Revealing the heterogeneous nucleation mechanism of Mg17Al12 on impurity Mg2Si particles in commercial AZ31 alloy
•Si impurities in the AZ31 alloy form fine Mg2Si particles in the central region of the Mg17Al12 phase.•Mg2Si particles precipitate before Mg17Al12, acting as nucleation sites for Mg17Al12 during the solidification process of the AZ31 alloy.•E2EM calculations and TEM analysis show a low misfit of 0....
Saved in:
Published in | Journal of magnesium and alloys Vol. 13; no. 7; pp. 3122 - 3133 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2025
KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2213-9567 2213-9567 |
DOI | 10.1016/j.jma.2024.08.011 |
Cover
Loading…
Abstract | •Si impurities in the AZ31 alloy form fine Mg2Si particles in the central region of the Mg17Al12 phase.•Mg2Si particles precipitate before Mg17Al12, acting as nucleation sites for Mg17Al12 during the solidification process of the AZ31 alloy.•E2EM calculations and TEM analysis show a low misfit of 0.1% between Mg2Si (220) and Mg17Al12 (332).•Mg and Al atoms preferentially adsorb on Mg2Si (220), with the Mg2Si (220)/Mg17Al12 (332) interface showing good stability.
Silicon (Si) is an inevitable impurity element in the AZ31 alloy. In this study, the Si impurity was detected mainly as fine Mg2Si particles dispersed widely within the central region of the Mg17Al12 phase. During the solidification process, the Mg2Si particle precipitates at about 565 °C, before the Mg17Al12 phase of 186 °C, potentially acting as the heterogeneous nucleation core for the Mg17Al12 phase. The orientation relationship between Mg2Si and Mg17Al12 was investigated using the Edge-to-Edge matching model (E2EM) calculations, which showed a misfit of only 0.1%. This low misfit suggests that Mg2Si can serve as a heterogeneous nucleation site for Mg17Al12. The surface and interface structures of Mg2Si (220) and Mg17Al12 (332) were constructed, and then investigated through the first-principles calculation. The theoretical results indicate that Mg and Al are easily adsorbed on the surface of Mg2Si, with Al showing higher adsorption energy than Mg. Furthermore, the interface between Mg2Si and Mg17Al12 exhibits favorable thermodynamic stability. Combined with experiments and theoretical calculations, it is confirmed that the Mg2Si particles, formed due to the Si impurity, provide effective heterogeneous nucleation sites for the Mg17Al12 phase.
[Display omitted] |
---|---|
AbstractList | •Si impurities in the AZ31 alloy form fine Mg2Si particles in the central region of the Mg17Al12 phase.•Mg2Si particles precipitate before Mg17Al12, acting as nucleation sites for Mg17Al12 during the solidification process of the AZ31 alloy.•E2EM calculations and TEM analysis show a low misfit of 0.1% between Mg2Si (220) and Mg17Al12 (332).•Mg and Al atoms preferentially adsorb on Mg2Si (220), with the Mg2Si (220)/Mg17Al12 (332) interface showing good stability.
Silicon (Si) is an inevitable impurity element in the AZ31 alloy. In this study, the Si impurity was detected mainly as fine Mg2Si particles dispersed widely within the central region of the Mg17Al12 phase. During the solidification process, the Mg2Si particle precipitates at about 565 °C, before the Mg17Al12 phase of 186 °C, potentially acting as the heterogeneous nucleation core for the Mg17Al12 phase. The orientation relationship between Mg2Si and Mg17Al12 was investigated using the Edge-to-Edge matching model (E2EM) calculations, which showed a misfit of only 0.1%. This low misfit suggests that Mg2Si can serve as a heterogeneous nucleation site for Mg17Al12. The surface and interface structures of Mg2Si (220) and Mg17Al12 (332) were constructed, and then investigated through the first-principles calculation. The theoretical results indicate that Mg and Al are easily adsorbed on the surface of Mg2Si, with Al showing higher adsorption energy than Mg. Furthermore, the interface between Mg2Si and Mg17Al12 exhibits favorable thermodynamic stability. Combined with experiments and theoretical calculations, it is confirmed that the Mg2Si particles, formed due to the Si impurity, provide effective heterogeneous nucleation sites for the Mg17Al12 phase.
[Display omitted] Silicon (Si) is an inevitable impurity element in the AZ31 alloy. In this study, the Si impurity was detected mainly as fine Mg2Si particles dispersed widely within the central region of the Mg17Al12 phase. During the solidification process, the Mg2Si particle precipitates at about 565 °C, before the Mg17Al12 phase of 186 °C, potentially acting as the heterogeneous nucleation core for the Mg17Al12 phase. The orientation relationship between Mg2Si and Mg17Al12 was investigated using the Edge-to-Edge matching model (E2EM) calculations, which showed a misfit of only 0.1%. This low misfit suggests that Mg2Si can serve as a heterogeneous nucleation site for Mg17Al12. The surface and interface structures of Mg2Si (220) and Mg17Al12 (332) were constructed, and then investigated through the first-principles calculation. The theoretical results indicate that Mg and Al are easily adsorbed on the surface of Mg2Si, with Al showing higher adsorption energy than Mg. Furthermore, the interface between Mg2Si and Mg17Al12 exhibits favorable thermodynamic stability. Combined with experiments and theoretical calculations, it is confirmed that the Mg2Si particles, formed due to the Si impurity, provide effective heterogeneous nucleation sites for the Mg17Al12 phase. |
Author | Mo, Liling Liao, Hengbin Chen, Linbo Du, Jun Zhao, Yu-Jun |
Author_xml | – sequence: 1 givenname: Liling surname: Mo fullname: Mo, Liling organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 2 givenname: Hengbin surname: Liao fullname: Liao, Hengbin organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 3 givenname: Linbo surname: Chen fullname: Chen, Linbo organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 4 givenname: Yu-Jun surname: Zhao fullname: Zhao, Yu-Jun email: zhaoyj@scut.edu.cn organization: Department of Physics, South China University of Technology, Guangzhou 510640, China – sequence: 5 givenname: Jun surname: Du fullname: Du, Jun email: tandujun@sina.com organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China |
BookMark | eNp9kd1q3DAQhUVJoWmaB-idXmBdjWRLNr1aQn8CKYX-3PRGyOPxrowtbSVvYN--SjaU0otczTDDd-Yw5zW7CDEQY29BVCBAv5uqaXGVFLKuRFsJgBfsUkpQm67R5uKf_hW7znkSQkDbKA3qkv3-RvfkZh92fN0T39NKKe4oUDxmHo44k1t9DHwh3Lvg88LjyL_swGxnkLws_HI4Jr-eylB-9_zg0uoLlbkPHOOyUELvZr79pYC7eY6nN-zl6OZM10_1iv38-OHHzefN3ddPtzfbuw0qCbAxvTK1Q927EZrOaNEhqK4mqUaoay2wqTshtMSxRdJGQA-6GbQcjILWDL26Yrdn3SG6yR6SX1w62ei8fRzEtLNPXm2ntQKSIMrlGhX0g2gbQAl6MCMgFS04a2GKOSca_-qBsA8R2MmWCOxDBFa0tkRQGPMfg359fOaanJ-fJd-fSSrvufeUbEZPAWnwiXAt_v0z9B-TqaDD |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2025_179069 |
Cites_doi | 10.1103/PhysRevLett.77.3865 10.1016/j.jmrt.2021.03.035 10.1103/PhysRevB.54.11169 10.1016/j.matchar.2016.06.024 10.1016/j.jallcom.2010.04.090 10.1007/BF02868729 10.1016/j.scriptamat.2019.01.001 10.1016/j.scriptamat.2018.05.047 10.1016/j.jallcom.2012.12.116 10.1016/j.jallcom.2018.03.380 10.1016/j.jma.2020.02.003 10.1016/j.intermet.2008.09.008 10.1016/j.jma.2022.03.015 10.1016/S1003-6326(18)64746-6 10.1016/S1359-6462(02)00555-9 10.1007/s11669-007-9038-5 10.1016/j.jallcom.2007.02.076 10.1016/j.jma.2019.05.001 10.1016/j.matchemphys.2014.10.026 10.1103/PhysRevB.16.1746 10.1016/j.jallcom.2019.06.313 10.1007/BF02873413 10.1016/j.jma.2021.09.014 10.1016/j.jma.2021.06.006 10.1016/j.actamat.2010.10.036 10.1016/j.msea.2020.138966 10.1016/j.jallcom.2018.05.129 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jma.2024.08.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2213-9567 |
EndPage | 3133 |
ExternalDocumentID | oai_doaj_org_article_96631e2103214c31bd0851c216d7f1ce 10_1016_j_jma_2024_08_011 S2213956724002834 |
GroupedDBID | -SB -S~ 0R~ 4.4 457 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXDM AAXUO AAYWO ABMAC ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CAJEB EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E O-L O9- OK1 Q-- RIG ROL SSZ U1G U5L AAYXX CITATION |
ID | FETCH-LOGICAL-c3211-7b374ac6baf1597609c1394e23f14460c5490062cf8ce6701b165d62d73187db3 |
IEDL.DBID | DOA |
ISSN | 2213-9567 |
IngestDate | Wed Aug 27 01:29:58 EDT 2025 Thu Aug 14 00:04:50 EDT 2025 Thu Apr 24 23:10:17 EDT 2025 Sat Aug 30 17:14:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Heterogeneous nucleation First-principles calculation Mg17Al12 phase AZ31 alloy Mg2Si particle |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3211-7b374ac6baf1597609c1394e23f14460c5490062cf8ce6701b165d62d73187db3 |
OpenAccessLink | https://doaj.org/article/96631e2103214c31bd0851c216d7f1ce |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_96631e2103214c31bd0851c216d7f1ce crossref_primary_10_1016_j_jma_2024_08_011 crossref_citationtrail_10_1016_j_jma_2024_08_011 elsevier_sciencedirect_doi_10_1016_j_jma_2024_08_011 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of magnesium and alloys |
PublicationYear | 2025 |
Publisher | Elsevier B.V KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
References | Fatemi-Varzaneh, Zarei-Hanzaki, Cabrera, Calvillo (bib0007) 2015; 149–150 Liao, Mo, Zhou, Zhao, Du (bib0006) 2021; 12 Liu, Chen, Wilson, Nie (bib0012) 2019; 163 Murray, McAlister (bib0028) 1984; 5 Liu, Zhou, Zhao, Tang (bib0017) 2016; 118 Zhu, Chen, Gao (bib0030) 2010; 501 Karakulak (bib0004) 2019; 7 Mo, Liao, Zhou, Zhao, Du (bib0010) 2022; 11 Wang, Niu, Zhang, Chen, Jiang, Song, Li, Ying, Cheng, Ma (bib0019) 2023; 11 Liu, Xin, Wen, Gu, Liu (bib0016) 2023; 11 Chalisgaonkar (bib0003) 2020; 26 Lalpoor, Dzwonczyk, Hort, Offerman (bib0011) 2013; 557 Chadi (bib0024) 1977; 16 Perdew, Burke, Ernzerhof (bib0023) 1996; 77 Korgiopoulos, Pekguleryuz (bib0021) 2020; 775 Murray (bib0027) 1982; 3 Davis, Bichler, D'Elia, Hort (bib0009) 2018; 759 Yang, Wang, Wang, Wu, Wang, Zhang (bib0018) 2009; 17 Kresse, Furthmüller (bib0022) 1996; 54 Song, She, Chen, Pan (bib0001) 2020; 8 Miao, Sun, Klarner, Luo (bib0013) 2018; 154 Li, Wu, Li, Liu (bib0031) 2011; 59 Huan (bib0025) 2018; 2 Korgiopoulos, Langelier, Pekguleryuz (bib0020) 2021; 812 Jo, Kim, Kim, Go, Yang, You, Kim (bib0015) 2018; 749 Jayasathyakawin, Ravichandran, Baskar, Anand Chairman, Balasundaram (bib0002) 2020; 27 Zhang, Kelly (bib0014) 2003; 48 Okamoto (bib0029) 2007; 28 Wang, Yu, Tang, Peng, Ding (bib0026) 2008; 41 Liu, Yin, Zhang, Le, Xue (bib0008) 2018; 28 Fu, Qiu, Zhang, Wang, Kelly, Taylor (bib0032) 2008; 456 Zhang, Kelly, Qian, Taylor (bib0033) 2005; 21 Wang, Li (bib0005) 2019; 803 Jayasathyakawin (10.1016/j.jma.2024.08.011_bib0002) 2020; 27 Li (10.1016/j.jma.2024.08.011_bib0031) 2011; 59 Okamoto (10.1016/j.jma.2024.08.011_bib0029) 2007; 28 Zhu (10.1016/j.jma.2024.08.011_bib0030) 2010; 501 Liao (10.1016/j.jma.2024.08.011_bib0006) 2021; 12 Zhang (10.1016/j.jma.2024.08.011_bib0033) 2005; 21 Jo (10.1016/j.jma.2024.08.011_bib0015) 2018; 749 Huan (10.1016/j.jma.2024.08.011_bib0025) 2018; 2 Fu (10.1016/j.jma.2024.08.011_bib0032) 2008; 456 Miao (10.1016/j.jma.2024.08.011_bib0013) 2018; 154 Yang (10.1016/j.jma.2024.08.011_bib0018) 2009; 17 Murray (10.1016/j.jma.2024.08.011_bib0027) 1982; 3 Song (10.1016/j.jma.2024.08.011_bib0001) 2020; 8 Chalisgaonkar (10.1016/j.jma.2024.08.011_bib0003) 2020; 26 Liu (10.1016/j.jma.2024.08.011_bib0016) 2023; 11 Wang (10.1016/j.jma.2024.08.011_bib0026) 2008; 41 Perdew (10.1016/j.jma.2024.08.011_bib0023) 1996; 77 Murray (10.1016/j.jma.2024.08.011_bib0028) 1984; 5 Liu (10.1016/j.jma.2024.08.011_bib0017) 2016; 118 Liu (10.1016/j.jma.2024.08.011_bib0012) 2019; 163 Wang (10.1016/j.jma.2024.08.011_bib0005) 2019; 803 Mo (10.1016/j.jma.2024.08.011_bib0010) 2022; 11 Chadi (10.1016/j.jma.2024.08.011_bib0024) 1977; 16 Liu (10.1016/j.jma.2024.08.011_bib0008) 2018; 28 Davis (10.1016/j.jma.2024.08.011_bib0009) 2018; 759 Korgiopoulos (10.1016/j.jma.2024.08.011_bib0020) 2021; 812 Kresse (10.1016/j.jma.2024.08.011_bib0022) 1996; 54 Zhang (10.1016/j.jma.2024.08.011_bib0014) 2003; 48 Karakulak (10.1016/j.jma.2024.08.011_bib0004) 2019; 7 Fatemi-Varzaneh (10.1016/j.jma.2024.08.011_bib0007) 2015; 149–150 Lalpoor (10.1016/j.jma.2024.08.011_bib0011) 2013; 557 Wang (10.1016/j.jma.2024.08.011_bib0019) 2023; 11 Korgiopoulos (10.1016/j.jma.2024.08.011_bib0021) 2020; 775 |
References_xml | – volume: 8 start-page: 1 year: 2020 end-page: 41 ident: bib0001 publication-title: J. Magn. Alloys – volume: 759 start-page: 70 year: 2018 end-page: 79 ident: bib0009 publication-title: J. Alloys Compd. – volume: 803 start-page: 689 year: 2019 end-page: 699 ident: bib0005 publication-title: J. Alloys Compd. – volume: 812 year: 2021 ident: bib0020 publication-title: Mater. Sci.d Eng.: A – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib0023 publication-title: Phys. Rev. Lett. – volume: 27 start-page: 909 year: 2020 end-page: 913 ident: bib0002 publication-title: Mater. Today: Proc. – volume: 28 start-page: 229 year: 2007 end-page: 230 ident: bib0029 publication-title: J. Phase Equilib. Diffus. – volume: 775 year: 2020 ident: bib0021 publication-title: Mater. Sci. Eng.: A – volume: 501 start-page: 291 year: 2010 end-page: 296 ident: bib0030 publication-title: J. Alloys Compd. – volume: 163 start-page: 91 year: 2019 end-page: 95 ident: bib0012 publication-title: Scr. Mater. – volume: 41 year: 2008 ident: bib0026 publication-title: J. Phys. D Appl. Phys. – volume: 154 start-page: 192 year: 2018 end-page: 196 ident: bib0013 publication-title: Scr. Mater. – volume: 149–150 start-page: 339 year: 2015 end-page: 343 ident: bib0007 publication-title: Mater. Chem. Phys. – volume: 12 start-page: 807 year: 2021 end-page: 817 ident: bib0006 publication-title: J. Mater. Res. Technol. – volume: 11 start-page: 4689 year: 2023 end-page: 4695 ident: bib0016 publication-title: J. Magn. Alloys – volume: 118 start-page: 481 year: 2016 end-page: 485 ident: bib0017 publication-title: Mater. Charact. – volume: 54 year: 1996 ident: bib0022 publication-title: Phys. Rev. B – volume: 59 start-page: 1058 year: 2011 end-page: 1067 ident: bib0031 publication-title: Acta Mater. – volume: 26 start-page: 1060 year: 2020 end-page: 1071 ident: bib0003 publication-title: Mater. Today: Proc. – volume: 11 start-page: 936 year: 2023 end-page: 944 ident: bib0019 publication-title: J. Magn. Alloys – volume: 2 year: 2018 ident: bib0025 publication-title: Phys. Rev. Mater. – volume: 557 start-page: 73 year: 2013 end-page: 76 ident: bib0011 publication-title: J. Alloys Compd. – volume: 3 start-page: 60 year: 1982 end-page: 74 ident: bib0027 publication-title: J. Phase Equilib. – volume: 749 start-page: 794 year: 2018 end-page: 802 ident: bib0015 publication-title: J. Alloys Compd. – volume: 28 start-page: 1103 year: 2018 end-page: 1113 ident: bib0008 publication-title: Trans. Nonferrous Met. Soc. China – volume: 11 start-page: 3642 year: 2022 end-page: 3656 ident: bib0010 publication-title: J. Magn. Alloys – volume: 7 start-page: 355 year: 2019 end-page: 369 ident: bib0004 publication-title: J. Magn. Alloys – volume: 48 start-page: 647 year: 2003 end-page: 652 ident: bib0014 publication-title: Scr. Mater. – volume: 21 start-page: 77 year: 2005 end-page: 80 ident: bib0033 publication-title: J. Mater. Sci. Technol. – volume: 456 start-page: 390 year: 2008 end-page: 394 ident: bib0032 publication-title: J. Alloys Compd. – volume: 5 start-page: 74 year: 1984 end-page: 84 ident: bib0028 publication-title: Bull. Alloy Phase Diagrams – volume: 16 start-page: 1746 year: 1977 end-page: 1747 ident: bib0024 publication-title: Phys. Rev. B – volume: 17 start-page: 104 year: 2009 end-page: 108 ident: bib0018 publication-title: Intermetallics – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.jma.2024.08.011_bib0023 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 12 start-page: 807 year: 2021 ident: 10.1016/j.jma.2024.08.011_bib0006 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.03.035 – volume: 21 start-page: 77 year: 2005 ident: 10.1016/j.jma.2024.08.011_bib0033 publication-title: J. Mater. Sci. Technol. – volume: 54 year: 1996 ident: 10.1016/j.jma.2024.08.011_bib0022 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 118 start-page: 481 year: 2016 ident: 10.1016/j.jma.2024.08.011_bib0017 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2016.06.024 – volume: 501 start-page: 291 year: 2010 ident: 10.1016/j.jma.2024.08.011_bib0030 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.04.090 – volume: 5 start-page: 74 year: 1984 ident: 10.1016/j.jma.2024.08.011_bib0028 publication-title: Bull. Alloy Phase Diagrams doi: 10.1007/BF02868729 – volume: 163 start-page: 91 year: 2019 ident: 10.1016/j.jma.2024.08.011_bib0012 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2019.01.001 – volume: 154 start-page: 192 year: 2018 ident: 10.1016/j.jma.2024.08.011_bib0013 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.05.047 – volume: 557 start-page: 73 year: 2013 ident: 10.1016/j.jma.2024.08.011_bib0011 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.12.116 – volume: 749 start-page: 794 year: 2018 ident: 10.1016/j.jma.2024.08.011_bib0015 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.03.380 – volume: 2 year: 2018 ident: 10.1016/j.jma.2024.08.011_bib0025 publication-title: Phys. Rev. Mater. – volume: 26 start-page: 1060 year: 2020 ident: 10.1016/j.jma.2024.08.011_bib0003 publication-title: Mater. Today: Proc. – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.jma.2024.08.011_bib0001 publication-title: J. Magn. Alloys doi: 10.1016/j.jma.2020.02.003 – volume: 17 start-page: 104 year: 2009 ident: 10.1016/j.jma.2024.08.011_bib0018 publication-title: Intermetallics doi: 10.1016/j.intermet.2008.09.008 – volume: 812 year: 2021 ident: 10.1016/j.jma.2024.08.011_bib0020 publication-title: Mater. Sci.d Eng.: A – volume: 11 start-page: 3642 year: 2022 ident: 10.1016/j.jma.2024.08.011_bib0010 publication-title: J. Magn. Alloys doi: 10.1016/j.jma.2022.03.015 – volume: 28 start-page: 1103 year: 2018 ident: 10.1016/j.jma.2024.08.011_bib0008 publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(18)64746-6 – volume: 48 start-page: 647 year: 2003 ident: 10.1016/j.jma.2024.08.011_bib0014 publication-title: Scr. Mater. doi: 10.1016/S1359-6462(02)00555-9 – volume: 28 start-page: 229 year: 2007 ident: 10.1016/j.jma.2024.08.011_bib0029 publication-title: J. Phase Equilib. Diffus. doi: 10.1007/s11669-007-9038-5 – volume: 456 start-page: 390 year: 2008 ident: 10.1016/j.jma.2024.08.011_bib0032 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2007.02.076 – volume: 7 start-page: 355 year: 2019 ident: 10.1016/j.jma.2024.08.011_bib0004 publication-title: J. Magn. Alloys doi: 10.1016/j.jma.2019.05.001 – volume: 149–150 start-page: 339 year: 2015 ident: 10.1016/j.jma.2024.08.011_bib0007 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2014.10.026 – volume: 16 start-page: 1746 year: 1977 ident: 10.1016/j.jma.2024.08.011_bib0024 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.16.1746 – volume: 803 start-page: 689 year: 2019 ident: 10.1016/j.jma.2024.08.011_bib0005 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.06.313 – volume: 3 start-page: 60 year: 1982 ident: 10.1016/j.jma.2024.08.011_bib0027 publication-title: J. Phase Equilib. doi: 10.1007/BF02873413 – volume: 11 start-page: 4689 year: 2023 ident: 10.1016/j.jma.2024.08.011_bib0016 publication-title: J. Magn. Alloys doi: 10.1016/j.jma.2021.09.014 – volume: 11 start-page: 936 year: 2023 ident: 10.1016/j.jma.2024.08.011_bib0019 publication-title: J. Magn. Alloys doi: 10.1016/j.jma.2021.06.006 – volume: 41 year: 2008 ident: 10.1016/j.jma.2024.08.011_bib0026 publication-title: J. Phys. D Appl. Phys. – volume: 59 start-page: 1058 year: 2011 ident: 10.1016/j.jma.2024.08.011_bib0031 publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.10.036 – volume: 775 year: 2020 ident: 10.1016/j.jma.2024.08.011_bib0021 publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2020.138966 – volume: 27 start-page: 909 year: 2020 ident: 10.1016/j.jma.2024.08.011_bib0002 publication-title: Mater. Today: Proc. – volume: 759 start-page: 70 year: 2018 ident: 10.1016/j.jma.2024.08.011_bib0009 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.05.129 |
SSID | ssj0001853613 |
Score | 2.3316755 |
Snippet | •Si impurities in the AZ31 alloy form fine Mg2Si particles in the central region of the Mg17Al12 phase.•Mg2Si particles precipitate before Mg17Al12, acting as... Silicon (Si) is an inevitable impurity element in the AZ31 alloy. In this study, the Si impurity was detected mainly as fine Mg2Si particles dispersed widely... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 3122 |
SubjectTerms | AZ31 alloy First-principles calculation Heterogeneous nucleation Mg17Al12 phase Mg2Si particle |
SummonAdditionalLinks | – databaseName: ScienceDirect Open Access Journals (Elsevier) dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQJxgQT1Fe8sCEFLV-1E5GQCCEBAMPqWKJ6hekatNQChL_njs3gTLAwBY5dmKdL77vnLvvCDkyWSYNFjQxToREajVIMhF0osF3dkZKK-LRwPWNunyQV_1ef4mcNbkwGFZZ7_3zPT3u1nVLp5ZmpyqKzh3ngF56SmMUJBhJ5AQVMo1JfP3T73MWsEcqVknG_gkOaH5uxjCvYWQf4jISeTL2wzxFFv8FK7VgeS7WyGoNGenJfFbrZMmXG2RlgUhwk7zc-ndAfHBNAdDRZ4xxmYBqePDraYmUxXEB6Nhjom_xOqaTQK-fmD4ZMU7hRjGuYhk7aOR3Ba2aeDlalBREM8a6TDiHR8Eo_qr_2CIPF-f3Z5dJXUwhsQKcvEQboeXAKjMIgGC06mYWxCc9FwFdwq4FRxETKm1IrVe6ywxTPae40_DVa2fENmmVk9LvEJqmyikAFkFrB2gsNQDQXRZSB_CjZ41vk24jw9zWTONY8GKUNyFlwxzEnqPYcyyCyVibHH8NqeY0G391PsWF-eqIDNmxYTJ9ymv55ODGCeY58gUy0DhmHIJLy5lyOjALk5TNsuY_FA4eVfz-7t3_DdsjyxwLB8c4333Smk3f_AGgmZk5jOr6Cdoc7kc priority: 102 providerName: Elsevier |
Title | Revealing the heterogeneous nucleation mechanism of Mg17Al12 on impurity Mg2Si particles in commercial AZ31 alloy |
URI | https://dx.doi.org/10.1016/j.jma.2024.08.011 https://doaj.org/article/96631e2103214c31bd0851c216d7f1ce |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCEFFEnrp2MLaIqSGUAKlUsUf2CVG1aoCDx77lzkioMwMISRY4dW-dL7jv7_B0hZypJuMKEJspELuBSjIMkcjKQ4DsbxbmO_NLA4Fb0h_xm1B7VUn1hTFhBD1wI7gLgeMRsiLxvDFoyZRAk6JAJIx3TFv--YPNqzpRfXQErBIaq2sb0AV0TzzMUck_Zydg3Q-T5-mv2qGZjeltkswSHtFMMapus2XyHbNQoA3fJy539AGwH9xSgG33GaJY5KIEFD57mSE7sRU1nFo_0Zm8zOnd08MRkZ8pCCg-y2cInrIPC8D6jiyoyjmY5Be2bYQYmHMNjxChuyn_ukWHv6uGyH5RpEwINMmKBVJHkYy3U2AFWkaKVaIB53IaRQ-evpcElxKOT2sXaCtliiom2EaGR8H1Lo6J90sjnuT0gNI6FEQAhnJQGcFesAIqbxMUGgEZbK9skrUqGqS45xTG1xTStgscmKYg9RbGnmO6SsSY5XzVZFIQav1Xu4sSsKiIXti8ADUlL-aR_aUiT8Gpa0xJWFHABXpX93Pfhf_R9RNZDTBjs43uPSWP5-m5PAMUs1alXWLhej7pfvtvsRw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZ4HIAD2l1APJZdH_aEFLV-1E6OgEDlUQ48pIqLVb8giKblKfHvd8ZN2HJYDtwiJ5NY44nnG3v8DSF_bFFIiwVNrBcxk1oNskJEnWmInb2V0om0NNA7U90redzv9GfIfnMWBtMq67l_Mqen2bpuadXabI3LsnXBOaCXjtKYBQlOUs6SeUADCk37qL_3b6EFHJJKZZJRIEOJZncz5XndJfohLhOTJ2Mf_FOi8Z9yU1Ou5_AbWa4xI92ddOs7mQnVD7I0xSS4Qh7OwytAPrimgOjoLSa5jMA2AgT2tELO4jQCdBjwpG_5NKSjSHs3TO_eM07hRjkcpzp20MgvSjpuEuZoWVHQzRALM2EfrgWjuFf_tkquDg8u97tZXU0hcwKivExboeXAKTuIAGG0ahcO9CcDFxFjwraDSBFPVLqYu6B0m1mmOl5xr-G3196KNTJXjaqwTmieK68AWUStPcCx3AJC90XMPeCPjrNhg7QbHRpXU41jxYt70-SU3RlQu0G1G6yCydgG2XkXGU94Nj57eA8H5v1BpMhODaPHG1Prx0AcJ1jgSBjIwOSY9YguHWfK68gcdFI2w2o-WBy8qvz_tze_JvabLHQve6fm9OjsZIsscqwinJJ-f5K558eXsA3Q5tn-Sqb7F_J38W4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+heterogeneous+nucleation+mechanism+of+Mg17Al12+on+impurity+Mg2Si+particles+in+commercial+AZ31+alloy&rft.jtitle=Journal+of+magnesium+and+alloys&rft.au=Liling+Mo&rft.au=Hengbin+Liao&rft.au=Linbo+Chen&rft.au=Yu-Jun+Zhao&rft.date=2025-07-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2213-9567&rft.volume=13&rft.issue=7&rft.spage=3122&rft.epage=3133&rft_id=info:doi/10.1016%2Fj.jma.2024.08.011&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_96631e2103214c31bd0851c216d7f1ce |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-9567&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-9567&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-9567&client=summon |