Enhanced POLYMER atmospheric correction algorithm for water-leaving radiance retrievals from hyperspectral/multispectral remote sensing data in inland and coastal waters

Accurate retrieval of the water-leaving radiance from hyperspectral/multispectral remote sensing data in optically complex inland and coastal waters remains a challenge due to the excessive concentrations of phytoplankton and suspended sediments as well as the inaccurate estimation and extrapolation...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 32; no. 5; p. 7659
Main Authors Karthick, Murugan, Shanmugam, Palanisamy, He, Xianqiang
Format Journal Article
LanguageEnglish
Published United States 26.02.2024
Online AccessGet full text

Cover

Loading…
Abstract Accurate retrieval of the water-leaving radiance from hyperspectral/multispectral remote sensing data in optically complex inland and coastal waters remains a challenge due to the excessive concentrations of phytoplankton and suspended sediments as well as the inaccurate estimation and extrapolation of aerosol radiance over the visible wavelengths. In recent years, reasonably accurate methods were established to estimate the enhanced contribution of suspended sediments in the near-infrared (NIR) and shortwave infrared (SWIR) bands to enable atmospheric correction in coastal waters, but solutions to derive the dominant phytoplankton contribution in the NIR and SWIR bands are less generalizable and subject to large uncertainties in the remotely-derived water color products. These issues are not only associated with the standard atmospheric correction algorithm in the SeaDAS processing system but with the non-traditional algorithms such as POLYMER (POLYnomial-based approach established for the atmospheric correction of MERIS data). This study attempts to enhance the POLYMER algorithm to enable atmospheric correction of hyperspectral and multispectral remote sensing data over a wide range of inland and ocean waters. The original POLYMER algorithm is less suitable owing to its complete reliance on a polynomial approach to model the atmospheric reflectance as a function of the wavelength and retrieve the water-leaving reflectance using two semi-analytical models (MM01 and PR05). The polynomial functions calculate the bulk atmospheric contribution instead of using an explicit method to estimate aerosol radiance separately, resulting the erroneous water color products in inland and coastal waters. The modified POLYMER algorithm (mPOLYMER) employs more realistic approaches to estimate aerosol contributions with a combination of UV and Visible-NIR bands and enables accurate retrievals of water-leaving radiance from both hyperspectral and multispectral remote sensing data. To assess the relative performance and wider applicability of mPOLYMER, the original and enhanced algorithms were tested on a variety of HICO, MSI and MODIS-Aqua data and the retrieved L wn products were compared with AERONET-OC and OOIL-regional in-situ data. Expectedly, the mPOLYMER algorithm greatly improved the accuracy of L wn (in terms of magnitude and spectral shape) when applied to MODIS-Aqua and HICO data in highly turbid productive waters (with higher concentrations of phytoplankton or with dense algal blooms) in Muttukadu Lagoon, Lake Erie, Yangtze River Estuary, Baltic Sea and Arabian Sea. In contrast, the original POLYMER algorithm overestimated L wn in the visible and NIR bands and produced unphysical negative L wn or distorted L wn spectra in turbid productive waters. The mPOLYMER yielded a relative mean error reduction of more than 50% (i.e., from 79% to 34%) in L wn for a large number of matchup data. The improved accuracy and data quality is because the mPOLYMER algorithm’s funio and coefficients sufficiently accounted for the enhanced backscattering contribution of phytoplankton and suspended sediments in optically complex waters.
AbstractList Accurate retrieval of the water-leaving radiance from hyperspectral/multispectral remote sensing data in optically complex inland and coastal waters remains a challenge due to the excessive concentrations of phytoplankton and suspended sediments as well as the inaccurate estimation and extrapolation of aerosol radiance over the visible wavelengths. In recent years, reasonably accurate methods were established to estimate the enhanced contribution of suspended sediments in the near-infrared (NIR) and shortwave infrared (SWIR) bands to enable atmospheric correction in coastal waters, but solutions to derive the dominant phytoplankton contribution in the NIR and SWIR bands are less generalizable and subject to large uncertainties in the remotely-derived water color products. These issues are not only associated with the standard atmospheric correction algorithm in the SeaDAS processing system but with the non-traditional algorithms such as POLYMER (POLYnomial-based approach established for the atmospheric correction of MERIS data). This study attempts to enhance the POLYMER algorithm to enable atmospheric correction of hyperspectral and multispectral remote sensing data over a wide range of inland and ocean waters. The original POLYMER algorithm is less suitable owing to its complete reliance on a polynomial approach to model the atmospheric reflectance as a function of the wavelength and retrieve the water-leaving reflectance using two semi-analytical models (MM01 and PR05). The polynomial functions calculate the bulk atmospheric contribution instead of using an explicit method to estimate aerosol radiance separately, resulting the erroneous water color products in inland and coastal waters. The modified POLYMER algorithm (mPOLYMER) employs more realistic approaches to estimate aerosol contributions with a combination of UV and Visible-NIR bands and enables accurate retrievals of water-leaving radiance from both hyperspectral and multispectral remote sensing data. To assess the relative performance and wider applicability of mPOLYMER, the original and enhanced algorithms were tested on a variety of HICO, MSI and MODIS-Aqua data and the retrieved L wn products were compared with AERONET-OC and OOIL-regional in-situ data. Expectedly, the mPOLYMER algorithm greatly improved the accuracy of L wn (in terms of magnitude and spectral shape) when applied to MODIS-Aqua and HICO data in highly turbid productive waters (with higher concentrations of phytoplankton or with dense algal blooms) in Muttukadu Lagoon, Lake Erie, Yangtze River Estuary, Baltic Sea and Arabian Sea. In contrast, the original POLYMER algorithm overestimated L wn in the visible and NIR bands and produced unphysical negative L wn or distorted L wn spectra in turbid productive waters. The mPOLYMER yielded a relative mean error reduction of more than 50% (i.e., from 79% to 34%) in L wn for a large number of matchup data. The improved accuracy and data quality is because the mPOLYMER algorithm’s funio and coefficients sufficiently accounted for the enhanced backscattering contribution of phytoplankton and suspended sediments in optically complex waters.
Accurate retrieval of the water-leaving radiance from hyperspectral/multispectral remote sensing data in optically complex inland and coastal waters remains a challenge due to the excessive concentrations of phytoplankton and suspended sediments as well as the inaccurate estimation and extrapolation of aerosol radiance over the visible wavelengths. In recent years, reasonably accurate methods were established to estimate the enhanced contribution of suspended sediments in the near-infrared (NIR) and shortwave infrared (SWIR) bands to enable atmospheric correction in coastal waters, but solutions to derive the dominant phytoplankton contribution in the NIR and SWIR bands are less generalizable and subject to large uncertainties in the remotely-derived water color products. These issues are not only associated with the standard atmospheric correction algorithm in the SeaDAS processing system but with the non-traditional algorithms such as POLYMER (POLYnomial-based approach established for the atmospheric correction of MERIS data). This study attempts to enhance the POLYMER algorithm to enable atmospheric correction of hyperspectral and multispectral remote sensing data over a wide range of inland and ocean waters. The original POLYMER algorithm is less suitable owing to its complete reliance on a polynomial approach to model the atmospheric reflectance as a function of the wavelength and retrieve the water-leaving reflectance using two semi-analytical models (MM01 and PR05). The polynomial functions calculate the bulk atmospheric contribution instead of using an explicit method to estimate aerosol radiance separately, resulting the erroneous water color products in inland and coastal waters. The modified POLYMER algorithm (mPOLYMER) employs more realistic approaches to estimate aerosol contributions with a combination of UV and Visible-NIR bands and enables accurate retrievals of water-leaving radiance from both hyperspectral and multispectral remote sensing data. To assess the relative performance and wider applicability of mPOLYMER, the original and enhanced algorithms were tested on a variety of HICO, MSI and MODIS-Aqua data and the retrieved L products were compared with AERONET-OC and OOIL-regional in-situ data. Expectedly, the mPOLYMER algorithm greatly improved the accuracy of L (in terms of magnitude and spectral shape) when applied to MODIS-Aqua and HICO data in highly turbid productive waters (with higher concentrations of phytoplankton or with dense algal blooms) in Muttukadu Lagoon, Lake Erie, Yangtze River Estuary, Baltic Sea and Arabian Sea. In contrast, the original POLYMER algorithm overestimated L in the visible and NIR bands and produced unphysical negative L or distorted L spectra in turbid productive waters. The mPOLYMER yielded a relative mean error reduction of more than 50% (i.e., from 79% to 34%) in L for a large number of matchup data. The improved accuracy and data quality is because the mPOLYMER algorithm's funio and coefficients sufficiently accounted for the enhanced backscattering contribution of phytoplankton and suspended sediments in optically complex waters.
Accurate retrieval of the water-leaving radiance from hyperspectral/multispectral remote sensing data in optically complex inland and coastal waters remains a challenge due to the excessive concentrations of phytoplankton and suspended sediments as well as the inaccurate estimation and extrapolation of aerosol radiance over the visible wavelengths. In recent years, reasonably accurate methods were established to estimate the enhanced contribution of suspended sediments in the near-infrared (NIR) and shortwave infrared (SWIR) bands to enable atmospheric correction in coastal waters, but solutions to derive the dominant phytoplankton contribution in the NIR and SWIR bands are less generalizable and subject to large uncertainties in the remotely-derived water color products. These issues are not only associated with the standard atmospheric correction algorithm in the SeaDAS processing system but with the non-traditional algorithms such as POLYMER (POLYnomial-based approach established for the atmospheric correction of MERIS data). This study attempts to enhance the POLYMER algorithm to enable atmospheric correction of hyperspectral and multispectral remote sensing data over a wide range of inland and ocean waters. The original POLYMER algorithm is less suitable owing to its complete reliance on a polynomial approach to model the atmospheric reflectance as a function of the wavelength and retrieve the water-leaving reflectance using two semi-analytical models (MM01 and PR05). The polynomial functions calculate the bulk atmospheric contribution instead of using an explicit method to estimate aerosol radiance separately, resulting the erroneous water color products in inland and coastal waters. The modified POLYMER algorithm (mPOLYMER) employs more realistic approaches to estimate aerosol contributions with a combination of UV and Visible-NIR bands and enables accurate retrievals of water-leaving radiance from both hyperspectral and multispectral remote sensing data. To assess the relative performance and wider applicability of mPOLYMER, the original and enhanced algorithms were tested on a variety of HICO, MSI and MODIS-Aqua data and the retrieved Lwn products were compared with AERONET-OC and OOIL-regional in-situ data. Expectedly, the mPOLYMER algorithm greatly improved the accuracy of Lwn (in terms of magnitude and spectral shape) when applied to MODIS-Aqua and HICO data in highly turbid productive waters (with higher concentrations of phytoplankton or with dense algal blooms) in Muttukadu Lagoon, Lake Erie, Yangtze River Estuary, Baltic Sea and Arabian Sea. In contrast, the original POLYMER algorithm overestimated Lwn in the visible and NIR bands and produced unphysical negative Lwn or distorted Lwn spectra in turbid productive waters. The mPOLYMER yielded a relative mean error reduction of more than 50% (i.e., from 79% to 34%) in Lwn for a large number of matchup data. The improved accuracy and data quality is because the mPOLYMER algorithm's funio and coefficients sufficiently accounted for the enhanced backscattering contribution of phytoplankton and suspended sediments in optically complex waters.Accurate retrieval of the water-leaving radiance from hyperspectral/multispectral remote sensing data in optically complex inland and coastal waters remains a challenge due to the excessive concentrations of phytoplankton and suspended sediments as well as the inaccurate estimation and extrapolation of aerosol radiance over the visible wavelengths. In recent years, reasonably accurate methods were established to estimate the enhanced contribution of suspended sediments in the near-infrared (NIR) and shortwave infrared (SWIR) bands to enable atmospheric correction in coastal waters, but solutions to derive the dominant phytoplankton contribution in the NIR and SWIR bands are less generalizable and subject to large uncertainties in the remotely-derived water color products. These issues are not only associated with the standard atmospheric correction algorithm in the SeaDAS processing system but with the non-traditional algorithms such as POLYMER (POLYnomial-based approach established for the atmospheric correction of MERIS data). This study attempts to enhance the POLYMER algorithm to enable atmospheric correction of hyperspectral and multispectral remote sensing data over a wide range of inland and ocean waters. The original POLYMER algorithm is less suitable owing to its complete reliance on a polynomial approach to model the atmospheric reflectance as a function of the wavelength and retrieve the water-leaving reflectance using two semi-analytical models (MM01 and PR05). The polynomial functions calculate the bulk atmospheric contribution instead of using an explicit method to estimate aerosol radiance separately, resulting the erroneous water color products in inland and coastal waters. The modified POLYMER algorithm (mPOLYMER) employs more realistic approaches to estimate aerosol contributions with a combination of UV and Visible-NIR bands and enables accurate retrievals of water-leaving radiance from both hyperspectral and multispectral remote sensing data. To assess the relative performance and wider applicability of mPOLYMER, the original and enhanced algorithms were tested on a variety of HICO, MSI and MODIS-Aqua data and the retrieved Lwn products were compared with AERONET-OC and OOIL-regional in-situ data. Expectedly, the mPOLYMER algorithm greatly improved the accuracy of Lwn (in terms of magnitude and spectral shape) when applied to MODIS-Aqua and HICO data in highly turbid productive waters (with higher concentrations of phytoplankton or with dense algal blooms) in Muttukadu Lagoon, Lake Erie, Yangtze River Estuary, Baltic Sea and Arabian Sea. In contrast, the original POLYMER algorithm overestimated Lwn in the visible and NIR bands and produced unphysical negative Lwn or distorted Lwn spectra in turbid productive waters. The mPOLYMER yielded a relative mean error reduction of more than 50% (i.e., from 79% to 34%) in Lwn for a large number of matchup data. The improved accuracy and data quality is because the mPOLYMER algorithm's funio and coefficients sufficiently accounted for the enhanced backscattering contribution of phytoplankton and suspended sediments in optically complex waters.
Author Karthick, Murugan
He, Xianqiang
Shanmugam, Palanisamy
Author_xml – sequence: 1
  givenname: Murugan
  surname: Karthick
  fullname: Karthick, Murugan
– sequence: 2
  givenname: Palanisamy
  orcidid: 0000-0002-5659-4464
  surname: Shanmugam
  fullname: Shanmugam, Palanisamy
– sequence: 3
  givenname: Xianqiang
  surname: He
  fullname: He, Xianqiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38439443$$D View this record in MEDLINE/PubMed
BookMark eNplkctq3DAUhkVIaS7tIi9QtEwXzsgj2bKWIbgXmDKlJIuuxBn5OKNgS66kScgj9S0rdzIQWpDQEXznk_jPGTl23iEhFyW7KnktFuv2qmKCNc0ROS2ZEkWu5fGr-oScxfjAWCmkkm_JCW8EV0LwU_K7dVtwBjv6fb36-a39QSGNPk5bDNZQ40NAk6x3FIZ7H2zajrT3gT5BwlAMCI_W3dMAnZ0lNGAKFh9hiLQPfqTb5wlDnLIiwLAYd0Oyh1tmR5-QRnRxdnSQgFqX1wCuo_M2HmLK5N_H4jvyps9ifP9ynpO7T-3tzZditf789eZ6VRi-ZKnAptlIBkvZ1aKuFYe678u6QWWQVcgZFxvV9ZWoleRVzaQApQzn5RIVg4obfk4u994p-F87jEmPNhoc8rfQ76JeKi4lywmKjH54QXebETs9BTtCeNaHeDOw2AMm-BgD9trYBHOeOQI76JLpeYB63er9AHPHx386DtL_2T-6xJ3D
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_177180
crossref_primary_10_1016_j_ecoinf_2025_103001
crossref_primary_10_1016_j_marpolbul_2024_117036
Cites_doi 10.1364/AO.22.000020
10.1029/2010JC006796
10.1364/OE.20.000741
10.1109/IGARSS.2005.1526208
10.1016/j.rse.2014.11.008
10.1364/AO.39.003582
10.1016/j.rse.2021.112366
10.3390/rs13214206
10.1016/j.rse.2017.01.013
10.1016/j.jag.2015.03.004
10.1016/j.isprsjprs.2021.07.005
10.1016/j.jglr.2018.07.015
10.1016/j.rse.2021.112284
10.5194/angeo-30-203-2012
10.1016/j.isprsjprs.2019.04.013
10.1016/j.rse.2021.112848
10.1016/j.rse.2020.112022
10.1364/OE.19.009783
10.3389/feart.2019.00145
10.1080/10106049.2021.1958014
10.1364/OE.18.007521
10.1364/OE.27.0A1118
10.1080/01431161.2019.1675330
10.1016/j.isprsjprs.2021.01.021
10.3390/s21124125
10.1109/JSTARS.2012.2227993
10.1016/j.isprsjprs.2017.09.011
10.1364/OE.27.030116
10.1093/comjnl/7.4.308
10.1016/j.rse.2017.10.041
10.1016/j.asr.2018.02.024
10.1016/j.rse.2012.12.006
10.3390/rs11060668
10.1109/TGRS.2020.2969900
10.1016/j.rse.2019.03.018
10.1016/j.rse.2013.12.001
10.1016/j.rse.2017.07.016
10.1364/AO.33.000443
10.1109/JSTARS.2016.2520501
10.1016/j.ecss.2016.03.020
10.1029/2000JC000319
10.1364/OE.393968
10.1364/AO.44.001236
10.5194/osd-11-2791-2014
10.1016/0034-4257(87)90029-0
10.3390/rs11232820
10.1016/j.jqsrt.2007.03.010
10.1109/TGRS.2019.2907884
10.1029/2004JD004950
10.1364/AO.40.004790
10.3390/rs14020386
10.1016/j.asr.2020.09.045
10.1029/2006GL028599
10.1016/j.rse.2018.05.033
10.1016/j.rse.2008.11.005
10.1016/j.atmosres.2020.105308
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.504088
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 38439443
10_1364_OE_504088
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
7X8
ID FETCH-LOGICAL-c320t-e88b70a27d646693a6ff168e9ce05e3034b9df54697356074a99c3312e90a53c3
ISSN 1094-4087
IngestDate Fri Jul 11 08:27:47 EDT 2025
Thu Apr 03 07:02:18 EDT 2025
Tue Jul 01 04:01:52 EDT 2025
Thu Apr 24 22:59:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-e88b70a27d646693a6ff168e9ce05e3034b9df54697356074a99c3312e90a53c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5659-4464
OpenAccessLink https://doi.org/10.1364/oe.504088
PMID 38439443
PQID 2937703844
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2937703844
pubmed_primary_38439443
crossref_citationtrail_10_1364_OE_504088
crossref_primary_10_1364_OE_504088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-26
2024-Feb-26
20240226
PublicationDateYYYYMMDD 2024-02-26
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2024
References Singh (oe-32-5-7659-R41) 2014; 142
Siegel (oe-32-5-7659-R6) 2000; 39
Tavares (oe-32-5-7659-R24) 2021; 174
Singh (oe-32-5-7659-R42) 2014; 11
Shanmugam (oe-32-5-7659-R16) 2012; 30
Morel (oe-32-5-7659-R62) 2001; 106
Gordon (oe-32-5-7659-R13) 1987; 22
Zhang (oe-32-5-7659-R51) 2019; 57
Park (oe-32-5-7659-R15) 2005; 44
Shanmugam (oe-32-5-7659-R40) 2018; 61
Kulshreshtha (oe-32-5-7659-R44) 2018; 44
Lenoble (oe-32-5-7659-R60) 2007; 107
Xue (oe-32-5-7659-R20) 2021; 179
He (oe-32-5-7659-R2) 2004; 23
Wang (oe-32-5-7659-R5) 2007; 34
Wang (oe-32-5-7659-R4) 2005; 110
Zhang (oe-32-5-7659-R35) 2020; 58
Wei (oe-32-5-7659-R26) 2018; 215
Singh (oe-32-5-7659-R39) 2016; 9
Gordon (oe-32-5-7659-R12) 1983; 22
Pahlevan (oe-32-5-7659-R52) 2021; 258
Banerjee (oe-32-5-7659-R43) 2021; 67
Fan (oe-32-5-7659-R21) 2017; 199
Warren (oe-32-5-7659-R33) 2019; 225
Varunan (oe-32-5-7659-R37) 2015; 158
Gordon (oe-32-5-7659-R1) 1994; 33
Wang (oe-32-5-7659-R3) 2001; 40
Al Shehhi (oe-32-5-7659-R27) 2017; 133
Li (oe-32-5-7659-R46) 2020; 249
Goyens (oe-32-5-7659-R22) 2013; 131
Nazeer (oe-32-5-7659-R28) 2021; 249
Ibrahim (oe-32-5-7659-R23) 2018; 204
Liu (oe-32-5-7659-R19) 2019; 153
Jaelani (oe-32-5-7659-R31) 2015; 39
Wang (oe-32-5-7659-R8) 2009; 113
Vanhellemont (oe-32-5-7659-R53) 2021; 256
Schamberger (oe-32-5-7659-R54) 2022; 14
Shanmugam (oe-32-5-7659-R47) 2013; 6
Shanmugam (oe-32-5-7659-R30) 2019; 27
Tan (oe-32-5-7659-R49) 2019; 11
Bailey (oe-32-5-7659-R14) 2010; 18
Soppa (oe-32-5-7659-R55) 2021; 21
Steinmetz (oe-32-5-7659-R9) 2011; 19
Qiao (oe-32-5-7659-R18) 2021; 13
Nelder (oe-32-5-7659-R61) 1965; 7
Singh (oe-32-5-7659-R38) 2019; 27
Schroeder (oe-32-5-7659-R29) 2022; 270
Ahn (oe-32-5-7659-R10) 2005; 1
Mograne (oe-32-5-7659-R36) 2019; 11
Karthick (oe-32-5-7659-R45) 2020; 41
Wang (oe-32-5-7659-R34) 2020; 28
Pan (oe-32-5-7659-R25) 2017; 191
Wang (oe-32-5-7659-R7) 2005; 110
Shanmugam (oe-32-5-7659-R17) 2011; 116
Grendaitė (oe-32-5-7659-R11) 2022; 37
Frouin (oe-32-5-7659-R32) 2019; 7
Shanmugam (oe-32-5-7659-R48) 2016; 175
References_xml – volume: 22
  start-page: 20
  year: 1983
  ident: oe-32-5-7659-R12
  publication-title: Appl. Opt.
  doi: 10.1364/AO.22.000020
– volume: 116
  start-page: C04016
  year: 2011
  ident: oe-32-5-7659-R17
  publication-title: J. Geophys. Res. Ocean.
  doi: 10.1029/2010JC006796
– volume: 110
  start-page: 1
  year: 2005
  ident: oe-32-5-7659-R7
  publication-title: J. Geophys. Res.
  doi: 10.1364/OE.20.000741
– volume: 1
  start-page: 452
  year: 2005
  ident: oe-32-5-7659-R10
  publication-title: Int. Geosci. Remote Sens. Symp.
  doi: 10.1109/IGARSS.2005.1526208
– volume: 158
  start-page: 235
  year: 2015
  ident: oe-32-5-7659-R37
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.008
– volume: 39
  start-page: 3582
  year: 2000
  ident: oe-32-5-7659-R6
  publication-title: Appl. Opt.
  doi: 10.1364/AO.39.003582
– volume: 258
  start-page: 112366
  year: 2021
  ident: oe-32-5-7659-R52
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2021.112366
– volume: 13
  start-page: 4206
  year: 2021
  ident: oe-32-5-7659-R18
  publication-title: Remote Sens.
  doi: 10.3390/rs13214206
– volume: 191
  start-page: 197
  year: 2017
  ident: oe-32-5-7659-R25
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.01.013
– volume: 39
  start-page: 128
  year: 2015
  ident: oe-32-5-7659-R31
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2015.03.004
– volume: 179
  start-page: 92
  year: 2021
  ident: oe-32-5-7659-R20
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.07.005
– volume: 44
  start-page: 1010
  year: 2018
  ident: oe-32-5-7659-R44
  publication-title: J. Great Lakes Res.
  doi: 10.1016/j.jglr.2018.07.015
– volume: 256
  start-page: 112284
  year: 2021
  ident: oe-32-5-7659-R53
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2021.112284
– volume: 30
  start-page: 203
  year: 2012
  ident: oe-32-5-7659-R16
  publication-title: Ann. Geophys.
  doi: 10.5194/angeo-30-203-2012
– volume: 153
  start-page: 59
  year: 2019
  ident: oe-32-5-7659-R19
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.04.013
– volume: 270
  start-page: 112848
  year: 2022
  ident: oe-32-5-7659-R29
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112848
– volume: 249
  start-page: 112022
  year: 2020
  ident: oe-32-5-7659-R46
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112022
– volume: 19
  start-page: 9783
  year: 2011
  ident: oe-32-5-7659-R9
  publication-title: Opt. Express
  doi: 10.1364/OE.19.009783
– volume: 7
  start-page: 145
  year: 2019
  ident: oe-32-5-7659-R32
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2019.00145
– volume: 37
  start-page: 6867
  year: 2022
  ident: oe-32-5-7659-R11
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2021.1958014
– volume: 18
  start-page: 7521
  year: 2010
  ident: oe-32-5-7659-R14
  publication-title: Opt. Express
  doi: 10.1364/OE.18.007521
– volume: 27
  start-page: A1118
  year: 2019
  ident: oe-32-5-7659-R38
  publication-title: Opt. Express
  doi: 10.1364/OE.27.0A1118
– volume: 41
  start-page: 1839
  year: 2020
  ident: oe-32-5-7659-R45
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1675330
– volume: 174
  start-page: 215
  year: 2021
  ident: oe-32-5-7659-R24
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.01.021
– volume: 21
  start-page: 4125
  year: 2021
  ident: oe-32-5-7659-R55
  publication-title: Sensors
  doi: 10.3390/s21124125
– volume: 6
  start-page: 1879
  year: 2013
  ident: oe-32-5-7659-R47
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2227993
– volume: 23
  start-page: 609
  year: 2004
  ident: oe-32-5-7659-R2
  publication-title: Acta Oceanol. Sin.
– volume: 133
  start-page: 46
  year: 2017
  ident: oe-32-5-7659-R27
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.09.011
– volume: 27
  start-page: 30116
  year: 2019
  ident: oe-32-5-7659-R30
  publication-title: Opt. Express
  doi: 10.1364/OE.27.030116
– volume: 7
  start-page: 308
  year: 1965
  ident: oe-32-5-7659-R61
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 204
  start-page: 60
  year: 2018
  ident: oe-32-5-7659-R23
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.041
– volume: 61
  start-page: 2491
  year: 2018
  ident: oe-32-5-7659-R40
  publication-title: Adv. Sp. Res.
  doi: 10.1016/j.asr.2018.02.024
– volume: 131
  start-page: 63
  year: 2013
  ident: oe-32-5-7659-R22
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.006
– volume: 11
  start-page: 668
  year: 2019
  ident: oe-32-5-7659-R36
  publication-title: Remote Sens.
  doi: 10.3390/rs11060668
– volume: 58
  start-page: 5764
  year: 2020
  ident: oe-32-5-7659-R35
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2969900
– volume: 225
  start-page: 267
  year: 2019
  ident: oe-32-5-7659-R33
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2019.03.018
– volume: 142
  start-page: 188
  year: 2014
  ident: oe-32-5-7659-R41
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.12.001
– volume: 199
  start-page: 218
  year: 2017
  ident: oe-32-5-7659-R21
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.016
– volume: 33
  start-page: 443
  year: 1994
  ident: oe-32-5-7659-R1
  publication-title: Appl. Opt.
  doi: 10.1364/AO.33.000443
– volume: 9
  start-page: 5223
  year: 2016
  ident: oe-32-5-7659-R39
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2520501
– volume: 175
  start-page: 126
  year: 2016
  ident: oe-32-5-7659-R48
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2016.03.020
– volume: 106
  start-page: 7163
  year: 2001
  ident: oe-32-5-7659-R62
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JC000319
– volume: 28
  start-page: 26953
  year: 2020
  ident: oe-32-5-7659-R34
  publication-title: Opt. Express
  doi: 10.1364/OE.393968
– volume: 44
  start-page: 1236
  year: 2005
  ident: oe-32-5-7659-R15
  publication-title: Appl. Opt.
  doi: 10.1364/AO.44.001236
– volume: 11
  start-page: 2791
  year: 2014
  ident: oe-32-5-7659-R42
  publication-title: Ocean Sci. Discuss.
  doi: 10.5194/osd-11-2791-2014
– volume: 22
  start-page: 103
  year: 1987
  ident: oe-32-5-7659-R13
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(87)90029-0
– volume: 11
  start-page: 2820
  year: 2019
  ident: oe-32-5-7659-R49
  publication-title: Remote Sens.
  doi: 10.3390/rs11232820
– volume: 107
  start-page: 479
  year: 2007
  ident: oe-32-5-7659-R60
  publication-title: J. Quant. Spect. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2007.03.010
– volume: 57
  start-page: 6666
  year: 2019
  ident: oe-32-5-7659-R51
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2019.2907884
– volume: 110
  start-page: 1
  year: 2005
  ident: oe-32-5-7659-R4
  publication-title: J. Geophys. Res.
  doi: 10.1029/2004JD004950
– volume: 40
  start-page: 4790
  year: 2001
  ident: oe-32-5-7659-R3
  publication-title: Appl. Opt.
  doi: 10.1364/AO.40.004790
– volume: 14
  start-page: 386
  year: 2022
  ident: oe-32-5-7659-R54
  publication-title: Remote Sens (Basel
  doi: 10.3390/rs14020386
– volume: 67
  start-page: 266
  year: 2021
  ident: oe-32-5-7659-R43
  publication-title: Adv. Sp. Res.
  doi: 10.1016/j.asr.2020.09.045
– volume: 34
  start-page: 1
  year: 2007
  ident: oe-32-5-7659-R5
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL028599
– volume: 215
  start-page: 18
  year: 2018
  ident: oe-32-5-7659-R26
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.05.033
– volume: 113
  start-page: 635
  year: 2009
  ident: oe-32-5-7659-R8
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.11.005
– volume: 249
  start-page: 105308
  year: 2021
  ident: oe-32-5-7659-R28
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2020.105308
SSID ssj0014797
Score 2.4578016
Snippet Accurate retrieval of the water-leaving radiance from hyperspectral/multispectral remote sensing data in optically complex inland and coastal waters remains a...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 7659
Title Enhanced POLYMER atmospheric correction algorithm for water-leaving radiance retrievals from hyperspectral/multispectral remote sensing data in inland and coastal waters
URI https://www.ncbi.nlm.nih.gov/pubmed/38439443
https://www.proquest.com/docview/2937703844
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiDflsTKIA9Iqu6ntvI4IdVUhliKxK5VT5LhOW6lNS5MC4sDvgX_JjO0kLVukhUOixkrsOvPFnrFnviHkZRAgCxiLvMAfc0_kEfMkQyJIMJlzX8E3kmNw8tn7cHAh3o6CUafzc8traVNlx-r73riS_5EqlIFcMUr2HyTbVAoF8BvkC2eQMJyvJON-MbUb-B-G7z4hwYGsFssSiQJm6khh3g2XCHw-Wa5n1XRhnAq_gnq59uZamrWEtSEnUJg9BXNrfUE6ZRNzMgUL1QZirjEpwKlxPayv4W6QsT4q0f8dakFHU1w6mRVzx_4K7csSIy1Nc-W2EjxcGW5o_W3V-H_gkA8dnLq87iD-zaTF7Ufo5gIKFlbnhSZmpWxDMQZmUXYE3fgMx2R7IYMJExgebo29YGmCOevmX72nzA3Y7YJouyVuRt8otOzil6YFHgp4T8P-cQBjlk0juEu9_ceU2Dgqmv2-UKTDfmofvUauMzBIMFfG2Y9-s18lIpvGp_67jsMKHj1pWt3VfP5izhi15vw2ueXsEfragusO6ejiLrlh_IJVeY_8qiFGHcToFsRoCzHaQIwCxOgOxGgNMdpCjCLE6A7ETnYARi3AqAMYRYDRWUEtwCgeDmC2sfI-uTjtn78ZeC67h6c48ytPx3EW-ZJF41CEYcJlmOe9MNaJ0n6gQbMSWTLOAxEmEQe1PBIySRTnPaYTXwZc8QfkoFgW-hGhWZ6MuRIZG4N1HEsuZcwSFUiue6jisy55Vb_5VDnqe8zAMk8vybdLXjS3rizfy76bntfiS2E0xi02WejlpkxBeY5gDo2F6JKHVq5NNVCKUej88VWaeEJutt_IU3JQrTf6Gai_VXZolo0ODf5-A8BDuWw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+POLYMER+atmospheric+correction+algorithm+for+water-leaving+radiance+retrievals+from+hyperspectral%2Fmultispectral+remote+sensing+data+in+inland+and+coastal+waters&rft.jtitle=Optics+express&rft.au=Karthick%2C+Murugan&rft.au=Shanmugam%2C+Palanisamy&rft.au=He%2C+Xianqiang&rft.date=2024-02-26&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=32&rft.issue=5&rft.spage=7659&rft_id=info:doi/10.1364%2FOE.504088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_504088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon