EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRÖDINGER-MAXWELL EQUATIONS
In this paper we are concerned with a class of sublinear Schrödinger-Maxwell equations { − Δ u + V ( x ) u + ϕ u = f ( x , u ) , in ℝ 3 , − Δ ϕ = u 2 , lim | x | → + ∞ ϕ ( x ) = 0 , in ℝ 3 , whereV: ℝ3→ ℝ andf: ℝ3× ℝ → ℝ. Under certain assumptions onVandf, some new criteria on the existence and mult...
Saved in:
Published in | Taiwanese journal of mathematics Vol. 17; no. 3; pp. 857 - 872 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Mathematical Society of the Republic of China
01.06.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1027-5487 2224-6851 |
DOI | 10.11650/tjm.17.2013.2202 |
Cover
Loading…
Abstract | In this paper we are concerned with a class of sublinear Schrödinger-Maxwell equations
{
−
Δ
u
+
V
(
x
)
u
+
ϕ
u
=
f
(
x
,
u
)
,
in
ℝ
3
,
−
Δ
ϕ
=
u
2
,
lim
|
x
|
→
+
∞
ϕ
(
x
)
=
0
,
in
ℝ
3
,
whereV: ℝ3→ ℝ andf: ℝ3× ℝ → ℝ. Under certain assumptions onVandf, some new criteria on the existence and multiplicity of negative energy solutions for the above system are established via the genus properties in critical point theory. Recent results from the literature are significantly improved.
2010Mathematics Subject Classification: 35J20, 35J65, 35J60.
Key words and phrases: Schrödinger-Maxwell equations, Sublinear, Genus, Variational methods. |
---|---|
AbstractList | In this paper we are concerned with a class of sublinear Schrödinger-Maxwell equations
{
−
Δ
u
+
V
(
x
)
u
+
ϕ
u
=
f
(
x
,
u
)
,
in
ℝ
3
,
−
Δ
ϕ
=
u
2
,
lim
|
x
|
→
+
∞
ϕ
(
x
)
=
0
,
in
ℝ
3
,
whereV: ℝ3→ ℝ andf: ℝ3× ℝ → ℝ. Under certain assumptions onVandf, some new criteria on the existence and multiplicity of negative energy solutions for the above system are established via the genus properties in critical point theory. Recent results from the literature are significantly improved.
2010Mathematics Subject Classification: 35J20, 35J65, 35J60.
Key words and phrases: Schrödinger-Maxwell equations, Sublinear, Genus, Variational methods. |
Author | Liu, Zhisu Guo, Shangjiang Zhang, Ziheng |
Author_xml | – sequence: 1 givenname: Zhisu surname: Liu fullname: Liu, Zhisu – sequence: 2 givenname: Shangjiang surname: Guo fullname: Guo, Shangjiang – sequence: 3 givenname: Ziheng surname: Zhang fullname: Zhang, Ziheng |
BookMark | eNp9kMtOg0AUhiemJrbVB3A3O1fgnBmYoUuktCWZgnKJdTUZKI2QthggMb6IL-SL2Ytx4cLVWZzznT__N0KDfbMvEboFYgJwm9z39c4EYVICzKSU0As0pJRaBndsGKAhECoM23LEFRp1XU0IdTjwIVL-KkhSP_R87IZTvMxkGjzKwAvSFxzNcBLJLA2iMMGzKMYu9qSbJKdF9iCD0HdjnHiL-OtzGoRzPzaW7urZlxL7T5l74q7R5UZvu_LmZ45RNvNTb2HIaB54rjQKRklv5IUjeFkAyYFunFxYk9Jec51P1prYgnLBhMUABBf2oZAWlJUawBb5pChzmgs2RnD-W7RN17XlRr211U63HwqIOhlSB0MKhDoaUkdDB0b8YYqq133V7PtWV9t_ybszWXd90_5G9bp6r3e6fz1eM-XYgn0Da1J0Pg |
CitedBy_id | crossref_primary_10_1016_j_na_2014_07_019 crossref_primary_10_1016_j_jmaa_2013_10_066 crossref_primary_10_4134_JKMS_2016_53_1_201 crossref_primary_10_1007_s13226_018_0272_9 crossref_primary_10_1016_j_jmaa_2015_07_035 crossref_primary_10_1155_2015_652407 crossref_primary_10_1186_s13661_014_0212_5 crossref_primary_10_1016_j_camwa_2016_07_033 crossref_primary_10_1016_j_camwa_2016_02_010 crossref_primary_10_1016_j_na_2015_01_009 crossref_primary_10_4134_JKMS_2016_53_2_247 crossref_primary_10_1007_s40590_024_00639_y crossref_primary_10_1016_j_jmaa_2017_06_058 |
Cites_doi | 10.1016/j.jmaa.2010.11.031 10.1142/S021919970800282X 10.1016/S0362-546X(97)00142-9 10.1016/j.jfa.2005.11.010 10.1080/03605309508821149 10.12775/TMNA.1998.019 10.1016/j.jmaa.2008.04.053 10.1017/S030821050000353X 10.4171/RMI/635 10.1007/978-1-4757-2061-7 10.1016/j.na.2011.06.010 10.1515/ans-2002-0205 10.1137/S0036141004442793 10.1016/j.jde.2009.06.017 10.1016/j.na.2009.03.050 10.1016/j.jmaa.2008.03.057 10.1007/s002290170032 10.1142/S0218202505003939 10.1090/cbms/065 10.1016/j.nonrwa.2011.07.027 10.1016/j.na.2010.02.002 10.3934/dcds.2007.18.809 10.1016/j.jmaa.2012.01.057 10.1016/j.na.2011.05.057 10.1016/j.jfa.2006.04.005 |
ContentType | Journal Article |
Copyright | 2013 Mathematical Society of the Republic of China |
Copyright_xml | – notice: 2013 Mathematical Society of the Republic of China |
DBID | AAYXX CITATION |
DOI | 10.11650/tjm.17.2013.2202 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2224-6851 |
EndPage | 872 |
ExternalDocumentID | 10_11650_tjm_17_2013_2202 taiwjmath.17.3.857 |
GroupedDBID | -~X 123 29Q 2WC AAFWJ AAHSX ABBHK ABXSQ ACHDO ACIPV ACMTB ACTMH ADULT AEHFS AELHJ AENEX AEUPB AFBOV AFFOW AFOWJ AGLNM AIHAF ALMA_UNASSIGNED_HOLDINGS ALRMG E3Z EBS ECEWR EJD IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST OK1 OVT RBV RPE SA0 XSB AAYXX CITATION |
ID | FETCH-LOGICAL-c320t-bc876ec10b12f8b749e5d6ab9da0572673743117675685a723ea1157b9ceb2b73 |
ISSN | 1027-5487 |
IngestDate | Thu Apr 24 23:03:31 EDT 2025 Tue Jul 01 02:33:53 EDT 2025 Thu Jul 03 21:19:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-bc876ec10b12f8b749e5d6ab9da0572673743117675685a723ea1157b9ceb2b73 |
OpenAccessLink | https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-17/issue-3/EXISTENCE-AND-MULTIPLICITY-OF-SOLUTIONS-FOR-A-CLASS-OF-SUBLINEAR/10.11650/tjm.17.2013.2202.pdf |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_11650_tjm_17_2013_2202 crossref_citationtrail_10_11650_tjm_17_2013_2202 jstor_primary_taiwjmath_17_3_857 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-01 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Taiwanese journal of mathematics |
PublicationYear | 2013 |
Publisher | Mathematical Society of the Republic of China |
Publisher_xml | – name: Mathematical Society of the Republic of China |
References | 22 23 24 25 26 27 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 2 doi: 10.1016/j.jmaa.2010.11.031 – ident: 3 doi: 10.1142/S021919970800282X – ident: 22 doi: 10.1016/S0362-546X(97)00142-9 – ident: 1 doi: 10.1016/j.jfa.2005.11.010 – ident: 9 doi: 10.1080/03605309508821149 – ident: 10 doi: 10.12775/TMNA.1998.019 – ident: 14 – ident: 26 doi: 10.1016/j.jmaa.2008.04.053 – ident: 5 doi: 10.1017/S030821050000353X – ident: 21 doi: 10.4171/RMI/635 – ident: 17 doi: 10.1007/978-1-4757-2061-7 – ident: 24 doi: 10.1016/j.na.2011.06.010 – ident: 6 doi: 10.1515/ans-2002-0205 – ident: 4 doi: 10.1137/S0036141004442793 – ident: 11 doi: 10.1016/j.jde.2009.06.017 – ident: 12 doi: 10.1016/j.na.2009.03.050 – ident: 8 doi: 10.1016/j.jmaa.2008.03.057 – ident: 27 doi: 10.1007/s002290170032 – ident: 19 doi: 10.1142/S0218202505003939 – ident: 18 doi: 10.1090/cbms/065 – ident: 13 – ident: 15 doi: 10.1016/j.nonrwa.2011.07.027 – ident: 16 doi: 10.1016/j.na.2010.02.002 – ident: 25 doi: 10.3934/dcds.2007.18.809 – ident: 23 doi: 10.1016/j.jmaa.2012.01.057 – ident: 7 doi: 10.1016/j.na.2011.05.057 – ident: 20 doi: 10.1016/j.jfa.2006.04.005 |
SSID | ssj0028616 |
Score | 2.0331964 |
Snippet | In this paper we are concerned with a class of sublinear Schrödinger-Maxwell equations
{
−
Δ
u
+
V
(
x
)
u
+
ϕ
u
=
f
(
x
,
u
)
,
in
ℝ
3
,
−
Δ
ϕ
=
u
2
,
lim
|
x... |
SourceID | crossref jstor |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 857 |
SubjectTerms | Existence theorems Ground state Infinity Mathematical constants Mathematical functions Mathematical theorems Nontrivial solutions |
Title | EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRÖDINGER-MAXWELL EQUATIONS |
URI | https://www.jstor.org/stable/taiwjmath.17.3.857 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoED4imWl3zghJSS2EmcHMPSVYvSXdSkqHCJ7KzLtmK7K0iFxA_hwN_hjzHjuG4KK16XqHInsTLzxZ4Zz4OQp1ICELjWXs0F80Ig86RfA5YTX8go5WEqMd95fBQPp-GrWTTr9b51opbWjerXXy7NK_kfqcIYyBWzZP9Bsu6hMAC_Qb5wBQnD9a9kPJiNitL4iLBI1Hial6PX-ehgVL7FYJ7iOJ-2ScJg6WH6eZ4VplN5gX6qo0GGLqbhBI_K0_ilCYrwxtnMuLIGoOmae7vKaykXnyV2rOzWmzhzdV-ddp4v1ubM43TRdlUx8T1r45Mt0D-9BEi-_8Vj_W5xqu2w9UKYjhBdL8TYzYU1TGy8qQ1ymGhbsbuNL2mbgtvlFoxiD22mdjcyY6CwhF6c2DK0mzVadLDIOwtuEomdvZtdvi2AHgrCbJZn_UBgPB_vM-az7R7oIhMb4OQSOYeEvA-Pv0KuMjBBcNGfvHjjjPkkNm113RvYE3Oc6fnP8-zoPN2wV6PElDfJDWt90KyF0i3S06vb5PqWrZ_ukMqBigKoaBdU9PiQOlBRABXNqAGV-WMDKoqg-v51F1DUAeoumR4OyoOhZ7twwOfL_MZTNWyYug58FbB5okSY6ugklio9kaDrM-xzBEpogEWBQGpSMK4lVnBSaa0VU4LfI3ur85W-T6hgvgIDP5orMQ-lLxM0MHSo-LwGxTFk-8Tf8KmqbYl67JTyoTKmKrC2AtZWgaiQtRWydp88c7dctPVZfkdMDfMdpZM2kvEKpP3gzyQPybXtF_CI7DUf1_oxaKaNemIg8gOnfoCT |
linkProvider | Project Euclid |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EXISTENCE+AND+MULTIPLICITY+OF+SOLUTIONS+FOR+A+CLASS+OF+SUBLINEAR+SCHR%C3%96DINGER-MAXWELL+EQUATIONS&rft.jtitle=Taiwanese+journal+of+mathematics&rft.au=Liu%2C+Zhisu&rft.au=Guo%2C+Shangjiang&rft.au=Zhang%2C+Ziheng&rft.date=2013-06-01&rft.pub=Mathematical+Society+of+the+Republic+of+China&rft.issn=1027-5487&rft.eissn=2224-6851&rft.volume=17&rft.issue=3&rft.spage=857&rft.epage=872&rft_id=info:doi/10.11650%2Ftjm.17.2013.2202&rft.externalDocID=taiwjmath.17.3.857 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-5487&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-5487&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-5487&client=summon |