00562-5
10.1534/genetics.166.2.753
10.1038/emboj.2010.193
10.1073/pnas.1319313110
10.1016/0092-8674(83)90437-3
10.1126/science.1230624
10.1093/genetics/162.3.1101
10.1038/emboj.2011.345
10.1101/gad.11.6.748
10.1038/emboj.2012.180
10.4161/cc.6.1.3647
10.1002/j.1460-2075.1996.tb00890.x
10.1016/j.cell.2009.06.021
10.1101/gad.11.4.512
10.1038/msb.2008.13
10.1016/0092-8674(82)90109-X
10.1126/science.1231573
10.1038/nsmb.2100
10.1073/pnas.1934561100
10.1083/jcb.200505159
10.1038/ng1917
10.1016/S0960-9822(00)00450-4
10.1371/journal.pgen.1002060
10.1038/ncb2745
10.1101/gad.10.11.1310
10.3389/fonc.2013.00101
10.1038/emboj.2008.93
10.1128/MCB.20.22.8397-8408.2000
10.1083/jcb.200706040
ContentType Journal Article
Copyright 2014 Federation of European Microbiological Societies. 2014
2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved
Copyright © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved
Copyright_xml – notice: 2014 Federation of European Microbiological Societies. 2014
– notice: 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved
– notice: Copyright © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
DOI 10.1111/1574-6976.12054
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Yeasts as models in cell biology
EISSN 1574-6976
EndPage 171
ExternalDocumentID 3239237961
24754043
10_1111_1574_6976_12054
FMR12054
10.1111/1574-6976.12054
Genre reviewArticle
Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Israel Cancer Research Fund
– fundername: Israel Science Foundation
– fundername: Israeli Ministry of Science and Technology
– fundername: US‐Israel Bi‐national Fund
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
1TH
29H
36B
4.4
48X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAHBH
AAHHS
AAIMJ
AAMDB
AAMVS
AAOGV
AAONW
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABEUO
ABIXL
ABJNI
ABLJU
ABPTD
ABQLI
ABXVV
ACCFJ
ACFRR
ACGFO
ACGFS
ACPRK
ACUFI
ACXQS
ADBBV
ADEZT
ADGZP
ADHKW
ADHZD
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
AEEZP
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFBPY
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AFZJQ
AGINJ
AGSYK
AHMBA
AIWBW
AJAOE
AJBDE
AJEEA
AKRWK
AKWXX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
AVWKF
AXUDD
AYOIW
AZBYB
BAFTC
BAYMD
BBNVY
BCRHZ
BDRZF
BENPR
BEYMZ
BHONS
BHPHI
BQDIO
BSWAC
BY8
C45
CDBKE
CS3
D-E
D-F
DAKXR
DCZOG
DILTD
DR2
DU5
EBS
EDH
EJD
EMB
EMOBN
ESTFP
F00
F01
F04
F5P
FDB
FHSFR
FLUFQ
FOEOM
FYUFA
G-S
G.N
GAUVT
GJXCC
GODZA
H.T
H.X
H13
HAR
HOLLA
HZI
HZ~
IX1
J0M
J21
K48
KAQDR
KBUDW
KOP
KSI
KSN
LC2
LC3
LH4
LP6
LP7
LW6
M7P
MK4
MM.
N04
N05
N9A
NF~
NLBLG
NOMLY
NVLIB
O9-
OAWHX
ODMLO
OIG
OJQWA
OK1
OVD
P2P
P2X
P4D
PAFKI
PEELM
Q.N
Q11
Q5Y
QB0
R.K
RIG
ROL
ROX
ROZ
RUSNO
RX1
RXO
SUPJJ
SV3
TEORI
TLC
TOX
UB1
V8K
W8V
W99
WH7
WQJ
WRC
WYUIH
XG1
YAYTL
YKOAZ
YXANX
ZCN
ZMT
~02
~IA
~KM
~WT
--K
1B1
1~5
31~
3V.
4G.
7-5
88E
8CJ
8FE
8FH
8FI
8FJ
AAEDT
AAJQQ
AALRI
AANHP
AAQFI
AAQXK
AAWDT
AAXUO
ABEFU
ABEJV
ABMAC
ABSAR
ABSMQ
ABUWG
ABWVN
ACBWZ
ACIUM
ACRPL
ACSCC
ACUTJ
ACYXJ
ADMUD
ADNMO
ADZOD
AEQDE
AEUYN
AFKRA
AFULF
AFYAG
AHEFC
AI.
AMNDL
ANFBD
ASAOO
ATDFG
BPHCQ
BVXVI
CAG
CCPQU
COF
CXTWN
D1J
DC6
DFGAJ
FEDTE
FGOYB
FIRID
FZ0
HCIFZ
HF~
HMCUK
HVGLF
IAG
IAO
IEP
IHE
IHR
ISR
ITC
LK8
LW9
M1P
M41
NQ-
PQQKQ
PROAC
PSQYO
R2-
RPM
RPZ
SEW
SIN
SSZ
TCN
UKHRP
VH1
XPP
Y6R
ZXP
AAYXX
ABGNP
ABIME
ABPIB
ABXZS
ACVFH
ADCNI
ADGKP
AEUPX
AFPUW
AGQPQ
AHGBF
AIGII
ALXQX
APJGH
CITATION
JXSIZ
NU-
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
RC3
WIN
7X8
ID FETCH-LOGICAL-c3214-adfec647e87f78f66b7a88c75b645425fbd46e9b6ea60e59d95c9849e9d5cd523
IEDL.DBID DR2
ISSN 0168-6445
1574-6976
IngestDate Sun Aug 24 03:47:39 EDT 2025
Wed Aug 13 10:39:50 EDT 2025
Wed Feb 19 02:42:31 EST 2025
Tue Jul 01 01:56:20 EDT 2025
Thu Apr 24 22:51:22 EDT 2025
Wed Jan 22 16:56:37 EST 2025
Wed Sep 11 04:52:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords genome stability
DNA replication
cancer
aging
DNA damage response
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3214-adfec647e87f78f66b7a88c75b645425fbd46e9b6ea60e59d95c9849e9d5cd523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 24754043
PQID 1504787764
PQPubID 986349
PageCount 28
ParticipantIDs proquest_miscellaneous_1518620051
proquest_journals_1504787764
pubmed_primary_24754043
crossref_primary_10_1111_1574_6976_12054
crossref_citationtrail_10_1111_1574_6976_12054
wiley_primary_10_1111_1574_6976_12054_FMR12054
oup_primary_10_1111_1574-6976_12054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140301
March 2014
2014-03-00
2014-Mar
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 20140301
  day: 01
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Delft
PublicationTitle FEMS microbiology reviews
PublicationTitleAlternate FEMS Microbiol Rev
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: Oxford University Press
References 1998; 281
1998; 280
1990; 345
2004; 23
2004; 24
2002; 99
2010; 186
1971; 201
2012; 19
1996; 144
2008; 32
2008; 105
1998; 279
2008; 30
1996; 383
2003; 278
2007b; 21
1998; 394
1998; 273
2004; 32
2007; 179
1994; 265
2000; 19
2000; 14
2013; 51
2000; 10
2000; 403
2004; 36
2000; 11
1995; 23
2008; 27
2008; 28
2009a; 183
2008; 22
2013; 110
2012; 26
2012; 23
1996; 134
2012b; 31
2010; 6
2007; 18
1996b; 15
1987; 51
2011; 1
2009; 182
2010; 289
1997; 211
1996; 93
2010; 285
2001; 27
2001; 28
2001; 29
2008; 122
1990; 124
2011; 7
2012; 31
2007; 14
2001; 20
2001; 21
2012a; 730
2004; 431
2004a; 18
2013; 339
2012; 191
2012; 192
2005; 4
1996; 85
2008; 42
2010a; 5
2008; 134
2012; 40
1998; 8
2013; 27
2013; 20
2008; 9
2008; 5
2008; 4
2001; 107
2007; 35
2001; 104
1979; 73
2013; 15
2013; 14
1994; 103
1986; 40
1993; 73
2000; 289
1999; 19
1999; 18
2013; 12
2013; 319
1993; 75
1999; 13
2001; 15
1992b; 12
2001; 11
2007; 21
1996; 24
2012; 336
2009; 326
2006; 124
2007; 27
2013; 49
2006; 13
1995; 15
2013; 41
1996; 52
2000; 275
2000; 155
2003; 72
1985; 42
2009b; 183
2003; 303
2013; 32
2005; 168
2002; 22
1999; 152
1992; 68
2008; 455
2009; 5
2003; 300
2002; 16
2004; 166
2013; 3
2012; 121
2004; 168
2006; 34
2010; 107
2010; 17
2006; 38
2002; 12
2010; 467
1999; 285
1999; 286
1996a; 24
2001a; 20
2006; 172
2013; 8
2013; 9
2009; 11
2010; 21
1986; 83
2010; 24
2006; 24
2006; 21
2010; 29
1984; 310
2006; 25
2000; 97
2006; 26
2007; 8
2007; 6
2009; 361
2007; 3
1998; 95
2013; 193
2001; 411
2009; 15
1994; 76
2010; 31
2010; 38
2007; 448
2010; 39
1996; 10
1995; 270
2004; 279
1984; 4
2005; 121
1994; 91
2007; 318
1989; 57
1993; 231
2003; 100
2003; 23
2009; 106
1993; 7
2012; 287
2003; 14
2011; 11
2003; 17
2011; 13
2013; 162
1999; 400
2011; 12
2001b; 20
2011; 18
1992; 12
2005; 24
2005; 25
2001; 294
2004; 259
1997; 107
2007a; 128
1982; 29
1997; 11
1999; 99
2011; 22
2011; 21
1999; 97
2011; 25
2013; 153
2012; 730
1990; 250
2004; 101
2009; 23
1998; 26
1972; 239
2002; 297
2008; 18
2000; 20
2011; 31
2006; 8
2011; 30
2006; 5
2008; 10
2006; 2
2010b; 6
2012; 148
2012; 77
2009; 136
2009; 29
1983; 33
2004b; 166
2009; 138
1992a; 6
2009; 28
1999; 9
2005; 47
2008; 180
1990; 63
2004; 11
2009; 33
1994; 8
2009; 35
1993; 12
2012; 2
2004; 18
2001; 7
2004; 16
2002; 162
2004; 15
2011; 51
1988; 8
2011; 50
2013; 497
2011; 44
2001; 2
1996; 274
2004; 119
2004; 117
2009; 37
2012; 8
2015070909421538000_38.2.144.14
2015070909421538000_38.2.144.135
2015070909421538000_38.2.144.256
2015070909421538000_38.2.144.15
2015070909421538000_38.2.144.136
2015070909421538000_38.2.144.257
2015070909421538000_38.2.144.16
2015070909421538000_38.2.144.133
2015070909421538000_38.2.144.254
2015070909421538000_38.2.144.17
2015070909421538000_38.2.144.134
2015070909421538000_38.2.144.255
2015070909421538000_38.2.144.10
2015070909421538000_38.2.144.139
2015070909421538000_38.2.144.11
2015070909421538000_38.2.144.12
2015070909421538000_38.2.144.137
2015070909421538000_38.2.144.258
2015070909421538000_38.2.144.13
2015070909421538000_38.2.144.138
2015070909421538000_38.2.144.259
2015070909421538000_38.2.144.18
2015070909421538000_38.2.144.19
2015070909421538000_38.2.144.260
2015070909421538000_38.2.144.142
2015070909421538000_38.2.144.263
2015070909421538000_38.2.144.143
2015070909421538000_38.2.144.264
2015070909421538000_38.2.144.140
2015070909421538000_38.2.144.261
2015070909421538000_38.2.144.141
2015070909421538000_38.2.144.262
2015070909421538000_38.2.144.25
2015070909421538000_38.2.144.146
2015070909421538000_38.2.144.267
2015070909421538000_38.2.144.26
2015070909421538000_38.2.144.147
2015070909421538000_38.2.144.268
2015070909421538000_38.2.144.27
2015070909421538000_38.2.144.144
2015070909421538000_38.2.144.265
2015070909421538000_38.2.144.28
2015070909421538000_38.2.144.145
2015070909421538000_38.2.144.266
2015070909421538000_38.2.144.21
2015070909421538000_38.2.144.22
2015070909421538000_38.2.144.23
2015070909421538000_38.2.144.148
2015070909421538000_38.2.144.269
2015070909421538000_38.2.144.24
2015070909421538000_38.2.144.149
2015070909421538000_38.2.144.29
2015070909421538000_38.2.144.270
2015070909421538000_38.2.144.150
2015070909421538000_38.2.144.271
2015070909421538000_38.2.144.20
2015070909421538000_38.2.144.153
2015070909421538000_38.2.144.274
2015070909421538000_38.2.144.154
2015070909421538000_38.2.144.275
2015070909421538000_38.2.144.151
2015070909421538000_38.2.144.272
2015070909421538000_38.2.144.152
2015070909421538000_38.2.144.273
2015070909421538000_38.2.144.36
2015070909421538000_38.2.144.157
2015070909421538000_38.2.144.278
2015070909421538000_38.2.144.37
2015070909421538000_38.2.144.158
2015070909421538000_38.2.144.279
2015070909421538000_38.2.144.38
2015070909421538000_38.2.144.155
2015070909421538000_38.2.144.276
2015070909421538000_38.2.144.39
2015070909421538000_38.2.144.156
2015070909421538000_38.2.144.277
2015070909421538000_38.2.144.32
2015070909421538000_38.2.144.33
2015070909421538000_38.2.144.34
2015070909421538000_38.2.144.159
2015070909421538000_38.2.144.35
2015070909421538000_38.2.144.160
2015070909421538000_38.2.144.281
2015070909421538000_38.2.144.161
2015070909421538000_38.2.144.282
2015070909421538000_38.2.144.30
2015070909421538000_38.2.144.31
2015070909421538000_38.2.144.280
2015070909421538000_38.2.144.164
2015070909421538000_38.2.144.285
2015070909421538000_38.2.144.165
2015070909421538000_38.2.144.286
2015070909421538000_38.2.144.162
2015070909421538000_38.2.144.283
2015070909421538000_38.2.144.163
2015070909421538000_38.2.144.284
2015070909421538000_38.2.144.47
2015070909421538000_38.2.144.168
2015070909421538000_38.2.144.289
2015070909421538000_38.2.144.48
2015070909421538000_38.2.144.169
2015070909421538000_38.2.144.49
2015070909421538000_38.2.144.166
2015070909421538000_38.2.144.287
2015070909421538000_38.2.144.167
2015070909421538000_38.2.144.288
2015070909421538000_38.2.144.43
2015070909421538000_38.2.144.44
2015070909421538000_38.2.144.45
2015070909421538000_38.2.144.46
2015070909421538000_38.2.144.171
2015070909421538000_38.2.144.292
2015070909421538000_38.2.144.40
2015070909421538000_38.2.144.172
2015070909421538000_38.2.144.293
2015070909421538000_38.2.144.41
2015070909421538000_38.2.144.290
2015070909421538000_38.2.144.42
2015070909421538000_38.2.144.170
2015070909421538000_38.2.144.291
2015070909421538000_38.2.144.175
2015070909421538000_38.2.144.296
2015070909421538000_38.2.144.176
2015070909421538000_38.2.144.297
2015070909421538000_38.2.144.173
2015070909421538000_38.2.144.294
2015070909421538000_38.2.144.174
2015070909421538000_38.2.144.295
2015070909421538000_38.2.144.58
2015070909421538000_38.2.144.212
2015070909421538000_38.2.144.333
2015070909421538000_38.2.144.59
2015070909421538000_38.2.144.213
2015070909421538000_38.2.144.334
2015070909421538000_38.2.144.210
2015070909421538000_38.2.144.331
2015070909421538000_38.2.144.211
2015070909421538000_38.2.144.332
2015070909421538000_38.2.144.54
2015070909421538000_38.2.144.216
2015070909421538000_38.2.144.337
2015070909421538000_38.2.144.55
2015070909421538000_38.2.144.217
2015070909421538000_38.2.144.338
2015070909421538000_38.2.144.56
2015070909421538000_38.2.144.214
2015070909421538000_38.2.144.335
2015070909421538000_38.2.144.57
2015070909421538000_38.2.144.215
2015070909421538000_38.2.144.336
2015070909421538000_38.2.144.218
2015070909421538000_38.2.144.339
2015070909421538000_38.2.144.219
2015070909421538000_38.2.144.50
2015070909421538000_38.2.144.51
2015070909421538000_38.2.144.52
2015070909421538000_38.2.144.53
2015070909421538000_38.2.144.340
2015070909421538000_38.2.144.220
2015070909421538000_38.2.144.341
2015070909421538000_38.2.144.69
2015070909421538000_38.2.144.102
2015070909421538000_38.2.144.223
2015070909421538000_38.2.144.344
2015070909421538000_38.2.144.103
2015070909421538000_38.2.144.224
2015070909421538000_38.2.144.345
2015070909421538000_38.2.144.100
2015070909421538000_38.2.144.221
2015070909421538000_38.2.144.342
2015070909421538000_38.2.144.101
2015070909421538000_38.2.144.222
2015070909421538000_38.2.144.343
2015070909421538000_38.2.144.65
2015070909421538000_38.2.144.106
2015070909421538000_38.2.144.227
2015070909421538000_38.2.144.348
2015070909421538000_38.2.144.66
2015070909421538000_38.2.144.107
2015070909421538000_38.2.144.228
2015070909421538000_38.2.144.67
2015070909421538000_38.2.144.104
2015070909421538000_38.2.144.225
2015070909421538000_38.2.144.346
2015070909421538000_38.2.144.68
2015070909421538000_38.2.144.105
2015070909421538000_38.2.144.226
2015070909421538000_38.2.144.347
2015070909421538000_38.2.144.108
2015070909421538000_38.2.144.229
2015070909421538000_38.2.144.109
2015070909421538000_38.2.144.61
2015070909421538000_38.2.144.62
2015070909421538000_38.2.144.63
2015070909421538000_38.2.144.64
2015070909421538000_38.2.144.230
2015070909421538000_38.2.144.110
2015070909421538000_38.2.144.231
2015070909421538000_38.2.144.60
2015070909421538000_38.2.144.113
2015070909421538000_38.2.144.234
2015070909421538000_38.2.144.114
2015070909421538000_38.2.144.235
2015070909421538000_38.2.144.111
2015070909421538000_38.2.144.232
2015070909421538000_38.2.144.112
2015070909421538000_38.2.144.233
2015070909421538000_38.2.144.76
2015070909421538000_38.2.144.117
2015070909421538000_38.2.144.238
2015070909421538000_38.2.144.77
2015070909421538000_38.2.144.118
2015070909421538000_38.2.144.239
2015070909421538000_38.2.144.78
2015070909421538000_38.2.144.115
2015070909421538000_38.2.144.236
2015070909421538000_38.2.144.79
2015070909421538000_38.2.144.116
2015070909421538000_38.2.144.237
2015070909421538000_38.2.144.119
2015070909421538000_38.2.144.72
2015070909421538000_38.2.144.73
2015070909421538000_38.2.144.74
2015070909421538000_38.2.144.75
2015070909421538000_38.2.144.120
2015070909421538000_38.2.144.241
2015070909421538000_38.2.144.121
2015070909421538000_38.2.144.242
2015070909421538000_38.2.144.70
2015070909421538000_38.2.144.71
2015070909421538000_38.2.144.240
2015070909421538000_38.2.144.124
2015070909421538000_38.2.144.245
2015070909421538000_38.2.144.125
2015070909421538000_38.2.144.246
2015070909421538000_38.2.144.122
2015070909421538000_38.2.144.243
2015070909421538000_38.2.144.123
2015070909421538000_38.2.144.244
2015070909421538000_38.2.144.87
2015070909421538000_38.2.144.128
2015070909421538000_38.2.144.249
2015070909421538000_38.2.144.88
2015070909421538000_38.2.144.129
2015070909421538000_38.2.144.89
2015070909421538000_38.2.144.126
2015070909421538000_38.2.144.247
2015070909421538000_38.2.144.127
2015070909421538000_38.2.144.248
2015070909421538000_38.2.144.83
2015070909421538000_38.2.144.84
2015070909421538000_38.2.144.85
2015070909421538000_38.2.144.86
2015070909421538000_38.2.144.131
2015070909421538000_38.2.144.252
2015070909421538000_38.2.144.80
2015070909421538000_38.2.144.132
2015070909421538000_38.2.144.253
2015070909421538000_38.2.144.81
2015070909421538000_38.2.144.250
2015070909421538000_38.2.144.82
2015070909421538000_38.2.144.130
2015070909421538000_38.2.144.251
2015070909421538000_38.2.144.98
2015070909421538000_38.2.144.99
2015070909421538000_38.2.144.94
2015070909421538000_38.2.144.95
2015070909421538000_38.2.144.96
2015070909421538000_38.2.144.97
2015070909421538000_38.2.144.90
2015070909421538000_38.2.144.91
2015070909421538000_38.2.144.92
2015070909421538000_38.2.144.93
2015070909421538000_38.2.144.9
2015070909421538000_38.2.144.300
2015070909421538000_38.2.144.301
2015070909421538000_38.2.144.304
2015070909421538000_38.2.144.305
2015070909421538000_38.2.144.302
2015070909421538000_38.2.144.303
2015070909421538000_38.2.144.1
2015070909421538000_38.2.144.308
2015070909421538000_38.2.144.2
2015070909421538000_38.2.144.309
2015070909421538000_38.2.144.3
2015070909421538000_38.2.144.306
2015070909421538000_38.2.144.4
2015070909421538000_38.2.144.307
2015070909421538000_38.2.144.5
2015070909421538000_38.2.144.6
2015070909421538000_38.2.144.7
2015070909421538000_38.2.144.8
2015070909421538000_38.2.144.311
2015070909421538000_38.2.144.312
2015070909421538000_38.2.144.310
2015070909421538000_38.2.144.315
2015070909421538000_38.2.144.316
2015070909421538000_38.2.144.313
2015070909421538000_38.2.144.314
2015070909421538000_38.2.144.319
2015070909421538000_38.2.144.317
2015070909421538000_38.2.144.318
2015070909421538000_38.2.144.201
2015070909421538000_38.2.144.322
2015070909421538000_38.2.144.202
2015070909421538000_38.2.144.323
2015070909421538000_38.2.144.320
2015070909421538000_38.2.144.200
2015070909421538000_38.2.144.321
2015070909421538000_38.2.144.205
2015070909421538000_38.2.144.326
2015070909421538000_38.2.144.206
2015070909421538000_38.2.144.327
2015070909421538000_38.2.144.203
2015070909421538000_38.2.144.324
2015070909421538000_38.2.144
References_xml – volume: 8
  start-page: 748
  year: 2006
  end-page: 755
  article-title: Chromosome end protection plasticity revealed by Stn1p and Ten1p bypass of Cdc13p
  publication-title: Nat Cell Biol
– volume: 76
  start-page: 145
  year: 1994
  end-page: 155
  article-title: The PIF1 DNA helicase inhibits telomere elongation and telomere formation
  publication-title: Cell
– volume: 38
  start-page: 6490
  year: 2010
  end-page: 6501
  article-title: The ribonucleotide reductase inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response to DNA damage
  publication-title: Nucleic Acids Res
– volume: 17
  start-page: 1957
  year: 2003
  end-page: 1962
  article-title: ATM‐related Tel1 associates with double‐strand breaks through an Xrs2‐dependent mechanism
  publication-title: Genes Dev
– volume: 23
  start-page: 6585
  year: 2003
  end-page: 6596
  article-title: The checkpoint protein Rad24 of is involved in processing double‐strand break ends and in recombination partner choice
  publication-title: Mol Cell Biol
– volume: 730
  start-page: 52
  year: 2012
  end-page: 58
  article-title: Telomerase and idiopathic pulmonary fibrosis
  publication-title: Mutat Res
– volume: 231
  start-page: 293
  year: 1993
  end-page: 310
  article-title: Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites
  publication-title: J Mol Biol
– volume: 47
  start-page: 18
  year: 2005
  end-page: 28
  article-title: The yeast VPS genes affect telomere length regulation
  publication-title: Curr Genet
– volume: 8
  start-page: e66756
  year: 2013
  article-title: Structure of the human telomeric stn1‐ten1 capping complex
  publication-title: PLoS ONE
– volume: 16
  start-page: 2485
  year: 2002
  end-page: 2490
  article-title: Ku complex controls the replication time of DNA in telomere regions
  publication-title: Genes Dev
– volume: 12
  start-page: 587
  year: 2011
  end-page: 593
  article-title: Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast
  publication-title: EMBO Rep
– volume: 105
  start-page: 18730
  year: 2008
  end-page: 18734
  article-title: Dpb11 activates the Mec1‐Ddc2 complex
  publication-title: P Natl Acad Sci USA
– volume: 7
  start-page: e1002417
  year: 2011
  article-title: A novel checkpoint and RPA inhibitory pathway regulated by Rif1
  publication-title: PLoS Genet
– volume: 278
  start-page: 45027
  year: 2003
  end-page: 45033
  article-title: Two distinct pathways for inhibiting pds1 ubiquitination in response to DNA damage
  publication-title: J Biol Chem
– volume: 6
  start-page: 75
  year: 2007
  end-page: 79
  article-title: The nuclear envelope and spindle pole body‐associated Mps3 protein bind telomere regulators and function in telomere clustering
  publication-title: Cell Cycle
– volume: 259
  start-page: 48
  year: 2004
  end-page: 56
  article-title: A model for step‐wise assembly of heterochromatin in yeast
  publication-title: Novartis Found Symp
– volume: 40
  start-page: 5795
  year: 2012
  end-page: 5818
  article-title: Homologous recombination and its regulation
  publication-title: Nucleic Acids Res
– volume: 294
  start-page: 115
  year: 2001
  end-page: 121
  article-title: Replication dynamics of the yeast genome
  publication-title: Science
– volume: 21
  start-page: 292
  year: 2007
  end-page: 302
  article-title: DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation
  publication-title: Genes Dev
– volume: 28
  start-page: 327
  year: 2001
  end-page: 334
  article-title: Promoter‐specific binding of Rap1 revealed by genome‐wide maps of protein‐DNA association
  publication-title: Nat Genet
– volume: 103
  start-page: 237
  year: 1994
  end-page: 250
  article-title: TEL + CEN antagonism on plasmids involves telomere repeat sequences tracts and gene products that interact with chromosomal telomeres
  publication-title: Chromosoma
– volume: 8
  start-page: 210
  year: 1988
  end-page: 225
  article-title: Two DNA‐binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in
  publication-title: Mol Cell Biol
– volume: 20
  start-page: 1173
  year: 2001b
  end-page: 1183
  article-title: Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13
  publication-title: EMBO J
– volume: 7
  start-page: e1002233
  year: 2011
  article-title: Ku must load directly onto the chromosome end in order to mediate its telomeric functions
  publication-title: PLoS Genet
– volume: 15
  start-page: 694
  year: 2013
  end-page: 699
  article-title: Effect of nuclear architecture on the efficiency of double‐strand break repair
  publication-title: Nat Cell Biol
– volume: 10
  start-page: 809
  year: 2000
  end-page: 812
  article-title: The Est3 protein is a subunit of yeast telomerase
  publication-title: Curr Biol
– volume: 28
  start-page: 2174
  year: 2009
  end-page: 2187
  article-title: Taming the tiger by the tail: modulation of DNA damage responses by telomeres
  publication-title: EMBO J
– volume: 279
  start-page: 349
  year: 1998
  end-page: 352
  article-title: Extension of life‐span by introduction of telomerase into normal human cells
  publication-title: Science
– volume: 24
  start-page: 949
  year: 2005
  end-page: 961
  article-title: The life and death of DNA‐PK
  publication-title: Oncogene
– volume: 361
  start-page: 2353
  year: 2009
  end-page: 2365
  article-title: Telomere diseases
  publication-title: N Engl J Med
– volume: 50
  start-page: 6289
  year: 2011
  end-page: 6291
  article-title: Sequence‐specific binding to telomeric DNA is not a conserved property of the Cdc13 DNA binding domain
  publication-title: Biochemistry
– volume: 18
  start-page: 920
  year: 2011
  end-page: 926
  article-title: SUMOylation regulates telomere length homeostasis by targeting Cdc13
  publication-title: Nat Struct Mol Biol
– volume: 21
  start-page: 7277
  year: 2001
  end-page: 7286
  article-title: Molecular basis for telomere repeat divergence in budding yeast
  publication-title: Mol Cell Biol
– volume: 403
  start-page: 795
  year: 2000
  end-page: 800
  article-title: Transcriptional silencing and longevity protein Sir2 is an NAD‐dependent histone deacetylase
  publication-title: Nature
– volume: 75
  start-page: 1119
  year: 1993
  end-page: 1127
  article-title: DUN1 encodes a protein kinase that controls the DNA damage response in yeast
  publication-title: Cell
– volume: 21
  start-page: 186
  year: 2010
  end-page: 193
  article-title: Chromatin regulation and non‐coding RNAs at mammalian telomeres
  publication-title: Semin Cell Dev Biol
– volume: 20
  start-page: 4522
  year: 2001
  end-page: 4535
  article-title: Sir2p exists in two nucleosome‐binding complexes with distinct deacetylase activities
  publication-title: EMBO J
– volume: 22
  start-page: 8292
  year: 2002
  end-page: 8301
  article-title: Esc1, a nuclear periphery protein required for Sir4‐based plasmid anchoring and partitioning
  publication-title: Mol Cell Biol
– volume: 275
  start-page: 30833
  year: 2000
  end-page: 30838
  article-title: The relationship between homology length and crossing over during the repair of a broken chromosome
  publication-title: J Biol Chem
– volume: 85
  start-page: 125
  year: 1996
  end-page: 136
  article-title: The crystal structure of the DNA‐binding domain of yeast RAP1 in complex with telomeric DNA
  publication-title: Cell
– volume: 27
  start-page: 2400
  year: 2008
  end-page: 2410
  article-title: Checkpoint‐dependent phosphorylation of Exo1 modulates the DNA damage response
  publication-title: EMBO J
– volume: 18
  start-page: 992
  year: 2004
  end-page: 1006
  article-title: Pol12, the B subunit of DNA polymerase alpha, functions in both telomere capping and length regulation
  publication-title: Genes Dev
– volume: 25
  start-page: 350
  year: 2011
  end-page: 362
  article-title: BLM‐DNA2‐RPA‐MRN and EXO1‐BLM‐RPA‐MRN constitute two DNA end resection machineries for human DNA break repair
  publication-title: Genes Dev
– volume: 4
  start-page: 259
  year: 2005
  end-page: 261
  article-title: Cell cycle‐dependent regulation of double‐strand break repair: a role for the CDK
  publication-title: Cell Cycle
– volume: 24
  start-page: 10857
  year: 2004
  end-page: 10867
  article-title: Counting of Rif1p and Rif2p on telomeres regulates telomere length
  publication-title: Mol Cell Biol
– volume: 14
  start-page: 2046
  year: 2000
  end-page: 2059
  article-title: The checkpoint protein Ddc2, functionally related to Rad26, interacts with Mec1 and is regulated by Mec1‐dependent phosphorylation in budding yeast
  publication-title: Genes Dev
– volume: 310
  start-page: 154
  year: 1984
  end-page: 157
  article-title: DNA sequences of telomeres maintained in yeast
  publication-title: Nature
– volume: 17
  start-page: 2347
  year: 2003
  end-page: 2350
  article-title: Which end: dissecting Ku's function at telomeres and double‐strand breaks
  publication-title: Genes Dev
– volume: 63
  start-page: 739
  year: 1990
  end-page: 750
  article-title: RAP1 protein interacts with yeast telomeres : overproduction alters telomere structure and decreases chromosome stability
  publication-title: Cell
– volume: 18
  start-page: 3173
  year: 1999
  end-page: 3185
  article-title: RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast
  publication-title: EMBO J
– volume: 326
  start-page: 948
  year: 2009
  end-page: 952
  article-title: How telomeres solve the end‐protection problem
  publication-title: Science
– volume: 8
  start-page: 851
  year: 2007
  end-page: 857
  article-title: Rad9 BRCT domain interaction with phosphorylated H2AX regulates the G1 checkpoint in budding yeast
  publication-title: EMBO Rep
– volume: 8
  start-page: 2257
  year: 1994
  end-page: 2269
  article-title: Evidence that a complex of SIR proteins interacts with the silencer and telomere‐binding protein RAP1
  publication-title: Genes Dev
– volume: 339
  start-page: 700
  year: 2013
  end-page: 704
  article-title: 53BP1 regulates DSB repair using Rif1 to control 5′ end resection
  publication-title: Science
– volume: 25
  start-page: 3576
  year: 2006
  end-page: 3585
  article-title: Yeast homolog of a cancer‐testis antigen defines a new transcription complex
  publication-title: EMBO J
– volume: 15
  start-page: 2809
  year: 2001
  end-page: 2821
  article-title: Two checkpoint complexes are independently recruited to sites of DNA damage
  publication-title: Genes Dev
– volume: 281
  start-page: 272
  year: 1998
  end-page: 274
  article-title: Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint
  publication-title: Science
– volume: 411
  start-page: 1073
  year: 2001
  end-page: 1076
  article-title: Multiple pathways cooperate in the suppression of genome instability in
  publication-title: Nature
– volume: 27
  start-page: 550
  year: 2007
  end-page: 561
  article-title: Telomerase and Tel1p preferentially associate with short telomeres in
  publication-title: Mol Cell
– volume: 319
  start-page: 133
  year: 2013
  end-page: 141
  article-title: Telomeres‐structure, function, and regulation
  publication-title: Exp Cell Res
– volume: 8
  start-page: 380
  year: 2007
  end-page: 387
  article-title: Dual role for Tel1 in the checkpoint response to double‐strand breaks
  publication-title: EMBO Rep
– volume: 11
  start-page: 83
  year: 1997
  end-page: 93
  article-title: SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast
  publication-title: Genes Dev
– volume: 3
  start-page: 27
  year: 2013
  article-title: Alternative lengthening of telomeres: remodeling the telomere architecture
  publication-title: Front Oncol
– volume: 183
  start-page: 453
  year: 2009b
  end-page: 467
  article-title: The association of yKu with subtelomeric core X sequences prevents recombination involving telomeric sequences
  publication-title: Genetics
– volume: 107
  start-page: 2025
  year: 2010
  end-page: 2030
  article-title: Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres
  publication-title: P Natl Acad Sci USA
– volume: 24
  start-page: 502
  year: 2010
  end-page: 515
  article-title: telomere formation is suppressed by the Mec1‐dependent inhibition of Cdc13 accumulation at DNA breaks
  publication-title: Genes Dev
– volume: 14
  start-page: 301
  year: 2007
  end-page: 307
  article-title: Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions
  publication-title: Nat Struct Mol Biol
– volume: 8
  start-page: 734
  year: 2006
  end-page: 740
  article-title: Linear chromosome maintenance in the absence of essential telomere‐capping proteins
  publication-title: Nat Cell Biol
– volume: 91
  start-page: 12061
  year: 1994
  end-page: 12065
  article-title: Transcription of a yeast telomere alleviates telomere position effect without affecting chromosome stability
  publication-title: P Natl Acad Sci USA
– volume: 144
  start-page: 1399
  year: 1996
  end-page: 1412
  article-title: Senescence mutants of with a defect in telomere replication identify three additional EST genes
  publication-title: Genetics
– volume: 18
  start-page: 261
  year: 2008
  end-page: 271
  article-title: Controlled exchange of chromosomal arms reveals principles driving telomere interactions in yeast
  publication-title: Genome Res
– volume: 2
  start-page: 197
  year: 2001
  end-page: 202
  article-title: Telomerase subunit overexpression suppresses telomere‐specific checkpoint activation in the yeast yku80 mutant
  publication-title: EMBO Rep
– volume: 19
  start-page: 5801
  year: 2000
  end-page: 5812
  article-title: LCD1: an essential gene involved in checkpoint control and regulation of the MEC1 signalling pathway in
  publication-title: EMBO J
– volume: 2
  start-page: 1096
  year: 2012
  end-page: 1103
  article-title: Human CST has independent functions during telomere duplex replication and C‐strand fill‐in
  publication-title: Cell Rep
– volume: 122
  start-page: 194
  year: 2008
  end-page: 201
  article-title: The telomeric transcriptome and SMG proteins at the crossroads
  publication-title: Cytogenet Genome Res
– volume: 39
  start-page: 665
  year: 2010
  end-page: 676
  article-title: CST meets shelterin to keep telomeres in check
  publication-title: Mol Cell
– volume: 18
  start-page: 2663
  year: 2004a
  end-page: 2675
  article-title: Telomerase‐ and recombination‐independent immortalization of budding yeast
  publication-title: Genes Dev
– volume: 12
  start-page: 212
  year: 2013
  end-page: 226
  article-title: RPA provides checkpoint‐independent cell cycle arrest and prevents recombination at uncapped telomeres of
  publication-title: DNA Repair (Amst)
– volume: 6
  start-page: 801
  year: 1992a
  end-page: 814
  article-title: A RAP1‐interacting protein involved in transcriptional silencing and telomere length regulation
  publication-title: Genes Dev
– volume: 497
  start-page: 458
  year: 2013
  end-page: 462
  article-title: Pif1 family helicases suppress genome instability at G‐quadruplex motifs
  publication-title: Nature
– volume: 23
  start-page: 2900
  year: 2009
  end-page: 2914
  article-title: Stn1‐Ten1 is an Rpa2‐Rpa3‐like complex at telomeres
  publication-title: Genes Dev
– volume: 11
  start-page: 988
  year: 2009
  end-page: 993
  article-title: A two‐step model for senescence triggered by a single critically short telomere
  publication-title: Nat Cell Biol
– volume: 467
  start-page: 112
  year: 2010
  end-page: 116
  article-title: DNA end resection by Dna2‐Sgs1‐RPA and its stimulation by Top3‐Rmi1 and Mre11‐Rad50‐Xrs2
  publication-title: Nature
– volume: 29
  start-page: 4414
  year: 2001
  end-page: 4422
  article-title: Quantitative amplification of single‐stranded DNA (QAOS) demonstrates that cdc13‐1 mutants generate ssDNA in a telomere to centromere direction
  publication-title: Nucleic Acids Res
– volume: 211
  start-page: 76
  year: 1997
  end-page: 93
  article-title: Rap1p and telomere length regulation in yeast
  publication-title: Ciba Found Symp
– volume: 17
  start-page: 2384
  year: 2003
  end-page: 2395
  article-title: Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends
  publication-title: Genes Dev
– volume: 289
  start-page: 81
  year: 2010
  end-page: 90
  article-title: Differential tumor‐targeting abilities of three single‐domain antibody formats
  publication-title: Cancer Lett
– volume: 37
  start-page: 3840
  year: 2009
  end-page: 3849
  article-title: A genome‐wide screen for essential yeast genes that affect telomere length maintenance
  publication-title: Nucleic Acids Res
– volume: 383
  start-page: 354
  year: 1996
  end-page: 357
  article-title: Control of telomere growth by interactions of RAP1 with the most distal telomeric repeats
  publication-title: Nature
– volume: 21
  start-page: 6559
  year: 2001
  end-page: 6573
  article-title: Intrachromatid excision of telomeric DNA as a mechanism for telomere size control in
  publication-title: Mol Cell Biol
– volume: 286
  start-page: 1166
  year: 1999
  end-page: 1171
  article-title: Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms
  publication-title: Science
– volume: 152
  start-page: 143
  year: 1999
  end-page: 152
  article-title: RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase
  publication-title: Genetics
– volume: 31
  start-page: 138
  year: 2012
  end-page: 149
  article-title: DNA‐end capping by the budding yeast transcription factor and subtelomeric binding protein Tbf1
  publication-title: EMBO J
– volume: 32
  start-page: 465
  year: 2008
  end-page: 477
  article-title: The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat‐containing RNA and promotes telomere elongation in
  publication-title: Mol Cell
– volume: 100
  start-page: 10854
  year: 2003
  end-page: 10859
  article-title: Genetic regulation of telomere–telomere fusions in the yeast
  publication-title: P Natl Acad Sci USA
– volume: 27
  start-page: 1502
  year: 2008
  end-page: 1512
  article-title: Histone methyltransferase Dot1 and Rad9 inhibit single‐stranded DNA accumulation at DSBs and uncapped telomeres
  publication-title: EMBO J
– volume: 93
  start-page: 13902
  year: 1996
  end-page: 13907
  article-title: Cell cycle‐regulated generation of single‐stranded G‐rich DNA in the absence of telomerase
  publication-title: P Natl Acad Sci USA
– volume: 9
  start-page: 810
  year: 2008
  end-page: 818
  article-title: The Yku70‐Yku80 complex contributes to regulate double‐strand break processing and checkpoint activation during the cell cycle
  publication-title: EMBO Rep
– volume: 18
  start-page: 3509
  year: 1999
  end-page: 3519
  article-title: Progressive cis‐inhibition of telomerase upon telomere elongation
  publication-title: EMBO J
– volume: 730
  start-page: 12
  year: 2012a
  end-page: 19
  article-title: Maintaining the end: roles of telomere proteins in end‐protection, telomere replication and length regulation
  publication-title: Mutat Res
– volume: 16
  start-page: 1919
  year: 2002
  end-page: 1933
  article-title: EXO1‐dependent single‐stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants
  publication-title: Genes Dev
– volume: 51
  start-page: 780
  year: 2013
  end-page: 791
  article-title: Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres
  publication-title: Mol Cell
– volume: 2
  start-page: e35
  year: 2006
  article-title: Telomere length as a quantitative trait: genome‐wide survey and genetic mapping of telomere length‐control genes in yeast
  publication-title: PLoS Genet
– volume: 14
  start-page: 197
  year: 2013
  end-page: 210
  article-title: The ATM protein kinase: regulating the cellular response to genotoxic stress, and more
  publication-title: Nat Rev Mol Cell Biol
– volume: 29
  start-page: 245
  year: 1982
  end-page: 255
  article-title: Cloning yeast telomeres on linear plasmid vectors
  publication-title: Cell
– volume: 9
  start-page: e1003208
  year: 2013
  article-title: Telomerase‐null survivor screening identifies novel telomere recombination regulators
  publication-title: PLoS Genet
– volume: 34
  start-page: 6327
  year: 2006
  end-page: 6336
  article-title: The telomerase‐recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p‐dependent phosphorylation
  publication-title: Nucleic Acids Res
– volume: 30
  start-page: 4897
  year: 2011
  end-page: 4907
  article-title: Dpb11 coordinates Mec1 kinase activation with cell cycle‐regulated Rad9 recruitment
  publication-title: EMBO J
– volume: 11
  start-page: 512
  year: 1997
  end-page: 527
  article-title: Stn1, a new protein, is implicated in telomere size regulation in association with Cdc13
  publication-title: Genes Dev
– volume: 11
  start-page: 125
  year: 2001
  end-page: 129
  article-title: SGS1 is required for telomere elongation in the absence of telomerase
  publication-title: Curr Biol
– volume: 11
  start-page: 980
  year: 2009
  end-page: 987
  article-title: The DNA damage response at eroded telomeres and tethering to the nuclear pore complex
  publication-title: Nat Cell Biol
– volume: 22
  start-page: 1816
  year: 2008
  end-page: 1827
  article-title: Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks
  publication-title: Genes Dev
– volume: 31
  start-page: 3537
  year: 2012b
  end-page: 3549
  article-title: Human CST promotes telomere duplex replication and general replication restart after fork stalling
  publication-title: EMBO J
– volume: 9
  start-page: 616
  year: 2008
  end-page: 627
  article-title: ATR: an essential regulator of genome integrity
  publication-title: Nat Rev Mol Cell Biol
– volume: 8
  start-page: 653
  year: 1998
  end-page: 656
  article-title: Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres
  publication-title: Curr Biol
– volume: 33
  start-page: 147
  year: 2009
  end-page: 159
  article-title: Maintenance of the DNA‐damage checkpoint requires DNA‐damage‐induced mediator protein oligomerization
  publication-title: Mol Cell
– volume: 5
  start-page: e14142
  year: 2010a
  article-title: The MRX complex plays multiple functions in resection of Yku‐ and Rif2‐protected DNA ends
  publication-title: PLoS ONE
– volume: 273
  start-page: 33360
  year: 1998
  end-page: 33366
  article-title: Y′‐Help1, a DNA helicase encoded by the yeast subtelomeric Y′ element, is induced in survivors defective for telomerase
  publication-title: J Biol Chem
– volume: 286
  start-page: 117
  year: 1999
  end-page: 120
  article-title: Est1 and Cdc13 as comediators of telomerase access
  publication-title: Science
– volume: 100
  start-page: 2249
  year: 2003
  end-page: 2254
  article-title: Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint
  publication-title: P Natl Acad Sci USA
– volume: 192
  start-page: 107
  year: 2012
  end-page: 129
  article-title: Structure and function in the budding yeast nucleus
  publication-title: Genetics
– volume: 49
  start-page: 858
  year: 2013
  end-page: 871
  article-title: RIF1 is essential for 53BP1‐dependent nonhomologous end joining and suppression of DNA double‐strand break resection
  publication-title: Mol Cell
– volume: 7
  start-page: e1002271
  year: 2011
  article-title: Release of Ku and MRN from DNA ends by Mre11 nuclease activity and Ctp1 is required for homologous recombination repair of double‐strand breaks
  publication-title: PLoS Genet
– volume: 24
  start-page: 423
  year: 2006
  end-page: 432
  article-title: Regulation of telomere elongation by the cyclin‐dependent kinase CDK1
  publication-title: Mol Cell
– volume: 83
  start-page: 1398
  year: 1986
  end-page: 1402
  article-title: Identification of yeast mutants with altered telomere structure
  publication-title: P Natl Acad Sci USA
– volume: 19
  start-page: 8083
  year: 1999
  end-page: 8093
  article-title: Telomere–telomere recombination is an efficient bypass pathway for telomere maintenance in
  publication-title: Mol Cell Biol
– volume: 5
  start-page: 693
  year: 2006
  end-page: 703
  article-title: Histone H2A phosphorylation and H3 methylation are required for a novel Rad9 DSB repair function following checkpoint activation
  publication-title: DNA Repair (Amst)
– volume: 18
  start-page: 2522
  year: 1999
  end-page: 2537
  article-title: Cohabitation of insulators and silencing elements in yeast subtelomeric regions
  publication-title: EMBO J
– volume: 10
  start-page: 228
  year: 2008
  end-page: 236
  article-title: Developmentally regulated transcription of mammalian telomeres by DNA‐dependent RNA polymerase II
  publication-title: Nat Cell Biol
– volume: 91
  start-page: 7623
  year: 1994
  end-page: 7627
  article-title: Involvement of the Ku autoantigen in the cellular response to DNA double‐strand breaks
  publication-title: P Natl Acad Sci USA
– volume: 121
  start-page: 117
  year: 2012
  end-page: 130
  article-title: Similarities and differences between “uncapped” telomeres and DNA double‐strand breaks
  publication-title: Chromosoma
– volume: 15
  start-page: 6128
  year: 1995
  end-page: 6138
  article-title: Single‐stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint
  publication-title: Mol Cell Biol
– volume: 193
  start-page: 1117
  year: 2013
  end-page: 1133
  article-title: Novel connections between DNA replication, telomere homeostasis, and the DNA damage response revealed by a genome‐wide screen for TEL1/ATM interactions in
  publication-title: Genetics
– volume: 20
  start-page: 836
  year: 2013
  end-page: 842
  article-title: Nucleosome dynamics regulates DNA processing
  publication-title: Nat Struct Mol Biol
– volume: 8
  start-page: e1002960
  year: 2012
  article-title: Rif2 promotes a telomere fold‐back structure through Rpd3L recruitment in budding yeast
  publication-title: PLoS Genet
– volume: 7
  start-page: e1002060
  year: 2011
  article-title: The telomerase subunit Est3 binds telomeres in a cell cycle‐ and Est1‐dependent manner and interacts directly with Est1
  publication-title: PLoS Genet
– volume: 25
  start-page: 8430
  year: 2005
  end-page: 8443
  article-title: Role of Dot1‐dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9
  publication-title: Mol Cell Biol
– volume: 35
  start-page: 403
  year: 2009
  end-page: 413
  article-title: TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres
  publication-title: Mol Cell
– volume: 12
  start-page: 3465
  year: 2013
  end-page: 3470
  article-title: Nature vs nurture: interplay between the genetic control of telomere length and environmental factors
  publication-title: Cell Cycle
– volume: 11
  start-page: 1198
  year: 2004
  end-page: 1205
  article-title: Cell cycle‐dependent regulation of yeast telomerase by Ku
  publication-title: Nat Struct Mol Biol
– volume: 400
  start-page: 464
  year: 1999
  end-page: 468
  article-title: Creation of human tumour cells with defined genetic elements
  publication-title: Nature
– volume: 38
  start-page: 5797
  year: 2010
  end-page: 5806
  article-title: The non‐coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase
  publication-title: Nucleic Acids Res
– volume: 75
  start-page: 729
  year: 1993
  end-page: 739
  article-title: Loss of a yeast telomere: arrest, recovery, and chromosome loss
  publication-title: Cell
– volume: 180
  start-page: 2251
  year: 2008
  end-page: 2266
  article-title: A genomewide suppressor and enhancer analysis of cdc13‐1 reveals varied cellular processes influencing telomere capping in
  publication-title: Genetics
– volume: 51
  start-page: 65
  year: 2011
  end-page: 94
  article-title: TERRA: long noncoding RNA at eukaryotic telomeres
  publication-title: Prog Mol Subcell Biol
– volume: 15
  start-page: 1623
  year: 2004
  end-page: 1634
  article-title: Mutant telomere sequences lead to impaired chromosome separation and a unique checkpoint response
  publication-title: Mol Biol Cell
– volume: 30
  start-page: 1012
  year: 2011
  end-page: 1026
  article-title: Dynamics of Sir3 spreading in budding yeast: secondary recruitment sites and euchromatic localization
  publication-title: EMBO J
– volume: 11
  start-page: 725
  year: 2011
  end-page: 732
  article-title: Microsatellite loci for dreissenid mussels (Mollusca: Bivalvia: Dreissenidae) and relatives: markers for assessing exotic and native populations
  publication-title: Mol Ecol Resour
– volume: 4
  start-page: 2509
  year: 1984
  end-page: 2517
  article-title: Rearrangements of highly polymorphic regions near telomeres of
  publication-title: Mol Cell Biol
– volume: 6
  start-page: 1161
  year: 2007
  end-page: 1167
  article-title: The cell division cycle puts up with unprotected telomeres: cell cycle regulated telomere uncapping as a means to achieve telomere homeostasis
  publication-title: Cell Cycle
– volume: 23
  start-page: 4868
  year: 2004
  end-page: 4875
  article-title: The CDK regulates repair of double‐strand breaks by homologous recombination during the cell cycle
  publication-title: EMBO J
– volume: 24
  start-page: 6931
  year: 2004
  end-page: 6946
  article-title: Budding yeast silencing complexes and regulation of Sir2 activity by protein–protein interactions
  publication-title: Mol Cell Biol
– volume: 73
  start-page: 347
  year: 1993
  end-page: 360
  article-title: An alternative pathway for yeast telomere maintenance rescues est1‐ senescence
  publication-title: Cell
– volume: 134
  start-page: 981
  year: 2008
  end-page: 994
  article-title: Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double‐strand break ends
  publication-title: Cell
– volume: 38
  start-page: 842
  year: 2010
  end-page: 852
  article-title: Cdc13 and telomerase bind through different mechanisms at the lagging‐ and leading‐strand telomeres
  publication-title: Mol Cell
– volume: 20
  start-page: 905
  year: 2001
  end-page: 913
  article-title: The WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase
  publication-title: EMBO J
– volume: 22
  start-page: 1753
  year: 2011
  end-page: 1765
  article-title: The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation
  publication-title: Mol Biol Cell
– volume: 124
  start-page: 1155
  year: 2006
  end-page: 1168
  article-title: A genome‐wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator
  publication-title: Cell
– volume: 20
  start-page: 8397
  year: 2000
  end-page: 8408
  article-title: Cdc13 cooperates with the yeast Ku proteins and Stn1 to regulate telomerase recruitment
  publication-title: Mol Cell Biol
– volume: 106
  start-page: 19298
  year: 2009
  end-page: 19303
  article-title: Telomere capping proteins are structurally related to RPA with an additional telomere‐specific domain
  publication-title: P Natl Acad Sci USA
– volume: 12
  start-page: 1209
  year: 1992b
  end-page: 1217
  article-title: Dissection of a carboxy‐terminal region of the yeast regulatory protein RAP1 with effects on both transcriptional activation and silencing
  publication-title: Mol Cell Biol
– volume: 26
  start-page: 137
  year: 2012
  end-page: 150
  article-title: Rif1 is a global regulator of timing of replication origin firing in fission yeast
  publication-title: Genes Dev
– volume: 431
  start-page: 1011
  year: 2004
  end-page: 1017
  article-title: DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1
  publication-title: Nature
– volume: 36
  start-page: 46
  year: 2004
  end-page: 54
  article-title: RPA regulates telomerase action by providing Est1p access to chromosome ends
  publication-title: Nat Genet
– volume: 110
  start-page: 19866
  year: 2013
  end-page: 19871
  article-title: Genome rearrangements caused by interstitial telomeric sequences in yeast
  publication-title: P Natl Acad Sci USA
– volume: 27
  start-page: 1575
  year: 2008
  end-page: 1584
  article-title: Yeast Rap1 contributes to genomic integrity by activating DNA damage repair genes
  publication-title: EMBO J
– volume: 14
  start-page: 69
  year: 2013
  end-page: 82
  article-title: Finding the end: recruitment of telomerase to telomeres
  publication-title: Nat Rev Mol Cell Biol
– volume: 239
  start-page: 197
  year: 1972
  end-page: 201
  article-title: Origin of concatemeric T7 DNA
  publication-title: Nat New Biol
– volume: 99
  start-page: 723
  year: 1999
  end-page: 733
  article-title: Telomerase‐mediated telomere addition requires DNA primase and DNA polymerases alpha and delta
  publication-title: Cell
– volume: 21
  start-page: 2115
  year: 2011
  end-page: 2120
  article-title: Tor complex 1 controls telomere length by affecting the level of Ku
  publication-title: Curr Biol
– volume: 285
  start-page: 35814
  year: 2010
  end-page: 35824
  article-title: Characterization of the yeast telomere nucleoprotein core: Rap1 binds independently to each recognition site
  publication-title: J Biol Chem
– volume: 7
  start-page: 1255
  year: 2001
  end-page: 1266
  article-title: A DNA damage response pathway controlled by Tel1 and the Mre11 complex
  publication-title: Mol Cell
– volume: 8
  start-page: 741
  year: 2006
  end-page: 747
  article-title: Telomerase‐ and capping‐independent yeast survivors with alternate telomere states
  publication-title: Nat Cell Biol
– volume: 20
  start-page: 2378
  year: 2000
  end-page: 2384
  article-title: Involvement of the checkpoint protein Mec1p in silencing of gene expression at telomeres in
  publication-title: Mol Cell Biol
– volume: 42
  start-page: 249
  year: 1985
  end-page: 257
  article-title: CDC17: an essential gene that prevents telomere elongation in yeast
  publication-title: Cell
– volume: 24
  start-page: 3117
  year: 2005
  end-page: 3127
  article-title: Rap1 prevents telomere fusions by nonhomologous end joining
  publication-title: EMBO J
– volume: 29
  start-page: 4519
  year: 2009
  end-page: 4526
  article-title: MLL associates with telomeres and regulates telomeric repeat‐containing RNA transcription
  publication-title: Mol Cell Biol
– volume: 23
  start-page: 347
  year: 2012
  end-page: 359
  article-title: Subtelomere‐binding protein Tbf1 and telomere‐binding protein Rap1 collaborate to inhibit localization of the Mre11 complex to DNA ends in budding yeast
  publication-title: Mol Biol Cell
– volume: 201
  start-page: 1496
  year: 1971
  end-page: 1499
  article-title: [Principle of marginotomy in template synthesis of polynucleotides]
  publication-title: Dokl Akad Nauk SSSR
– volume: 182
  start-page: 671
  year: 2009
  end-page: 684
  article-title: Telomere maintenance and survival in in the absence of telomerase and RAD52
  publication-title: Genetics
– volume: 280
  start-page: 741
  year: 1998
  end-page: 744
  article-title: Yeast Ku as a regulator of chromosomal DNA end structure
  publication-title: Science
– volume: 17
  start-page: 1438
  year: 2010
  end-page: 1445
  article-title: Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double‐strand break repair
  publication-title: Nat Struct Mol Biol
– volume: 41
  start-page: 6490
  year: 2013
  end-page: 6500
  article-title: Tel1 and Rad51 are involved in the maintenance of telomeres with capping deficiency
  publication-title: Nucleic Acids Res
– volume: 26
  start-page: 5365
  year: 1998
  end-page: 5371
  article-title: Processing of telomeric DNA ends requires the passage of a replication fork
  publication-title: Nucleic Acids Res
– volume: 97
  start-page: 621
  year: 1999
  end-page: 633
  article-title: Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast
  publication-title: Cell
– volume: 85
  start-page: 423
  year: 1996
  end-page: 433
  article-title: Evidence for a new step in telomere maintenance
  publication-title: Cell
– volume: 23
  start-page: 928
  year: 2009
  end-page: 938
  article-title: Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination
  publication-title: Genes Dev
– volume: 11
  start-page: 748
  year: 1997
  end-page: 760
  article-title: A novel Rap1p‐interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in
  publication-title: Genes Dev
– volume: 7
  start-page: e1002024
  year: 2011
  article-title: Rif1 supports the function of the CST complex in yeast telomere capping
  publication-title: PLoS Genet
– volume: 168
  start-page: 375
  year: 2005
  end-page: 387
  article-title: Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization
  publication-title: J Cell Biol
– volume: 21
  start-page: 2485
  year: 2007
  end-page: 2494
  article-title: Telomerase repeat addition processivity is increased at critically short telomeres in a Tel1‐dependent manner in
  publication-title: Genes Dev
– volume: 22
  start-page: 4512
  year: 2002
  end-page: 4521
  article-title: Recombinational telomere elongation promoted by DNA circles
  publication-title: Mol Cell Biol
– volume: 28
  start-page: 2309
  year: 2009
  end-page: 2322
  article-title: Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase
  publication-title: EMBO J
– volume: 49
  start-page: 872
  year: 2013
  end-page: 883
  article-title: A cell cycle‐dependent regulatory circuit composed of 53BP1‐RIF1 and BRCA1‐CtIP controls DNA repair pathway choice
  publication-title: Mol Cell
– volume: 191
  start-page: 1073
  year: 2012
  end-page: 1105
  article-title: Everything you ever wanted to know about telomeres: beginning to end
  publication-title: Genetics
– volume: 21
  start-page: 1819
  year: 2001
  end-page: 1827
  article-title: Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events
  publication-title: Mol Cell Biol
– volume: 77
  start-page: 1120
  year: 2012
  end-page: 1128
  article-title: Telomerase RNA biosynthesis and processing
  publication-title: Biochemistry (Mosc)
– volume: 17
  start-page: 1478
  year: 2010
  end-page: 1485
  article-title: Mre11‐Rad50‐Xrs2 and Sae2 promote 5′ strand resection of DNA double‐strand breaks
  publication-title: Nat Struct Mol Biol
– volume: 179
  start-page: 845
  year: 2007
  end-page: 854
  article-title: Telomere anchoring at the nuclear periphery requires the budding yeast Sad1‐UNC‐84 domain protein Mps3
  publication-title: J Cell Biol
– volume: 7
  start-page: e1001362
  year: 2011
  article-title: Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects
  publication-title: PLoS Genet
– volume: 31
  start-page: 3678
  year: 2012
  end-page: 3690
  article-title: Mouse Rif1 is a key regulator of the replication‐timing programme in mammalian cells
  publication-title: EMBO J
– volume: 162
  start-page: 353
  year: 2013
  end-page: 363
  article-title: Short telomeres: from dyskeratosis congenita to sporadic aplastic anemia and malignancy
  publication-title: Transl Res
– volume: 10
  start-page: 1310
  year: 1996
  end-page: 1326
  article-title: A novel mechanism for telomere size control in
  publication-title: Genes Dev
– volume: 44
  start-page: 819
  year: 2011
  end-page: 827
  article-title: Live cell imaging of telomerase RNA dynamics reveals cell cycle‐dependent clustering of telomerase at elongating telomeres
  publication-title: Mol Cell
– volume: 33
  start-page: 312
  year: 2009
  end-page: 322
  article-title: Rif1 and rif2 inhibit localization of tel1 to DNA ends
  publication-title: Mol Cell
– volume: 8
  start-page: 1080
  year: 2007
  end-page: 1085
  article-title: Tel1 kinase and subtelomere‐bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast
  publication-title: EMBO Rep
– volume: 26
  start-page: 4853
  year: 2006
  end-page: 4862
  article-title: Fine‐structure analysis of ribosomal protein gene transcription
  publication-title: Mol Cell Biol
– volume: 13
  start-page: 146
  year: 1999
  end-page: 151
  article-title: Telomeric chromatin modulates replication timing near chromosome ends
  publication-title: Genes Dev
– volume: 279
  start-page: 86
  year: 2004
  end-page: 94
  article-title: Separation‐of‐function mutants of yeast Ku80 reveal a Yku80p‐Sir4p interaction involved in telomeric silencing
  publication-title: J Biol Chem
– volume: 5
  start-page: 711
  year: 2008
  end-page: 718
  article-title: A comprehensive strategy enabling high‐resolution functional analysis of the yeast genome
  publication-title: Nat Methods
– volume: 20
  start-page: 6127
  year: 2001a
  end-page: 6139
  article-title: Cdc13 prevents telomere uncapping and Rad50‐dependent homologous recombination
  publication-title: EMBO J
– volume: 5
  start-page: 840
  year: 2006
  end-page: 851
  article-title: MRX protects telomeric DNA at uncapped telomeres of budding yeast cdc13‐1 mutants
  publication-title: DNA Repair (Amst)
– volume: 3
  start-page: 101
  year: 2013
  article-title: as a model to study replicative senescence triggered by telomere shortening
  publication-title: Front Oncol
– volume: 10
  start-page: 487
  year: 2000
  end-page: 490
  article-title: Cell cycle restriction of telomere elongation
  publication-title: Curr Biol
– volume: 9
  start-page: 1123
  year: 1999
  end-page: 1126
  article-title: Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by rif proteins
  publication-title: Curr Biol
– volume: 104
  start-page: 387
  year: 2001
  end-page: 396
  article-title: Cdc13 delivers separate complexes to the telomere for end protection and replication
  publication-title: Cell
– volume: 336
  start-page: 593
  year: 2012
  end-page: 597
  article-title: Removal of shelterin reveals the telomere end‐protection problem
  publication-title: Science
– volume: 134
  start-page: 1349
  year: 1996
  end-page: 1363
  article-title: The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild‐type
  publication-title: J Cell Biol
– volume: 12
  start-page: 2431
  year: 1993
  end-page: 2437
  article-title: GCR1, a transcriptional activator in , complexes with RAP1 and can function without its DNA binding domain
  publication-title: EMBO J
– volume: 138
  start-page: 90
  year: 2009
  end-page: 103
  article-title: Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication
  publication-title: Cell
– volume: 4
  start-page: 172
  year: 2008
  article-title: A systems‐level approach to mapping the telomere length maintenance gene circuitry
  publication-title: Mol Syst Biol
– volume: 27
  start-page: 64
  year: 2001
  end-page: 67
  article-title: The function of a stem‐loop in telomerase RNA is linked to the DNA repair protein Ku
  publication-title: Nat Genet
– volume: 38
  start-page: 1446
  year: 2006
  end-page: 1451
  article-title: A chromatin‐mediated mechanism for specification of conditional transcription factor targets
  publication-title: Nat Genet
– volume: 168
  start-page: 103
  year: 2004
  end-page: 115
  article-title: Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of cdc13‐1 mutants
  publication-title: Genetics
– volume: 4
  start-page: e1000236
  year: 2008
  article-title: Two pathways recruit telomerase to telomeres
  publication-title: PLoS Genet
– volume: 300
  start-page: 1542
  year: 2003
  end-page: 1548
  article-title: Sensing DNA damage through ATRIP recognition of RPA‐ssDNA complexes
  publication-title: Science
– volume: 99
  start-page: 3746
  year: 2002
  end-page: 3751
  article-title: The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1
  publication-title: P Natl Acad Sci USA
– volume: 155
  start-page: 475
  year: 2000
  end-page: 479
  article-title: The Mre11p/Rad50p/Xrs2p complex and the Tel1p function in a single pathway for telomere maintenance in yeast
  publication-title: Genetics
– volume: 72
  start-page: 481
  year: 2003
  end-page: 516
  article-title: The establishment, inheritance, and function of silenced chromatin in
  publication-title: Annu Rev Biochem
– volume: 29
  start-page: 4020
  year: 2010
  end-page: 4034
  article-title: Pif1‐ and Exo1‐dependent nucleases coordinate checkpoint activation following telomere uncapping
  publication-title: EMBO J
– volume: 2
  start-page: 124
  year: 2001
  end-page: 132
  article-title: An activation‐independent role of transcription factors in insulator function
  publication-title: EMBO Rep
– volume: 303
  start-page: 399
  year: 2003
  end-page: 405
  article-title: Identification of CGI‐121, a novel PRPK (p53‐related protein kinase)‐binding protein
  publication-title: Biochem Biophys Res Commun
– volume: 21
  start-page: 258
  year: 2011
  end-page: 274
  article-title: Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase alpha
  publication-title: Cell Res
– volume: 107
  start-page: 655
  year: 2001
  end-page: 665
  article-title: Regulation of the Bub2/Bfa1 GAP complex by Cdc5 and cell cycle checkpoints
  publication-title: Cell
– volume: 32
  start-page: 1425
  year: 2013
  end-page: 1439
  article-title: Mammalian DNA2 helicase/nuclease cleaves G‐quadruplex DNA and is required for telomere integrity
  publication-title: EMBO J
– volume: 183
  start-page: 441
  year: 2009a
  end-page: 451
  article-title: In , yKu and subtelomeric core X sequences repress homologous recombination near telomeres as part of the same pathway
  publication-title: Genetics
– volume: 318
  start-page: 798
  year: 2007
  end-page: 801
  article-title: Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends
  publication-title: Science
– volume: 40
  start-page: 493
  year: 1986
  end-page: 498
  article-title: Distribution of telomere‐associated sequences in yeast
  publication-title: Basic Life Sci
– volume: 186
  start-page: 1147
  year: 2010
  end-page: 1159
  article-title: Telomerase recruitment in is not dependent on Tel1‐mediated phosphorylation of Cdc13
  publication-title: Genetics
– volume: 121
  start-page: 515
  year: 2005
  end-page: 527
  article-title: Assembly of the SIR complex and its regulation by ‐acetyl‐ADP‐ribose, a product of NAD‐dependent histone deacetylation
  publication-title: Cell
– volume: 30
  start-page: 248
  year: 2008
  end-page: 258
  article-title: Toward a comprehensive temperature‐sensitive mutant repository of the essential genes of
  publication-title: Mol Cell
– volume: 35
  start-page: 822
  year: 2007
  end-page: 838
  article-title: Control of the yeast telomeric senescence survival pathways of recombination by the Mec1 and Mec3 DNA damage sensors and RPA
  publication-title: Nucleic Acids Res
– volume: 29
  start-page: 3358
  year: 2010
  end-page: 3369
  article-title: Ku prevents Exo1 and Sgs1‐dependent resection of DNA ends in the absence of a functional MRX complex or Sae2
  publication-title: EMBO J
– volume: 15
  start-page: 5093
  year: 1996b
  end-page: 5103
  article-title: Ku70 potentiates illegitimate DNA double‐strand break repair and serves as a barrier to error‐prone DNA repair pathways
  publication-title: EMBO J
– volume: 24
  start-page: 603
  year: 2006
  end-page: 610
  article-title: Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association
  publication-title: Mol Cell
– volume: 73
  start-page: 8
  year: 1979
  end-page: 14
  article-title: The cell biology of aging
  publication-title: J Invest Dermatol
– volume: 124
  start-page: 547
  year: 1990
  end-page: 559
  article-title: Mitotic recombination among subtelomeric Y′ repeats in
  publication-title: Genetics
– volume: 287
  start-page: 41583
  year: 2012
  end-page: 41594
  article-title: Human Rap1 interacts directly with telomeric DNA and regulates TRF2 localization at the telomere
  publication-title: J Biol Chem
– volume: 345
  start-page: 458
  year: 1990
  end-page: 460
  article-title: Telomeres shorten during ageing of human fibroblasts
  publication-title: Nature
– volume: 3
  start-page: 39
  year: 2013
  article-title: Cdc13 at a crossroads of telomerase action
  publication-title: Front Oncol
– volume: 394
  start-page: 592
  year: 1998
  end-page: 595
  article-title: Perinuclear localization of chromatin facilitates transcriptional silencing
  publication-title: Nature
– volume: 35
  start-page: 70
  year: 2009
  end-page: 81
  article-title: Multiple pathways regulate 3′ overhang generation at telomeres
  publication-title: Mol Cell
– volume: 20
  start-page: 786
  year: 2000
  end-page: 796
  article-title: The function of DNA polymerase alpha at telomeric G tails is important for telomere homeostasis
  publication-title: Mol Cell Biol
– volume: 101
  start-page: 8658
  year: 2004
  end-page: 8663
  article-title: A genome‐wide screen for deletion mutants that affect telomere length
  publication-title: P Natl Acad Sci USA
– volume: 91
  start-page: 3453
  year: 1994
  end-page: 3457
  article-title: A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts
  publication-title: P Natl Acad Sci USA
– volume: 119
  start-page: 955
  year: 2004
  end-page: 967
  article-title: Sir‐mediated repression can occur independently of chromosomal and subnuclear contexts
  publication-title: Cell
– volume: 153
  start-page: 1340
  year: 2013
  end-page: 1353
  article-title: Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions
  publication-title: Cell
– volume: 31
  start-page: 2034
  year: 2012
  end-page: 2046
  article-title: RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts
  publication-title: EMBO J
– volume: 68
  start-page: 333
  year: 1992
  end-page: 339
  article-title: A position effect on the time of replication origin activation in yeast
  publication-title: Cell
– volume: 274
  start-page: 249
  year: 1996
  end-page: 252
  article-title: Cdc13p: a single‐strand telomeric DNA‐binding protein with a dual role in yeast telomere maintenance
  publication-title: Science
– volume: 18
  start-page: 2026
  year: 2007
  end-page: 2036
  article-title: Cdc13 telomere capping decreases Mec1 association but does not affect Tel1 association with DNA ends
  publication-title: Mol Biol Cell
– volume: 128
  start-page: 1051
  year: 2007a
  end-page: 1062
  article-title: Early replication of short telomeres in budding yeast
  publication-title: Cell
– volume: 24
  start-page: 582
  year: 1996
  end-page: 585
  article-title: The DNA‐binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in
  publication-title: Nucleic Acids Res
– volume: 7
  start-page: e1002421
  year: 2011
  article-title: An anti‐checkpoint activity for rif1
  publication-title: PLoS Genet
– volume: 455
  start-page: 770
  year: 2008
  end-page: 774
  article-title: Sae2, Exo1 and Sgs1 collaborate in DNA double‐strand break processing
  publication-title: Nature
– volume: 23
  start-page: 1454
  year: 1995
  end-page: 1460
  article-title: Protein‐DNA interactions in soluble telosomes from
  publication-title: Nucleic Acids Res
– volume: 7
  start-page: 1146
  year: 1993
  end-page: 1159
  article-title: RAP1 and telomere structure regulate telomere position effects in
  publication-title: Genes Dev
– volume: 95
  start-page: 12486
  year: 1998
  end-page: 12491
  article-title: Rap1 protein regulates telomere turnover in yeast
  publication-title: P Natl Acad Sci USA
– volume: 106
  start-page: 17337
  year: 2009
  end-page: 17342
  article-title: The conserved Est1 protein stimulates telomerase DNA extension activity
  publication-title: P Natl Acad Sci USA
– volume: 52
  start-page: 1136
  year: 1996
  end-page: 1147
  article-title: Nuclear organization and transcriptional silencing in yeast
  publication-title: Experientia
– volume: 148
  start-page: 922
  year: 2012
  end-page: 932
  article-title: Mutually exclusive binding of telomerase RNA and DNA by Ku alters telomerase recruitment model
  publication-title: Cell
– volume: 24
  start-page: 3277
  year: 2004
  end-page: 3285
  article-title: Association of Rad9 with double‐strand breaks through a Mec1‐dependent mechanism
  publication-title: Mol Cell Biol
– volume: 9
  start-page: 27
  year: 2008
  end-page: 37
  article-title: Finding a match: how do homologous sequences get together for recombination?
  publication-title: Nat Rev Genet
– volume: 99
  start-page: 735
  year: 1999
  end-page: 745
  article-title: An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing
  publication-title: Cell
– volume: 97
  start-page: 503
  year: 1999
  end-page: 514
  article-title: Mammalian telomeres end in a large duplex loop
  publication-title: Cell
– volume: 21
  start-page: 825
  year: 2006
  end-page: 836
  article-title: A homotrimer‐heterotrimer switch in Sir2 structure differentiates rDNA and telomeric silencing
  publication-title: Mol Cell
– volume: 136
  start-page: 50
  year: 2009
  end-page: 61
  article-title: Cdk1‐dependent phosphorylation of Cdc13 coordinates telomere elongation during cell‐cycle progression
  publication-title: Cell
– volume: 13
  start-page: 867
  year: 2011
  end-page: 874
  article-title: The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast
  publication-title: Nat Cell Biol
– volume: 23
  start-page: 1301
  year: 2004
  end-page: 1312
  article-title: Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins
  publication-title: EMBO J
– volume: 5
  start-page: 248
  year: 2009
  article-title: Toward accurate reconstruction of functional protein networks
  publication-title: Mol Syst Biol
– volume: 51
  start-page: 887
  year: 1987
  end-page: 898
  article-title: The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity
  publication-title: Cell
– volume: 14
  start-page: 1777
  year: 2000
  end-page: 1788
  article-title: The telomere‐binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase‐associated est1 protein
  publication-title: Genes Dev
– volume: 34
  start-page: 78
  year: 2006
  end-page: 88
  article-title: Evolutionary‐conserved telomere‐linked helicase genes of fission yeast are repressed by silencing factors, RNAi components and the telomere‐binding protein Taz1
  publication-title: Nucleic Acids Res
– volume: 166
  start-page: 753
  year: 2004
  end-page: 764
  article-title: Mec1 and Rad53 inhibit formation of single‐stranded DNA at telomeres of cdc13‐1 mutants
  publication-title: Genetics
– volume: 28
  start-page: 4152
  year: 2008
  end-page: 4161
  article-title: Multiple yeast genes, including Paf1 complex genes, affect telomere length via telomerase RNA abundance
  publication-title: Mol Cell Biol
– volume: 29
  start-page: 965
  year: 2009
  end-page: 985
  article-title: Telomerase‐ and Rad52‐independent immortalization of budding yeast by an inherited‐long‐telomere pathway of telomeric repeat amplification
  publication-title: Mol Cell Biol
– volume: 14
  start-page: 208
  year: 2007
  end-page: 214
  article-title: RPA‐like proteins mediate yeast telomere function
  publication-title: Nat Struct Mol Biol
– volume: 27
  start-page: 1406
  year: 2013
  end-page: 1420
  article-title: Rap1 relocalization contributes to the chromatin‐mediated gene expression profile and pace of cell senescence
  publication-title: Genes Dev
– volume: 22
  start-page: 1153
  year: 2008
  end-page: 1158
  article-title: Multiple pathways inhibit NHEJ at telomeres
  publication-title: Genes Dev
– volume: 270
  start-page: 1488
  year: 1995
  end-page: 1491
  article-title: Yeast checkpoint genes in DNA damage processing: implications for repair and arrest
  publication-title: Science
– volume: 285
  start-page: 901
  year: 1999
  end-page: 906
  article-title: Functional characterization of the genome by gene deletion and parallel analysis
  publication-title: Science
– volume: 166
  start-page: 1641
  year: 2004b
  end-page: 1649
  article-title: EXO1 plays a role in generating type I and type II survivors in budding yeast
  publication-title: Genetics
– volume: 34
  start-page: 4147
  year: 2006
  end-page: 4153
  article-title: Roles of Pif1‐like helicases in the maintenance of genomic stability
  publication-title: Nucleic Acids Res
– volume: 93
  start-page: 13760
  year: 1996
  end-page: 13765
  article-title: The CDC13 protein is a single‐strand TG1‐3 telomeric DNA‐binding protein that affects telomere behavior
  publication-title: P Natl Acad Sci USA
– volume: 448
  start-page: 820
  year: 2007
  end-page: 823
  article-title: Break‐induced replication and telomerase‐independent telomere maintenance require Pol32
  publication-title: Nature
– volume: 289
  start-page: 771
  year: 2000
  end-page: 774
  article-title: Pif1p helicase, a catalytic inhibitor of telomerase in yeast
  publication-title: Science
– volume: 11
  start-page: 2221
  year: 2000
  end-page: 2233
  article-title: Exo1 roles for repair of DNA double‐strand breaks and meiotic crossing over in
  publication-title: Mol Biol Cell
– volume: 33
  start-page: 563
  year: 1983
  end-page: 573
  article-title: Organization of DNA sequences and replication origins at yeast telomeres
  publication-title: Cell
– volume: 250
  start-page: 549
  year: 1990
  end-page: 553
  article-title: Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length
  publication-title: Science
– volume: 9
  start-page: e1003721
  year: 2013
  article-title: Environmental stresses disrupt telomere length homeostasis
  publication-title: PLoS Genet
– volume: 21
  start-page: 4233
  year: 2001
  end-page: 4245
  article-title: New function of CDC13 in positive telomere length regulation
  publication-title: Mol Cell Biol
– volume: 294
  start-page: 867
  year: 2001
  end-page: 870
  article-title: Recruitment of Mec1 and Ddc1 checkpoint proteins to double‐strand breaks through distinct mechanisms
  publication-title: Science
– volume: 117
  start-page: 323
  year: 2004
  end-page: 335
  article-title: Telomere length homeostasis is achieved via a switch between telomerase‐ extendible and ‐nonextendible states
  publication-title: Cell
– volume: 3
  start-page: e105
  year: 2007
  article-title: Sensitivity of yeast strains with long G‐tails to levels of telomere‐bound telomerase
  publication-title: PLoS Genet
– volume: 23
  start-page: 1403
  year: 2003
  end-page: 1417
  article-title: Molecular dissection of mitotic recombination in the yeast
  publication-title: Mol Cell Biol
– volume: 29
  start-page: 3007
  year: 2010
  end-page: 3019
  article-title: Telomere capping in non‐dividing yeast cells requires Yku and Rap1
  publication-title: EMBO J
– volume: 97
  start-page: 6658
  year: 2000
  end-page: 6663
  article-title: A phylogenetically conserved NAD+‐dependent protein deacetylase activity in the Sir2 protein family
  publication-title: P Natl Acad Sci USA
– volume: 6
  start-page: e1001072
  year: 2010
  article-title: Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9
  publication-title: PLoS Genet
– volume: 42
  start-page: 301
  year: 2008
  end-page: 334
  article-title: How shelterin protects mammalian telomeres
  publication-title: Annu Rev Genet
– volume: 172
  start-page: 189
  year: 2006
  end-page: 199
  article-title: Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region
  publication-title: J Cell Biol
– volume: 16
  start-page: 979
  year: 2004
  end-page: 990
  article-title: Binding of chromatin‐modifying activities to phosphorylated histone H2A at DNA damage sites
  publication-title: Mol Cell
– volume: 24
  start-page: 127
  year: 2006
  end-page: 137
  article-title: DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell‐cycle kinase
  publication-title: Mol Cell
– volume: 24
  start-page: 4639
  year: 1996a
  end-page: 4648
  article-title: Identification of a Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance
  publication-title: Nucleic Acids Res
– volume: 1
  start-page: 197
  year: 2011
  end-page: 208
  article-title: Genome‐wide analysis to identify pathways affecting telomere‐initiated senescence in budding yeast
  publication-title: G3 (Bethesda)
– volume: 279
  start-page: 55520
  year: 2004
  end-page: 55530
  article-title: Chromatin domain boundaries delimited by a histone‐binding protein in yeast
  publication-title: J Biol Chem
– volume: 15
  start-page: 2186
  year: 2009
  end-page: 2194
  article-title: CpG‐island promoters drive transcription of human telomeres
  publication-title: RNA
– volume: 19
  start-page: 7481
  year: 1999
  end-page: 7490
  article-title: analysis of functional regions within yeast Rap1p
  publication-title: Mol Cell Biol
– volume: 110
  start-page: 19664
  year: 2013
  end-page: 19665
  article-title: Genomic instability and repair mediated by common repeated sequences
  publication-title: P Natl Acad Sci USA
– volume: 162
  start-page: 1101
  year: 2002
  end-page: 1115
  article-title: The Est1 subunit of telomerase makes multiple contributions to telomere length maintenance
  publication-title: Genetics
– volume: 310
  start-page: 157
  year: 1984
  end-page: 160
  article-title: Unusual DNA sequences associated with the ends of yeast chromosomes
  publication-title: Nature
– volume: 297
  start-page: 1023
  year: 2002
  end-page: 1026
  article-title: Est1p as a cell cycle‐regulated activator of telomere‐bound telomerase
  publication-title: Science
– volume: 57
  start-page: 633
  year: 1989
  end-page: 643
  article-title: A mutant with a defect in telomere elongation leads to senescence in yeast
  publication-title: Cell
– volume: 24
  start-page: 9887
  year: 2004
  end-page: 9898
  article-title: Ty1 mobilizes subtelomeric Y′ elements in telomerase‐negative survivors
  publication-title: Mol Cell Biol
– volume: 12
  start-page: 2076
  year: 2002
  end-page: 2089
  article-title: Live imaging of telomeres: yKu and Sir proteins define redundant telomere‐anchoring pathways in yeast
  publication-title: Curr Biol
– volume: 18
  start-page: 1391
  year: 2004
  end-page: 1396
  article-title: The generation of proper constitutive G‐tails on yeast telomeres is dependent on the MRX complex
  publication-title: Genes Dev
– volume: 265
  start-page: 1442
  year: 1994
  end-page: 1445
  article-title: Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination
  publication-title: Science
– volume: 31
  start-page: 9
  year: 2010
  end-page: 18
  article-title: Telomeres and telomerase in cancer
  publication-title: Carcinogenesis
– volume: 6
  start-page: e1000966
  year: 2010b
  article-title: Shelterin‐like proteins and Yku inhibit nucleolytic processing of telomeres
  publication-title: PLoS Genet
– volume: 22
  start-page: 2767
  year: 2008
  end-page: 2772
  article-title: DNA helicases Sgs1 and BLM promote DNA double‐strand break resection
  publication-title: Genes Dev
– volume: 27
  start-page: 64
  year: 2013
  end-page: 73
  article-title: Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding
  publication-title: Genes Dev
– volume: 13
  start-page: 720
  year: 2006
  end-page: 728
  article-title: Proteasome‐dependent degradation of Est1p regulates the cell cycle‐restricted assembly of telomerase in
  publication-title: Nat Struct Mol Biol
– volume: 19
  start-page: 307
  year: 2012
  end-page: 313
  article-title: Anticheckpoint pathways at telomeres in yeast
  publication-title: Nat Struct Mol Biol
– volume: 383
  start-page: 92
  year: 1996
  end-page: 96
  article-title: Spreading of transcriptional repressor SIR3 from telomeric heterochromatin
  publication-title: Nature
– volume: 107
  start-page: 548
  year: 1997
  end-page: 554
  article-title: Differential telomerase expression in human primary intracranial tumors
  publication-title: Am J Clin Pathol
– volume: 31
  start-page: 573
  year: 2011
  end-page: 583
  article-title: Mre11 nuclease activity and Ctp1 regulate Chk1 activation by Rad3ATR and Tel1ATM checkpoint kinases at double‐strand breaks
  publication-title: Mol Cell Biol
– volume: 14
  start-page: 556
  year: 2003
  end-page: 570
  article-title: Telomeric protein distributions and remodeling through the cell cycle in
  publication-title: Mol Biol Cell
– volume: 18
  start-page: 337
  year: 2008
  end-page: 346
  article-title: ATM‐like kinases and regulation of telomerase: lessons from yeast and mammals
  publication-title: Trends Cell Biol
– volume: 23
  start-page: 3721
  year: 2003
  end-page: 3734
  article-title: The Rad51 pathway of telomerase‐independent maintenance of telomeres can amplify TG1‐3 sequences in yku and cdc13 mutants of
  publication-title: Mol Cell Biol
– volume: 75
  start-page: 543
  year: 1993
  end-page: 555
  article-title: SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres
  publication-title: Cell
– volume: 32
  start-page: 1627
  year: 2004
  end-page: 1637
  article-title: Telomere‐bound TRF1 and TRF2 stall the replication fork at telomeric repeats
  publication-title: Nucleic Acids Res
– volume: 18
  start-page: 2538
  year: 1999
  end-page: 2550
  article-title: Limitations of silencing at native yeast telomeres
  publication-title: EMBO J
– volume: 467
  start-page: 108
  year: 2010
  end-page: 111
  article-title: Mechanism of the ATP‐dependent DNA end‐resection machinery from
  publication-title: Nature
– volume: 117
  start-page: 601
  year: 2004
  end-page: 608
  article-title: A domain of Rad9 specifically required for activation of Chk1 in budding yeast
  publication-title: J Cell Sci
– volume: 339
  start-page: 711
  year: 2013
  end-page: 715
  article-title: Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching
  publication-title: Science
– volume: 21
  start-page: 1726
  year: 2007b
  end-page: 1730
  article-title: Increased association of telomerase with short telomeres in yeast
  publication-title: Genes Dev
– volume: 20
  start-page: 1199
  year: 2013
  end-page: 1205
  article-title: Telomeric RNA‐DNA hybrids affect telomere‐length dynamics and senescence
  publication-title: Nat Struct Mol Biol
– volume: 31
  start-page: 3667
  year: 2012
  end-page: 3677
  article-title: Rif1 regulates the replication timing domains on the human genome
  publication-title: EMBO J
– volume: 12
  start-page: 5159
  year: 1992
  end-page: 5173
  article-title: C‐terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in
  publication-title: Mol Cell Biol
– ident: 2015070909421538000_38.2.144.144
  doi: 10.1128/MCB.4.11.2509
– ident: 2015070909421538000_38.2.144.132
  doi: 10.1093/nar/gkj415
– ident: 2015070909421538000_38.2.144.218
  doi: 10.1002/0470862637.ch4
– ident: 2015070909421538000_38.2.144.329
  doi: 10.1074/jbc.M110.170167
– ident: 2015070909421538000_38.2.144.295
  doi: 10.1101/gad.1851909
– ident: 2015070909421538000_38.2.144.49
  doi: 10.1016/S0092-8674(85)80120-3
– ident: 2015070909421538000_38.2.144.313
  doi: 10.1093/nar/gkl786
– ident: 2015070909421538000_38.2.144.338
  doi: 10.1007/978-1-4684-5251-8_37
– ident: 2015070909421538000_38.2.144.34
  doi: 10.1016/j.molcel.2009.05.015
– ident: 2015070909421538000_38.2.144.56
  doi: 10.1016/j.molcel.2013.01.002
– ident: 2015070909421538000_38.2.144.180
  doi: 10.1091/mbc.E03-10-0740
– ident: 2015070909421538000_38.2.144.296
  doi: 10.1038/cr.2010.138
– ident: 2015070909421538000_38.2.144.347
  doi: 10.1038/ncb1428
– ident: 2015070909421538000_38.2.144.278
  doi: 10.1101/gad.477208
– ident: 2015070909421538000_38.2.144.314
  doi: 10.1091/mbc.11.7.2221
– ident: 2015070909421538000_38.2.144.42
  doi: 10.1371/journal.pone.0066756
– ident: 2015070909421538000_38.2.144.54
  doi: 10.1101/gad.1588807
– ident: 2015070909421538000_38.2.144.21
  doi: 10.4161/cc.4.2.1429
– ident: 2015070909421538000_38.2.144.177
  doi: 10.1038/ng569
– ident: 2015070909421538000_38.2.144.256
  doi: 10.1073/pnas.91.16.7623
– ident: 2015070909421538000_38.2.144.61
  doi: 10.1038/embor.2008.121
– ident: 2015070909421538000_38.2.144.133
  doi: 10.1371/journal.pgen.1002421
– ident: 2015070909421538000_38.2.144.171
  doi: 10.1534/genetics.109.102939
– ident: 2015070909421538000_38.2.144.301
  doi: 10.1126/science.1074968
– ident: 2015070909421538000_38.2.144.286
  doi: 10.1134/S0006297912100045
– ident: 2015070909421538000_38.2.144.332
  doi: 10.1093/nar/23.9.1454
– ident: 2015070909421538000_38.2.144.318
  doi: 10.1016/S1097-2765(01)00270-2
– ident: 2015070909421538000_38.2.144.242
  doi: 10.1038/sj.emboj.7600778
– ident: 2015070909421538000_38.2.144.264
  doi: 10.1093/emboj/19.21.5801
– ident: 2015070909421538000_38.2.144.135
  doi: 10.1101/gad.6.5.801
– ident: 2015070909421538000_38.2.144.273
  doi: 10.1101/gad.1787509
– ident: 2015070909421538000_38.2.144.211
  doi: 10.1128/MCB.21.13.4233-4245.2001
– ident: 2015070909421538000_38.2.144.65
  doi: 10.1038/emboj.2012.214
– ident: 2015070909421538000_38.2.144.118
  doi: 10.1128/MCB.00817-08
– ident: 2015070909421538000_38.2.144.95
  doi: 10.1093/emboj/18.9.2522
– ident: 2015070909421538000_38.2.144.106
  doi: 10.1073/pnas.1320030110
– ident: 2015070909421538000_38.2.144.141
  doi: 10.1016/S0960-9822(02)01338-6
– ident: 2015070909421538000_38.2.144.29
  doi: 10.1101/gad.1146603
– ident: 2015070909421538000_38.2.144.228
  doi: 10.1101/gad.400907
– ident: 2015070909421538000_38.2.144.18
  doi: 10.1093/carcin/bgp268
– ident: 2015070909421538000_38.2.144.137
  doi: 10.1038/345458a0
– ident: 2015070909421538000_38.2.144.119
  doi: 10.1016/j.dnarep.2012.12.002
– ident: 2015070909421538000_38.2.144.167
  doi: 10.1038/ncb1429
– ident: 2015070909421538000_38.2.144.134
  doi: 10.4161/cc.26625
– ident: 2015070909421538000_38.2.144.98
  doi: 10.1091/mbc.E11-06-0568
– ident: 2015070909421538000_38.2.144.214
  doi: 10.1038/nature07312
– ident: 2015070909421538000_38.2.144.58
  doi: 10.1128/MCB.21.5.1819-1827.2001
– ident: 2015070909421538000_38.2.144.117
  doi: 10.1093/nar/gkl1081
– ident: 2015070909421538000_38.2.144.148
  doi: 10.1016/S0960-9822(01)00021-5
– ident: 2015070909421538000_38.2.144.124
  doi: 10.1126/science.280.5364.741
– ident: 2015070909421538000_38.2.144.123
  doi: 10.1093/emboj/20.5.1173
– ident: 2015070909421538000_38.2.144.271
  doi: 10.1073/pnas.91.25.12061
– ident: 2015070909421538000_38.2.144.19
  doi: 10.1073/pnas.0401263101
– ident: 2015070909421538000_38.2.144.333
  doi: 10.1128/MCB.25.19.8430-8443.2005
– ident: 2015070909421538000_38.2.144.247
  doi: 10.1016/j.cell.2012.01.033
– ident: 2015070909421538000_38.2.144.294
  doi: 10.1126/science.281.5374.272
– ident: 2015070909421538000_38.2.144.248
  doi: 10.1534/genetics.113.149849
– ident: 2015070909421538000_38.2.144.337
  doi: 10.1038/msb.2009.3
– ident: 2015070909421538000_38.2.144.257
  doi: 10.1093/nar/gkq296
– ident: 2015070909421538000_38.2.144.307
  doi: 10.1093/embo-reports/kve038
– ident: 2015070909421538000_38.2.144.6
  doi: 10.1074/jbc.M306783200
– ident: 2015070909421538000_38.2.144.292
  doi: 10.1038/emboj.2012.215
– ident: 2015070909421538000_38.2.144.50
  doi: 10.1128/MCB.00195-09
– ident: 2015070909421538000_38.2.144.99
  doi: 10.1016/j.molcel.2011.09.020
– ident: 2015070909421538000_38.2.144.298
  doi: 10.1126/science.8073286
– ident: 2015070909421538000_38.2.144.310
  doi: 10.1016/j.dnarep.2006.03.005
– ident: 2015070909421538000_38.2.144.103
  doi: 10.1016/j.cell.2004.11.008
– ident: 2015070909421538000_38.2.144.194
  doi: 10.1038/nature06047
– ident: 2015070909421538000_38.2.144.43
  doi: 10.1128/MCB.8.1.210
– ident: 2015070909421538000_38.2.144.125
  doi: 10.1101/gad.503108
– ident: 2015070909421538000_38.2.144.188
  doi: 10.1016/0092-8674(93)90234-H
– ident: 2015070909421538000_38.2.144.202
  doi: 10.1101/gad.225102
– ident: 2015070909421538000_38.2.144.192
  doi: 10.1038/emboj.2009.176
– ident: 2015070909421538000_38.2.144.55
  doi: 10.1534/g3.111.000216
– ident: 2015070909421538000_38.2.144.204
  doi: 10.1534/genetics.166.4.1641
– ident: 2015070909421538000_38.2.144.222
  doi: 10.1128/MCB.00512-08
– ident: 2015070909421538000_38.2.144.170
  doi: 10.1093/genetics/152.1.143
– ident: 2015070909421538000_38.2.144.300
  doi: 10.1038/sj.emboj.7600144
– ident: 2015070909421538000_38.2.144.217
  doi: 10.1016/S0006-291X(03)00333-4
– ident: 2015070909421538000_38.2.144.76
  doi: 10.1093/nar/gkt365
– ident: 2015070909421538000_38.2.144.198
– ident: 2015070909421538000_38.2.144.219
  doi: 10.1073/pnas.0806621105
– ident: 2015070909421538000_38.2.144.339
  doi: 10.1101/gad.1869110
– ident: 2015070909421538000_38.2.144.122
  doi: 10.1093/emboj/20.21.6127
– ident: 2015070909421538000_38.2.144.317
  doi: 10.1016/j.cub.2011.11.024
– ident: 2015070909421538000_38.2.144.31
  doi: 10.1101/gad.438907
– ident: 2015070909421538000_38.2.144.254
  doi: 10.1038/emboj.2011.30
– ident: 2015070909421538000_38.2.144.32
  doi: 10.1242/jcs.00907
– ident: 2015070909421538000_38.2.144.127
  doi: 10.1016/S0092-8674(00)80760-6
– ident: 2015070909421538000_38.2.144.53
  doi: 10.1371/journal.pgen.1000236
– ident: 2015070909421538000_38.2.144.189
  doi: 10.1016/0092-8674(89)90132-3
– ident: 2015070909421538000_38.2.144.348
  doi: 10.1534/genetics.104.027904
– ident: 2015070909421538000_38.2.144.250
  doi: 10.1093/nar/24.4.582
– ident: 2015070909421538000_38.2.144.153
  doi: 10.1038/nature02964
– ident: 2015070909421538000_38.2.144.261
  doi: 10.1093/genetics/155.1.475
– ident: 2015070909421538000_38.2.144.324
  doi: 10.1038/310157a0
– ident: 2015070909421538000_38.2.144.30
  doi: 10.1016/j.cell.2007.01.041
– ident: 2015070909421538000_38.2.144.36
  doi: 10.1371/journal.pgen.1000966
– ident: 2015070909421538000_38.2.144.203
  doi: 10.1101/gad.316504
– ident: 2015070909421538000_38.2.144.221
  doi: 10.1038/emboj.2008.171
– ident: 2015070909421538000_38.2.144.272
  doi: 10.1101/gr.6687808
– ident: 2015070909421538000_38.2.144.267
  doi: 10.1016/j.tcb.2008.04.004
– ident: 2015070909421538000_38.2.144.229
  doi: 10.1261/rna.1748309
– ident: 2015070909421538000_38.2.144.143
  doi: 10.1016/j.molcel.2008.12.027
– ident: 2015070909421538000_38.2.144.289
  doi: 10.1101/gad.1125903
– ident: 2015070909421538000_38.2.144.274
  doi: 10.1038/ncb1685
– ident: 2015070909421538000_38.2.144.212
  doi: 10.1101/gad.903501
– ident: 2015070909421538000_38.2.144.285
  doi: 10.1038/emboj.2009.195
– ident: 2015070909421538000_38.2.144.140
  doi: 10.1038/383092a0
– ident: 2015070909421538000_38.2.144.193
  doi: 10.1126/science.270.5241.1488
– ident: 2015070909421538000_38.2.144.41
  doi: 10.1038/nmeth.1234
– ident: 2015070909421538000_38.2.144.2
  doi: 10.1128/MCB.20.3.786-796.2000
– ident: 2015070909421538000_38.2.144.266
  doi: 10.1146/annurev.biochem.72.121801.161547
– ident: 2015070909421538000_38.2.144.342
  doi: 10.1016/0092-8674(93)90321-G
– ident: 2015070909421538000_38.2.144.168
  doi: 10.1101/gad.1199404
– ident: 2015070909421538000_38.2.144.139
  doi: 10.1111/1523-1747.ep12532752
– ident: 2015070909421538000_38.2.144.234
  doi: 10.1126/science.274.5285.249
– ident: 2015070909421538000_38.2.144.269
  doi: 10.1126/science.286.5442.1166
– ident: 2015070909421538000_38.2.144.208
  doi: 10.1128/MCB.24.22.9887-9898.2004
– ident: 2015070909421538000_38.2.144.60
  doi: 10.1038/nrm2450
– ident: 2015070909421538000_38.2.144.181
  doi: 10.1038/emboj.2013.88
– ident: 2015070909421538000_38.2.144.142
  doi: 10.1091/mbc.E06-12-1074
– ident: 2015070909421538000_38.2.144.249
  doi: 10.1101/gad.218776.113
– ident: 2015070909421538000_38.2.144.231
  doi: 10.1038/nsmb.1957
– ident: 2015070909421538000_38.2.144.259
  doi: 10.1038/nsmb1214
– ident: 2015070909421538000_38.2.144.74
  doi: 10.1007/s00412-011-0357-2
– ident: 2015070909421538000_38.2.144.306
  doi: 10.1128/MCB.19.12.8083
– ident: 2015070909421538000_38.2.144.82
  doi: 10.1016/j.molcel.2004.12.003
– ident: 2015070909421538000_38.2.144.80
  doi: 10.1093/nar/26.23.5365
– ident: 2015070909421538000_38.2.144.276
  doi: 10.1038/ng1284
– ident: 2015070909421538000_38.2.144.230
  doi: 10.1371/journal.pgen.1001072
– ident: 2015070909421538000_38.2.144.184
  doi: 10.1093/genetics/124.3.547
– ident: 2015070909421538000_38.2.144.207
  doi: 10.1534/genetics.109.106682
– ident: 2015070909421538000_38.2.144.67
  doi: 10.1128/MCB.20.7.2378-2384.2000
– ident: 2015070909421538000_38.2.144.96
  doi: 10.1093/embo-reports/kve024
– ident: 2015070909421538000_38.2.144.190
  doi: 10.1073/pnas.83.5.1398
– ident: 2015070909421538000_38.2.144.16
  doi: 10.1038/sj.embor.7401082
– ident: 2015070909421538000_38.2.144.24
  doi: 10.1126/science.1147182
– ident: 2015070909421538000_38.2.144.239
  doi: 10.1038/nature12149
– ident: 2015070909421538000_38.2.144.38
  doi: 10.1093/nar/gkl561
– ident: 2015070909421538000_38.2.144.209
  doi: 10.1073/pnas.91.8.3453
– ident: 2015070909421538000_38.2.144.309
  doi: 10.1073/pnas.0914187107
– ident: 2015070909421538000_38.2.144.164
  doi: 10.1101/gad.7.7a.1146
– ident: 2015070909421538000_38.2.144.255
  doi: 10.1126/science.294.5540.115
– ident: 2015070909421538000_38.2.144.172
  doi: 10.1093/genetics/144.4.1399
– ident: 2015070909421538000_38.2.144.104
  doi: 10.1128/MCB.15.11.6128
– ident: 2015070909421538000_38.2.144.252
  doi: 10.1093/emboj/18.9.2538
– ident: 2015070909421538000_38.2.144.260
  doi: 10.1038/nsmb.2225
– ident: 2015070909421538000_38.2.144.91
  doi: 10.1038/ncb2263
– ident: 2015070909421538000_38.2.144.126
  doi: 10.1016/0092-8674(87)90576-9
– ident: 2015070909421538000_38.2.144.94
  doi: 10.1016/j.dnarep.2006.04.005
– ident: 2015070909421538000_38.2.144.220
  doi: 10.1101/gad.8.19.2257
– ident: 2015070909421538000_38.2.144.47
  doi: 10.1083/jcb.200409091
– ident: 2015070909421538000_38.2.144.191
  doi: 10.1126/science.2237406
– ident: 2015070909421538000_38.2.144.107
  doi: 10.1073/pnas.0909203106
– ident: 2015070909421538000_38.2.144.169
  doi: 10.1038/emboj.2008.81
– ident: 2015070909421538000_38.2.144.11
  doi: 10.1038/29100
– ident: 2015070909421538000_38.2.144.15
  doi: 10.1016/j.mrfmmm.2011.10.013
– ident: 2015070909421538000_38.2.144.330
  doi: 10.1126/science.285.5429.901
– ident: 2015070909421538000_38.2.144.343
  doi: 10.1126/science.289.5480.771
– ident: 2015070909421538000_38.2.144.195
  doi: 10.1073/pnas.0437148100
– ident: 2015070909421538000_38.2.144.33
  doi: 10.1126/science.279.5349.349
– ident: 2015070909421538000_38.2.144.83
  doi: 10.1007/BF00352248
– ident: 2015070909421538000_38.2.144.151
  doi: 10.1038/35001622
– ident: 2015070909421538000_38.2.144.312
  doi: 10.1002/j.1460-2075.1993.tb05897.x
– ident: 2015070909421538000_38.2.144.101
  doi: 10.1534/genetics.110.122044
– ident: 2015070909421538000_38.2.144.64
  doi: 10.1016/0092-8674(90)90140-A
– ident: 2015070909421538000_38.2.144.226
  doi: 10.1038/nrm3505
– ident: 2015070909421538000_38.2.144.346
  doi: 10.1126/science.1083430
– ident: 2015070909421538000_38.2.144.93
  doi: 10.1128/MCB.21.21.7277-7286.2001
– ident: 2015070909421538000_38.2.144.155
  doi: 10.1093/emboj/20.4.905
– ident: 2015070909421538000_38.2.144.328
  doi: 10.1016/S0092-8674(00)81120-4
– ident: 2015070909421538000_38.2.144.245
  doi: 10.1038/ncb1430
– ident: 2015070909421538000_38.2.144.243
  doi: 10.1016/S0092-8674(01)00226-4
– ident: 2015070909421538000_38.2.144.282
  doi: 10.1038/310154a0
– ident: 2015070909421538000_38.2.144.25
  doi: 10.1038/nsmb.2662
– ident: 2015070909421538000_38.2.144.341
  doi: 10.1128/MCB.02367-05
– ident: 2015070909421538000_38.2.144.66
  doi: 10.1101/gad.231602
– ident: 2015070909421538000_38.2.144.35
  doi: 10.1371/journal.pone.0014142
– ident: 2015070909421538000_38.2.144.69
  doi: 10.1016/j.molcel.2013.08.029
– ident: 2015070909421538000_38.2.144.81
  doi: 10.1016/j.cell.2005.12.044
– ident: 2015070909421538000_38.2.144.115
  doi: 10.1016/j.trsl.2013.05.003
– ident: 2015070909421538000_38.2.144.210
  doi: 10.1038/nsmb.1947
– ident: 2015070909421538000_38.2.144.105
  doi: 10.1371/journal.pgen.0020035
– ident: 2015070909421538000_38.2.144.63
  doi: 10.3389/fonc.2013.00027
– ident: 2015070909421538000_38.2.144.75
  doi: 10.1073/pnas.0905703106
– ident: 2015070909421538000_38.2.144.79
  doi: 10.1073/pnas.93.24.13902
– ident: 2015070909421538000_38.2.144.238
  doi: 10.1101/gad.14.16.2046
– ident: 2015070909421538000_38.2.144.270
  doi: 10.1016/0092-8674(93)90493-A
– ident: 2015070909421538000_38.2.144.111
  doi: 10.1007/BF01952113
– ident: 2015070909421538000_38.2.144.283
  doi: 10.1016/j.cell.2013.05.007
– ident: 2015070909421538000_38.2.144.51
  doi: 10.1038/nature09355
– ident: 2015070909421538000_38.2.144.10
  doi: 10.1093/nar/gkq552
– ident: 2015070909421538000_38.2.144.162
  doi: 10.1093/nar/gks270
– ident: 2015070909421538000_38.2.144.20
  doi: 10.1128/MCB.23.18.6585-6596.2003
– ident: 2015070909421538000_38.2.144.44
  doi: 10.1128/MCB.21.19.6559-6573.2001
– ident: 2015070909421538000_38.2.144.225
  doi: 10.1101/gad.1099003
– ident: 2015070909421538000_38.2.144.39
  doi: 10.1093/nar/24.23.4639
– ident: 2015070909421538000_38.2.144.152
  doi: 10.1074/jbc.C000133200
– ident: 2015070909421538000_38.2.144.37
  doi: 10.1093/nar/29.21.4414
– ident: 2015070909421538000_38.2.144.279
  doi: 10.1126/science.1218498
– ident: 2015070909421538000_38.2.144.72
  doi: 10.1016/j.molcel.2009.06.025
– ident: 2015070909421538000_38.2.144.27
  doi: 10.1016/j.canlet.2009.08.003
– ident: 2015070909421538000_38.2.144.302
  doi: 10.1016/S0092-8674(00)81671-2
– ident: 2015070909421538000_38.2.144.147
  doi: 10.1371/journal.pgen.1003208
– ident: 2015070909421538000_38.2.144.146
  doi: 10.1016/S0092-8674(01)00580-3
– ident: 2015070909421538000_38.2.144.227
  doi: 10.1128/MCB.22.13.4512-4521.2002
– ident: 2015070909421538000_38.2.144.268
  doi: 10.1016/j.molcel.2007.07.016
– ident: 2015070909421538000_38.2.144.22
  doi: 10.1128/MCB.23.4.1403-1417.2003
– ident: 2015070909421538000_38.2.144.97
  doi: 10.1016/j.molcel.2006.10.020
– ident: 2015070909421538000_38.2.144.224
  doi: 10.1128/MCB.24.8.3277-3285.2004
– ident: 2015070909421538000_38.2.144.113
  doi: 10.1016/j.molcel.2006.10.005
– ident: 2015070909421538000_38.2.144.316
  doi: 10.1093/nar/gkp259
– ident: 2015070909421538000_38.2.144.325
  doi: 10.1016/j.celrep.2012.10.007
– ident: 2015070909421538000_38.2.144.236
– ident: 2015070909421538000_38.2.144.183
  doi: 10.1371/journal.pgen.1002233
– ident: 2015070909421538000_38.2.144.288
  doi: 10.1091/mbc.E02-08-0457
– ident: 2015070909421538000_38.2.144.160
  doi: 10.1038/383354a0
– ident: 2015070909421538000_38.2.144.344
  doi: 10.1016/j.cell.2008.08.037
– ident: 2015070909421538000_38.2.144.87
  doi: 10.1016/j.molcel.2010.05.016
– ident: 2015070909421538000_38.2.144.265
  doi: 10.1074/jbc.M306841200
– ident: 2015070909421538000_38.2.144.323
  doi: 10.1038/emboj.2010.155
– ident: 2015070909421538000_38.2.144.92
  doi: 10.1038/nsmb854
– ident: 2015070909421538000_38.2.144.165
  doi: 10.1371/journal.pgen.1002271
– ident: 2015070909421538000_38.2.144.17
  doi: 10.1007/978-3-642-16502-3_4
– ident: 2015070909421538000_38.2.144.158
  doi: 10.1126/science.1063827
– ident: 2015070909421538000_38.2.144.73
  doi: 10.1038/emboj.2010.267
– ident: 2015070909421538000_38.2.144.244
  doi: 10.1038/83778
– ident: 2015070909421538000_38.2.144.275
  doi: 10.1016/j.semcdb.2009.09.015
– ident: 2015070909421538000_38.2.144.206
  doi: 10.1534/genetics.109.106674
– ident: 2015070909421538000_38.2.144.89
  doi: 10.1016/0092-8674(92)90474-Q
– ident: 2015070909421538000_38.2.144.263
  doi: 10.1371/journal.pgen.1003721
– ident: 2015070909421538000_38.2.144.23
  doi: 10.1038/sj.emboj.7600469
– ident: 2015070909421538000_38.2.144.187
  doi: 10.1016/j.molcel.2008.10.019
– ident: 2015070909421538000_38.2.144.233
  doi: 10.1038/nature09318
– ident: 2015070909421538000_38.2.144.327
  doi: 10.1534/genetics.111.137851
– ident: 2015070909421538000_38.2.144.196
  doi: 10.1021/bi2005448
– ident: 2015070909421538000_38.2.144.156
  doi: 10.1038/ncb1910
– ident: 2015070909421538000_38.2.144.262
  doi: 10.1007/s00294-004-0548-y
– ident: 2015070909421538000_38.2.144.166
  doi: 10.1016/S0960-9822(98)70252-0
– ident: 2015070909421538000_38.2.144.223
  doi: 10.1038/35082608
– ident: 2015070909421538000_38.2.144.71
  doi: 10.1093/ajcp/107.5.548
– ident: 2015070909421538000_38.2.144.85
  doi: 10.1126/science.286.5437.117
– ident: 2015070909421538000_38.2.144.299
  doi: 10.1534/genetics.112.140608
– ident: 2015070909421538000_38.2.144.4
  doi: 10.1371/journal.pgen.1001362
– ident: 2015070909421538000_38.2.144.145
  doi: 10.1101/gad.208140.112
– ident: 2015070909421538000_38.2.144.3
  doi: 10.1534/genetics.108.092577
– ident: 2015070909421538000_38.2.144.78
  doi: 10.1016/S0092-8674(00)81670-0
– ident: 2015070909421538000_38.2.144.161
  doi: 10.1073/pnas.95.21.12486
– ident: 2015070909421538000_38.2.144.293
  doi: 10.1101/gad.11.1.83
– ident: 2015070909421538000_38.2.144.305
  doi: 10.1016/S0092-8674(04)00334-4
– ident: 2015070909421538000_38.2.144.335
  doi: 10.1074/jbc.273.50.33360
– ident: 2015070909421538000_38.2.144.12
  doi: 10.1128/MCB.22.23.8292-8301.2002
– ident: 2015070909421538000_38.2.144.290
  doi: 10.1101/gad.13.2.146
– ident: 2015070909421538000_38.2.144.68
  doi: 10.1016/j.molcel.2006.02.006
– ident: 2015070909421538000_38.2.144.176
  doi: 10.1091/mbc.E10-06-0549
– ident: 2015070909421538000_38.2.144.1
  doi: 10.1038/ncb1911
– ident: 2015070909421538000_38.2.144.240
  doi: 10.1016/0092-8674(93)90388-7
– ident: 2015070909421538000_38.2.144.112
  doi: 10.1083/jcb.134.6.1349
– ident: 2015070909421538000_38.2.144.258
  doi: 10.1038/emboj.2011.349
– ident: 2015070909421538000_38.2.144.9
  doi: 10.1371/journal.pgen.1002024
– ident: 2015070909421538000_38.2.144.100
  doi: 10.1038/nsmb1205
– ident: 2015070909421538000_38.2.144.136
  doi: 10.1128/MCB.12.3.1209
– ident: 2015070909421538000_38.2.144.163
  doi: 10.1128/MCB.12.11.5159
– ident: 2015070909421538000_38.2.144.320
  doi: 10.1371/journal.pgen.0030105
– ident: 2015070909421538000_38.2.144.84
  doi: 10.1016/j.molcel.2013.01.001
– ident: 2015070909421538000_38.2.144.88
  doi: 10.1111/j.1755-0998.2011.03012.x
– ident: 2015070909421538000_38.2.144.90
  doi: 10.1074/jbc.M410346200
– ident: 2015070909421538000_38.2.144.26
  doi: 10.1038/nrg2224
– ident: 2015070909421538000_38.2.144.130
  doi: 10.1038/sj.embor.7401036
– ident: 2015070909421538000_38.2.144.28
  doi: 10.1016/j.molcel.2008.02.021
– ident: 2015070909421538000_38.2.144.241
  doi: 10.1146/annurev.genet.41.110306.130350
– ident: 2015070909421538000_38.2.144.157
  doi: 10.1038/sj.emboj.7601235
– ident: 2015070909421538000_38.2.144.253
  doi: 10.1101/gad.14.14.1777
– ident: 2015070909421538000_38.2.144.59
  doi: 10.3389/fonc.2013.000309
– ident: 2015070909421538000_38.2.144.150
  doi: 10.1038/embor.2011.73
– ident: 2015070909421538000_38.2.144.62
  doi: 10.1038/sj.onc.1208332
– ident: 2015070909421538000_38.2.144.5
  doi: 10.1038/nsmb.2585
– ident: 2015070909421538000_38.2.144.116
  doi: 10.1128/MCB.23.11.3721-3734.2003
– ident: 2015070909421538000_38.2.144.216
  doi: 10.1016/S0960-9822(99)80483-7
– ident: 2015070909421538000_38.2.144.175
  doi: 10.1016/j.cell.2008.11.027
– ident: 2015070909421538000_38.2.144.291
  doi: 10.1016/j.mrfmmm.2011.08.011
– ident: 2015070909421538000_38.2.144.186
  doi: 10.1038/emboj.2012.40
– ident: 2015070909421538000_38.2.144.287
  doi: 10.1073/pnas.97.12.6658
– ident: 2015070909421538000_38.2.144.319
  doi: 10.1016/j.molcel.2008.12.022
– ident: 2015070909421538000_38.2.144.14
  doi: 10.1074/jbc.M112.415984
– ident: 2015070909421538000_38.2.144.128
  doi: 10.1101/gad.300004
– ident: 2015070909421538000_38.2.144.303
  doi: 10.1128/MCB.24.16.6931-6946.2004
– ident: 2015070909421538000_38.2.144.340
  doi: 10.1073/pnas.062502299
– ident: 2015070909421538000_38.2.144.237
  doi: 10.1038/nsmb1125
– ident: 2015070909421538000_38.2.144.199
  doi: 10.1093/emboj/18.12.3509
– ident: 2015070909421538000_38.2.144.232
  doi: 10.1101/gad.2003811
– ident: 2015070909421538000_38.2.144.251
  doi: 10.1371/journal.pgen.1002960
– ident: 2015070909421538000_38.2.144.110
  doi: 10.1016/j.molcel.2010.08.024
– ident: 2015070909421538000_38.2.144.197
  doi: 10.1038/sj.embor.7400911
– ident: 2015070909421538000_38.2.144.235
  doi: 10.1093/nar/gkh309
– ident: 2015070909421538000_38.2.144.321
  doi: 10.1016/j.molcel.2006.07.035
– ident: 2015070909421538000_38.2.144.182
  doi: 10.1016/j.cell.2005.03.035
– ident: 2015070909421538000_38.2.144.185
  doi: 10.1016/j.yexcr.2012.09.005
– ident: 2015070909421538000_38.2.144.205
  doi: 10.1016/S0092-8674(00)80773-4
– ident: 2015070909421538000_38.2.144.48
  doi: 10.1056/NEJMra0903373
– ident: 2015070909421538000_38.2.144.138
  doi: 10.1101/gad.178491.111
– ident: 2015070909421538000_38.2.144.57
  doi: 10.1159/000167804
– ident: 2015070909421538000_38.2.144.201
  doi: 10.1101/gad.455108
– ident: 2015070909421538000_38.2.144.70
  doi: 10.1126/science.1170633
– ident: 2015070909421538000_38.2.144.277
  doi: 10.1016/0092-8674(94)90179-1
– ident: 2015070909421538000_38.2.144.129
  doi: 10.1038/22780
– ident: 2015070909421538000_38.2.144.159
  doi: 10.1016/S0092-8674(00)81088-0
– ident: 2015070909421538000_38.2.144.173
  doi: 10.1128/MCB.24.24.10857-10867.2004
– ident: 2015070909421538000_38.2.144.109
  doi: 10.1006/jmbi.1993.1283
– ident: 2015070909421538000_38.2.144.114
  doi: 10.1128/MCB.19.11.7481
– ident: 2015070909421538000_38.2.144.326
  doi: 10.1038/239197a0
– ident: 2015070909421538000_38.2.144.102
  doi: 10.1093/emboj/18.11.3173
– ident: 2015070909421538000_38.2.144.179
  doi: 10.1073/pnas.93.24.13760
– ident: 2015070909421538000_38.2.144.322
  doi: 10.4161/cc.6.10.4224
– ident: 2015070909421538000_38.2.144.178
  doi: 10.1128/MCB.00994-10
– ident: 2015070909421538000_38.2.144.334
  doi: 10.1371/journal.pgen.1002417
– ident: 2015070909421538000_38.2.144.108
  doi: 10.1093/emboj/20.16.4522
– ident: 2015070909421538000_38.2.144.284
  doi: 10.1038/nrm3546
– ident: 2015070909421538000_38.2.144.149
  doi: 10.1016/S0960-9822(00)00562-5
– ident: 2015070909421538000_38.2.144.154
  doi: 10.1534/genetics.166.2.753
– ident: 2015070909421538000_38.2.144.215
  doi: 10.1038/emboj.2010.193
– ident: 2015070909421538000_38.2.144.8
  doi: 10.1073/pnas.1319313110
– ident: 2015070909421538000_38.2.144.52
  doi: 10.1016/0092-8674(83)90437-3
– ident: 2015070909421538000_38.2.144.77
  doi: 10.1126/science.1230624
– ident: 2015070909421538000_38.2.144.86
  doi: 10.1093/genetics/162.3.1101
– ident: 2015070909421538000_38.2.144.246
  doi: 10.1038/emboj.2011.345
– ident: 2015070909421538000_38.2.144.331
  doi: 10.1101/gad.11.6.748
– ident: 2015070909421538000_38.2.144.336
  doi: 10.1038/emboj.2012.180
– ident: 2015070909421538000_38.2.144.13
  doi: 10.4161/cc.6.1.3647
– ident: 2015070909421538000_38.2.144.40
  doi: 10.1002/j.1460-2075.1996.tb00890.x
– ident: 2015070909421538000_38.2.144.280
  doi: 10.1016/j.cell.2009.06.021
– ident: 2015070909421538000_38.2.144.120
  doi: 10.1101/gad.11.4.512
– ident: 2015070909421538000_38.2.144.281
  doi: 10.1038/msb.2008.13
– ident: 2015070909421538000_38.2.144.297
  doi: 10.1016/0092-8674(82)90109-X
– ident: 2015070909421538000_38.2.144.345
  doi: 10.1126/science.1231573
– ident: 2015070909421538000_38.2.144.131
  doi: 10.1038/nsmb.2100
– ident: 2015070909421538000_38.2.144.213
  doi: 10.1073/pnas.1934561100
– ident: 2015070909421538000_38.2.144.308
  doi: 10.1083/jcb.200505159
– ident: 2015070909421538000_38.2.144.45
  doi: 10.1038/ng1917
– ident: 2015070909421538000_38.2.144.200
  doi: 10.1016/S0960-9822(00)00450-4
– ident: 2015070909421538000_38.2.144.315
  doi: 10.1371/journal.pgen.1002060
– ident: 2015070909421538000_38.2.144.7
  doi: 10.1038/ncb2745
– ident: 2015070909421538000_38.2.144.174
  doi: 10.1101/gad.10.11.1310
– ident: 2015070909421538000_38.2.144.304
  doi: 10.3389/fonc.2013.00101
– ident: 2015070909421538000_38.2.144.311
  doi: 10.1038/emboj.2008.93
– ident: 2015070909421538000_38.2.144.121
  doi: 10.1128/MCB.20.22.8397-8408.2000
– ident: 2015070909421538000_38.2.144.46
  doi: 10.1083/jcb.200706040
SSID ssj0005955
Score 2.3441472
SecondaryResourceType review_article
Snippet Abstract Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity....
Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes and thereby protect their stability and integrity. Telomeres play...
SourceID proquest
pubmed
crossref
wiley
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 144
SubjectTerms aging
Animals
Biology
cancer
Chromosomes
DNA damage response
DNA Replication
Genetics
genome stability
Genomes
Mammals
Molecular biology
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - physiology
Telomerase
Telomere - genetics
Telomere - metabolism
Telomere - physiology
Telomere Homeostasis - physiology
Telomere-Binding Proteins - genetics
Telomere-Binding Proteins - metabolism
Yeast
Yeasts
Title Biology of telomeres: lessons from budding yeast
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1574-6976.12054
https://www.ncbi.nlm.nih.gov/pubmed/24754043
https://www.proquest.com/docview/1504787764
https://www.proquest.com/docview/1518620051
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA4iCF58P-qLFT14Sdlu89h4E7GIoAex4G3JJNmLtRXbHuqvd2YftS2KiLdAJmw2ycx8szv5hrFzARraceo4eOO4AGe4xbCAOwWi7WJsp3TB-f5B3XbF3bOsswnpLkzJDzH94EaaUdhrUnALwxklb0ktuEJv2mwliDvQClPGFsGixy8CKWlkmcSoUo6eX1bkPpTLszB-zi_N3XWbgZzzCLZwQZ11BvXky8yTl-Z4BE33scDr-K-322BrFUCNrsoTtcmWQn-LrZQlKyfbLK5a0SCPRqE3eA0Yr19GPTSYeH4juq0SwdiTR4wmVBdoh3U7N0_Xt7yqusAdFS3i1ufBKaFDqnOd5kqBtmnqtAQi_0pkDl6oYEAFq-IgjTfSmVSYYLx0HuPaXbbcH_TDPovASrAhQUSQeOEN2grEH1r7uAVGSKsbrFmveeYqSnKqjNHL6tCEliGjZciKZWiwi-mAt5KN42fRM9zEb6X4rNRRvclZpbxDlCkoi7TC7tNpN6od_Uux_TAYk0wLY0EyaQ22Vx6O6bMSoSWRFuHrFVv821Szzv1j0Tj464BDtooATpQ5cUdsefQ-DscIkkZwUujBJ1oD_yU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3HTsNAEB1RhOBCL6EawYHLRo6zxcsNAVEo4YBA4mZ5iy-EBEFygK9nxnZCgkAIcVtpZ21vmbaeeQNwyI0y9TC2zDhtGTdWsxTdAmal4XUbYjumBOfWjWze88sH8TCSC1PgQwwv3IgzcnlNDE4X0iNcXhOKM4nqtFqL0PCYhGmq6034-We3nxBSQosijFHGDHW_KOF9KJrnywPGNNNYttuI0Tluw-ZKqLEAdvD5RezJY7XfM1X7_gXZ8X_zW4T50kYNTopDtQQTvrMMM0XVyrcVCMtW0M2Cnm93nzy67MdBG2UmHuGAElYC03ekFIM3Kg20CveN87vTJisLLzBLdYtY6jJvJVc-VpmKMymNSuPYKmEI_ysSmXFcem2kT2XohXZaWB1z7bUT1qFruwZTnW7Hb0BgUmFSH6FREDnuNIoLNEGUcmHNaC5SVYHqYNETW6KSU3GMdjLwTmgZElqGJF-GChwNBzwXgBw_kx7gLn5LxUaptge7nJT8-4o0OWqRkti9P-xGzqPfKWnHd_tEU0N3kKRaBdaL0zF8V8SVINwinF6-x799atJo3eaNzb8O2IPZ5l3rOrm-uLnagjm053gRIrcNU72Xvt9Bm6lndnOm-ABxqgNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT8MwDLY4BOKF-xhnETzwkqkrORreEDBxCyGQeKuaoy-MDcH2AL8eu8fYEAgh3iLFaRMnju3W_gywy40y-2FsmXHaMm6sZim6BcxKw_dtiO2YEpyvruXpPT9_EFU0IeXCFPgQ_Q9uJBn5fU0C_uyyASFvCMWZRG1ab0Rod4zCOJehpuoNx7efCFJCiyKKUcYMVb8o0X0omOfLA4YU01Cy24DNOWzC5jqoOQOmmn0RevJY73VN3b5_AXb81_JmYbq0UIPD4kjNwYhvz8NEUbPybQHCshV0sqDrW50njw77QdDCGxMPcEDpKoHpOVKJwRsVBlqE--bJ3dEpK8suMEtVi1jqMm8lVz5WmYozKY1K49gqYQj9KxKZcVx6baRPZeiFdlpYHXPttRPWoWO7BGPtTtuvQGBSYVIfoUkQOe40XhZogCjlwobRXKSqBvWK54ktMcmpNEYrqXwTYkNCbEhyNtRgrz_guYDj-Jl0BzfxWyo2SLVebXJSSu8r0uSYRUpi93a_G-WOfqakbd_pEU0DnUG602qwXByO_rsirgShFuHy8i3-bapJ8-o2b6z-dcAWTN4cN5PLs-uLNZhCY44X8XHrMNZ96fkNNJi6ZjMXiQ9HzAH_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biology+of+telomeres%3A+lessons+from+budding+yeast&rft.jtitle=FEMS+microbiology+reviews&rft.au=Kupiec%2C+Martin&rft.date=2014-03-01&rft.issn=0168-6445&rft.eissn=1574-6976&rft.volume=38&rft.issue=2&rft.spage=144&rft.epage=171&rft_id=info:doi/10.1111%2F1574-6976.12054&rft.externalDBID=10.1111%252F1574-6976.12054&rft.externalDocID=FMR12054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-6445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-6445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-6445&client=summon