A computer‐aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images

Purpose Detection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost clinically normal retina appearances. Methods The proposed computer‐aided diagnostic (CAD) system detects the DR in three steps: (a) localizing and se...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 44; no. 3; pp. 914 - 923
Main Authors ElTanboly, Ahmed, Ismail, Marwa, Shalaby, Ahmed, Switala, Andy, El‐Baz, Ayman, Schaal, Shlomit, Gimel’farb, Georgy, El‐Azab, Magdi
Format Journal Article
LanguageEnglish
Published United States 01.03.2017
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
2473-4209
DOI10.1002/mp.12071

Cover

Loading…
Abstract Purpose Detection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost clinically normal retina appearances. Methods The proposed computer‐aided diagnostic (CAD) system detects the DR in three steps: (a) localizing and segmenting 12 distinct retinal layers on the OCT image; (b) deriving features of the segmented layers, and (c) learning most discriminative features and classifying each subject as normal or diabetic. To localise and segment the retinal layers, signals (intensities) of the OCT image are described with a joint Markov‐Gibbs random field (MGRF) model of intensities and shape descriptors. Each segmented layer is characterized with cumulative probability distribution functions (CDF) of its locally extracted features, such as reflectivity, curvature, and thickness. A multistage deep fusion classification network (DFCN) with a stack of non‐negativity‐constrained autoencoders (NCAE) is trained to select the most discriminative retinal layers’ features and use their CDFs for detecting the DR. A training atlas was built using the OCT scans for 12 normal subjects and their maps of layers hand‐drawn by retina experts. Results Preliminary experiments on 52 clinical OCT scans (26 normal and 26 with early‐stage DR, balanced between 40–79 yr old males and females; 40 training and 12 test subjects) gave the DR detection accuracy, sensitivity, and specificity of 92%; 83%, and 100%, respectively. The 100% accuracy, sensitivity, and specificity have been obtained in the leave‐one‐out cross‐validation test for all the 52 subjects. Conclusion Both the quantitative and visual assessments confirmed the high accuracy of the proposed computer‐assisted diagnostic system for early DR detection using the OCT retinal images.
AbstractList Detection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost clinically normal retina appearances.PURPOSEDetection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost clinically normal retina appearances.The proposed computer-aided diagnostic (CAD) system detects the DR in three steps: (a) localizing and segmenting 12 distinct retinal layers on the OCT image; (b) deriving features of the segmented layers, and (c) learning most discriminative features and classifying each subject as normal or diabetic. To localise and segment the retinal layers, signals (intensities) of the OCT image are described with a joint Markov-Gibbs random field (MGRF) model of intensities and shape descriptors. Each segmented layer is characterized with cumulative probability distribution functions (CDF) of its locally extracted features, such as reflectivity, curvature, and thickness. A multistage deep fusion classification network (DFCN) with a stack of non-negativity-constrained autoencoders (NCAE) is trained to select the most discriminative retinal layers' features and use their CDFs for detecting the DR. A training atlas was built using the OCT scans for 12 normal subjects and their maps of layers hand-drawn by retina experts.METHODSThe proposed computer-aided diagnostic (CAD) system detects the DR in three steps: (a) localizing and segmenting 12 distinct retinal layers on the OCT image; (b) deriving features of the segmented layers, and (c) learning most discriminative features and classifying each subject as normal or diabetic. To localise and segment the retinal layers, signals (intensities) of the OCT image are described with a joint Markov-Gibbs random field (MGRF) model of intensities and shape descriptors. Each segmented layer is characterized with cumulative probability distribution functions (CDF) of its locally extracted features, such as reflectivity, curvature, and thickness. A multistage deep fusion classification network (DFCN) with a stack of non-negativity-constrained autoencoders (NCAE) is trained to select the most discriminative retinal layers' features and use their CDFs for detecting the DR. A training atlas was built using the OCT scans for 12 normal subjects and their maps of layers hand-drawn by retina experts.Preliminary experiments on 52 clinical OCT scans (26 normal and 26 with early-stage DR, balanced between 40-79 yr old males and females; 40 training and 12 test subjects) gave the DR detection accuracy, sensitivity, and specificity of 92%; 83%, and 100%, respectively. The 100% accuracy, sensitivity, and specificity have been obtained in the leave-one-out cross-validation test for all the 52 subjects.RESULTSPreliminary experiments on 52 clinical OCT scans (26 normal and 26 with early-stage DR, balanced between 40-79 yr old males and females; 40 training and 12 test subjects) gave the DR detection accuracy, sensitivity, and specificity of 92%; 83%, and 100%, respectively. The 100% accuracy, sensitivity, and specificity have been obtained in the leave-one-out cross-validation test for all the 52 subjects.Both the quantitative and visual assessments confirmed the high accuracy of the proposed computer-assisted diagnostic system for early DR detection using the OCT retinal images.CONCLUSIONBoth the quantitative and visual assessments confirmed the high accuracy of the proposed computer-assisted diagnostic system for early DR detection using the OCT retinal images.
Detection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost clinically normal retina appearances. The proposed computer-aided diagnostic (CAD) system detects the DR in three steps: (a) localizing and segmenting 12 distinct retinal layers on the OCT image; (b) deriving features of the segmented layers, and (c) learning most discriminative features and classifying each subject as normal or diabetic. To localise and segment the retinal layers, signals (intensities) of the OCT image are described with a joint Markov-Gibbs random field (MGRF) model of intensities and shape descriptors. Each segmented layer is characterized with cumulative probability distribution functions (CDF) of its locally extracted features, such as reflectivity, curvature, and thickness. A multistage deep fusion classification network (DFCN) with a stack of non-negativity-constrained autoencoders (NCAE) is trained to select the most discriminative retinal layers' features and use their CDFs for detecting the DR. A training atlas was built using the OCT scans for 12 normal subjects and their maps of layers hand-drawn by retina experts. Preliminary experiments on 52 clinical OCT scans (26 normal and 26 with early-stage DR, balanced between 40-79 yr old males and females; 40 training and 12 test subjects) gave the DR detection accuracy, sensitivity, and specificity of 92%; 83%, and 100%, respectively. The 100% accuracy, sensitivity, and specificity have been obtained in the leave-one-out cross-validation test for all the 52 subjects. Both the quantitative and visual assessments confirmed the high accuracy of the proposed computer-assisted diagnostic system for early DR detection using the OCT retinal images.
Purpose Detection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost clinically normal retina appearances. Methods The proposed computer‐aided diagnostic (CAD) system detects the DR in three steps: (a) localizing and segmenting 12 distinct retinal layers on the OCT image; (b) deriving features of the segmented layers, and (c) learning most discriminative features and classifying each subject as normal or diabetic. To localise and segment the retinal layers, signals (intensities) of the OCT image are described with a joint Markov‐Gibbs random field (MGRF) model of intensities and shape descriptors. Each segmented layer is characterized with cumulative probability distribution functions (CDF) of its locally extracted features, such as reflectivity, curvature, and thickness. A multistage deep fusion classification network (DFCN) with a stack of non‐negativity‐constrained autoencoders (NCAE) is trained to select the most discriminative retinal layers’ features and use their CDFs for detecting the DR. A training atlas was built using the OCT scans for 12 normal subjects and their maps of layers hand‐drawn by retina experts. Results Preliminary experiments on 52 clinical OCT scans (26 normal and 26 with early‐stage DR, balanced between 40–79 yr old males and females; 40 training and 12 test subjects) gave the DR detection accuracy, sensitivity, and specificity of 92%; 83%, and 100%, respectively. The 100% accuracy, sensitivity, and specificity have been obtained in the leave‐one‐out cross‐validation test for all the 52 subjects. Conclusion Both the quantitative and visual assessments confirmed the high accuracy of the proposed computer‐assisted diagnostic system for early DR detection using the OCT retinal images.
Author El‐Baz, Ayman
Gimel’farb, Georgy
Ismail, Marwa
ElTanboly, Ahmed
Switala, Andy
Schaal, Shlomit
Shalaby, Ahmed
El‐Azab, Magdi
Author_xml – sequence: 1
  givenname: Ahmed
  surname: ElTanboly
  fullname: ElTanboly, Ahmed
  organization: University of Louisville
– sequence: 2
  givenname: Marwa
  surname: Ismail
  fullname: Ismail, Marwa
  organization: University of Louisville
– sequence: 3
  givenname: Ahmed
  surname: Shalaby
  fullname: Shalaby, Ahmed
  organization: University of Louisville
– sequence: 4
  givenname: Andy
  surname: Switala
  fullname: Switala, Andy
  organization: University of Louisville
– sequence: 5
  givenname: Ayman
  surname: El‐Baz
  fullname: El‐Baz, Ayman
  email: aselba01@louisville.edu
  organization: University of Louisville
– sequence: 6
  givenname: Shlomit
  surname: Schaal
  fullname: Schaal, Shlomit
  organization: School of Medicine, University of Louisville
– sequence: 7
  givenname: Georgy
  surname: Gimel’farb
  fullname: Gimel’farb, Georgy
  organization: Intelligent Vision Systems Laboratory, Department of Computer Science
– sequence: 8
  givenname: Magdi
  surname: El‐Azab
  fullname: El‐Azab, Magdi
  organization: Mansoura University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28035657$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9uGyEQxlHlqrbTSn2CaI-5rDvAst49WlbSRErVHtozYmHsUO3CBrAi3_IIecY-SXCcP5f08iHx_fhmhpmTifMOCflKYUEB2LdhXFAGS_qBzFi15GXFoJ2QGUBblawCMSXzGP8CQM0FfCJT1gAXtVjOiFsV2g_jLmH4d_-grEFTGKu2zsdkdRH3MeFQbHwoDCbUybrtwe_w4Iaszo8q3ewL6wo_5kvV58AbDOg0FskPfhvUePAHtcX4mXzcqD7il-fzhPy5OP-9viyvf36_Wq-uS80ZpaUwwBvDGt2JmjeirTZgUImsraoFcAWqZaxjKg-i6451XS0EGCoaRtvM8BNydswdg7_dYUxysFFj3yuHfhclbURV00o0PKOnz-iuG9DIMeRWw16-_FEGFkdABx9jwI3UNqlkvUtB2V5SkIclyGGUT0t4K_764CXzHbQ8one2x_1_Ofnj15F_BImFlmI
CitedBy_id crossref_primary_10_3390_bioengineering10070823
crossref_primary_10_38124_ijisrt_IJISRT24APR704
crossref_primary_10_1097_ICU_0000000000000470
crossref_primary_10_22608_APO_2018438
crossref_primary_10_1007_s44196_024_00520_w
crossref_primary_10_1016_j_eswa_2021_115068
crossref_primary_10_1109_ACCESS_2020_2974158
crossref_primary_10_1016_j_neucom_2019_08_079
crossref_primary_10_1097_ICU_0000000000000679
crossref_primary_10_1186_s12938_019_0675_9
crossref_primary_10_1007_s11831_022_09720_z
crossref_primary_10_1167_tvst_9_2_46
crossref_primary_10_3389_fendo_2022_1079217
crossref_primary_10_1016_j_preteyeres_2018_07_004
crossref_primary_10_3390_brainsci12050535
crossref_primary_10_1155_2018_5278196
crossref_primary_10_1016_j_compmedimag_2019_04_003
crossref_primary_10_1364_BOE_10_006204
crossref_primary_10_1002_mp_14361
crossref_primary_10_1007_s00347_018_0706_0
crossref_primary_10_1007_s11042_025_20708_2
crossref_primary_10_3389_fcell_2024_1473176
crossref_primary_10_3390_s22093490
crossref_primary_10_1007_s00521_021_06042_2
crossref_primary_10_1167_tvst_7_6_41
crossref_primary_10_1167_tvst_9_2_35
crossref_primary_10_1007_s00417_017_3850_3
crossref_primary_10_1016_j_ailsci_2021_100018
crossref_primary_10_1080_17469899_2023_2175672
crossref_primary_10_1007_s00417_022_05818_z
crossref_primary_10_1016_j_xops_2022_100259
crossref_primary_10_1142_S1793545822500067
crossref_primary_10_1002_mp_13142
crossref_primary_10_1038_s41598_021_02479_6
crossref_primary_10_1159_000525929
crossref_primary_10_1177_20552076241269470
crossref_primary_10_3389_fpubh_2022_971943
crossref_primary_10_1016_j_neucom_2022_10_001
crossref_primary_10_1186_s40662_020_00183_6
crossref_primary_10_3390_s22207833
crossref_primary_10_3390_app12168326
crossref_primary_10_1167_tvst_8_6_4
crossref_primary_10_1109_ACCESS_2019_2891975
crossref_primary_10_1080_08164622_2022_2111201
crossref_primary_10_1007_s42979_021_00833_z
crossref_primary_10_1016_j_ajo_2020_01_016
crossref_primary_10_1186_s12938_024_01258_4
crossref_primary_10_4015_S1016237222500259
crossref_primary_10_32604_cmc_2022_023581
crossref_primary_10_3390_bioengineering9080366
crossref_primary_10_3390_diagnostics12081849
crossref_primary_10_1109_JBHI_2020_3040225
crossref_primary_10_1364_BOE_431992
crossref_primary_10_1016_j_inffus_2022_09_019
crossref_primary_10_3390_s21165457
Cites_doi 10.1118/1.4945413
10.1117/12.813468
10.1109/ISBI.2009.5193320
10.1109/TBME.2012.2196434
10.1109/JBHI.2015.2415477
10.1109/TBME.2011.2174235
10.1186/1476-511X-11-73
10.1109/TMI.2010.2087390
10.1016/j.media.2013.05.006
10.3233/JAD-132570
10.1348/000711006X126600
10.1111/php.12524
10.1109/TNNLS.2015.2479223
10.2307/1932409
10.1118/1.4943374
10.1007/s00417-015-3037-8
10.1016/0167-8191(94)00076-M
10.1097/IAE.0b013e31823c23bc
10.1167/tvst.3.1.1
10.1364/OE.18.019413
10.1118/1.4943382
ContentType Journal Article
Copyright 2016 American Association of Physicists in Medicine
2016 American Association of Physicists in Medicine.
2016 American Association of Physicists in Medicine.
Copyright_xml – notice: 2016 American Association of Physicists in Medicine
– notice: 2016 American Association of Physicists in Medicine.
– notice: 2016 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mp.12071
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 923
ExternalDocumentID 28035657
10_1002_mp_12071
MP12071
Genre article
Validation Studies
Journal Article
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3211-5d038d28cb5638594f0dea5f0d9a6503a0a922b2a280c6b2bb6550d158219d9a3
ISSN 0094-2405
2473-4209
IngestDate Thu Jul 10 19:13:08 EDT 2025
Thu Apr 03 06:58:20 EDT 2025
Thu Apr 24 22:58:35 EDT 2025
Tue Jul 01 03:54:26 EDT 2025
Wed Jan 22 17:07:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords joint image-region-map model
Markov-Gibbs random field (MGRF)
non-negativity-constrained autoencoder (NCAE)
optical coherence tomography (OCT)
diabetic retinopathy (DR)
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 American Association of Physicists in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3211-5d038d28cb5638594f0dea5f0d9a6503a0a922b2a280c6b2bb6550d158219d9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 28035657
PQID 1854614583
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1854614583
pubmed_primary_28035657
crossref_citationtrail_10_1002_mp_12071
crossref_primary_10_1002_mp_12071
wiley_primary_10_1002_mp_12071_MP12071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2017
2017-03-00
2017-Mar
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: March 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2017
References 2007; 19
2013; 17
2014; 3
2011
2010
2010; 18
2015; 20
1945; 26
2015; 253
1995; 21
2016; 43
2009
2011; 30
2009; 7260
2005; 1
2015; 91
2012; 59
2008; 61
2016; 27
2012; 11
2012; 32
2014; 42
Witten IH (e_1_2_6_26_1) 2011
e_1_2_6_10_1
Bengio Y (e_1_2_6_21_1) 2007; 19
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
Lim J (e_1_2_6_16_1) 2005
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_20_1
Jaafar HF (e_1_2_6_5_1) 2010
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
References_xml – year: 2011
– volume: 30
  start-page: 484
  year: 2011
  end-page: 496
  article-title: Segmentation of intra‐ retinal layers from optical coherence tomography images using an active contour approach
  publication-title: IEEE Trans Med Imag
– volume: 43
  start-page: 1662
  year: 2016
  end-page: 1675
  article-title: Automated detection of vessel lumen and stent struts in intravascular optical coherence tomography to evaluate stent apposition and neointimal coverage
  publication-title: Med Phys.
– volume: 17
  start-page: 907
  year: 2013
  end-page: 928
  article-title: Intra‐retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map
  publication-title: Med Image Anal.
– start-page: 1370
  year: 2009
  end-page: 1373
– volume: 59
  start-page: 445
  year: 2012
  end-page: 455
  article-title: Accurate auto‐ matic analysis of cardiac cine images
  publication-title: IEEE Trans Biomed Eng.
– volume: 11
  start-page: 73
  year: 2012
  article-title: Automated diagnosis of diabetic retinopathy and glaucoma using fundus and OCT images
  publication-title: Lipids Health Dis.
– start-page: 1622
  year: 2010
  end-page: 1626
– volume: 18
  start-page: 428
  year: 2010
  article-title: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation
  publication-title: Optics Express
– volume: 61
  start-page: 29
  year: 2008
  end-page: 48
  article-title: Computing inter‐rater reliability and its variance in the presence of high agreement
  publication-title: Br J Math Stat Psychol.
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 27
  start-page: 2486
  year: 2016
  end-page: 2498
  article-title: Deep learning of part‐based representation of data using sparse autoencoders with nonnegativity constraints
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 253
  start-page: 987
  year: 2015
  end-page: 988
  article-title: Full‐field ERG in diabetic retinopathy: a screening tool?
  publication-title: Graefe's Arch Clin Exp Ophthalmol.
– volume: 1
  start-page: 1196
  year: 2005
  end-page: 1202
– volume: 43
  start-page: 2311
  year: 2016
  end-page: 2322
  article-title: Automated extraction of retinal vasculature
  publication-title: Med Phys.
– volume: 3
  start-page: 1
  year: 2014
  article-title: Optical coherence tomography (OCT) device independent intraretinal layer segmentation
  publication-title: Transl Vis Sci Technol.
– volume: 43
  start-page: 1649
  year: 2016
  end-page: 1661
  article-title: Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images
  publication-title: Med Phys.
– volume: 32
  start-page: 1077
  year: 2012
  end-page: 1086
  article-title: En face spectral‐domain optical coherence tomography outer retinal analysis and relation to visual acuity
  publication-title: Retina
– volume: 7260
  start-page: 72601N
  year: 2009
– volume: 91
  start-page: 1497
  year: 2015
  end-page: 1504
  article-title: Early diagnosis of diabetes through the eye
  publication-title: Photochem Photobiol.
– volume: 20
  start-page: 925
  year: 2015
  end-page: 935
  article-title: Infant brain extraction in T1‐weighted MR images using BET and refinement using LCDG and MGRF models
  publication-title: Biomed Health Inform
– volume: 42
  start-page: S109
  year: 2014
  end-page: S117
  article-title: Severe diabetic retinal disease and dementia risk in type 2 diabetes
  publication-title: J. Alzheimer's Dis.
– volume: 19
  start-page: 153
  year: 2007
  article-title: Greedy layer‐wise training of deep networks
  publication-title: Adv Neural Inf Process Syst.
– volume: 21
  start-page: 265
  year: 1995
  end-page: 285
  article-title: A parallel algorithm for structure detection based on wavelet and segmentation analysis
  publication-title: Parallel Comput.
– volume: 59
  start-page: 2019
  year: 2012
  end-page: 2029
  article-title: Precise segmentation of 3‐D magnetic resonance angiography
  publication-title: IEEE Trans Biomed Eng.
– ident: e_1_2_6_7_1
  doi: 10.1118/1.4945413
– ident: e_1_2_6_4_1
  doi: 10.1117/12.813468
– start-page: 1622
  volume-title: 2010 18th European Signal Processing Conference
  year: 2010
  ident: e_1_2_6_5_1
– ident: e_1_2_6_8_1
  doi: 10.1109/ISBI.2009.5193320
– ident: e_1_2_6_18_1
  doi: 10.1109/TBME.2012.2196434
– start-page: 1196
  volume-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 (CVPR 2005)
  year: 2005
  ident: e_1_2_6_16_1
– ident: e_1_2_6_19_1
  doi: 10.1109/JBHI.2015.2415477
– volume-title: Data Mining: Practical Machine Learning Tools and Techniques
  year: 2011
  ident: e_1_2_6_26_1
– ident: e_1_2_6_20_1
  doi: 10.1109/TBME.2011.2174235
– ident: e_1_2_6_6_1
  doi: 10.1186/1476-511X-11-73
– volume: 19
  start-page: 153
  year: 2007
  ident: e_1_2_6_21_1
  article-title: Greedy layer‐wise training of deep networks
  publication-title: Adv Neural Inf Process Syst.
– ident: e_1_2_6_9_1
  doi: 10.1109/TMI.2010.2087390
– ident: e_1_2_6_10_1
  doi: 10.1016/j.media.2013.05.006
– ident: e_1_2_6_3_1
  doi: 10.3233/JAD-132570
– ident: e_1_2_6_25_1
  doi: 10.1348/000711006X126600
– ident: e_1_2_6_2_1
  doi: 10.1111/php.12524
– ident: e_1_2_6_22_1
  doi: 10.1109/TNNLS.2015.2479223
– ident: e_1_2_6_24_1
  doi: 10.2307/1932409
– ident: e_1_2_6_13_1
  doi: 10.1118/1.4943374
– ident: e_1_2_6_15_1
  doi: 10.1007/s00417-015-3037-8
– ident: e_1_2_6_17_1
  doi: 10.1016/0167-8191(94)00076-M
– ident: e_1_2_6_14_1
  doi: 10.1097/IAE.0b013e31823c23bc
– ident: e_1_2_6_11_1
  doi: 10.1167/tvst.3.1.1
– ident: e_1_2_6_23_1
  doi: 10.1364/OE.18.019413
– ident: e_1_2_6_12_1
  doi: 10.1118/1.4943382
SSID ssj0006350
Score 2.494016
Snippet Purpose Detection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost...
Detection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost clinically normal...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 914
SubjectTerms Adult
Aged
diabetic retinopathy (DR)
Diabetic Retinopathy - diagnostic imaging
Female
Humans
Image Interpretation, Computer-Assisted - methods
joint image‐region‐map model
Machine Learning
Male
Markov–Gibbs random field (MGRF)
Middle Aged
non‐negativity‐constrained autoencoder (NCAE)
optical coherence tomography (OCT)
Pattern Recognition, Automated
Retina - diagnostic imaging
Sensitivity and Specificity
Tomography, Optical Coherence - methods
Title A computer‐aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.12071
https://www.ncbi.nlm.nih.gov/pubmed/28035657
https://www.proquest.com/docview/1854614583
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdKJxAvCMa_8k9GQvCAsiWOkzaPEQxNiKBJ7aS9RXacqpOWpNpSTfDER-AD8On4JJx9jpuuQxq8pEnkOm3v17vz-e53hLxJ2DgQrAg8IcK5xwMJZ2DFPL9QUtOZKFnqQuHsa3x4zD-fRCeDwa9e1tKqlXvF92vrSv5HqnAP5KqrZP9Bsm5SuAHnIF84goTheCMZpyYjXDdlcDkLmvFR6YiqTqDTZKxI1WyyCVWpdwx0bAAjroa9Ga4b3ZbY1P81y9Yyhiws_WzbVJbU-v1pBbrnou_Ndrs8GB4x8VtdUy2w24cLMRyczUQtG-xpnS4qW09lAFkJDEJn4vzSWYjpQgA4t4dPL3WLE2ETMb_1IxZgBV3KVqeFE653dXA3uzT3GB-HHmd-0tfMyAxpERj21GyChafWYidYsbxlDJBctlruBczHPi-bfNtX7KDLTkQmZ5ZXy9y88xbZYbAIYUOyk37MvkydpQdnDUuc7PfpyI19tt89ddPd2VrDbC6JjE8zu0_u2cUITRFZD8igrHfJncymW-yS20co2IekTmkHtd8_fhqQ0TXIKIKMAsioAxntQEZ7IKOnNbUgow5kdA0yiiB7RI4_Hcw-HHq2VYdXhCwIvEj54USxSSEjUOhRwue-KkUEx0TAGiAUvkgYkwz0gF_EkkkZw9JYBbpMO4Ex4WMyrJu6fEromKtSyoKB3WVcBJqBLoxLxQVcx3MZj8i77hfNC8tjr9upnOVX5TYir93IJXK3XDemE0oOilXvlom6bFYXOTiyHHzXaBKOyBOUlptFt3TT-QIj8taI76_T59mReX12g4_ynNxd_1tekGF7vipfgsfbylcWeH8A1peuxg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computer%E2%80%90aided+diagnostic+system+for+detecting+diabetic+retinopathy+in+optical+coherence+tomography+images&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=ElTanboly%2C+Ahmed&rft.au=Ismail%2C+Marwa&rft.au=Shalaby%2C+Ahmed&rft.au=Switala%2C+Andy&rft.date=2017-03-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=44&rft.issue=3&rft.spage=914&rft.epage=923&rft_id=info:doi/10.1002%2Fmp.12071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mp_12071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon