Code Enumerators and Tutte Polynomials

It is proved that the set of higher weight enumerators of a linear code over a finite field is equivalent to the Tutte polynomial associated to the code. An explicit expression for the Tutte polynomial is given in terms of the subcode weights. Generalizations of these results are proved and are appl...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 56; no. 9; pp. 4350 - 4358
Main Author Britz, Thomas
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2010.2054654

Cover

Abstract It is proved that the set of higher weight enumerators of a linear code over a finite field is equivalent to the Tutte polynomial associated to the code. An explicit expression for the Tutte polynomial is given in terms of the subcode weights. Generalizations of these results are proved and are applied to codeword m -tuples. These general results are used to prove a very general MacWilliams-type identity for linear codes that generalizes most previous extensions of the MacWilliams identity. In addition, a general and very useful matrix framework for manipulating weight and support enumerators of linear codes is presented.
AbstractList It is proved that the set of higher weight enumerators of a linear code over a finite field is equivalent to the Tutte polynomial associated to the code. An explicit expression for the Tutte polynomial is given in terms of the subcode weights. Generalizations of these results are proved and are applied to codeword $m$-tuples. These general results are used to prove a very general MacWilliams-type identity for linear codes that generalizes most previous extensions of the MacWilliams identity. In addition, a general and very useful matrix framework for manipulating weight and support enumerators of linear codes is presented. [PUBLICATION ABSTRACT]
It is proved that the set of higher weight enumerators of a linear code over a finite field is equivalent to the Tutte polynomial associated to the code. An explicit expression for the Tutte polynomial is given in terms of the subcode weights. Generalizations of these results are proved and are applied to codeword m -tuples. These general results are used to prove a very general MacWilliams-type identity for linear codes that generalizes most previous extensions of the MacWilliams identity. In addition, a general and very useful matrix framework for manipulating weight and support enumerators of linear codes is presented.
Author Britz, Thomas
Author_xml – sequence: 1
  givenname: Thomas
  surname: Britz
  fullname: Britz, Thomas
  email: britz@unsw.edu.au
  organization: Sch. of Math. & Stat., Univ. of New South Wales, Sydney, NSW, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23143527$$DView record in Pascal Francis
BookMark eNp9kM1LAzEQxYNUsK3eBS-LoLet-d7kKKVqoaCH9Ryy2Sxs2SY1yR7635vS6sGDpzcz_N4beDMwcd5ZAG4RXCAE5VO9rhcY5g1DRjmjF2CKGKtKmecJmEKIRCkpFVdgFuM2r5QhPAWPS9_aYuXGnQ06-RAL7dqiHlOyxYcfDs7vej3Ea3DZZbE3Z52Dz5dVvXwrN--v6-XzpjQEw1QaYRrNUWu4wEYb1vLOQmahMbJqDGmsZBhLS4nhFe8k0byBgnAqUL41RpI5uD_l7oP_Gm1MauvH4PJLVdFKMiHxEXo4QzoaPXRBO9NHtQ_9ToeDwgRRwnCVOX7iTPAxBtsp0yedeu9S0P2gEFTH6lSuTh2rU-fqshH-Mf5k_2O5O1l6a-0vzhiDWAjyDaYkeZg
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2013_2292524
crossref_primary_10_1016_j_jctb_2024_12_002
crossref_primary_10_1007_s10623_019_00688_9
crossref_primary_10_1007_s10801_022_01129_y
crossref_primary_10_1109_TIT_2016_2538768
crossref_primary_10_1007_s10623_021_00906_3
crossref_primary_10_1016_j_disc_2015_10_005
crossref_primary_10_1137_120876356
crossref_primary_10_1016_j_ffa_2021_101900
crossref_primary_10_1007_s10623_018_0576_0
crossref_primary_10_1109_TIT_2016_2598149
crossref_primary_10_1016_j_disc_2024_113924
crossref_primary_10_1137_20M1382635
Cites_doi 10.1016/0012-365X(78)90114-0
10.1016/0012-365X(92)90559-X
10.1109/TIT.2007.899509
10.1007/s002000050060
10.37236/1636
10.1090/S0002-9947-03-03367-1
10.1007/s10623-007-9145-7
10.1016/j.disc.2006.12.001
10.1016/S1571-0653(04)00199-4
10.1002/j.1538-7305.1963.tb04003.x
10.1016/0012-365X(77)90078-4
10.1109/TIT.2002.808115
10.1017/CBO9780511662041.007
10.14492/hokmj/1351516754
10.1002/sapm1976552119
10.1109/18.476213
10.1016/j.disc.2005.10.002
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2010.2054654
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Statistics
Computer Science
Applied Sciences
EISSN 1557-9654
EndPage 4358
ExternalDocumentID 2123361821
23143527
10_1109_TIT_2010_2054654
5550288
Genre orig-research
Feature
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c320t-c8cba61dc682cac5d6fe05e0cc97bc3be95229e43c676f93a6b0836481e43bc93
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Mon Jun 30 06:47:25 EDT 2025
Fri Aug 22 06:47:19 EDT 2025
Tue Jul 01 02:34:26 EDT 2025
Thu Apr 24 23:06:25 EDT 2025
Tue Aug 26 16:40:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Linear code
Finite field
higher weight enumerator
Matroid
MacWilliams identity
Codeword m-tuple
tutte polynomial
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c320t-c8cba61dc682cac5d6fe05e0cc97bc3be95229e43c676f93a6b0836481e43bc93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 747958929
PQPubID 36024
PageCount 9
ParticipantIDs proquest_journals_747958929
crossref_primary_10_1109_TIT_2010_2054654
ieee_primary_5550288
pascalfrancis_primary_23143527
crossref_citationtrail_10_1109_TIT_2010_2054654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2010
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
welsh (ref16) 1976
britz (ref5) 2002; 9
ref12
ref14
ref20
crapo (ref18) 1970
ref10
britz (ref11) 2007; 53
barg (ref4) 1997; 8
macwilliams (ref3) 1978
klve (ref21) 1992; 106 107
ref2
helleseth (ref9) 1977; 18
ref17
ref19
oxley (ref15) 2006
ref8
ref7
ref6
greene (ref1) 1976; 55
References_xml – year: 1976
  ident: ref16
  publication-title: Matroid Theory
– ident: ref20
  doi: 10.1016/0012-365X(78)90114-0
– year: 1970
  ident: ref18
  publication-title: On the Foundations of Combinatorial Theory Combinatorial Geometries (Preliminary Edition)
– volume: 106 107
  start-page: 311
  year: 1992
  ident: ref21
  article-title: Support weight distribution of linear codes
  publication-title: Discrete Math
  doi: 10.1016/0012-365X(92)90559-X
– volume: 53
  start-page: 2567
  year: 2007
  ident: ref11
  article-title: The higher weight enumerators of the doubly-even, self-dual <formula formulatype="inline"><tex Notation="TeX">$[48,24,12]$</tex> </formula> code
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2007.899509
– volume: 8
  start-page: 165
  year: 1997
  ident: ref4
  article-title: the matroid of supports of a linear code
  publication-title: Appl Algebra Engrg Commun Comput
  doi: 10.1007/s002000050060
– volume: 9
  year: 2002
  ident: ref5
  article-title: macwilliams identities and matroid polynomials
  publication-title: Electron J Combin
  doi: 10.37236/1636
– ident: ref8
  doi: 10.1090/S0002-9947-03-03367-1
– ident: ref19
  doi: 10.1007/s10623-007-9145-7
– ident: ref7
  doi: 10.1016/j.disc.2006.12.001
– ident: ref12
  doi: 10.1016/S1571-0653(04)00199-4
– year: 2006
  ident: ref15
  publication-title: Matroid Theory
– ident: ref2
  doi: 10.1002/j.1538-7305.1963.tb04003.x
– volume: 18
  start-page: 179
  year: 1977
  ident: ref9
  article-title: The weight distribution of irreducible cyclic codes with block lengths <formula formulatype="inline"> <tex Notation="TeX">$n_1((q^l-1)/N)$</tex></formula>
  publication-title: Discrete Math
  doi: 10.1016/0012-365X(77)90078-4
– ident: ref13
  doi: 10.1109/TIT.2002.808115
– ident: ref17
  doi: 10.1017/CBO9780511662041.007
– ident: ref14
  doi: 10.14492/hokmj/1351516754
– year: 1978
  ident: ref3
  publication-title: The Theory of Error-Correcting Codes
– volume: 55
  start-page: 119
  year: 1976
  ident: ref1
  article-title: weight enumeration and the geometry of linear codes
  publication-title: Stud Appl Math
  doi: 10.1002/sapm1976552119
– ident: ref10
  doi: 10.1109/18.476213
– ident: ref6
  doi: 10.1016/j.disc.2005.10.002
SSID ssj0014512
Score 2.0762532
Snippet It is proved that the set of higher weight enumerators of a linear code over a finite field is equivalent to the Tutte polynomial associated to the code. An...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4350
SubjectTerms Applied sciences
Australia
Codes
Codeword m -tuple
Coding theory
Coding, codes
Exact sciences and technology
Galois fields
Hamming weight
higher weight enumerator
Information theory
Information, signal and communications theory
Linear code
MacWilliams identity
Mathematics
matroid
Polynomials
Signal and communications theory
Statistics
Telecommunications and information theory
tutte polynomial
Title Code Enumerators and Tutte Polynomials
URI https://ieeexplore.ieee.org/document/5550288
https://www.proquest.com/docview/747958929
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB0BJzjQpYDosqAcENJKm9aOHSc-IgQCpCIOReIWxWPnAkoRbQ_w6xnHSbTsIsQtH47leGbiN_HMG4ATVtq0QstjxxFjiUg2x0mXy8wqSxA41ZXPRp7eqqt7efOQPqzBnz4XxjnXBJ-5sT9s9vLtHFf-V9kkJTid5Pk6rJOahVytfsdApjwwg3MyYPI5ui1Jpiez61mI4UqYL_0tPyxBTU0VHxFZLmhSqlDN4r8Pc7PaXA5g2o0zBJk8jldLM8a3fygcv_siP2C7hZ3RWdCTHVhz9RAGXUmHqLXwIWz9xU9IZ9Oe1HUxhE0PTAOv8y6cns-tiy5qn77p_fZFVNY2mvmy19Hd_OnVZzuTZu_B_eXF7PwqbmsuxCgStowxR1MqblHlCZaYWlU5ljqGqDODwjhNgE07KVBlqtKiVMbzW8uc0zWDWuzDRj2v3QFEhnNRUUdcKCGdkLmwQouKOZYpWRo9gkknhgJbQnJfF-OpaBwTpgsSXOEFV7SCG8Hv_onnQMbxRdtdP-99u3bKR3D8QdL9fcK5hByTbASHneiL1pwXBflcOs0JSf78vNdD2AxRBT727BdsLF9W7ojAytIcN1r6DuvR5Fg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcqAcKGxBLIWSA0JCIrt2_Eh8rKpWW-hWHFKptygeOxeqbNXdPcCvZxwnEaUIccvDsRzPTPxNPPMNwAdWO9Wg46nniKlEJJvjpMt17rQjCKxME7KRl5d6cSW_XKvrHfg85sJ477vgMz8Lh91evlvhNvwqmyuC01lRPILHtO5LFbO1xj0DqXjkBudkwuR1DJuSzMzL8zJGcWUsFP-W9xahrqpKiIms1zQtTaxn8eDT3K03Z_uwHEYaw0y-z7YbO8Off5A4_u-rPIdnPfBMjqOmvIAd305gfyjqkPQ2PoGnvzEU0tlypHVdT2AvQNPI7HwAH09WzienbUjgDJ77Oqlbl5Sh8HXybXXzI-Q7k26_hKuz0_JkkfZVF1IUGdukWKCtNXeoiwxrVE43ninPEE1uUVhvCLIZLwXqXDdG1NoGhmtZcLpm0YhXsNuuWv8aEsu5aKgjLrSQXshCOGFEwzzLtaytmcJ8EEOFPSV5qIxxU3WuCTMVCa4Kgqt6wU3h0_jEbaTj-EfbgzDvY7t-yqdwdE_S431CuoQds3wKh4Poq96g1xV5XUYVhCXf_L3X9_BkUS4vqovzy6-HsBdjDEIk2lvY3dxt_TuCLht71GnsLwmz56U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Code+Enumerators+and+Tutte+Polynomials&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Britz%2C+Thomas&rft.date=2010-09-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=56&rft.issue=9&rft.spage=4350&rft.epage=4358&rft_id=info:doi/10.1109%2FTIT.2010.2054654&rft.externalDocID=5550288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon