Code Enumerators and Tutte Polynomials
It is proved that the set of higher weight enumerators of a linear code over a finite field is equivalent to the Tutte polynomial associated to the code. An explicit expression for the Tutte polynomial is given in terms of the subcode weights. Generalizations of these results are proved and are appl...
Saved in:
Published in | IEEE transactions on information theory Vol. 56; no. 9; pp. 4350 - 4358 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.09.2010
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9448 1557-9654 |
DOI | 10.1109/TIT.2010.2054654 |
Cover
Abstract | It is proved that the set of higher weight enumerators of a linear code over a finite field is equivalent to the Tutte polynomial associated to the code. An explicit expression for the Tutte polynomial is given in terms of the subcode weights. Generalizations of these results are proved and are applied to codeword m -tuples. These general results are used to prove a very general MacWilliams-type identity for linear codes that generalizes most previous extensions of the MacWilliams identity. In addition, a general and very useful matrix framework for manipulating weight and support enumerators of linear codes is presented. |
---|---|
AbstractList | It is proved that the set of higher weight enumerators of a linear code over a finite field is equivalent to the Tutte polynomial associated to the code. An explicit expression for the Tutte polynomial is given in terms of the subcode weights. Generalizations of these results are proved and are applied to codeword $m$-tuples. These general results are used to prove a very general MacWilliams-type identity for linear codes that generalizes most previous extensions of the MacWilliams identity. In addition, a general and very useful matrix framework for manipulating weight and support enumerators of linear codes is presented. [PUBLICATION ABSTRACT] It is proved that the set of higher weight enumerators of a linear code over a finite field is equivalent to the Tutte polynomial associated to the code. An explicit expression for the Tutte polynomial is given in terms of the subcode weights. Generalizations of these results are proved and are applied to codeword m -tuples. These general results are used to prove a very general MacWilliams-type identity for linear codes that generalizes most previous extensions of the MacWilliams identity. In addition, a general and very useful matrix framework for manipulating weight and support enumerators of linear codes is presented. |
Author | Britz, Thomas |
Author_xml | – sequence: 1 givenname: Thomas surname: Britz fullname: Britz, Thomas email: britz@unsw.edu.au organization: Sch. of Math. & Stat., Univ. of New South Wales, Sydney, NSW, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23143527$$DView record in Pascal Francis |
BookMark | eNp9kM1LAzEQxYNUsK3eBS-LoLet-d7kKKVqoaCH9Ryy2Sxs2SY1yR7635vS6sGDpzcz_N4beDMwcd5ZAG4RXCAE5VO9rhcY5g1DRjmjF2CKGKtKmecJmEKIRCkpFVdgFuM2r5QhPAWPS9_aYuXGnQ06-RAL7dqiHlOyxYcfDs7vej3Ea3DZZbE3Z52Dz5dVvXwrN--v6-XzpjQEw1QaYRrNUWu4wEYb1vLOQmahMbJqDGmsZBhLS4nhFe8k0byBgnAqUL41RpI5uD_l7oP_Gm1MauvH4PJLVdFKMiHxEXo4QzoaPXRBO9NHtQ_9ToeDwgRRwnCVOX7iTPAxBtsp0yedeu9S0P2gEFTH6lSuTh2rU-fqshH-Mf5k_2O5O1l6a-0vzhiDWAjyDaYkeZg |
CODEN | IETTAW |
CitedBy_id | crossref_primary_10_1109_TIT_2013_2292524 crossref_primary_10_1016_j_jctb_2024_12_002 crossref_primary_10_1007_s10623_019_00688_9 crossref_primary_10_1007_s10801_022_01129_y crossref_primary_10_1109_TIT_2016_2538768 crossref_primary_10_1007_s10623_021_00906_3 crossref_primary_10_1016_j_disc_2015_10_005 crossref_primary_10_1137_120876356 crossref_primary_10_1016_j_ffa_2021_101900 crossref_primary_10_1007_s10623_018_0576_0 crossref_primary_10_1109_TIT_2016_2598149 crossref_primary_10_1016_j_disc_2024_113924 crossref_primary_10_1137_20M1382635 |
Cites_doi | 10.1016/0012-365X(78)90114-0 10.1016/0012-365X(92)90559-X 10.1109/TIT.2007.899509 10.1007/s002000050060 10.37236/1636 10.1090/S0002-9947-03-03367-1 10.1007/s10623-007-9145-7 10.1016/j.disc.2006.12.001 10.1016/S1571-0653(04)00199-4 10.1002/j.1538-7305.1963.tb04003.x 10.1016/0012-365X(77)90078-4 10.1109/TIT.2002.808115 10.1017/CBO9780511662041.007 10.14492/hokmj/1351516754 10.1002/sapm1976552119 10.1109/18.476213 10.1016/j.disc.2005.10.002 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TIT.2010.2054654 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Statistics Computer Science Applied Sciences |
EISSN | 1557-9654 |
EndPage | 4358 |
ExternalDocumentID | 2123361821 23143527 10_1109_TIT_2010_2054654 5550288 |
Genre | orig-research Feature |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYOK AAYXX CITATION RIG IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c320t-c8cba61dc682cac5d6fe05e0cc97bc3be95229e43c676f93a6b0836481e43bc93 |
IEDL.DBID | RIE |
ISSN | 0018-9448 |
IngestDate | Mon Jun 30 06:47:25 EDT 2025 Fri Aug 22 06:47:19 EDT 2025 Tue Jul 01 02:34:26 EDT 2025 Thu Apr 24 23:06:25 EDT 2025 Tue Aug 26 16:40:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Linear code Finite field higher weight enumerator Matroid MacWilliams identity Codeword m-tuple tutte polynomial |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c320t-c8cba61dc682cac5d6fe05e0cc97bc3be95229e43c676f93a6b0836481e43bc93 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 747958929 |
PQPubID | 36024 |
PageCount | 9 |
ParticipantIDs | proquest_journals_747958929 crossref_primary_10_1109_TIT_2010_2054654 ieee_primary_5550288 pascalfrancis_primary_23143527 crossref_citationtrail_10_1109_TIT_2010_2054654 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-01 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on information theory |
PublicationTitleAbbrev | TIT |
PublicationYear | 2010 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 welsh (ref16) 1976 britz (ref5) 2002; 9 ref12 ref14 ref20 crapo (ref18) 1970 ref10 britz (ref11) 2007; 53 barg (ref4) 1997; 8 macwilliams (ref3) 1978 klve (ref21) 1992; 106 107 ref2 helleseth (ref9) 1977; 18 ref17 ref19 oxley (ref15) 2006 ref8 ref7 ref6 greene (ref1) 1976; 55 |
References_xml | – year: 1976 ident: ref16 publication-title: Matroid Theory – ident: ref20 doi: 10.1016/0012-365X(78)90114-0 – year: 1970 ident: ref18 publication-title: On the Foundations of Combinatorial Theory Combinatorial Geometries (Preliminary Edition) – volume: 106 107 start-page: 311 year: 1992 ident: ref21 article-title: Support weight distribution of linear codes publication-title: Discrete Math doi: 10.1016/0012-365X(92)90559-X – volume: 53 start-page: 2567 year: 2007 ident: ref11 article-title: The higher weight enumerators of the doubly-even, self-dual <formula formulatype="inline"><tex Notation="TeX">$[48,24,12]$</tex> </formula> code publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2007.899509 – volume: 8 start-page: 165 year: 1997 ident: ref4 article-title: the matroid of supports of a linear code publication-title: Appl Algebra Engrg Commun Comput doi: 10.1007/s002000050060 – volume: 9 year: 2002 ident: ref5 article-title: macwilliams identities and matroid polynomials publication-title: Electron J Combin doi: 10.37236/1636 – ident: ref8 doi: 10.1090/S0002-9947-03-03367-1 – ident: ref19 doi: 10.1007/s10623-007-9145-7 – ident: ref7 doi: 10.1016/j.disc.2006.12.001 – ident: ref12 doi: 10.1016/S1571-0653(04)00199-4 – year: 2006 ident: ref15 publication-title: Matroid Theory – ident: ref2 doi: 10.1002/j.1538-7305.1963.tb04003.x – volume: 18 start-page: 179 year: 1977 ident: ref9 article-title: The weight distribution of irreducible cyclic codes with block lengths <formula formulatype="inline"> <tex Notation="TeX">$n_1((q^l-1)/N)$</tex></formula> publication-title: Discrete Math doi: 10.1016/0012-365X(77)90078-4 – ident: ref13 doi: 10.1109/TIT.2002.808115 – ident: ref17 doi: 10.1017/CBO9780511662041.007 – ident: ref14 doi: 10.14492/hokmj/1351516754 – year: 1978 ident: ref3 publication-title: The Theory of Error-Correcting Codes – volume: 55 start-page: 119 year: 1976 ident: ref1 article-title: weight enumeration and the geometry of linear codes publication-title: Stud Appl Math doi: 10.1002/sapm1976552119 – ident: ref10 doi: 10.1109/18.476213 – ident: ref6 doi: 10.1016/j.disc.2005.10.002 |
SSID | ssj0014512 |
Score | 2.0762532 |
Snippet | It is proved that the set of higher weight enumerators of a linear code over a finite field is equivalent to the Tutte polynomial associated to the code. An... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4350 |
SubjectTerms | Applied sciences Australia Codes Codeword m -tuple Coding theory Coding, codes Exact sciences and technology Galois fields Hamming weight higher weight enumerator Information theory Information, signal and communications theory Linear code MacWilliams identity Mathematics matroid Polynomials Signal and communications theory Statistics Telecommunications and information theory tutte polynomial |
Title | Code Enumerators and Tutte Polynomials |
URI | https://ieeexplore.ieee.org/document/5550288 https://www.proquest.com/docview/747958929 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB0BJzjQpYDosqAcENJKm9aOHSc-IgQCpCIOReIWxWPnAkoRbQ_w6xnHSbTsIsQtH47leGbiN_HMG4ATVtq0QstjxxFjiUg2x0mXy8wqSxA41ZXPRp7eqqt7efOQPqzBnz4XxjnXBJ-5sT9s9vLtHFf-V9kkJTid5Pk6rJOahVytfsdApjwwg3MyYPI5ui1Jpiez61mI4UqYL_0tPyxBTU0VHxFZLmhSqlDN4r8Pc7PaXA5g2o0zBJk8jldLM8a3fygcv_siP2C7hZ3RWdCTHVhz9RAGXUmHqLXwIWz9xU9IZ9Oe1HUxhE0PTAOv8y6cns-tiy5qn77p_fZFVNY2mvmy19Hd_OnVZzuTZu_B_eXF7PwqbmsuxCgStowxR1MqblHlCZaYWlU5ljqGqDODwjhNgE07KVBlqtKiVMbzW8uc0zWDWuzDRj2v3QFEhnNRUUdcKCGdkLmwQouKOZYpWRo9gkknhgJbQnJfF-OpaBwTpgsSXOEFV7SCG8Hv_onnQMbxRdtdP-99u3bKR3D8QdL9fcK5hByTbASHneiL1pwXBflcOs0JSf78vNdD2AxRBT727BdsLF9W7ojAytIcN1r6DuvR5Fg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcqAcKGxBLIWSA0JCIrt2_Eh8rKpWW-hWHFKptygeOxeqbNXdPcCvZxwnEaUIccvDsRzPTPxNPPMNwAdWO9Wg46nniKlEJJvjpMt17rQjCKxME7KRl5d6cSW_XKvrHfg85sJ477vgMz8Lh91evlvhNvwqmyuC01lRPILHtO5LFbO1xj0DqXjkBudkwuR1DJuSzMzL8zJGcWUsFP-W9xahrqpKiIms1zQtTaxn8eDT3K03Z_uwHEYaw0y-z7YbO8Off5A4_u-rPIdnPfBMjqOmvIAd305gfyjqkPQ2PoGnvzEU0tlypHVdT2AvQNPI7HwAH09WzienbUjgDJ77Oqlbl5Sh8HXybXXzI-Q7k26_hKuz0_JkkfZVF1IUGdukWKCtNXeoiwxrVE43ninPEE1uUVhvCLIZLwXqXDdG1NoGhmtZcLpm0YhXsNuuWv8aEsu5aKgjLrSQXshCOGFEwzzLtaytmcJ8EEOFPSV5qIxxU3WuCTMVCa4Kgqt6wU3h0_jEbaTj-EfbgzDvY7t-yqdwdE_S431CuoQds3wKh4Poq96g1xV5XUYVhCXf_L3X9_BkUS4vqovzy6-HsBdjDEIk2lvY3dxt_TuCLht71GnsLwmz56U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Code+Enumerators+and+Tutte+Polynomials&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Britz%2C+Thomas&rft.date=2010-09-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=56&rft.issue=9&rft.spage=4350&rft.epage=4358&rft_id=info:doi/10.1109%2FTIT.2010.2054654&rft.externalDocID=5550288 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |