FTIR spectroscopy of biofluids revisited: an automated approach to spectral biomarker identification

The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human body fluids demands the highest standards of accuracy and reproducibility of measurements because the expected spectral differences between healthy and diseased subjects are very small in relation...

Full description

Saved in:
Bibliographic Details
Published inAnalyst (London) Vol. 138; no. 14; pp. 4092 - 4102
Main Authors Ollesch, Julian, Drees, Steffen L., Heise, H. Michael, Behrens, Thomas, Brüning, Thomas, Gerwert, Klaus
Format Journal Article
LanguageEnglish
Published England 21.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human body fluids demands the highest standards of accuracy and reproducibility of measurements because the expected spectral differences between healthy and diseased subjects are very small in relation to a large background absorbance of the whole sample. Here, we demonstrate that with the increased sensitivity of modern FTIR spectrometers, automatisation of sample preparation and modern bioinformatics, it is possible to identify and validate spectral biomarker candidates for distinguishing between urinary bladder cancer (UBC) and inflammation in suspected bladder cancer patients. The current dataset contains spectra of blood serum and plasma samples of 135 patients. All patients underwent cytology and pathological biopsy characterization to distinguish between patients without UBC (46) and confirmed UBC cases (89). A minimally invasive blood test could spare control patients a repeated cystoscopy including a transurethral biopsy, and three-day stationary hospitalisation. Blood serum, EDTA and citrate plasma were collected from each patient and processed following predefined strict standard operating procedures. Highly reproducible dry films were obtained by spotting sub-nanoliter biofluid droplets in defined patterns, which were compared and optimized. Particular attention was paid to the automatisation of sample preparation and spectral preprocessing to exclude errors by manual handling. Spectral biomarker candidates were identified from absorbance spectra and their 1(st) and 2(nd) derivative spectra using an advanced Random Forest (RF) approach. It turned out that the 2(nd) derivative spectra were most useful for classification. Repeat validation on 21% of the dataset not included in predictor training with Linear Discriminant Analysis (LDA) classifiers and Random Forests (RFs) yielded a sensitivity of 93 ± 10% and a specificity of 46 ± 18% for bladder cancer. The low specificity can be most likely attributed to the unbalanced and small number of control samples. Using this approach, spectral biomarker candidates in blood-derived biofluids were identified, which allow us to distinguish between cancer and inflammation, but the observed differences were tiny. Obviously, a much larger sample number has to be investigated to reliably validate such candidates.
AbstractList The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human body fluids demands the highest standards of accuracy and reproducibility of measurements because the expected spectral differences between healthy and diseased subjects are very small in relation to a large background absorbance of the whole sample. Here, we demonstrate that with the increased sensitivity of modern FTIR spectrometers, automatisation of sample preparation and modern bioinformatics, it is possible to identify and validate spectral biomarker candidates for distinguishing between urinary bladder cancer (UBC) and inflammation in suspected bladder cancer patients. The current dataset contains spectra of blood serum and plasma samples of 135 patients. All patients underwent cytology and pathological biopsy characterization to distinguish between patients without UBC (46) and confirmed UBC cases (89). A minimally invasive blood test could spare control patients a repeated cystoscopy including a transurethral biopsy, and three-day stationary hospitalisation. Blood serum, EDTA and citrate plasma were collected from each patient and processed following predefined strict standard operating procedures. Highly reproducible dry films were obtained by spotting sub-nanoliter biofluid droplets in defined patterns, which were compared and optimized. Particular attention was paid to the automatisation of sample preparation and spectral preprocessing to exclude errors by manual handling. Spectral biomarker candidates were identified from absorbance spectra and their 1(st) and 2(nd) derivative spectra using an advanced Random Forest (RF) approach. It turned out that the 2(nd) derivative spectra were most useful for classification. Repeat validation on 21% of the dataset not included in predictor training with Linear Discriminant Analysis (LDA) classifiers and Random Forests (RFs) yielded a sensitivity of 93 ± 10% and a specificity of 46 ± 18% for bladder cancer. The low specificity can be most likely attributed to the unbalanced and small number of control samples. Using this approach, spectral biomarker candidates in blood-derived biofluids were identified, which allow us to distinguish between cancer and inflammation, but the observed differences were tiny. Obviously, a much larger sample number has to be investigated to reliably validate such candidates.The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human body fluids demands the highest standards of accuracy and reproducibility of measurements because the expected spectral differences between healthy and diseased subjects are very small in relation to a large background absorbance of the whole sample. Here, we demonstrate that with the increased sensitivity of modern FTIR spectrometers, automatisation of sample preparation and modern bioinformatics, it is possible to identify and validate spectral biomarker candidates for distinguishing between urinary bladder cancer (UBC) and inflammation in suspected bladder cancer patients. The current dataset contains spectra of blood serum and plasma samples of 135 patients. All patients underwent cytology and pathological biopsy characterization to distinguish between patients without UBC (46) and confirmed UBC cases (89). A minimally invasive blood test could spare control patients a repeated cystoscopy including a transurethral biopsy, and three-day stationary hospitalisation. Blood serum, EDTA and citrate plasma were collected from each patient and processed following predefined strict standard operating procedures. Highly reproducible dry films were obtained by spotting sub-nanoliter biofluid droplets in defined patterns, which were compared and optimized. Particular attention was paid to the automatisation of sample preparation and spectral preprocessing to exclude errors by manual handling. Spectral biomarker candidates were identified from absorbance spectra and their 1(st) and 2(nd) derivative spectra using an advanced Random Forest (RF) approach. It turned out that the 2(nd) derivative spectra were most useful for classification. Repeat validation on 21% of the dataset not included in predictor training with Linear Discriminant Analysis (LDA) classifiers and Random Forests (RFs) yielded a sensitivity of 93 ± 10% and a specificity of 46 ± 18% for bladder cancer. The low specificity can be most likely attributed to the unbalanced and small number of control samples. Using this approach, spectral biomarker candidates in blood-derived biofluids were identified, which allow us to distinguish between cancer and inflammation, but the observed differences were tiny. Obviously, a much larger sample number has to be investigated to reliably validate such candidates.
The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human body fluids demands the highest standards of accuracy and reproducibility of measurements because the expected spectral differences between healthy and diseased subjects are very small in relation to a large background absorbance of the whole sample. Here, we demonstrate that with the increased sensitivity of modern FTIR spectrometers, automatisation of sample preparation and modern bioinformatics, it is possible to identify and validate spectral biomarker candidates for distinguishing between urinary bladder cancer (UBC) and inflammation in suspected bladder cancer patients. The current dataset contains spectra of blood serum and plasma samples of 135 patients. All patients underwent cytology and pathological biopsy characterization to distinguish between patients without UBC (46) and confirmed UBC cases (89). A minimally invasive blood test could spare control patients a repeated cystoscopy including a transurethral biopsy, and three-day stationary hospitalisation. Blood serum, EDTA and citrate plasma were collected from each patient and processed following predefined strict standard operating procedures. Highly reproducible dry films were obtained by spotting sub-nanoliter biofluid droplets in defined patterns, which were compared and optimized. Particular attention was paid to the automatisation of sample preparation and spectral preprocessing to exclude errors by manual handling. Spectral biomarker candidates were identified from absorbance spectra and their 1(st) and 2(nd) derivative spectra using an advanced Random Forest (RF) approach. It turned out that the 2(nd) derivative spectra were most useful for classification. Repeat validation on 21% of the dataset not included in predictor training with Linear Discriminant Analysis (LDA) classifiers and Random Forests (RFs) yielded a sensitivity of 93 ± 10% and a specificity of 46 ± 18% for bladder cancer. The low specificity can be most likely attributed to the unbalanced and small number of control samples. Using this approach, spectral biomarker candidates in blood-derived biofluids were identified, which allow us to distinguish between cancer and inflammation, but the observed differences were tiny. Obviously, a much larger sample number has to be investigated to reliably validate such candidates.
The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human body fluids demands the highest standards of accuracy and reproducibility of measurements because the expected spectral differences between healthy and diseased subjects are very small in relation to a large background absorbance of the whole sample. Here, we demonstrate that with the increased sensitivity of modern FTIR spectrometers, automatisation of sample preparation and modern bioinformatics, it is possible to identify and validate spectral biomarker candidates for distinguishing between urinary bladder cancer (UBC) and inflammation in suspected bladder cancer patients. The current dataset contains spectra of blood serum and plasma samples of 135 patients. All patients underwent cytology and pathological biopsy characterization to distinguish between patients without UBC (46) and confirmed UBC cases (89). A minimally invasive blood test could spare control patients a repeated cystoscopy including a transurethral biopsy, and three-day stationary hospitalisation. Blood serum, EDTA and citrate plasma were collected from each patient and processed following predefined strict standard operating procedures. Highly reproducible dry films were obtained by spotting sub-nanoliter biofluid droplets in defined patterns, which were compared and optimized. Particular attention was paid to the automatisation of sample preparation and spectral preprocessing to exclude errors by manual handling. Spectral biomarker candidates were identified from absorbance spectra and their 1 super(st) and 2 super(nd) derivative spectra using an advanced Random Forest (RF) approach. It turned out that the 2 super(nd) derivative spectra were most useful for classification. Repeat validation on 21% of the dataset not included in predictor training with Linear Discriminant Analysis (LDA) classifiers and Random Forests (RFs) yielded a sensitivity of 93 plus or minus 10% and a specificity of 46 plus or minus 18% for bladder cancer. The low specificity can be most likely attributed to the unbalanced and small number of control samples. Using this approach, spectral biomarker candidates in blood-derived biofluids were identified, which allow us to distinguish between cancer and inflammation, but the observed differences were tiny. Obviously, a much larger sample number has to be investigated to reliably validate such candidates.
Author Brüning, Thomas
Ollesch, Julian
Heise, H. Michael
Drees, Steffen L.
Behrens, Thomas
Gerwert, Klaus
Author_xml – sequence: 1
  givenname: Julian
  surname: Ollesch
  fullname: Ollesch, Julian
– sequence: 2
  givenname: Steffen L.
  surname: Drees
  fullname: Drees, Steffen L.
– sequence: 3
  givenname: H. Michael
  surname: Heise
  fullname: Heise, H. Michael
– sequence: 4
  givenname: Thomas
  surname: Behrens
  fullname: Behrens, Thomas
– sequence: 5
  givenname: Thomas
  surname: Brüning
  fullname: Brüning, Thomas
– sequence: 6
  givenname: Klaus
  surname: Gerwert
  fullname: Gerwert, Klaus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23712384$$D View this record in MEDLINE/PubMed
BookMark eNqFkVtLxDAQhYMo7np58QdIHkWoJp022fomizdYEESfS5pMMNptapMK---NuiqI4NMww3eGOWd2yGbnOyTkgLMTzqA61aA6xgDk0waZchBFVpb5bJNMWZpmuSiLCdkJ4Sm1nJVsm0xykDyHWTEl5vL-5o6GHnUcfNC-X1FvaeO8bUdnAh3w1QUX0ZxR1VE1Rr9UqaOq7wev9CONfq1W7btsqYZnHKgz2EVnnVbR-W6PbFnVBtxf113ycHlxP7_OFrdXN_PzRaYhZzFrQIoyR6M4AgqwEiBvhLGmrBQ3UqESBqWRBTRKArMcikqY5MhqsFXFYJccfe5Nt72MGGK9dEFj26oO_RhqLiQvJXBR_I-CqCSXlZwl9HCNjs0STd0PLrlc1V8hJuD4E9ApwjCg_UY4q98_VP98KMHsF6xd_EgpRejavyRv7QOURg
CitedBy_id crossref_primary_10_1016_j_vibspec_2016_07_003
crossref_primary_10_1177_00037028211021846
crossref_primary_10_1016_j_canlet_2020_02_020
crossref_primary_10_1051_jeos_2023030
crossref_primary_10_1366_12_06869
crossref_primary_10_1007_s11060_016_2060_x
crossref_primary_10_1016_j_talanta_2016_10_061
crossref_primary_10_1002_jbio_201700299
crossref_primary_10_1016_j_vibspec_2020_103068
crossref_primary_10_1039_D4NR01413H
crossref_primary_10_1177_00037028211041172
crossref_primary_10_1016_j_saa_2017_04_080
crossref_primary_10_1186_s12967_023_03960_8
crossref_primary_10_1080_10408363_2017_1414142
crossref_primary_10_1039_D1AN00833A
crossref_primary_10_1016_j_chemolab_2017_03_013
crossref_primary_10_1177_20417314211008626
crossref_primary_10_1002_jbio_201500322
crossref_primary_10_1016_j_saa_2024_125236
crossref_primary_10_1016_j_talanta_2014_04_009
crossref_primary_10_1016_j_saa_2024_123897
crossref_primary_10_1038_nprot_2014_110
crossref_primary_10_1080_05704928_2019_1692307
crossref_primary_10_1016_j_vibspec_2020_103074
crossref_primary_10_3390_cancers12071708
crossref_primary_10_1039_C3AN02175K
crossref_primary_10_1016_j_trac_2016_05_028
crossref_primary_10_1039_D4AY00238E
crossref_primary_10_1016_j_molliq_2020_112961
crossref_primary_10_1080_05704928_2021_1958337
crossref_primary_10_1016_j_rechem_2024_101725
crossref_primary_10_1177_0003702820985856
crossref_primary_10_1039_C4AN01783H
crossref_primary_10_1111_1556_4029_14257
crossref_primary_10_1002_jbio_202000118
crossref_primary_10_1039_C4AN01864H
crossref_primary_10_1039_C5AY00502G
crossref_primary_10_1016_j_trac_2014_06_012
crossref_primary_10_1002_jbio_201900177
crossref_primary_10_1039_C6AN01888B
crossref_primary_10_3390_cancers13153851
crossref_primary_10_1089_neu_2021_0410
crossref_primary_10_1038_srep20173
crossref_primary_10_1039_C5AN01858G
crossref_primary_10_1039_C5CS00585J
crossref_primary_10_3390_diagnostics15030368
crossref_primary_10_1016_j_jpba_2017_11_074
crossref_primary_10_1021_acs_chemrestox_6b00076
crossref_primary_10_1039_C6AN01247G
crossref_primary_10_1002_jbio_202200200
crossref_primary_10_1039_C5AN00706B
crossref_primary_10_1039_C8AN01384E
crossref_primary_10_1016_j_saa_2024_125283
crossref_primary_10_3233_BSI_160144
crossref_primary_10_1039_C5FD00184F
crossref_primary_10_1002_tbio_202000025
crossref_primary_10_1016_j_pdpdt_2023_103606
crossref_primary_10_1515_revac_2022_0030
crossref_primary_10_3390_cancers12010115
crossref_primary_10_1002_jbio_201300167
crossref_primary_10_1039_C5AN01512J
crossref_primary_10_1002_jbio_201300163
crossref_primary_10_1007_s00432_014_1818_9
crossref_primary_10_1021_ac504068a
crossref_primary_10_1002_jbio_201300166
crossref_primary_10_1080_19396368_2024_2384386
crossref_primary_10_1002_jbio_201400018
crossref_primary_10_1080_05704928_2021_1946822
crossref_primary_10_1080_10408347_2022_2036941
crossref_primary_10_1007_s13770_021_00352_1
crossref_primary_10_1038_s41467_021_21668_5
crossref_primary_10_1155_2023_5557441
crossref_primary_10_1093_gerona_glad081
crossref_primary_10_3390_biology11060890
crossref_primary_10_1016_j_chemolab_2021_104401
crossref_primary_10_1021_acs_analchem_3c02590
crossref_primary_10_1039_C8AN02092B
crossref_primary_10_1111_srt_13733
crossref_primary_10_1002_jbio_202100307
crossref_primary_10_1177_00037028211012722
crossref_primary_10_1016_j_vibspec_2020_103092
crossref_primary_10_1016_j_euromechflu_2021_10_003
crossref_primary_10_1103_PhysRevE_89_042402
crossref_primary_10_1080_20013078_2020_1741174
crossref_primary_10_1111_2041_210X_12697
crossref_primary_10_1002_jbio_201800064
crossref_primary_10_1016_j_pdpdt_2022_103177
crossref_primary_10_3390_molecules27020549
crossref_primary_10_1039_C4AN01874E
crossref_primary_10_1039_C4AN01842G
crossref_primary_10_1039_C7AN01909B
Cites_doi 10.1039/c2an16300d
10.1366/000370204773580293
10.1039/c3an36654e
10.1158/0008-5472.CAN-11-1154
10.1177/106689690501300203
10.1039/b922045c
10.1039/c0an00778a
10.1007/s00216-006-0841-3
10.1172/JCI26022
10.1007/s00216-010-3590-2
10.1016/0022-2860(73)85254-8
10.1016/j.chemolab.2011.07.005
10.1200/JCO.2010.31.3577
10.1039/b602376m
10.1007/s00345-009-0383-3
10.1366/0003702053641360
10.1186/1471-2105-7-3
10.1023/A:1010933404324
10.1366/000370202760171581
10.1016/j.vetmic.2007.04.010
10.1007/s00439-011-1090-x
10.1080/03008880802285032
10.1073/pnas.0804721105
10.1016/j.patrec.2010.03.014
10.3233/JAD-122041
10.1186/gb-2000-1-2-research0003
10.1117/1.1917844
10.1002/jbio.201200132
10.1366/000370207782217680
10.1366/00037020360695937
10.1366/0003702854248494
10.1080/00365590050509869
10.1371/journal.pone.0047199
10.1002/jbio.201000021
10.1016/S0090-4295(02)02136-2
10.1111/j.1464-410X.2010.09515.x
10.1371/journal.pone.0043345
10.1039/B408950M
10.1039/b820923e
10.1366/0003702944027598
10.1109/TPAMI.2005.159
10.1038/39827
10.1038/nprot.2010.133
10.1016/j.urolonc.2009.06.007
10.1158/1078-0432.CCR-05-2081
10.1093/bioinformatics/btm344
10.1016/j.chroma.2005.04.082
10.1016/S0022-5347(01)61899-8
10.1111/j.1442-2042.2012.03110.x
10.1016/0584-8539(94)00167-7
10.1007/s00216-006-1070-5
10.1186/1471-2105-10-213
10.1039/c2an35582e
10.1021/ac030259a
10.1080/03008880802283664
10.1093/bib/bbp016
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/c3an00337j
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic
MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-5528
EndPage 4102
ExternalDocumentID 23712384
10_1039_c3an00337j
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
-~X
.GJ
.HR
0-7
0R~
0UZ
186
1TJ
23M
2WC
3EH
3O-
4.4
53G
5RE
705
70~
71~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABOCM
ABPDG
ABRYZ
ABXOH
ACGFS
ACHDF
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
ADXHL
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AIDUJ
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
APEMP
AQHUZ
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C1A
C6K
CAG
CITATION
COF
CS3
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
LPU
M4U
MVM
N9A
NDZJH
O9-
P2P
R56
R7B
R7E
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RRXOS
RSCEA
SC5
SKM
SKR
SKZ
SLC
SLF
SLH
TN5
UPT
VH6
WH7
XOL
XXG
ZCG
ZKB
ZXP
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c320t-b37652eda1e3e63f7332b6dfd59a1d7aea6de7d743ba730f13496d050fc3f9903
ISSN 0003-2654
1364-5528
IngestDate Thu Jul 10 18:08:49 EDT 2025
Fri Jul 11 06:10:44 EDT 2025
Mon Jul 21 05:56:00 EDT 2025
Tue Jul 01 02:26:26 EDT 2025
Thu Apr 24 23:08:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-b37652eda1e3e63f7332b6dfd59a1d7aea6de7d743ba730f13496d050fc3f9903
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 23712384
PQID 1369717978
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1671573164
proquest_miscellaneous_1369717978
pubmed_primary_23712384
crossref_primary_10_1039_c3an00337j
crossref_citationtrail_10_1039_c3an00337j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-21
PublicationDateYYYYMMDD 2013-07-21
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Analyst (London)
PublicationTitleAlternate Analyst
PublicationYear 2013
References Chen (c3an00337j-(cit37)/*[position()=1]) 2012; 7
Kallenbach-Thieltges (c3an00337j-(cit65)/*[position()=1]) 2013; 6
Summers (c3an00337j-(cit20)/*[position()=1]) 1983; 43
Fabian (c3an00337j-(cit49)/*[position()=1]) 2005; 10
Díaz-Uriarte (c3an00337j-(cit64)/*[position()=1]) 2006; 7
Hoşafçı (c3an00337j-(cit4)/*[position()=1]) 2007; 387
Otto (c3an00337j-(cit36)/*[position()=1]) 2011; 107
Karagas (c3an00337j-(cit28)/*[position()=1]) 2011; 131
Ellis (c3an00337j-(cit8)/*[position()=1]) 2006; 131
Menze (c3an00337j-(cit31)/*[position()=1]) 2007; 387
Vahlsing (c3an00337j-(cit48)/*[position()=1]) 2010; 3
Peng (c3an00337j-(cit62)/*[position()=1]) 2005; 27
Parkin (c3an00337j-(cit15)/*[position()=1]) 2008; 42
Armenta (c3an00337j-(cit60)/*[position()=1]) 2010; 397
Jarman (c3an00337j-(cit57)/*[position()=1]) 2003; 57
Heise (c3an00337j-(cit52)/*[position()=1]) 2009; 13
Trevisan (c3an00337j-(cit11)/*[position()=1]) 2012; 137
Jones (c3an00337j-(cit51)/*[position()=1]) 1973; 19
Villanueva (c3an00337j-(cit23)/*[position()=1]) 2005; 116
Ploeg (c3an00337j-(cit16)/*[position()=1]) 2009; 27
Ramakumar (c3an00337j-(cit21)/*[position()=1]) 1999; 161
Beekes (c3an00337j-(cit9)/*[position()=1]) 2007; 123
Haberkorn (c3an00337j-(cit58)/*[position()=1]) 2002; 56
Baek (c3an00337j-(cit66)/*[position()=1]) 2009; 10
Miljkovic (c3an00337j-(cit53)/*[position()=1]) 2012; 137
Diessel (c3an00337j-(cit45)/*[position()=1]) 2004; 58
Deegan (c3an00337j-(cit54)/*[position()=1]) 1997; 389
Genuer (c3an00337j-(cit33)/*[position()=1]) 2010; 31
Breiman (c3an00337j-(cit63)/*[position()=1]) 2001; 45
Surowiec (c3an00337j-(cit59)/*[position()=1]) 2005; 1080
Zhang (c3an00337j-(cit41)/*[position()=1]) 2010; 135
Saeys (c3an00337j-(cit34)/*[position()=1]) 2007; 23
Carmona (c3an00337j-(cit12)/*[position()=1]) 2013; 34
Goormaghtigh (c3an00337j-(cit38)/*[position()=1]) 1994; 50
Liaw (c3an00337j-(cit44)/*[position()=1]) 2002; 2
Gajjar (c3an00337j-(cit13)/*[position()=1]) 2013
Adibi (c3an00337j-(cit19)/*[position()=1]) 2012; 19
Kompier (c3an00337j-(cit24)/*[position()=1]) 2010; 28
Martin (c3an00337j-(cit7)/*[position()=1]) 2004; 129
Montironi (c3an00337j-(cit35)/*[position()=1]) 2005; 13
Heise (c3an00337j-(cit50)/*[position()=1]) 1994; 48
van Tilborg (c3an00337j-(cit27)/*[position()=1]) 2012; 7
Petrich (c3an00337j-(cit6)/*[position()=1]) 2009; 134
Putluri (c3an00337j-(cit26)/*[position()=1]) 2011; 71
Menze (c3an00337j-(cit32)/*[position()=1]) 2009; 10
Elfrink (c3an00337j-(cit40)/*[position()=1]) 2008; 105
Diessel (c3an00337j-(cit46)/*[position()=1]) 2005; 59
Martin (c3an00337j-(cit47)/*[position()=1]) 2010; 5
Cohen (c3an00337j-(cit18)/*[position()=1]) 2000
Boffetta (c3an00337j-(cit17)/*[position()=1]) 2008; 42
Hirschfeld (c3an00337j-(cit55)/*[position()=1]) 1985; 39
Osman (c3an00337j-(cit22)/*[position()=1]) 2006; 12
Lotan (c3an00337j-(cit29)/*[position()=1]) 2003; 61
Lasch (c3an00337j-(cit5)/*[position()=1]) 2003; 75
Marsit (c3an00337j-(cit25)/*[position()=1]) 2011; 29
Hastie (c3an00337j-(cit30)/*[position()=1]) 2000; 1
Ollesch (c3an00337j-(cit39)/*[position()=1]) 2007; 61
Liland (c3an00337j-(cit43)/*[position()=1]) 2011; 109
Bellisola (c3an00337j-(cit10)/*[position()=1]) 2012; 2
Prakash (c3an00337j-(cit42)/*[position()=1]) 2011; 136
References_xml – volume: 137
  start-page: 3202
  year: 2012
  ident: c3an00337j-(cit11)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/c2an16300d
– volume: 58
  start-page: 442
  year: 2004
  ident: c3an00337j-(cit45)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370204773580293
– year: 2013
  ident: c3an00337j-(cit13)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/c3an36654e
– volume: 71
  start-page: 7376
  year: 2011
  ident: c3an00337j-(cit26)/*[position()=1]
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-1154
– volume: 13
  start-page: 143
  year: 2005
  ident: c3an00337j-(cit35)/*[position()=1]
  publication-title: Int. J. Surg. Pathol.
  doi: 10.1177/106689690501300203
– volume: 135
  start-page: 1138
  year: 2010
  ident: c3an00337j-(cit41)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/b922045c
– volume: 136
  start-page: 3130
  year: 2011
  ident: c3an00337j-(cit42)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/c0an00778a
– volume: 387
  start-page: 1815
  year: 2007
  ident: c3an00337j-(cit4)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-006-0841-3
– volume: 43
  start-page: 934
  year: 1983
  ident: c3an00337j-(cit20)/*[position()=1]
  publication-title: Cancer Res.
– volume: 116
  start-page: 271
  year: 2005
  ident: c3an00337j-(cit23)/*[position()=1]
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI26022
– volume: 397
  start-page: 297
  year: 2010
  ident: c3an00337j-(cit60)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-010-3590-2
– volume: 19
  start-page: 21
  year: 1973
  ident: c3an00337j-(cit51)/*[position()=1]
  publication-title: J. Mol. Struct.
  doi: 10.1016/0022-2860(73)85254-8
– volume: 109
  start-page: 51
  year: 2011
  ident: c3an00337j-(cit43)/*[position()=1]
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2011.07.005
– volume: 29
  start-page: 1133
  year: 2011
  ident: c3an00337j-(cit25)/*[position()=1]
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2010.31.3577
– volume: 131
  start-page: 875
  year: 2006
  ident: c3an00337j-(cit8)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/b602376m
– volume: 27
  start-page: 289
  year: 2009
  ident: c3an00337j-(cit16)/*[position()=1]
  publication-title: World J. Urol.
  doi: 10.1007/s00345-009-0383-3
– volume: 59
  start-page: 442
  year: 2005
  ident: c3an00337j-(cit46)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702053641360
– volume: 7
  start-page: 3
  year: 2006
  ident: c3an00337j-(cit64)/*[position()=1]
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-7-3
– volume: 45
  start-page: 5
  year: 2001
  ident: c3an00337j-(cit63)/*[position()=1]
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 56
  start-page: 902
  year: 2002
  ident: c3an00337j-(cit58)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370202760171581
– volume: 123
  start-page: 305
  year: 2007
  ident: c3an00337j-(cit9)/*[position()=1]
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2007.04.010
– volume: 131
  start-page: 453
  year: 2011
  ident: c3an00337j-(cit28)/*[position()=1]
  publication-title: Hum. Genet.
  doi: 10.1007/s00439-011-1090-x
– volume: 42
  start-page: 12
  issue: s218
  year: 2008
  ident: c3an00337j-(cit15)/*[position()=1]
  publication-title: Scand. J. Urol. Nephrol., Suppl.
  doi: 10.1080/03008880802285032
– volume: 105
  start-page: 10815
  year: 2008
  ident: c3an00337j-(cit40)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0804721105
– volume: 2
  start-page: 18
  year: 2002
  ident: c3an00337j-(cit44)/*[position()=1]
  publication-title: R News
– volume: 31
  start-page: 2225
  year: 2010
  ident: c3an00337j-(cit33)/*[position()=1]
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2010.03.014
– volume: 34
  start-page: 911
  year: 2013
  ident: c3an00337j-(cit12)/*[position()=1]
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-122041
– volume: 1
  year: 2000
  ident: c3an00337j-(cit30)/*[position()=1]
  publication-title: Genome Biol.
  doi: 10.1186/gb-2000-1-2-research0003
– volume: 10
  start-page: 031103
  year: 2005
  ident: c3an00337j-(cit49)/*[position()=1]
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.1917844
– volume: 6
  start-page: 88
  year: 2013
  ident: c3an00337j-(cit65)/*[position()=1]
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201200132
– volume: 61
  start-page: 1025
  year: 2007
  ident: c3an00337j-(cit39)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370207782217680
– volume: 57
  start-page: 1078
  year: 2003
  ident: c3an00337j-(cit57)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/00037020360695937
– volume: 39
  start-page: 426
  year: 1985
  ident: c3an00337j-(cit55)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702854248494
– start-page: 105
  year: 2000
  ident: c3an00337j-(cit18)/*[position()=1]
  publication-title: Scand. J. Urol. Nephrol., Suppl.
  doi: 10.1080/00365590050509869
– volume: 7
  start-page: e47199
  year: 2012
  ident: c3an00337j-(cit37)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0047199
– volume: 3
  start-page: 567
  year: 2010
  ident: c3an00337j-(cit48)/*[position()=1]
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201000021
– volume: 61
  start-page: 109
  year: 2003
  ident: c3an00337j-(cit29)/*[position()=1]
  publication-title: Urology
  doi: 10.1016/S0090-4295(02)02136-2
– volume: 107
  start-page: 404
  year: 2011
  ident: c3an00337j-(cit36)/*[position()=1]
  publication-title: BJU Int.
  doi: 10.1111/j.1464-410X.2010.09515.x
– volume: 7
  start-page: e43345
  year: 2012
  ident: c3an00337j-(cit27)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0043345
– volume: 129
  start-page: 897
  year: 2004
  ident: c3an00337j-(cit7)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/B408950M
– volume: 134
  start-page: 1092
  year: 2009
  ident: c3an00337j-(cit6)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/b820923e
– volume: 48
  start-page: 85
  year: 1994
  ident: c3an00337j-(cit50)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702944027598
– volume: 27
  start-page: 1226
  year: 2005
  ident: c3an00337j-(cit62)/*[position()=1]
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2005.159
– volume: 389
  start-page: 827
  year: 1997
  ident: c3an00337j-(cit54)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/39827
– volume: 5
  start-page: 1748
  year: 2010
  ident: c3an00337j-(cit47)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2010.133
– volume: 28
  start-page: 91
  year: 2010
  ident: c3an00337j-(cit24)/*[position()=1]
  publication-title: Urol. Oncol.
  doi: 10.1016/j.urolonc.2009.06.007
– volume: 12
  start-page: 3374
  year: 2006
  ident: c3an00337j-(cit22)/*[position()=1]
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-05-2081
– volume: 23
  start-page: 2507
  year: 2007
  ident: c3an00337j-(cit34)/*[position()=1]
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 1080
  start-page: 132
  year: 2005
  ident: c3an00337j-(cit59)/*[position()=1]
  publication-title: J. Chromatogr., A
  doi: 10.1016/j.chroma.2005.04.082
– volume: 13
  start-page: 163
  year: 2009
  ident: c3an00337j-(cit52)/*[position()=1]
  publication-title: Asian Chem. Lett.
– volume: 161
  start-page: 388
  year: 1999
  ident: c3an00337j-(cit21)/*[position()=1]
  publication-title: J. Urol.
  doi: 10.1016/S0022-5347(01)61899-8
– volume: 19
  start-page: 1060
  year: 2012
  ident: c3an00337j-(cit19)/*[position()=1]
  publication-title: Int. J. Urol.
  doi: 10.1111/j.1442-2042.2012.03110.x
– volume: 50
  start-page: 2137
  year: 1994
  ident: c3an00337j-(cit38)/*[position()=1]
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/0584-8539(94)00167-7
– volume: 2
  start-page: 1
  year: 2012
  ident: c3an00337j-(cit10)/*[position()=1]
  publication-title: Am. J. Cancer Res.
– volume: 387
  start-page: 1801
  year: 2007
  ident: c3an00337j-(cit31)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-006-1070-5
– volume: 10
  start-page: 213
  year: 2009
  ident: c3an00337j-(cit32)/*[position()=1]
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-10-213
– volume: 137
  start-page: 3954
  year: 2012
  ident: c3an00337j-(cit53)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/c2an35582e
– volume: 75
  start-page: 6673
  year: 2003
  ident: c3an00337j-(cit5)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac030259a
– volume: 42
  start-page: 45
  issue: s218
  year: 2008
  ident: c3an00337j-(cit17)/*[position()=1]
  publication-title: Scand. J. Urol. Nephrol., Suppl.
  doi: 10.1080/03008880802283664
– volume: 10
  start-page: 537
  year: 2009
  ident: c3an00337j-(cit66)/*[position()=1]
  publication-title: Briefings Bioinf.
  doi: 10.1093/bib/bbp016
SSID ssj0001050
Score 2.4095538
Snippet The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human body fluids demands the highest standards of accuracy...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 4092
SubjectTerms Aged
Biomarkers
Biomarkers, Tumor - blood
Bladder
Blood
Cancer
Carcinoma, Papillary - blood
Carcinoma, Papillary - diagnosis
Case-Control Studies
Discriminant Analysis
Droplets
Female
Humans
Male
Microscopy, Atomic Force
Middle Aged
Neoplasm Grading
Neoplasm Recurrence, Local - blood
Neoplasm Recurrence, Local - diagnosis
Neoplasm Staging
Patients
Spectra
Spectroscopy, Fourier Transform Infrared - methods
Urinary Bladder - pathology
Urinary Bladder Neoplasms - blood
Urinary Bladder Neoplasms - diagnosis
Title FTIR spectroscopy of biofluids revisited: an automated approach to spectral biomarker identification
URI https://www.ncbi.nlm.nih.gov/pubmed/23712384
https://www.proquest.com/docview/1369717978
https://www.proquest.com/docview/1671573164
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4AL4pvxJSO4oMqlyUvihNs0NnVocIBO2q1yElsrmpKpSy477w_nvSR20lHQ4BJVkZ06fr-897P9Phh7j8toCUjERRobEEHmKRFDlgqtjE-h6AqaKNev36L5SfDlNDwdja4HXkt1lU6zq61xJf8jVbyHcqUo2X-QrHso3sDfKF-8ooTxeisZHy6Ovk-aWEnKSVleNKfl6ao05_Uqv2zCUuhwuCnjjN-xqqsSCSpSTJtJnJhn2x8lRZH45KyznqzyzoeoF5vLt0w5TKphIZDBPi3lhjqzUdc97D6vdauMflTkPlJMjqf9Fuyqrew4n2548DeRQ-QJeNOLqdugoGIRUrRRz07pgvCjNlf0VLd6FqJAhGEXF24VMcRDxAUDvYqrUH-rwp8B5UvNQBVUlU7-7M2aPcq_Ye2cD2Jz-g7Jsu97h-34uNjwx2xn72BxdOwsOnLQma28SC9i09xC8rHvvUls_rBaaVjL4gG73y03-F6LnYdspItH7O6-rfL3mOWEIT7EEC8NdxjiDkOfuCq4QxC3COJVyS2CuEMQ30TQE3ZyeLDYn4uu8obIwJ9VIkWzE_o6V54GHYGRAH4a5SYPE-XlUmkV5VrmyD5ThSbCUI7LKMdZMhkY5DfwlI2LstDPGY_xiVkCHiVVCgJfKokEViZmBlJ6Kgp22Qc7bcusS0tP1VHOl78LaJe9c20v2mQsW1u9tbO_xMmkAzBV6LK-XCLqEokWSMZ_aRNJHCt4NLJnrejcf_kgkejFwYtbjeMlu9d_Dq_YuFrX-jUy2Cp90wHsF632ncw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FTIR+spectroscopy+of+biofluids+revisited%3A+an+automated+approach+to+spectral+biomarker+identification&rft.jtitle=Analyst+%28London%29&rft.au=Ollesch%2C+Julian&rft.au=Drees%2C+Steffen+L.&rft.au=Heise%2C+H.+Michael&rft.au=Behrens%2C+Thomas&rft.date=2013-07-21&rft.issn=0003-2654&rft.eissn=1364-5528&rft.volume=138&rft.issue=14&rft.spage=4092&rft_id=info:doi/10.1039%2Fc3an00337j&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_c3an00337j
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon