A computer‐aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images
Purpose Detection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost clinically normal retina appearances. Methods The proposed computer‐aided diagnostic (CAD) system detects the DR in three steps: (a) localizing and se...
Saved in:
Published in | Medical physics (Lancaster) Vol. 44; no. 3; pp. 914 - 923 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-2405 2473-4209 2473-4209 |
DOI | 10.1002/mp.12071 |
Cover
Loading…
Abstract | Purpose
Detection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost clinically normal retina appearances.
Methods
The proposed computer‐aided diagnostic (CAD) system detects the DR in three steps: (a) localizing and segmenting 12 distinct retinal layers on the OCT image; (b) deriving features of the segmented layers, and (c) learning most discriminative features and classifying each subject as normal or diabetic. To localise and segment the retinal layers, signals (intensities) of the OCT image are described with a joint Markov‐Gibbs random field (MGRF) model of intensities and shape descriptors. Each segmented layer is characterized with cumulative probability distribution functions (CDF) of its locally extracted features, such as reflectivity, curvature, and thickness. A multistage deep fusion classification network (DFCN) with a stack of non‐negativity‐constrained autoencoders (NCAE) is trained to select the most discriminative retinal layers’ features and use their CDFs for detecting the DR. A training atlas was built using the OCT scans for 12 normal subjects and their maps of layers hand‐drawn by retina experts.
Results
Preliminary experiments on 52 clinical OCT scans (26 normal and 26 with early‐stage DR, balanced between 40–79 yr old males and females; 40 training and 12 test subjects) gave the DR detection accuracy, sensitivity, and specificity of 92%; 83%, and 100%, respectively. The 100% accuracy, sensitivity, and specificity have been obtained in the leave‐one‐out cross‐validation test for all the 52 subjects.
Conclusion
Both the quantitative and visual assessments confirmed the high accuracy of the proposed computer‐assisted diagnostic system for early DR detection using the OCT retinal images. |
---|---|
AbstractList | Detection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost clinically normal retina appearances.PURPOSEDetection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost clinically normal retina appearances.The proposed computer-aided diagnostic (CAD) system detects the DR in three steps: (a) localizing and segmenting 12 distinct retinal layers on the OCT image; (b) deriving features of the segmented layers, and (c) learning most discriminative features and classifying each subject as normal or diabetic. To localise and segment the retinal layers, signals (intensities) of the OCT image are described with a joint Markov-Gibbs random field (MGRF) model of intensities and shape descriptors. Each segmented layer is characterized with cumulative probability distribution functions (CDF) of its locally extracted features, such as reflectivity, curvature, and thickness. A multistage deep fusion classification network (DFCN) with a stack of non-negativity-constrained autoencoders (NCAE) is trained to select the most discriminative retinal layers' features and use their CDFs for detecting the DR. A training atlas was built using the OCT scans for 12 normal subjects and their maps of layers hand-drawn by retina experts.METHODSThe proposed computer-aided diagnostic (CAD) system detects the DR in three steps: (a) localizing and segmenting 12 distinct retinal layers on the OCT image; (b) deriving features of the segmented layers, and (c) learning most discriminative features and classifying each subject as normal or diabetic. To localise and segment the retinal layers, signals (intensities) of the OCT image are described with a joint Markov-Gibbs random field (MGRF) model of intensities and shape descriptors. Each segmented layer is characterized with cumulative probability distribution functions (CDF) of its locally extracted features, such as reflectivity, curvature, and thickness. A multistage deep fusion classification network (DFCN) with a stack of non-negativity-constrained autoencoders (NCAE) is trained to select the most discriminative retinal layers' features and use their CDFs for detecting the DR. A training atlas was built using the OCT scans for 12 normal subjects and their maps of layers hand-drawn by retina experts.Preliminary experiments on 52 clinical OCT scans (26 normal and 26 with early-stage DR, balanced between 40-79 yr old males and females; 40 training and 12 test subjects) gave the DR detection accuracy, sensitivity, and specificity of 92%; 83%, and 100%, respectively. The 100% accuracy, sensitivity, and specificity have been obtained in the leave-one-out cross-validation test for all the 52 subjects.RESULTSPreliminary experiments on 52 clinical OCT scans (26 normal and 26 with early-stage DR, balanced between 40-79 yr old males and females; 40 training and 12 test subjects) gave the DR detection accuracy, sensitivity, and specificity of 92%; 83%, and 100%, respectively. The 100% accuracy, sensitivity, and specificity have been obtained in the leave-one-out cross-validation test for all the 52 subjects.Both the quantitative and visual assessments confirmed the high accuracy of the proposed computer-assisted diagnostic system for early DR detection using the OCT retinal images.CONCLUSIONBoth the quantitative and visual assessments confirmed the high accuracy of the proposed computer-assisted diagnostic system for early DR detection using the OCT retinal images. Detection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost clinically normal retina appearances. The proposed computer-aided diagnostic (CAD) system detects the DR in three steps: (a) localizing and segmenting 12 distinct retinal layers on the OCT image; (b) deriving features of the segmented layers, and (c) learning most discriminative features and classifying each subject as normal or diabetic. To localise and segment the retinal layers, signals (intensities) of the OCT image are described with a joint Markov-Gibbs random field (MGRF) model of intensities and shape descriptors. Each segmented layer is characterized with cumulative probability distribution functions (CDF) of its locally extracted features, such as reflectivity, curvature, and thickness. A multistage deep fusion classification network (DFCN) with a stack of non-negativity-constrained autoencoders (NCAE) is trained to select the most discriminative retinal layers' features and use their CDFs for detecting the DR. A training atlas was built using the OCT scans for 12 normal subjects and their maps of layers hand-drawn by retina experts. Preliminary experiments on 52 clinical OCT scans (26 normal and 26 with early-stage DR, balanced between 40-79 yr old males and females; 40 training and 12 test subjects) gave the DR detection accuracy, sensitivity, and specificity of 92%; 83%, and 100%, respectively. The 100% accuracy, sensitivity, and specificity have been obtained in the leave-one-out cross-validation test for all the 52 subjects. Both the quantitative and visual assessments confirmed the high accuracy of the proposed computer-assisted diagnostic system for early DR detection using the OCT retinal images. Purpose Detection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost clinically normal retina appearances. Methods The proposed computer‐aided diagnostic (CAD) system detects the DR in three steps: (a) localizing and segmenting 12 distinct retinal layers on the OCT image; (b) deriving features of the segmented layers, and (c) learning most discriminative features and classifying each subject as normal or diabetic. To localise and segment the retinal layers, signals (intensities) of the OCT image are described with a joint Markov‐Gibbs random field (MGRF) model of intensities and shape descriptors. Each segmented layer is characterized with cumulative probability distribution functions (CDF) of its locally extracted features, such as reflectivity, curvature, and thickness. A multistage deep fusion classification network (DFCN) with a stack of non‐negativity‐constrained autoencoders (NCAE) is trained to select the most discriminative retinal layers’ features and use their CDFs for detecting the DR. A training atlas was built using the OCT scans for 12 normal subjects and their maps of layers hand‐drawn by retina experts. Results Preliminary experiments on 52 clinical OCT scans (26 normal and 26 with early‐stage DR, balanced between 40–79 yr old males and females; 40 training and 12 test subjects) gave the DR detection accuracy, sensitivity, and specificity of 92%; 83%, and 100%, respectively. The 100% accuracy, sensitivity, and specificity have been obtained in the leave‐one‐out cross‐validation test for all the 52 subjects. Conclusion Both the quantitative and visual assessments confirmed the high accuracy of the proposed computer‐assisted diagnostic system for early DR detection using the OCT retinal images. |
Author | El‐Baz, Ayman Gimel’farb, Georgy Ismail, Marwa ElTanboly, Ahmed Switala, Andy Schaal, Shlomit Shalaby, Ahmed El‐Azab, Magdi |
Author_xml | – sequence: 1 givenname: Ahmed surname: ElTanboly fullname: ElTanboly, Ahmed organization: University of Louisville – sequence: 2 givenname: Marwa surname: Ismail fullname: Ismail, Marwa organization: University of Louisville – sequence: 3 givenname: Ahmed surname: Shalaby fullname: Shalaby, Ahmed organization: University of Louisville – sequence: 4 givenname: Andy surname: Switala fullname: Switala, Andy organization: University of Louisville – sequence: 5 givenname: Ayman surname: El‐Baz fullname: El‐Baz, Ayman email: aselba01@louisville.edu organization: University of Louisville – sequence: 6 givenname: Shlomit surname: Schaal fullname: Schaal, Shlomit organization: School of Medicine, University of Louisville – sequence: 7 givenname: Georgy surname: Gimel’farb fullname: Gimel’farb, Georgy organization: Intelligent Vision Systems Laboratory, Department of Computer Science – sequence: 8 givenname: Magdi surname: El‐Azab fullname: El‐Azab, Magdi organization: Mansoura University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28035657$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9uGyEQxlHlqrbTSn2CaI-5rDvAst49WlbSRErVHtozYmHsUO3CBrAi3_IIecY-SXCcP5f08iHx_fhmhpmTifMOCflKYUEB2LdhXFAGS_qBzFi15GXFoJ2QGUBblawCMSXzGP8CQM0FfCJT1gAXtVjOiFsV2g_jLmH4d_-grEFTGKu2zsdkdRH3MeFQbHwoDCbUybrtwe_w4Iaszo8q3ewL6wo_5kvV58AbDOg0FskPfhvUePAHtcX4mXzcqD7il-fzhPy5OP-9viyvf36_Wq-uS80ZpaUwwBvDGt2JmjeirTZgUImsraoFcAWqZaxjKg-i6451XS0EGCoaRtvM8BNydswdg7_dYUxysFFj3yuHfhclbURV00o0PKOnz-iuG9DIMeRWw16-_FEGFkdABx9jwI3UNqlkvUtB2V5SkIclyGGUT0t4K_764CXzHbQ8one2x_1_Ofnj15F_BImFlmI |
CitedBy_id | crossref_primary_10_3390_bioengineering10070823 crossref_primary_10_38124_ijisrt_IJISRT24APR704 crossref_primary_10_1097_ICU_0000000000000470 crossref_primary_10_22608_APO_2018438 crossref_primary_10_1007_s44196_024_00520_w crossref_primary_10_1016_j_eswa_2021_115068 crossref_primary_10_1109_ACCESS_2020_2974158 crossref_primary_10_1016_j_neucom_2019_08_079 crossref_primary_10_1097_ICU_0000000000000679 crossref_primary_10_1186_s12938_019_0675_9 crossref_primary_10_1007_s11831_022_09720_z crossref_primary_10_1167_tvst_9_2_46 crossref_primary_10_3389_fendo_2022_1079217 crossref_primary_10_1016_j_preteyeres_2018_07_004 crossref_primary_10_3390_brainsci12050535 crossref_primary_10_1155_2018_5278196 crossref_primary_10_1016_j_compmedimag_2019_04_003 crossref_primary_10_1364_BOE_10_006204 crossref_primary_10_1002_mp_14361 crossref_primary_10_1007_s00347_018_0706_0 crossref_primary_10_1007_s11042_025_20708_2 crossref_primary_10_3389_fcell_2024_1473176 crossref_primary_10_3390_s22093490 crossref_primary_10_1007_s00521_021_06042_2 crossref_primary_10_1167_tvst_7_6_41 crossref_primary_10_1167_tvst_9_2_35 crossref_primary_10_1007_s00417_017_3850_3 crossref_primary_10_1016_j_ailsci_2021_100018 crossref_primary_10_1080_17469899_2023_2175672 crossref_primary_10_1007_s00417_022_05818_z crossref_primary_10_1016_j_xops_2022_100259 crossref_primary_10_1142_S1793545822500067 crossref_primary_10_1002_mp_13142 crossref_primary_10_1038_s41598_021_02479_6 crossref_primary_10_1159_000525929 crossref_primary_10_1177_20552076241269470 crossref_primary_10_3389_fpubh_2022_971943 crossref_primary_10_1016_j_neucom_2022_10_001 crossref_primary_10_1186_s40662_020_00183_6 crossref_primary_10_3390_s22207833 crossref_primary_10_3390_app12168326 crossref_primary_10_1167_tvst_8_6_4 crossref_primary_10_1109_ACCESS_2019_2891975 crossref_primary_10_1080_08164622_2022_2111201 crossref_primary_10_1007_s42979_021_00833_z crossref_primary_10_1016_j_ajo_2020_01_016 crossref_primary_10_1186_s12938_024_01258_4 crossref_primary_10_4015_S1016237222500259 crossref_primary_10_32604_cmc_2022_023581 crossref_primary_10_3390_bioengineering9080366 crossref_primary_10_3390_diagnostics12081849 crossref_primary_10_1109_JBHI_2020_3040225 crossref_primary_10_1364_BOE_431992 crossref_primary_10_1016_j_inffus_2022_09_019 crossref_primary_10_3390_s21165457 |
Cites_doi | 10.1118/1.4945413 10.1117/12.813468 10.1109/ISBI.2009.5193320 10.1109/TBME.2012.2196434 10.1109/JBHI.2015.2415477 10.1109/TBME.2011.2174235 10.1186/1476-511X-11-73 10.1109/TMI.2010.2087390 10.1016/j.media.2013.05.006 10.3233/JAD-132570 10.1348/000711006X126600 10.1111/php.12524 10.1109/TNNLS.2015.2479223 10.2307/1932409 10.1118/1.4943374 10.1007/s00417-015-3037-8 10.1016/0167-8191(94)00076-M 10.1097/IAE.0b013e31823c23bc 10.1167/tvst.3.1.1 10.1364/OE.18.019413 10.1118/1.4943382 |
ContentType | Journal Article |
Copyright | 2016 American Association of Physicists in Medicine 2016 American Association of Physicists in Medicine. 2016 American Association of Physicists in Medicine. |
Copyright_xml | – notice: 2016 American Association of Physicists in Medicine – notice: 2016 American Association of Physicists in Medicine. – notice: 2016 American Association of Physicists in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/mp.12071 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 2473-4209 |
EndPage | 923 |
ExternalDocumentID | 28035657 10_1002_mp_12071 MP12071 |
Genre | article Validation Studies Journal Article |
GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3211-5d038d28cb5638594f0dea5f0d9a6503a0a922b2a280c6b2bb6550d158219d9a3 |
ISSN | 0094-2405 2473-4209 |
IngestDate | Thu Jul 10 19:13:08 EDT 2025 Thu Apr 03 06:58:20 EDT 2025 Thu Apr 24 22:58:35 EDT 2025 Tue Jul 01 03:54:26 EDT 2025 Wed Jan 22 17:07:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | joint image-region-map model Markov-Gibbs random field (MGRF) non-negativity-constrained autoencoder (NCAE) optical coherence tomography (OCT) diabetic retinopathy (DR) |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 American Association of Physicists in Medicine. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3211-5d038d28cb5638594f0dea5f0d9a6503a0a922b2a280c6b2bb6550d158219d9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
PMID | 28035657 |
PQID | 1854614583 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1854614583 pubmed_primary_28035657 crossref_citationtrail_10_1002_mp_12071 crossref_primary_10_1002_mp_12071 wiley_primary_10_1002_mp_12071_MP12071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2017 2017-03-00 2017-Mar 20170301 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: March 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Medical physics (Lancaster) |
PublicationTitleAlternate | Med Phys |
PublicationYear | 2017 |
References | 2007; 19 2013; 17 2014; 3 2011 2010 2010; 18 2015; 20 1945; 26 2015; 253 1995; 21 2016; 43 2009 2011; 30 2009; 7260 2005; 1 2015; 91 2012; 59 2008; 61 2016; 27 2012; 11 2012; 32 2014; 42 Witten IH (e_1_2_6_26_1) 2011 e_1_2_6_10_1 Bengio Y (e_1_2_6_21_1) 2007; 19 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 Lim J (e_1_2_6_16_1) 2005 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_20_1 Jaafar HF (e_1_2_6_5_1) 2010 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 |
References_xml | – year: 2011 – volume: 30 start-page: 484 year: 2011 end-page: 496 article-title: Segmentation of intra‐ retinal layers from optical coherence tomography images using an active contour approach publication-title: IEEE Trans Med Imag – volume: 43 start-page: 1662 year: 2016 end-page: 1675 article-title: Automated detection of vessel lumen and stent struts in intravascular optical coherence tomography to evaluate stent apposition and neointimal coverage publication-title: Med Phys. – volume: 17 start-page: 907 year: 2013 end-page: 928 article-title: Intra‐retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map publication-title: Med Image Anal. – start-page: 1370 year: 2009 end-page: 1373 – volume: 59 start-page: 445 year: 2012 end-page: 455 article-title: Accurate auto‐ matic analysis of cardiac cine images publication-title: IEEE Trans Biomed Eng. – volume: 11 start-page: 73 year: 2012 article-title: Automated diagnosis of diabetic retinopathy and glaucoma using fundus and OCT images publication-title: Lipids Health Dis. – start-page: 1622 year: 2010 end-page: 1626 – volume: 18 start-page: 428 year: 2010 article-title: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation publication-title: Optics Express – volume: 61 start-page: 29 year: 2008 end-page: 48 article-title: Computing inter‐rater reliability and its variance in the presence of high agreement publication-title: Br J Math Stat Psychol. – volume: 26 start-page: 297 year: 1945 end-page: 302 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 27 start-page: 2486 year: 2016 end-page: 2498 article-title: Deep learning of part‐based representation of data using sparse autoencoders with nonnegativity constraints publication-title: IEEE Trans Neural Netw Learn Syst – volume: 253 start-page: 987 year: 2015 end-page: 988 article-title: Full‐field ERG in diabetic retinopathy: a screening tool? publication-title: Graefe's Arch Clin Exp Ophthalmol. – volume: 1 start-page: 1196 year: 2005 end-page: 1202 – volume: 43 start-page: 2311 year: 2016 end-page: 2322 article-title: Automated extraction of retinal vasculature publication-title: Med Phys. – volume: 3 start-page: 1 year: 2014 article-title: Optical coherence tomography (OCT) device independent intraretinal layer segmentation publication-title: Transl Vis Sci Technol. – volume: 43 start-page: 1649 year: 2016 end-page: 1661 article-title: Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images publication-title: Med Phys. – volume: 32 start-page: 1077 year: 2012 end-page: 1086 article-title: En face spectral‐domain optical coherence tomography outer retinal analysis and relation to visual acuity publication-title: Retina – volume: 7260 start-page: 72601N year: 2009 – volume: 91 start-page: 1497 year: 2015 end-page: 1504 article-title: Early diagnosis of diabetes through the eye publication-title: Photochem Photobiol. – volume: 20 start-page: 925 year: 2015 end-page: 935 article-title: Infant brain extraction in T1‐weighted MR images using BET and refinement using LCDG and MGRF models publication-title: Biomed Health Inform – volume: 42 start-page: S109 year: 2014 end-page: S117 article-title: Severe diabetic retinal disease and dementia risk in type 2 diabetes publication-title: J. Alzheimer's Dis. – volume: 19 start-page: 153 year: 2007 article-title: Greedy layer‐wise training of deep networks publication-title: Adv Neural Inf Process Syst. – volume: 21 start-page: 265 year: 1995 end-page: 285 article-title: A parallel algorithm for structure detection based on wavelet and segmentation analysis publication-title: Parallel Comput. – volume: 59 start-page: 2019 year: 2012 end-page: 2029 article-title: Precise segmentation of 3‐D magnetic resonance angiography publication-title: IEEE Trans Biomed Eng. – ident: e_1_2_6_7_1 doi: 10.1118/1.4945413 – ident: e_1_2_6_4_1 doi: 10.1117/12.813468 – start-page: 1622 volume-title: 2010 18th European Signal Processing Conference year: 2010 ident: e_1_2_6_5_1 – ident: e_1_2_6_8_1 doi: 10.1109/ISBI.2009.5193320 – ident: e_1_2_6_18_1 doi: 10.1109/TBME.2012.2196434 – start-page: 1196 volume-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 (CVPR 2005) year: 2005 ident: e_1_2_6_16_1 – ident: e_1_2_6_19_1 doi: 10.1109/JBHI.2015.2415477 – volume-title: Data Mining: Practical Machine Learning Tools and Techniques year: 2011 ident: e_1_2_6_26_1 – ident: e_1_2_6_20_1 doi: 10.1109/TBME.2011.2174235 – ident: e_1_2_6_6_1 doi: 10.1186/1476-511X-11-73 – volume: 19 start-page: 153 year: 2007 ident: e_1_2_6_21_1 article-title: Greedy layer‐wise training of deep networks publication-title: Adv Neural Inf Process Syst. – ident: e_1_2_6_9_1 doi: 10.1109/TMI.2010.2087390 – ident: e_1_2_6_10_1 doi: 10.1016/j.media.2013.05.006 – ident: e_1_2_6_3_1 doi: 10.3233/JAD-132570 – ident: e_1_2_6_25_1 doi: 10.1348/000711006X126600 – ident: e_1_2_6_2_1 doi: 10.1111/php.12524 – ident: e_1_2_6_22_1 doi: 10.1109/TNNLS.2015.2479223 – ident: e_1_2_6_24_1 doi: 10.2307/1932409 – ident: e_1_2_6_13_1 doi: 10.1118/1.4943374 – ident: e_1_2_6_15_1 doi: 10.1007/s00417-015-3037-8 – ident: e_1_2_6_17_1 doi: 10.1016/0167-8191(94)00076-M – ident: e_1_2_6_14_1 doi: 10.1097/IAE.0b013e31823c23bc – ident: e_1_2_6_11_1 doi: 10.1167/tvst.3.1.1 – ident: e_1_2_6_23_1 doi: 10.1364/OE.18.019413 – ident: e_1_2_6_12_1 doi: 10.1118/1.4943382 |
SSID | ssj0006350 |
Score | 2.494016 |
Snippet | Purpose
Detection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost... Detection (diagnosis) of diabetic retinopathy (DR) in optical coherence tomography (OCT) images for patients with type 2 diabetes, but almost clinically normal... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 914 |
SubjectTerms | Adult Aged diabetic retinopathy (DR) Diabetic Retinopathy - diagnostic imaging Female Humans Image Interpretation, Computer-Assisted - methods joint image‐region‐map model Machine Learning Male Markov–Gibbs random field (MGRF) Middle Aged non‐negativity‐constrained autoencoder (NCAE) optical coherence tomography (OCT) Pattern Recognition, Automated Retina - diagnostic imaging Sensitivity and Specificity Tomography, Optical Coherence - methods |
Title | A computer‐aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.12071 https://www.ncbi.nlm.nih.gov/pubmed/28035657 https://www.proquest.com/docview/1854614583 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdKJxAvCMa_8k9GQvCAsiWOkzaPEQxNiKBJ7aS9RXacqpOWpNpSTfDER-AD8On4JJx9jpuuQxq8pEnkOm3v17vz-e53hLxJ2DgQrAg8IcK5xwMJZ2DFPL9QUtOZKFnqQuHsa3x4zD-fRCeDwa9e1tKqlXvF92vrSv5HqnAP5KqrZP9Bsm5SuAHnIF84goTheCMZpyYjXDdlcDkLmvFR6YiqTqDTZKxI1WyyCVWpdwx0bAAjroa9Ga4b3ZbY1P81y9Yyhiws_WzbVJbU-v1pBbrnou_Ndrs8GB4x8VtdUy2w24cLMRyczUQtG-xpnS4qW09lAFkJDEJn4vzSWYjpQgA4t4dPL3WLE2ETMb_1IxZgBV3KVqeFE653dXA3uzT3GB-HHmd-0tfMyAxpERj21GyChafWYidYsbxlDJBctlruBczHPi-bfNtX7KDLTkQmZ5ZXy9y88xbZYbAIYUOyk37MvkydpQdnDUuc7PfpyI19tt89ddPd2VrDbC6JjE8zu0_u2cUITRFZD8igrHfJncymW-yS20co2IekTmkHtd8_fhqQ0TXIKIKMAsioAxntQEZ7IKOnNbUgow5kdA0yiiB7RI4_Hcw-HHq2VYdXhCwIvEj54USxSSEjUOhRwue-KkUEx0TAGiAUvkgYkwz0gF_EkkkZw9JYBbpMO4Ex4WMyrJu6fEromKtSyoKB3WVcBJqBLoxLxQVcx3MZj8i77hfNC8tjr9upnOVX5TYir93IJXK3XDemE0oOilXvlom6bFYXOTiyHHzXaBKOyBOUlptFt3TT-QIj8taI76_T59mReX12g4_ynNxd_1tekGF7vipfgsfbylcWeH8A1peuxg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computer%E2%80%90aided+diagnostic+system+for+detecting+diabetic+retinopathy+in+optical+coherence+tomography+images&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=ElTanboly%2C+Ahmed&rft.au=Ismail%2C+Marwa&rft.au=Shalaby%2C+Ahmed&rft.au=Switala%2C+Andy&rft.date=2017-03-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=44&rft.issue=3&rft.spage=914&rft.epage=923&rft_id=info:doi/10.1002%2Fmp.12071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mp_12071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |