Fault Diagnosis for Batch Processes by Improved Multi-model Fisher Discriminant Analysis
Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In order to overcome the need for estimated or filled up future unmeasured values in the...
Saved in:
Published in | Chinese journal of chemical engineering Vol. 14; no. 3X; pp. 343 - 348 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2006
|
Subjects | |
Online Access | Get full text |
ISSN | 1004-9541 2210-321X |
DOI | 10.1016/S1004-9541(06)60081-5 |
Cover
Abstract | Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In order to overcome the need for estimated or filled up future unmeasured values in the online fault diagnosis, sufficiently utilize the finite information of faults, and enhance the diagnostic performance, an improved multi-model Fisher discriminant analysis is represented. The trait of the proposed method is that the training data sets are made of the current measured information and the past major discriminant information, and not only the current information or the whole batch data. An industrial typical multi-stage streptomycin fermentation process is used to test the performance of fault diagnosis of the proposed method. |
---|---|
AbstractList | Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In order to overcome the need for estimated or filled up future unmeasured values in the online fault diagnosis, sufficiently utilize the finite information of faults, and enhance the diagnostic performance, an improved multi-model Fisher discriminant analysis is represented. The trait of the proposed method is that the training data sets are made of the current measured information and the past major discriminant information, and not only the current information or the whole batch data. An industrial typical multi-stage streptomycin fermentation process is used to test the performance of fault diagnosis of the proposed method. |
Author | 蒋丽英 谢磊 王树青 |
AuthorAffiliation | National Laboratory of Industrial Control Technology Zhejiang University Hangzhou 310027 China Shenyang Institute of Aeronautical Engineering Shenyang 110034 China National Laboratory of Industrial Control Technology Zhejiang University Hangzhou 310027 China |
Author_xml | – sequence: 1 fullname: 蒋丽英 谢磊 王树青 |
BookMark | eNqFkEtLAzEUhYMoWB8_QchKFBm9N5kkLa58VQVFQQV3IZNm2sg00WQq9N8bH7hw4-puvu_cw9kgqyEGR8gOwiECyqMHBKirkahxD-S-BBhiJVbIgDGEijN8XiWDX2SdbOT8AsAKNRyQ57FZdD0992YaYvaZtjHRU9PbGb1P0bqcXabNkl7PX1N8dxN6W3BfzePEdXTs88ylImeb_NwHE3p6Eky3LEFbZK01XXbbP3eTPI0vHs-uqpu7y-uzk5vKcgZ9ZdvhpEbeKmZMqahQNVZIDkJBU7etEtzVw0krLXLeWMOVQGOkUo1DK0Eyvkl2v3NLv7eFy72elzqu60xwcZE1Gwk-qlEWUHyDNsWck2v1aylt0lIj6M8d9deO-nMkDVJ_7ahF8Y7_eNb3pvcx9Mn47l_74MeexTB982H6-1aOQDGFUjEACRwQ-Aed9Yeq |
CitedBy_id | crossref_primary_10_1002_cben_202000027 crossref_primary_10_1016_j_cjche_2024_01_019 crossref_primary_10_1016_S1004_9541_13_60469_3 crossref_primary_10_1515_revce_2017_0069 |
Cites_doi | 10.1016/S0169-7439(99)00061-1 10.1111/j.1469-1809.1936.tb02137.x 10.1016/S0009-2509(01)00366-9 10.1002/aic.690400809 10.1016/S0169-7439(98)00024-0 10.1002/aic.690420810 10.1016/0169-7439(95)00043-7 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1016/S1004-9541(06)60081-5 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Fault Diagnosis for Batch Processes by Improved Multi-model Fisher Discriminant Analysis |
EISSN | 2210-321X |
EndPage | 348 |
ExternalDocumentID | 10_1016_S1004_9541_06_60081_5 690727167200603010 |
GroupedDBID | --K --M .~1 0R~ 188 1B1 1~. 1~5 29B 2B. 2C0 2RA 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 8RM 92H 92I 92L 92R 93N AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CCEZO CDRFL CHBEP CQIGP CS3 CW9 DU5 EBS EFJIC EFLBG EJD ENUVR EO9 EP2 EP3 FA0 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL SDC SDF SDG SDH SES SPC SPCBC SSG SSZ T5K TCJ TGT UGNYK W92 ~G- ~WA -SB -S~ AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CAJEB CITATION Q-- SSH U1G U5L 7U5 8FD EFKBS L7M |
ID | FETCH-LOGICAL-c320t-cf8d413f72aa004717bc5630570b4ff753e48df6c133bca3751aa677be1c60623 |
ISSN | 1004-9541 |
IngestDate | Fri Sep 05 14:00:11 EDT 2025 Thu Apr 24 22:52:04 EDT 2025 Tue Jul 01 01:40:05 EDT 2025 Wed Feb 14 10:28:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3X |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-cf8d413f72aa004717bc5630570b4ff753e48df6c133bca3751aa677be1c60623 |
Notes | 11-3270/TQ JIANG Liying, XIE Leiand WANG ShuqingNational Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China b Shenyang Institute of Aeronautical Engineering, Shenyang 110034, China ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 29539416 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_29539416 crossref_primary_10_1016_S1004_9541_06_60081_5 crossref_citationtrail_10_1016_S1004_9541_06_60081_5 chongqing_primary_690727167200603010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-06-01 |
PublicationDateYYYYMMDD | 2006-06-01 |
PublicationDate_xml | – month: 06 year: 2006 text: 2006-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Chinese journal of chemical engineering |
PublicationTitleAlternate | Chinese Journal of Chemical Engineering |
PublicationYear | 2006 |
References | Chen (10.1016/S1004-9541(06)60081-5_bib9) 2002; 57 Chiang (10.1016/S1004-9541(06)60081-5_bib2) 2001 He (10.1016/S1004-9541(06)60081-5_bib10) 2004; 12 Chen (10.1016/S1004-9541(06)60081-5_bib11) 2004; 22 Chiang (10.1016/S1004-9541(06)60081-5_bib3) 2000; 50 10.1016/S1004-9541(06)60081-5_bib12 Dong (10.1016/S1004-9541(06)60081-5_bib7) 1996; 42 Wang (10.1016/S1004-9541(06)60081-5_bib13) 1998 Rännar (10.1016/S1004-9541(06)60081-5_bib8) 1998; 41 Jackson (10.1016/S1004-9541(06)60081-5_bib1) 1991 Normikos (10.1016/S1004-9541(06)60081-5_bib5) 1994; 40 Fisher (10.1016/S1004-9541(06)60081-5_bib4) 1936; 7 Normikos (10.1016/S1004-9541(06)60081-5_bib6) 1995; 30 |
References_xml | – year: 2001 ident: 10.1016/S1004-9541(06)60081-5_bib2 – volume: 50 start-page: 243 year: 2000 ident: 10.1016/S1004-9541(06)60081-5_bib3 article-title: “Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis,” publication-title: Chemom. Intel. Lab. Syst. doi: 10.1016/S0169-7439(99)00061-1 – volume: 7 start-page: 179 year: 1936 ident: 10.1016/S1004-9541(06)60081-5_bib4 article-title: “The utilization of multiple measurements in taxonomic problem,” publication-title: Annals of Eugenics doi: 10.1111/j.1469-1809.1936.tb02137.x – year: 1991 ident: 10.1016/S1004-9541(06)60081-5_bib1 – volume: 57 start-page: 63 year: 2002 ident: 10.1016/S1004-9541(06)60081-5_bib9 article-title: “On-line batch process monitoring using dynamic PCA and dynamic PLS models,” publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(01)00366-9 – ident: 10.1016/S1004-9541(06)60081-5_bib12 – volume: 12 start-page: 96 year: 2004 ident: 10.1016/S1004-9541(06)60081-5_bib10 article-title: “An improved adaptive multi-way principal component analysis for monitoring streptomycin fermentation process,” publication-title: Chin. J. Chem. Eng. – volume: 40 start-page: 1361 year: 1994 ident: 10.1016/S1004-9541(06)60081-5_bib5 article-title: “Monitoring batch processes using multi-way principal component analysis,” publication-title: AlChE J. doi: 10.1002/aic.690400809 – volume: 22 start-page: 384 year: 2004 ident: 10.1016/S1004-9541(06)60081-5_bib11 article-title: “Monitoring batch processes using multiway Fisher discriminnant analysis,” publication-title: Journal of Jilin University (Infor. Sci.) – start-page: 146 year: 1998 ident: 10.1016/S1004-9541(06)60081-5_bib13 – volume: 41 start-page: 73 year: 1998 ident: 10.1016/S1004-9541(06)60081-5_bib8 article-title: “Adaptive batch monitoring using hierarchical PCA,” publication-title: Chemom. Intel. Lab. Syst. doi: 10.1016/S0169-7439(98)00024-0 – volume: 42 start-page: 2199 year: 1996 ident: 10.1016/S1004-9541(06)60081-5_bib7 article-title: “Batch tracking via nonlinare principal component analysis,” publication-title: AlChE J. doi: 10.1002/aic.690420810 – volume: 30 start-page: 97 year: 1995 ident: 10.1016/S1004-9541(06)60081-5_bib6 article-title: “Multi-way partial least squares in monitoring batch processes,” publication-title: Chemom. Intel. Lab. Syst. doi: 10.1016/0169-7439(95)00043-7 |
SSID | ssj0020818 |
Score | 1.74041 |
Snippet | Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 343 |
SubjectTerms | analysis batch diagnosis discriminant fault Fisher processes |
Title | Fault Diagnosis for Batch Processes by Improved Multi-model Fisher Discriminant Analysis |
URI | http://lib.cqvip.com/qk/84275X/20063X/690727167200603010.html https://www.proquest.com/docview/29539416 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcAB8RTL04dWAlUpSWzHyXFBVLtQemkr7c2yHYddqcoCmz2UX8_Yjp0UEFAu0cpKZiPPl3nYM58R2oMIWFd1WScM3EtCwWUklUlNklHDDeNcMmn7nT-dFLNz-mHBFsN2gesu6dSh_v7bvpL_0SqMgV5tl-w1NBuFwgD8Bv3CFTQM13_S8ZHcXnRgtVy13MoxKxy8Bdu6DPX_ZmPDS79wAJGl67ZN3OE3B_7Mc8u-qf3JXm0XGUrGEas9YNtszJhiQgeSATOQGcZKnPnUd0Edry5Hw4u5q7o8NqvoBfr7Tpfbr-HG0epDqJLqDaYtZKmYJ6-KFpWOkENG5pF4Sqbe0xLPsfmLEffrCadR9L7d_d3PIdeC-CVhg-cKu_U_ObRYZhgr2KwoYUWJtBBOjGA30W7Oud3a353OP85OYppuSf7cHnn_90Pf15vhnV6lxev-fSwrx3LdfraTdTW6uercXcRydhfd6VMNPPW4uYdumPY-uj0ioHyAFg5BOCIIA4KwQxCOCMLqEgcE4RGCsEcQHiMIBwQ9ROdH78_ezZL-rI1EkzztEt2UNcQzDc-ltAyiGVfaUscxniraNPBJG1rWTaEzQpSWhLNMyoJzZTINOXBOHqGddt2axwirUjUyNYZSlVFpStnUEEWShuSqqmvKJmgvzpf44jlVhF2kyUEb3ILMpunpBNEwlUL3fPX22JQL8Ue1TtBhfCwI_8sDL4OeBJhWu18mW7PebkReMVJBwvLkuiKfolvDt_IM7XTftuY5xK6detGD7QdoU5Ch |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Diagnosis+for+Batch+Processes+by+Improved+Multi-model+Fisher+Discriminant+Analysis&rft.jtitle=Chinese+journal+of+chemical+engineering&rft.au=JIANG%2C+Liying&rft.au=XIE%2C+Lei&rft.au=WANG%2C+Shuqing&rft.date=2006-06-01&rft.issn=1004-9541&rft.volume=14&rft.issue=3&rft.spage=343&rft.epage=348&rft_id=info:doi/10.1016%2FS1004-9541%2806%2960081-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1004_9541_06_60081_5 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84275X%2F84275X.jpg |