EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRÖDINGER-MAXWELL EQUATIONS

In this paper we are concerned with a class of sublinear Schrödinger-Maxwell equations { − Δ u + V ( x ) u + ϕ u = f ( x , u ) , in ℝ 3 , − Δ ϕ = u 2 , lim | x | → + ∞ ϕ ( x ) = 0 , in ℝ 3 , whereV: ℝ3→ ℝ andf: ℝ3× ℝ → ℝ. Under certain assumptions onVandf, some new criteria on the existence and mult...

Full description

Saved in:
Bibliographic Details
Published inTaiwanese journal of mathematics Vol. 17; no. 3; pp. 857 - 872
Main Authors Liu, Zhisu, Guo, Shangjiang, Zhang, Ziheng
Format Journal Article
LanguageEnglish
Published Mathematical Society of the Republic of China 01.06.2013
Subjects
Online AccessGet full text
ISSN1027-5487
2224-6851
DOI10.11650/tjm.17.2013.2202

Cover

Loading…
Abstract In this paper we are concerned with a class of sublinear Schrödinger-Maxwell equations { − Δ u + V ( x ) u + ϕ u = f ( x , u ) , in ℝ 3 , − Δ ϕ = u 2 , lim | x | → + ∞ ϕ ( x ) = 0 , in ℝ 3 , whereV: ℝ3→ ℝ andf: ℝ3× ℝ → ℝ. Under certain assumptions onVandf, some new criteria on the existence and multiplicity of negative energy solutions for the above system are established via the genus properties in critical point theory. Recent results from the literature are significantly improved. 2010Mathematics Subject Classification: 35J20, 35J65, 35J60. Key words and phrases: Schrödinger-Maxwell equations, Sublinear, Genus, Variational methods.
AbstractList In this paper we are concerned with a class of sublinear Schrödinger-Maxwell equations { − Δ u + V ( x ) u + ϕ u = f ( x , u ) , in ℝ 3 , − Δ ϕ = u 2 , lim | x | → + ∞ ϕ ( x ) = 0 , in ℝ 3 , whereV: ℝ3→ ℝ andf: ℝ3× ℝ → ℝ. Under certain assumptions onVandf, some new criteria on the existence and multiplicity of negative energy solutions for the above system are established via the genus properties in critical point theory. Recent results from the literature are significantly improved. 2010Mathematics Subject Classification: 35J20, 35J65, 35J60. Key words and phrases: Schrödinger-Maxwell equations, Sublinear, Genus, Variational methods.
Author Liu, Zhisu
Guo, Shangjiang
Zhang, Ziheng
Author_xml – sequence: 1
  givenname: Zhisu
  surname: Liu
  fullname: Liu, Zhisu
– sequence: 2
  givenname: Shangjiang
  surname: Guo
  fullname: Guo, Shangjiang
– sequence: 3
  givenname: Ziheng
  surname: Zhang
  fullname: Zhang, Ziheng
BookMark eNp9kMtOg0AUhiemJrbVB3A3O1fgnBmYoUuktCWZgnKJdTUZKI2QthggMb6IL-SL2Ytx4cLVWZzznT__N0KDfbMvEboFYgJwm9z39c4EYVICzKSU0As0pJRaBndsGKAhECoM23LEFRp1XU0IdTjwIVL-KkhSP_R87IZTvMxkGjzKwAvSFxzNcBLJLA2iMMGzKMYu9qSbJKdF9iCD0HdjnHiL-OtzGoRzPzaW7urZlxL7T5l74q7R5UZvu_LmZ45RNvNTb2HIaB54rjQKRklv5IUjeFkAyYFunFxYk9Jec51P1prYgnLBhMUABBf2oZAWlJUawBb5pChzmgs2RnD-W7RN17XlRr211U63HwqIOhlSB0MKhDoaUkdDB0b8YYqq133V7PtWV9t_ybszWXd90_5G9bp6r3e6fz1eM-XYgn0Da1J0Pg
CitedBy_id crossref_primary_10_1016_j_na_2014_07_019
crossref_primary_10_1016_j_jmaa_2013_10_066
crossref_primary_10_4134_JKMS_2016_53_1_201
crossref_primary_10_1007_s13226_018_0272_9
crossref_primary_10_1016_j_jmaa_2015_07_035
crossref_primary_10_1155_2015_652407
crossref_primary_10_1186_s13661_014_0212_5
crossref_primary_10_1016_j_camwa_2016_07_033
crossref_primary_10_1016_j_camwa_2016_02_010
crossref_primary_10_1016_j_na_2015_01_009
crossref_primary_10_4134_JKMS_2016_53_2_247
crossref_primary_10_1007_s40590_024_00639_y
crossref_primary_10_1016_j_jmaa_2017_06_058
Cites_doi 10.1016/j.jmaa.2010.11.031
10.1142/S021919970800282X
10.1016/S0362-546X(97)00142-9
10.1016/j.jfa.2005.11.010
10.1080/03605309508821149
10.12775/TMNA.1998.019
10.1016/j.jmaa.2008.04.053
10.1017/S030821050000353X
10.4171/RMI/635
10.1007/978-1-4757-2061-7
10.1016/j.na.2011.06.010
10.1515/ans-2002-0205
10.1137/S0036141004442793
10.1016/j.jde.2009.06.017
10.1016/j.na.2009.03.050
10.1016/j.jmaa.2008.03.057
10.1007/s002290170032
10.1142/S0218202505003939
10.1090/cbms/065
10.1016/j.nonrwa.2011.07.027
10.1016/j.na.2010.02.002
10.3934/dcds.2007.18.809
10.1016/j.jmaa.2012.01.057
10.1016/j.na.2011.05.057
10.1016/j.jfa.2006.04.005
ContentType Journal Article
Copyright 2013 Mathematical Society of the Republic of China
Copyright_xml – notice: 2013 Mathematical Society of the Republic of China
DBID AAYXX
CITATION
DOI 10.11650/tjm.17.2013.2202
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2224-6851
EndPage 872
ExternalDocumentID 10_11650_tjm_17_2013_2202
taiwjmath.17.3.857
GroupedDBID -~X
123
29Q
2WC
AAFWJ
AAHSX
ABBHK
ABXSQ
ACHDO
ACIPV
ACMTB
ACTMH
ADULT
AEHFS
AELHJ
AENEX
AEUPB
AFBOV
AFFOW
AFOWJ
AGLNM
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALRMG
E3Z
EBS
ECEWR
EJD
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
OK1
OVT
RBV
RPE
SA0
XSB
AAYXX
CITATION
ID FETCH-LOGICAL-c320t-bc876ec10b12f8b749e5d6ab9da0572673743117675685a723ea1157b9ceb2b73
ISSN 1027-5487
IngestDate Thu Apr 24 23:03:31 EDT 2025
Tue Jul 01 02:33:53 EDT 2025
Thu Jul 03 21:19:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-bc876ec10b12f8b749e5d6ab9da0572673743117675685a723ea1157b9ceb2b73
OpenAccessLink https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-17/issue-3/EXISTENCE-AND-MULTIPLICITY-OF-SOLUTIONS-FOR-A-CLASS-OF-SUBLINEAR/10.11650/tjm.17.2013.2202.pdf
PageCount 16
ParticipantIDs crossref_primary_10_11650_tjm_17_2013_2202
crossref_citationtrail_10_11650_tjm_17_2013_2202
jstor_primary_taiwjmath_17_3_857
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Taiwanese journal of mathematics
PublicationYear 2013
Publisher Mathematical Society of the Republic of China
Publisher_xml – name: Mathematical Society of the Republic of China
References 22
23
24
25
26
27
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 2
  doi: 10.1016/j.jmaa.2010.11.031
– ident: 3
  doi: 10.1142/S021919970800282X
– ident: 22
  doi: 10.1016/S0362-546X(97)00142-9
– ident: 1
  doi: 10.1016/j.jfa.2005.11.010
– ident: 9
  doi: 10.1080/03605309508821149
– ident: 10
  doi: 10.12775/TMNA.1998.019
– ident: 14
– ident: 26
  doi: 10.1016/j.jmaa.2008.04.053
– ident: 5
  doi: 10.1017/S030821050000353X
– ident: 21
  doi: 10.4171/RMI/635
– ident: 17
  doi: 10.1007/978-1-4757-2061-7
– ident: 24
  doi: 10.1016/j.na.2011.06.010
– ident: 6
  doi: 10.1515/ans-2002-0205
– ident: 4
  doi: 10.1137/S0036141004442793
– ident: 11
  doi: 10.1016/j.jde.2009.06.017
– ident: 12
  doi: 10.1016/j.na.2009.03.050
– ident: 8
  doi: 10.1016/j.jmaa.2008.03.057
– ident: 27
  doi: 10.1007/s002290170032
– ident: 19
  doi: 10.1142/S0218202505003939
– ident: 18
  doi: 10.1090/cbms/065
– ident: 13
– ident: 15
  doi: 10.1016/j.nonrwa.2011.07.027
– ident: 16
  doi: 10.1016/j.na.2010.02.002
– ident: 25
  doi: 10.3934/dcds.2007.18.809
– ident: 23
  doi: 10.1016/j.jmaa.2012.01.057
– ident: 7
  doi: 10.1016/j.na.2011.05.057
– ident: 20
  doi: 10.1016/j.jfa.2006.04.005
SSID ssj0028616
Score 2.0331964
Snippet In this paper we are concerned with a class of sublinear Schrödinger-Maxwell equations { − Δ u + V ( x ) u + ϕ u = f ( x , u ) , in ℝ 3 , − Δ ϕ = u 2 , lim | x...
SourceID crossref
jstor
SourceType Enrichment Source
Index Database
Publisher
StartPage 857
SubjectTerms Existence theorems
Ground state
Infinity
Mathematical constants
Mathematical functions
Mathematical theorems
Nontrivial solutions
Title EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRÖDINGER-MAXWELL EQUATIONS
URI https://www.jstor.org/stable/taiwjmath.17.3.857
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoED4imWl3zghJSS2EmcHMPSVYvSXdSkqHCJ7KzLtmK7K0iFxA_hwN_hjzHjuG4KK16XqHInsTLzxZ4Zz4OQp1ICELjWXs0F80Ig86RfA5YTX8go5WEqMd95fBQPp-GrWTTr9b51opbWjerXXy7NK_kfqcIYyBWzZP9Bsu6hMAC_Qb5wBQnD9a9kPJiNitL4iLBI1Hial6PX-ehgVL7FYJ7iOJ-2ScJg6WH6eZ4VplN5gX6qo0GGLqbhBI_K0_ilCYrwxtnMuLIGoOmae7vKaykXnyV2rOzWmzhzdV-ddp4v1ubM43TRdlUx8T1r45Mt0D-9BEi-_8Vj_W5xqu2w9UKYjhBdL8TYzYU1TGy8qQ1ymGhbsbuNL2mbgtvlFoxiD22mdjcyY6CwhF6c2DK0mzVadLDIOwtuEomdvZtdvi2AHgrCbJZn_UBgPB_vM-az7R7oIhMb4OQSOYeEvA-Pv0KuMjBBcNGfvHjjjPkkNm113RvYE3Oc6fnP8-zoPN2wV6PElDfJDWt90KyF0i3S06vb5PqWrZ_ukMqBigKoaBdU9PiQOlBRABXNqAGV-WMDKoqg-v51F1DUAeoumR4OyoOhZ7twwOfL_MZTNWyYug58FbB5okSY6ugklio9kaDrM-xzBEpogEWBQGpSMK4lVnBSaa0VU4LfI3ur85W-T6hgvgIDP5orMQ-lLxM0MHSo-LwGxTFk-8Tf8KmqbYl67JTyoTKmKrC2AtZWgaiQtRWydp88c7dctPVZfkdMDfMdpZM2kvEKpP3gzyQPybXtF_CI7DUf1_oxaKaNemIg8gOnfoCT
linkProvider Project Euclid
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EXISTENCE+AND+MULTIPLICITY+OF+SOLUTIONS+FOR+A+CLASS+OF+SUBLINEAR+SCHR%C3%96DINGER-MAXWELL+EQUATIONS&rft.jtitle=Taiwanese+journal+of+mathematics&rft.au=Liu%2C+Zhisu&rft.au=Guo%2C+Shangjiang&rft.au=Zhang%2C+Ziheng&rft.date=2013-06-01&rft.pub=Mathematical+Society+of+the+Republic+of+China&rft.issn=1027-5487&rft.eissn=2224-6851&rft.volume=17&rft.issue=3&rft.spage=857&rft.epage=872&rft_id=info:doi/10.11650%2Ftjm.17.2013.2202&rft.externalDocID=taiwjmath.17.3.857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-5487&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-5487&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-5487&client=summon