Revealing the heterogeneous nucleation mechanism of Mg17Al12 on impurity Mg2Si particles in commercial AZ31 alloy

•Si impurities in the AZ31 alloy form fine Mg2Si particles in the central region of the Mg17Al12 phase.•Mg2Si particles precipitate before Mg17Al12, acting as nucleation sites for Mg17Al12 during the solidification process of the AZ31 alloy.•E2EM calculations and TEM analysis show a low misfit of 0....

Full description

Saved in:
Bibliographic Details
Published inJournal of magnesium and alloys Vol. 13; no. 7; pp. 3122 - 3133
Main Authors Mo, Liling, Liao, Hengbin, Chen, Linbo, Zhao, Yu-Jun, Du, Jun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2025
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text
ISSN2213-9567
2213-9567
DOI10.1016/j.jma.2024.08.011

Cover

Loading…
Abstract •Si impurities in the AZ31 alloy form fine Mg2Si particles in the central region of the Mg17Al12 phase.•Mg2Si particles precipitate before Mg17Al12, acting as nucleation sites for Mg17Al12 during the solidification process of the AZ31 alloy.•E2EM calculations and TEM analysis show a low misfit of 0.1% between Mg2Si (220) and Mg17Al12 (332).•Mg and Al atoms preferentially adsorb on Mg2Si (220), with the Mg2Si (220)/Mg17Al12 (332) interface showing good stability. Silicon (Si) is an inevitable impurity element in the AZ31 alloy. In this study, the Si impurity was detected mainly as fine Mg2Si particles dispersed widely within the central region of the Mg17Al12 phase. During the solidification process, the Mg2Si particle precipitates at about 565 °C, before the Mg17Al12 phase of 186 °C, potentially acting as the heterogeneous nucleation core for the Mg17Al12 phase. The orientation relationship between Mg2Si and Mg17Al12 was investigated using the Edge-to-Edge matching model (E2EM) calculations, which showed a misfit of only 0.1%. This low misfit suggests that Mg2Si can serve as a heterogeneous nucleation site for Mg17Al12. The surface and interface structures of Mg2Si (220) and Mg17Al12 (332) were constructed, and then investigated through the first-principles calculation. The theoretical results indicate that Mg and Al are easily adsorbed on the surface of Mg2Si, with Al showing higher adsorption energy than Mg. Furthermore, the interface between Mg2Si and Mg17Al12 exhibits favorable thermodynamic stability. Combined with experiments and theoretical calculations, it is confirmed that the Mg2Si particles, formed due to the Si impurity, provide effective heterogeneous nucleation sites for the Mg17Al12 phase. [Display omitted]
AbstractList •Si impurities in the AZ31 alloy form fine Mg2Si particles in the central region of the Mg17Al12 phase.•Mg2Si particles precipitate before Mg17Al12, acting as nucleation sites for Mg17Al12 during the solidification process of the AZ31 alloy.•E2EM calculations and TEM analysis show a low misfit of 0.1% between Mg2Si (220) and Mg17Al12 (332).•Mg and Al atoms preferentially adsorb on Mg2Si (220), with the Mg2Si (220)/Mg17Al12 (332) interface showing good stability. Silicon (Si) is an inevitable impurity element in the AZ31 alloy. In this study, the Si impurity was detected mainly as fine Mg2Si particles dispersed widely within the central region of the Mg17Al12 phase. During the solidification process, the Mg2Si particle precipitates at about 565 °C, before the Mg17Al12 phase of 186 °C, potentially acting as the heterogeneous nucleation core for the Mg17Al12 phase. The orientation relationship between Mg2Si and Mg17Al12 was investigated using the Edge-to-Edge matching model (E2EM) calculations, which showed a misfit of only 0.1%. This low misfit suggests that Mg2Si can serve as a heterogeneous nucleation site for Mg17Al12. The surface and interface structures of Mg2Si (220) and Mg17Al12 (332) were constructed, and then investigated through the first-principles calculation. The theoretical results indicate that Mg and Al are easily adsorbed on the surface of Mg2Si, with Al showing higher adsorption energy than Mg. Furthermore, the interface between Mg2Si and Mg17Al12 exhibits favorable thermodynamic stability. Combined with experiments and theoretical calculations, it is confirmed that the Mg2Si particles, formed due to the Si impurity, provide effective heterogeneous nucleation sites for the Mg17Al12 phase. [Display omitted]
Silicon (Si) is an inevitable impurity element in the AZ31 alloy. In this study, the Si impurity was detected mainly as fine Mg2Si particles dispersed widely within the central region of the Mg17Al12 phase. During the solidification process, the Mg2Si particle precipitates at about 565 °C, before the Mg17Al12 phase of 186 °C, potentially acting as the heterogeneous nucleation core for the Mg17Al12 phase. The orientation relationship between Mg2Si and Mg17Al12 was investigated using the Edge-to-Edge matching model (E2EM) calculations, which showed a misfit of only 0.1%. This low misfit suggests that Mg2Si can serve as a heterogeneous nucleation site for Mg17Al12. The surface and interface structures of Mg2Si (220) and Mg17Al12 (332) were constructed, and then investigated through the first-principles calculation. The theoretical results indicate that Mg and Al are easily adsorbed on the surface of Mg2Si, with Al showing higher adsorption energy than Mg. Furthermore, the interface between Mg2Si and Mg17Al12 exhibits favorable thermodynamic stability. Combined with experiments and theoretical calculations, it is confirmed that the Mg2Si particles, formed due to the Si impurity, provide effective heterogeneous nucleation sites for the Mg17Al12 phase.
Author Mo, Liling
Liao, Hengbin
Chen, Linbo
Du, Jun
Zhao, Yu-Jun
Author_xml – sequence: 1
  givenname: Liling
  surname: Mo
  fullname: Mo, Liling
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 2
  givenname: Hengbin
  surname: Liao
  fullname: Liao, Hengbin
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 3
  givenname: Linbo
  surname: Chen
  fullname: Chen, Linbo
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 4
  givenname: Yu-Jun
  surname: Zhao
  fullname: Zhao, Yu-Jun
  email: zhaoyj@scut.edu.cn
  organization: Department of Physics, South China University of Technology, Guangzhou 510640, China
– sequence: 5
  givenname: Jun
  surname: Du
  fullname: Du, Jun
  email: tandujun@sina.com
  organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
BookMark eNp9kd1q3DAQhUVJoWmaB-idXmBdjWRLNr1aQn8CKYX-3PRGyOPxrowtbSVvYN--SjaU0otczTDDd-Yw5zW7CDEQY29BVCBAv5uqaXGVFLKuRFsJgBfsUkpQm67R5uKf_hW7znkSQkDbKA3qkv3-RvfkZh92fN0T39NKKe4oUDxmHo44k1t9DHwh3Lvg88LjyL_swGxnkLws_HI4Jr-eylB-9_zg0uoLlbkPHOOyUELvZr79pYC7eY6nN-zl6OZM10_1iv38-OHHzefN3ddPtzfbuw0qCbAxvTK1Q927EZrOaNEhqK4mqUaoay2wqTshtMSxRdJGQA-6GbQcjILWDL26Yrdn3SG6yR6SX1w62ei8fRzEtLNPXm2ntQKSIMrlGhX0g2gbQAl6MCMgFS04a2GKOSca_-qBsA8R2MmWCOxDBFa0tkRQGPMfg359fOaanJ-fJd-fSSrvufeUbEZPAWnwiXAt_v0z9B-TqaDD
CitedBy_id crossref_primary_10_1016_j_jallcom_2025_179069
Cites_doi 10.1103/PhysRevLett.77.3865
10.1016/j.jmrt.2021.03.035
10.1103/PhysRevB.54.11169
10.1016/j.matchar.2016.06.024
10.1016/j.jallcom.2010.04.090
10.1007/BF02868729
10.1016/j.scriptamat.2019.01.001
10.1016/j.scriptamat.2018.05.047
10.1016/j.jallcom.2012.12.116
10.1016/j.jallcom.2018.03.380
10.1016/j.jma.2020.02.003
10.1016/j.intermet.2008.09.008
10.1016/j.jma.2022.03.015
10.1016/S1003-6326(18)64746-6
10.1016/S1359-6462(02)00555-9
10.1007/s11669-007-9038-5
10.1016/j.jallcom.2007.02.076
10.1016/j.jma.2019.05.001
10.1016/j.matchemphys.2014.10.026
10.1103/PhysRevB.16.1746
10.1016/j.jallcom.2019.06.313
10.1007/BF02873413
10.1016/j.jma.2021.09.014
10.1016/j.jma.2021.06.006
10.1016/j.actamat.2010.10.036
10.1016/j.msea.2020.138966
10.1016/j.jallcom.2018.05.129
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jma.2024.08.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2213-9567
EndPage 3133
ExternalDocumentID oai_doaj_org_article_96631e2103214c31bd0851c216d7f1ce
10_1016_j_jma_2024_08_011
S2213956724002834
GroupedDBID -SB
-S~
0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXDM
AAXUO
AAYWO
ABMAC
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CAJEB
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
O-L
O9-
OK1
Q--
RIG
ROL
SSZ
U1G
U5L
AAYXX
CITATION
ID FETCH-LOGICAL-c3211-7b374ac6baf1597609c1394e23f14460c5490062cf8ce6701b165d62d73187db3
IEDL.DBID DOA
ISSN 2213-9567
IngestDate Wed Aug 27 01:29:58 EDT 2025
Thu Aug 14 00:04:50 EDT 2025
Thu Apr 24 23:10:17 EDT 2025
Sat Aug 30 17:14:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Heterogeneous nucleation
First-principles calculation
Mg17Al12 phase
AZ31 alloy
Mg2Si particle
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3211-7b374ac6baf1597609c1394e23f14460c5490062cf8ce6701b165d62d73187db3
OpenAccessLink https://doaj.org/article/96631e2103214c31bd0851c216d7f1ce
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_96631e2103214c31bd0851c216d7f1ce
crossref_primary_10_1016_j_jma_2024_08_011
crossref_citationtrail_10_1016_j_jma_2024_08_011
elsevier_sciencedirect_doi_10_1016_j_jma_2024_08_011
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Journal of magnesium and alloys
PublicationYear 2025
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Fatemi-Varzaneh, Zarei-Hanzaki, Cabrera, Calvillo (bib0007) 2015; 149–150
Liao, Mo, Zhou, Zhao, Du (bib0006) 2021; 12
Liu, Chen, Wilson, Nie (bib0012) 2019; 163
Murray, McAlister (bib0028) 1984; 5
Liu, Zhou, Zhao, Tang (bib0017) 2016; 118
Zhu, Chen, Gao (bib0030) 2010; 501
Karakulak (bib0004) 2019; 7
Mo, Liao, Zhou, Zhao, Du (bib0010) 2022; 11
Wang, Niu, Zhang, Chen, Jiang, Song, Li, Ying, Cheng, Ma (bib0019) 2023; 11
Liu, Xin, Wen, Gu, Liu (bib0016) 2023; 11
Chalisgaonkar (bib0003) 2020; 26
Lalpoor, Dzwonczyk, Hort, Offerman (bib0011) 2013; 557
Chadi (bib0024) 1977; 16
Perdew, Burke, Ernzerhof (bib0023) 1996; 77
Korgiopoulos, Pekguleryuz (bib0021) 2020; 775
Murray (bib0027) 1982; 3
Davis, Bichler, D'Elia, Hort (bib0009) 2018; 759
Yang, Wang, Wang, Wu, Wang, Zhang (bib0018) 2009; 17
Kresse, Furthmüller (bib0022) 1996; 54
Song, She, Chen, Pan (bib0001) 2020; 8
Miao, Sun, Klarner, Luo (bib0013) 2018; 154
Li, Wu, Li, Liu (bib0031) 2011; 59
Huan (bib0025) 2018; 2
Korgiopoulos, Langelier, Pekguleryuz (bib0020) 2021; 812
Jo, Kim, Kim, Go, Yang, You, Kim (bib0015) 2018; 749
Jayasathyakawin, Ravichandran, Baskar, Anand Chairman, Balasundaram (bib0002) 2020; 27
Zhang, Kelly (bib0014) 2003; 48
Okamoto (bib0029) 2007; 28
Wang, Yu, Tang, Peng, Ding (bib0026) 2008; 41
Liu, Yin, Zhang, Le, Xue (bib0008) 2018; 28
Fu, Qiu, Zhang, Wang, Kelly, Taylor (bib0032) 2008; 456
Zhang, Kelly, Qian, Taylor (bib0033) 2005; 21
Wang, Li (bib0005) 2019; 803
Jayasathyakawin (10.1016/j.jma.2024.08.011_bib0002) 2020; 27
Li (10.1016/j.jma.2024.08.011_bib0031) 2011; 59
Okamoto (10.1016/j.jma.2024.08.011_bib0029) 2007; 28
Zhu (10.1016/j.jma.2024.08.011_bib0030) 2010; 501
Liao (10.1016/j.jma.2024.08.011_bib0006) 2021; 12
Zhang (10.1016/j.jma.2024.08.011_bib0033) 2005; 21
Jo (10.1016/j.jma.2024.08.011_bib0015) 2018; 749
Huan (10.1016/j.jma.2024.08.011_bib0025) 2018; 2
Fu (10.1016/j.jma.2024.08.011_bib0032) 2008; 456
Miao (10.1016/j.jma.2024.08.011_bib0013) 2018; 154
Yang (10.1016/j.jma.2024.08.011_bib0018) 2009; 17
Murray (10.1016/j.jma.2024.08.011_bib0027) 1982; 3
Song (10.1016/j.jma.2024.08.011_bib0001) 2020; 8
Chalisgaonkar (10.1016/j.jma.2024.08.011_bib0003) 2020; 26
Liu (10.1016/j.jma.2024.08.011_bib0016) 2023; 11
Wang (10.1016/j.jma.2024.08.011_bib0026) 2008; 41
Perdew (10.1016/j.jma.2024.08.011_bib0023) 1996; 77
Murray (10.1016/j.jma.2024.08.011_bib0028) 1984; 5
Liu (10.1016/j.jma.2024.08.011_bib0017) 2016; 118
Liu (10.1016/j.jma.2024.08.011_bib0012) 2019; 163
Wang (10.1016/j.jma.2024.08.011_bib0005) 2019; 803
Mo (10.1016/j.jma.2024.08.011_bib0010) 2022; 11
Chadi (10.1016/j.jma.2024.08.011_bib0024) 1977; 16
Liu (10.1016/j.jma.2024.08.011_bib0008) 2018; 28
Davis (10.1016/j.jma.2024.08.011_bib0009) 2018; 759
Korgiopoulos (10.1016/j.jma.2024.08.011_bib0020) 2021; 812
Kresse (10.1016/j.jma.2024.08.011_bib0022) 1996; 54
Zhang (10.1016/j.jma.2024.08.011_bib0014) 2003; 48
Karakulak (10.1016/j.jma.2024.08.011_bib0004) 2019; 7
Fatemi-Varzaneh (10.1016/j.jma.2024.08.011_bib0007) 2015; 149–150
Lalpoor (10.1016/j.jma.2024.08.011_bib0011) 2013; 557
Wang (10.1016/j.jma.2024.08.011_bib0019) 2023; 11
Korgiopoulos (10.1016/j.jma.2024.08.011_bib0021) 2020; 775
References_xml – volume: 8
  start-page: 1
  year: 2020
  end-page: 41
  ident: bib0001
  publication-title: J. Magn. Alloys
– volume: 759
  start-page: 70
  year: 2018
  end-page: 79
  ident: bib0009
  publication-title: J. Alloys Compd.
– volume: 803
  start-page: 689
  year: 2019
  end-page: 699
  ident: bib0005
  publication-title: J. Alloys Compd.
– volume: 812
  year: 2021
  ident: bib0020
  publication-title: Mater. Sci.d Eng.: A
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib0023
  publication-title: Phys. Rev. Lett.
– volume: 27
  start-page: 909
  year: 2020
  end-page: 913
  ident: bib0002
  publication-title: Mater. Today: Proc.
– volume: 28
  start-page: 229
  year: 2007
  end-page: 230
  ident: bib0029
  publication-title: J. Phase Equilib. Diffus.
– volume: 775
  year: 2020
  ident: bib0021
  publication-title: Mater. Sci. Eng.: A
– volume: 501
  start-page: 291
  year: 2010
  end-page: 296
  ident: bib0030
  publication-title: J. Alloys Compd.
– volume: 163
  start-page: 91
  year: 2019
  end-page: 95
  ident: bib0012
  publication-title: Scr. Mater.
– volume: 41
  year: 2008
  ident: bib0026
  publication-title: J. Phys. D Appl. Phys.
– volume: 154
  start-page: 192
  year: 2018
  end-page: 196
  ident: bib0013
  publication-title: Scr. Mater.
– volume: 149–150
  start-page: 339
  year: 2015
  end-page: 343
  ident: bib0007
  publication-title: Mater. Chem. Phys.
– volume: 12
  start-page: 807
  year: 2021
  end-page: 817
  ident: bib0006
  publication-title: J. Mater. Res. Technol.
– volume: 11
  start-page: 4689
  year: 2023
  end-page: 4695
  ident: bib0016
  publication-title: J. Magn. Alloys
– volume: 118
  start-page: 481
  year: 2016
  end-page: 485
  ident: bib0017
  publication-title: Mater. Charact.
– volume: 54
  year: 1996
  ident: bib0022
  publication-title: Phys. Rev. B
– volume: 59
  start-page: 1058
  year: 2011
  end-page: 1067
  ident: bib0031
  publication-title: Acta Mater.
– volume: 26
  start-page: 1060
  year: 2020
  end-page: 1071
  ident: bib0003
  publication-title: Mater. Today: Proc.
– volume: 11
  start-page: 936
  year: 2023
  end-page: 944
  ident: bib0019
  publication-title: J. Magn. Alloys
– volume: 2
  year: 2018
  ident: bib0025
  publication-title: Phys. Rev. Mater.
– volume: 557
  start-page: 73
  year: 2013
  end-page: 76
  ident: bib0011
  publication-title: J. Alloys Compd.
– volume: 3
  start-page: 60
  year: 1982
  end-page: 74
  ident: bib0027
  publication-title: J. Phase Equilib.
– volume: 749
  start-page: 794
  year: 2018
  end-page: 802
  ident: bib0015
  publication-title: J. Alloys Compd.
– volume: 28
  start-page: 1103
  year: 2018
  end-page: 1113
  ident: bib0008
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 11
  start-page: 3642
  year: 2022
  end-page: 3656
  ident: bib0010
  publication-title: J. Magn. Alloys
– volume: 7
  start-page: 355
  year: 2019
  end-page: 369
  ident: bib0004
  publication-title: J. Magn. Alloys
– volume: 48
  start-page: 647
  year: 2003
  end-page: 652
  ident: bib0014
  publication-title: Scr. Mater.
– volume: 21
  start-page: 77
  year: 2005
  end-page: 80
  ident: bib0033
  publication-title: J. Mater. Sci. Technol.
– volume: 456
  start-page: 390
  year: 2008
  end-page: 394
  ident: bib0032
  publication-title: J. Alloys Compd.
– volume: 5
  start-page: 74
  year: 1984
  end-page: 84
  ident: bib0028
  publication-title: Bull. Alloy Phase Diagrams
– volume: 16
  start-page: 1746
  year: 1977
  end-page: 1747
  ident: bib0024
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 104
  year: 2009
  end-page: 108
  ident: bib0018
  publication-title: Intermetallics
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.jma.2024.08.011_bib0023
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 12
  start-page: 807
  year: 2021
  ident: 10.1016/j.jma.2024.08.011_bib0006
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2021.03.035
– volume: 21
  start-page: 77
  year: 2005
  ident: 10.1016/j.jma.2024.08.011_bib0033
  publication-title: J. Mater. Sci. Technol.
– volume: 54
  year: 1996
  ident: 10.1016/j.jma.2024.08.011_bib0022
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 118
  start-page: 481
  year: 2016
  ident: 10.1016/j.jma.2024.08.011_bib0017
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2016.06.024
– volume: 501
  start-page: 291
  year: 2010
  ident: 10.1016/j.jma.2024.08.011_bib0030
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.04.090
– volume: 5
  start-page: 74
  year: 1984
  ident: 10.1016/j.jma.2024.08.011_bib0028
  publication-title: Bull. Alloy Phase Diagrams
  doi: 10.1007/BF02868729
– volume: 163
  start-page: 91
  year: 2019
  ident: 10.1016/j.jma.2024.08.011_bib0012
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2019.01.001
– volume: 154
  start-page: 192
  year: 2018
  ident: 10.1016/j.jma.2024.08.011_bib0013
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.05.047
– volume: 557
  start-page: 73
  year: 2013
  ident: 10.1016/j.jma.2024.08.011_bib0011
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.12.116
– volume: 749
  start-page: 794
  year: 2018
  ident: 10.1016/j.jma.2024.08.011_bib0015
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.03.380
– volume: 2
  year: 2018
  ident: 10.1016/j.jma.2024.08.011_bib0025
  publication-title: Phys. Rev. Mater.
– volume: 26
  start-page: 1060
  year: 2020
  ident: 10.1016/j.jma.2024.08.011_bib0003
  publication-title: Mater. Today: Proc.
– volume: 8
  start-page: 1
  year: 2020
  ident: 10.1016/j.jma.2024.08.011_bib0001
  publication-title: J. Magn. Alloys
  doi: 10.1016/j.jma.2020.02.003
– volume: 17
  start-page: 104
  year: 2009
  ident: 10.1016/j.jma.2024.08.011_bib0018
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2008.09.008
– volume: 812
  year: 2021
  ident: 10.1016/j.jma.2024.08.011_bib0020
  publication-title: Mater. Sci.d Eng.: A
– volume: 11
  start-page: 3642
  year: 2022
  ident: 10.1016/j.jma.2024.08.011_bib0010
  publication-title: J. Magn. Alloys
  doi: 10.1016/j.jma.2022.03.015
– volume: 28
  start-page: 1103
  year: 2018
  ident: 10.1016/j.jma.2024.08.011_bib0008
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(18)64746-6
– volume: 48
  start-page: 647
  year: 2003
  ident: 10.1016/j.jma.2024.08.011_bib0014
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(02)00555-9
– volume: 28
  start-page: 229
  year: 2007
  ident: 10.1016/j.jma.2024.08.011_bib0029
  publication-title: J. Phase Equilib. Diffus.
  doi: 10.1007/s11669-007-9038-5
– volume: 456
  start-page: 390
  year: 2008
  ident: 10.1016/j.jma.2024.08.011_bib0032
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2007.02.076
– volume: 7
  start-page: 355
  year: 2019
  ident: 10.1016/j.jma.2024.08.011_bib0004
  publication-title: J. Magn. Alloys
  doi: 10.1016/j.jma.2019.05.001
– volume: 149–150
  start-page: 339
  year: 2015
  ident: 10.1016/j.jma.2024.08.011_bib0007
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.10.026
– volume: 16
  start-page: 1746
  year: 1977
  ident: 10.1016/j.jma.2024.08.011_bib0024
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.16.1746
– volume: 803
  start-page: 689
  year: 2019
  ident: 10.1016/j.jma.2024.08.011_bib0005
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.06.313
– volume: 3
  start-page: 60
  year: 1982
  ident: 10.1016/j.jma.2024.08.011_bib0027
  publication-title: J. Phase Equilib.
  doi: 10.1007/BF02873413
– volume: 11
  start-page: 4689
  year: 2023
  ident: 10.1016/j.jma.2024.08.011_bib0016
  publication-title: J. Magn. Alloys
  doi: 10.1016/j.jma.2021.09.014
– volume: 11
  start-page: 936
  year: 2023
  ident: 10.1016/j.jma.2024.08.011_bib0019
  publication-title: J. Magn. Alloys
  doi: 10.1016/j.jma.2021.06.006
– volume: 41
  year: 2008
  ident: 10.1016/j.jma.2024.08.011_bib0026
  publication-title: J. Phys. D Appl. Phys.
– volume: 59
  start-page: 1058
  year: 2011
  ident: 10.1016/j.jma.2024.08.011_bib0031
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.10.036
– volume: 775
  year: 2020
  ident: 10.1016/j.jma.2024.08.011_bib0021
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2020.138966
– volume: 27
  start-page: 909
  year: 2020
  ident: 10.1016/j.jma.2024.08.011_bib0002
  publication-title: Mater. Today: Proc.
– volume: 759
  start-page: 70
  year: 2018
  ident: 10.1016/j.jma.2024.08.011_bib0009
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.05.129
SSID ssj0001853613
Score 2.3316755
Snippet •Si impurities in the AZ31 alloy form fine Mg2Si particles in the central region of the Mg17Al12 phase.•Mg2Si particles precipitate before Mg17Al12, acting as...
Silicon (Si) is an inevitable impurity element in the AZ31 alloy. In this study, the Si impurity was detected mainly as fine Mg2Si particles dispersed widely...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 3122
SubjectTerms AZ31 alloy
First-principles calculation
Heterogeneous nucleation
Mg17Al12 phase
Mg2Si particle
SummonAdditionalLinks – databaseName: ScienceDirect Open Access Journals (Elsevier)
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQJxgQT1Fe8sCEFLV-1E5GQCCEBAMPqWKJ6hekatNQChL_njs3gTLAwBY5dmKdL77vnLvvCDkyWSYNFjQxToREajVIMhF0osF3dkZKK-LRwPWNunyQV_1ef4mcNbkwGFZZ7_3zPT3u1nVLp5ZmpyqKzh3ngF56SmMUJBhJ5AQVMo1JfP3T73MWsEcqVknG_gkOaH5uxjCvYWQf4jISeTL2wzxFFv8FK7VgeS7WyGoNGenJfFbrZMmXG2RlgUhwk7zc-ndAfHBNAdDRZ4xxmYBqePDraYmUxXEB6Nhjom_xOqaTQK-fmD4ZMU7hRjGuYhk7aOR3Ba2aeDlalBREM8a6TDiHR8Eo_qr_2CIPF-f3Z5dJXUwhsQKcvEQboeXAKjMIgGC06mYWxCc9FwFdwq4FRxETKm1IrVe6ywxTPae40_DVa2fENmmVk9LvEJqmyikAFkFrB2gsNQDQXRZSB_CjZ41vk24jw9zWTONY8GKUNyFlwxzEnqPYcyyCyVibHH8NqeY0G391PsWF-eqIDNmxYTJ9ymv55ODGCeY58gUy0DhmHIJLy5lyOjALk5TNsuY_FA4eVfz-7t3_DdsjyxwLB8c4333Smk3f_AGgmZk5jOr6Cdoc7kc
  priority: 102
  providerName: Elsevier
Title Revealing the heterogeneous nucleation mechanism of Mg17Al12 on impurity Mg2Si particles in commercial AZ31 alloy
URI https://dx.doi.org/10.1016/j.jma.2024.08.011
https://doaj.org/article/96631e2103214c31bd0851c216d7f1ce
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCEFFEnrp2MLaIqSGUAKlUsUf2CVG1aoCDx77lzkioMwMISRY4dW-dL7jv7_B0hZypJuMKEJspELuBSjIMkcjKQ4DsbxbmO_NLA4Fb0h_xm1B7VUn1hTFhBD1wI7gLgeMRsiLxvDFoyZRAk6JAJIx3TFv--YPNqzpRfXQErBIaq2sb0AV0TzzMUck_Zydg3Q-T5-mv2qGZjeltkswSHtFMMapus2XyHbNQoA3fJy539AGwH9xSgG33GaJY5KIEFD57mSE7sRU1nFo_0Zm8zOnd08MRkZ8pCCg-y2cInrIPC8D6jiyoyjmY5Be2bYQYmHMNjxChuyn_ukWHv6uGyH5RpEwINMmKBVJHkYy3U2AFWkaKVaIB53IaRQ-evpcElxKOT2sXaCtliiom2EaGR8H1Lo6J90sjnuT0gNI6FEQAhnJQGcFesAIqbxMUGgEZbK9skrUqGqS45xTG1xTStgscmKYg9RbGnmO6SsSY5XzVZFIQav1Xu4sSsKiIXti8ADUlL-aR_aUiT8Gpa0xJWFHABXpX93Pfhf_R9RNZDTBjs43uPSWP5-m5PAMUs1alXWLhej7pfvtvsRw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZ4HIAD2l1APJZdH_aEFLV-1E6OgEDlUQ48pIqLVb8giKblKfHvd8ZN2HJYDtwiJ5NY44nnG3v8DSF_bFFIiwVNrBcxk1oNskJEnWmInb2V0om0NNA7U90redzv9GfIfnMWBtMq67l_Mqen2bpuadXabI3LsnXBOaCXjtKYBQlOUs6SeUADCk37qL_3b6EFHJJKZZJRIEOJZncz5XndJfohLhOTJ2Mf_FOi8Z9yU1Ou5_AbWa4xI92ddOs7mQnVD7I0xSS4Qh7OwytAPrimgOjoLSa5jMA2AgT2tELO4jQCdBjwpG_5NKSjSHs3TO_eM07hRjkcpzp20MgvSjpuEuZoWVHQzRALM2EfrgWjuFf_tkquDg8u97tZXU0hcwKivExboeXAKTuIAGG0ahcO9CcDFxFjwraDSBFPVLqYu6B0m1mmOl5xr-G3196KNTJXjaqwTmieK68AWUStPcCx3AJC90XMPeCPjrNhg7QbHRpXU41jxYt70-SU3RlQu0G1G6yCydgG2XkXGU94Nj57eA8H5v1BpMhODaPHG1Prx0AcJ1jgSBjIwOSY9YguHWfK68gcdFI2w2o-WBy8qvz_tze_JvabLHQve6fm9OjsZIsscqwinJJ-f5K558eXsA3Q5tn-Sqb7F_J38W4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+heterogeneous+nucleation+mechanism+of+Mg17Al12+on+impurity+Mg2Si+particles+in+commercial+AZ31+alloy&rft.jtitle=Journal+of+magnesium+and+alloys&rft.au=Liling+Mo&rft.au=Hengbin+Liao&rft.au=Linbo+Chen&rft.au=Yu-Jun+Zhao&rft.date=2025-07-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2213-9567&rft.volume=13&rft.issue=7&rft.spage=3122&rft.epage=3133&rft_id=info:doi/10.1016%2Fj.jma.2024.08.011&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_96631e2103214c31bd0851c216d7f1ce
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-9567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-9567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-9567&client=summon