FTIR spectroscopy of biofluids revisited: an automated approach to spectral biomarker identification
The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human body fluids demands the highest standards of accuracy and reproducibility of measurements because the expected spectral differences between healthy and diseased subjects are very small in relation...
Saved in:
Published in | Analyst (London) Vol. 138; no. 14; pp. 4092 - 4102 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
21.07.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human body fluids demands the highest standards of accuracy and reproducibility of measurements because the expected spectral differences between healthy and diseased subjects are very small in relation to a large background absorbance of the whole sample. Here, we demonstrate that with the increased sensitivity of modern FTIR spectrometers, automatisation of sample preparation and modern bioinformatics, it is possible to identify and validate spectral biomarker candidates for distinguishing between urinary bladder cancer (UBC) and inflammation in suspected bladder cancer patients. The current dataset contains spectra of blood serum and plasma samples of 135 patients. All patients underwent cytology and pathological biopsy characterization to distinguish between patients without UBC (46) and confirmed UBC cases (89). A minimally invasive blood test could spare control patients a repeated cystoscopy including a transurethral biopsy, and three-day stationary hospitalisation. Blood serum, EDTA and citrate plasma were collected from each patient and processed following predefined strict standard operating procedures. Highly reproducible dry films were obtained by spotting sub-nanoliter biofluid droplets in defined patterns, which were compared and optimized. Particular attention was paid to the automatisation of sample preparation and spectral preprocessing to exclude errors by manual handling. Spectral biomarker candidates were identified from absorbance spectra and their 1(st) and 2(nd) derivative spectra using an advanced Random Forest (RF) approach. It turned out that the 2(nd) derivative spectra were most useful for classification. Repeat validation on 21% of the dataset not included in predictor training with Linear Discriminant Analysis (LDA) classifiers and Random Forests (RFs) yielded a sensitivity of 93 ± 10% and a specificity of 46 ± 18% for bladder cancer. The low specificity can be most likely attributed to the unbalanced and small number of control samples. Using this approach, spectral biomarker candidates in blood-derived biofluids were identified, which allow us to distinguish between cancer and inflammation, but the observed differences were tiny. Obviously, a much larger sample number has to be investigated to reliably validate such candidates. |
---|---|
AbstractList | The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human body fluids demands the highest standards of accuracy and reproducibility of measurements because the expected spectral differences between healthy and diseased subjects are very small in relation to a large background absorbance of the whole sample. Here, we demonstrate that with the increased sensitivity of modern FTIR spectrometers, automatisation of sample preparation and modern bioinformatics, it is possible to identify and validate spectral biomarker candidates for distinguishing between urinary bladder cancer (UBC) and inflammation in suspected bladder cancer patients. The current dataset contains spectra of blood serum and plasma samples of 135 patients. All patients underwent cytology and pathological biopsy characterization to distinguish between patients without UBC (46) and confirmed UBC cases (89). A minimally invasive blood test could spare control patients a repeated cystoscopy including a transurethral biopsy, and three-day stationary hospitalisation. Blood serum, EDTA and citrate plasma were collected from each patient and processed following predefined strict standard operating procedures. Highly reproducible dry films were obtained by spotting sub-nanoliter biofluid droplets in defined patterns, which were compared and optimized. Particular attention was paid to the automatisation of sample preparation and spectral preprocessing to exclude errors by manual handling. Spectral biomarker candidates were identified from absorbance spectra and their 1(st) and 2(nd) derivative spectra using an advanced Random Forest (RF) approach. It turned out that the 2(nd) derivative spectra were most useful for classification. Repeat validation on 21% of the dataset not included in predictor training with Linear Discriminant Analysis (LDA) classifiers and Random Forests (RFs) yielded a sensitivity of 93 ± 10% and a specificity of 46 ± 18% for bladder cancer. The low specificity can be most likely attributed to the unbalanced and small number of control samples. Using this approach, spectral biomarker candidates in blood-derived biofluids were identified, which allow us to distinguish between cancer and inflammation, but the observed differences were tiny. Obviously, a much larger sample number has to be investigated to reliably validate such candidates.The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human body fluids demands the highest standards of accuracy and reproducibility of measurements because the expected spectral differences between healthy and diseased subjects are very small in relation to a large background absorbance of the whole sample. Here, we demonstrate that with the increased sensitivity of modern FTIR spectrometers, automatisation of sample preparation and modern bioinformatics, it is possible to identify and validate spectral biomarker candidates for distinguishing between urinary bladder cancer (UBC) and inflammation in suspected bladder cancer patients. The current dataset contains spectra of blood serum and plasma samples of 135 patients. All patients underwent cytology and pathological biopsy characterization to distinguish between patients without UBC (46) and confirmed UBC cases (89). A minimally invasive blood test could spare control patients a repeated cystoscopy including a transurethral biopsy, and three-day stationary hospitalisation. Blood serum, EDTA and citrate plasma were collected from each patient and processed following predefined strict standard operating procedures. Highly reproducible dry films were obtained by spotting sub-nanoliter biofluid droplets in defined patterns, which were compared and optimized. Particular attention was paid to the automatisation of sample preparation and spectral preprocessing to exclude errors by manual handling. Spectral biomarker candidates were identified from absorbance spectra and their 1(st) and 2(nd) derivative spectra using an advanced Random Forest (RF) approach. It turned out that the 2(nd) derivative spectra were most useful for classification. Repeat validation on 21% of the dataset not included in predictor training with Linear Discriminant Analysis (LDA) classifiers and Random Forests (RFs) yielded a sensitivity of 93 ± 10% and a specificity of 46 ± 18% for bladder cancer. The low specificity can be most likely attributed to the unbalanced and small number of control samples. Using this approach, spectral biomarker candidates in blood-derived biofluids were identified, which allow us to distinguish between cancer and inflammation, but the observed differences were tiny. Obviously, a much larger sample number has to be investigated to reliably validate such candidates. The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human body fluids demands the highest standards of accuracy and reproducibility of measurements because the expected spectral differences between healthy and diseased subjects are very small in relation to a large background absorbance of the whole sample. Here, we demonstrate that with the increased sensitivity of modern FTIR spectrometers, automatisation of sample preparation and modern bioinformatics, it is possible to identify and validate spectral biomarker candidates for distinguishing between urinary bladder cancer (UBC) and inflammation in suspected bladder cancer patients. The current dataset contains spectra of blood serum and plasma samples of 135 patients. All patients underwent cytology and pathological biopsy characterization to distinguish between patients without UBC (46) and confirmed UBC cases (89). A minimally invasive blood test could spare control patients a repeated cystoscopy including a transurethral biopsy, and three-day stationary hospitalisation. Blood serum, EDTA and citrate plasma were collected from each patient and processed following predefined strict standard operating procedures. Highly reproducible dry films were obtained by spotting sub-nanoliter biofluid droplets in defined patterns, which were compared and optimized. Particular attention was paid to the automatisation of sample preparation and spectral preprocessing to exclude errors by manual handling. Spectral biomarker candidates were identified from absorbance spectra and their 1(st) and 2(nd) derivative spectra using an advanced Random Forest (RF) approach. It turned out that the 2(nd) derivative spectra were most useful for classification. Repeat validation on 21% of the dataset not included in predictor training with Linear Discriminant Analysis (LDA) classifiers and Random Forests (RFs) yielded a sensitivity of 93 ± 10% and a specificity of 46 ± 18% for bladder cancer. The low specificity can be most likely attributed to the unbalanced and small number of control samples. Using this approach, spectral biomarker candidates in blood-derived biofluids were identified, which allow us to distinguish between cancer and inflammation, but the observed differences were tiny. Obviously, a much larger sample number has to be investigated to reliably validate such candidates. The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human body fluids demands the highest standards of accuracy and reproducibility of measurements because the expected spectral differences between healthy and diseased subjects are very small in relation to a large background absorbance of the whole sample. Here, we demonstrate that with the increased sensitivity of modern FTIR spectrometers, automatisation of sample preparation and modern bioinformatics, it is possible to identify and validate spectral biomarker candidates for distinguishing between urinary bladder cancer (UBC) and inflammation in suspected bladder cancer patients. The current dataset contains spectra of blood serum and plasma samples of 135 patients. All patients underwent cytology and pathological biopsy characterization to distinguish between patients without UBC (46) and confirmed UBC cases (89). A minimally invasive blood test could spare control patients a repeated cystoscopy including a transurethral biopsy, and three-day stationary hospitalisation. Blood serum, EDTA and citrate plasma were collected from each patient and processed following predefined strict standard operating procedures. Highly reproducible dry films were obtained by spotting sub-nanoliter biofluid droplets in defined patterns, which were compared and optimized. Particular attention was paid to the automatisation of sample preparation and spectral preprocessing to exclude errors by manual handling. Spectral biomarker candidates were identified from absorbance spectra and their 1 super(st) and 2 super(nd) derivative spectra using an advanced Random Forest (RF) approach. It turned out that the 2 super(nd) derivative spectra were most useful for classification. Repeat validation on 21% of the dataset not included in predictor training with Linear Discriminant Analysis (LDA) classifiers and Random Forests (RFs) yielded a sensitivity of 93 plus or minus 10% and a specificity of 46 plus or minus 18% for bladder cancer. The low specificity can be most likely attributed to the unbalanced and small number of control samples. Using this approach, spectral biomarker candidates in blood-derived biofluids were identified, which allow us to distinguish between cancer and inflammation, but the observed differences were tiny. Obviously, a much larger sample number has to be investigated to reliably validate such candidates. |
Author | Brüning, Thomas Ollesch, Julian Heise, H. Michael Drees, Steffen L. Behrens, Thomas Gerwert, Klaus |
Author_xml | – sequence: 1 givenname: Julian surname: Ollesch fullname: Ollesch, Julian – sequence: 2 givenname: Steffen L. surname: Drees fullname: Drees, Steffen L. – sequence: 3 givenname: H. Michael surname: Heise fullname: Heise, H. Michael – sequence: 4 givenname: Thomas surname: Behrens fullname: Behrens, Thomas – sequence: 5 givenname: Thomas surname: Brüning fullname: Brüning, Thomas – sequence: 6 givenname: Klaus surname: Gerwert fullname: Gerwert, Klaus |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23712384$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVtLxDAQhYMo7np58QdIHkWoJp022fomizdYEESfS5pMMNptapMK---NuiqI4NMww3eGOWd2yGbnOyTkgLMTzqA61aA6xgDk0waZchBFVpb5bJNMWZpmuSiLCdkJ4Sm1nJVsm0xykDyHWTEl5vL-5o6GHnUcfNC-X1FvaeO8bUdnAh3w1QUX0ZxR1VE1Rr9UqaOq7wev9CONfq1W7btsqYZnHKgz2EVnnVbR-W6PbFnVBtxf113ycHlxP7_OFrdXN_PzRaYhZzFrQIoyR6M4AgqwEiBvhLGmrBQ3UqESBqWRBTRKArMcikqY5MhqsFXFYJccfe5Nt72MGGK9dEFj26oO_RhqLiQvJXBR_I-CqCSXlZwl9HCNjs0STd0PLrlc1V8hJuD4E9ApwjCg_UY4q98_VP98KMHsF6xd_EgpRejavyRv7QOURg |
CitedBy_id | crossref_primary_10_1016_j_vibspec_2016_07_003 crossref_primary_10_1177_00037028211021846 crossref_primary_10_1016_j_canlet_2020_02_020 crossref_primary_10_1051_jeos_2023030 crossref_primary_10_1366_12_06869 crossref_primary_10_1007_s11060_016_2060_x crossref_primary_10_1016_j_talanta_2016_10_061 crossref_primary_10_1002_jbio_201700299 crossref_primary_10_1016_j_vibspec_2020_103068 crossref_primary_10_1039_D4NR01413H crossref_primary_10_1177_00037028211041172 crossref_primary_10_1016_j_saa_2017_04_080 crossref_primary_10_1186_s12967_023_03960_8 crossref_primary_10_1080_10408363_2017_1414142 crossref_primary_10_1039_D1AN00833A crossref_primary_10_1016_j_chemolab_2017_03_013 crossref_primary_10_1177_20417314211008626 crossref_primary_10_1002_jbio_201500322 crossref_primary_10_1016_j_saa_2024_125236 crossref_primary_10_1016_j_talanta_2014_04_009 crossref_primary_10_1016_j_saa_2024_123897 crossref_primary_10_1038_nprot_2014_110 crossref_primary_10_1080_05704928_2019_1692307 crossref_primary_10_1016_j_vibspec_2020_103074 crossref_primary_10_3390_cancers12071708 crossref_primary_10_1039_C3AN02175K crossref_primary_10_1016_j_trac_2016_05_028 crossref_primary_10_1039_D4AY00238E crossref_primary_10_1016_j_molliq_2020_112961 crossref_primary_10_1080_05704928_2021_1958337 crossref_primary_10_1016_j_rechem_2024_101725 crossref_primary_10_1177_0003702820985856 crossref_primary_10_1039_C4AN01783H crossref_primary_10_1111_1556_4029_14257 crossref_primary_10_1002_jbio_202000118 crossref_primary_10_1039_C4AN01864H crossref_primary_10_1039_C5AY00502G crossref_primary_10_1016_j_trac_2014_06_012 crossref_primary_10_1002_jbio_201900177 crossref_primary_10_1039_C6AN01888B crossref_primary_10_3390_cancers13153851 crossref_primary_10_1089_neu_2021_0410 crossref_primary_10_1038_srep20173 crossref_primary_10_1039_C5AN01858G crossref_primary_10_1039_C5CS00585J crossref_primary_10_3390_diagnostics15030368 crossref_primary_10_1016_j_jpba_2017_11_074 crossref_primary_10_1021_acs_chemrestox_6b00076 crossref_primary_10_1039_C6AN01247G crossref_primary_10_1002_jbio_202200200 crossref_primary_10_1039_C5AN00706B crossref_primary_10_1039_C8AN01384E crossref_primary_10_1016_j_saa_2024_125283 crossref_primary_10_3233_BSI_160144 crossref_primary_10_1039_C5FD00184F crossref_primary_10_1002_tbio_202000025 crossref_primary_10_1016_j_pdpdt_2023_103606 crossref_primary_10_1515_revac_2022_0030 crossref_primary_10_3390_cancers12010115 crossref_primary_10_1002_jbio_201300167 crossref_primary_10_1039_C5AN01512J crossref_primary_10_1002_jbio_201300163 crossref_primary_10_1007_s00432_014_1818_9 crossref_primary_10_1021_ac504068a crossref_primary_10_1002_jbio_201300166 crossref_primary_10_1080_19396368_2024_2384386 crossref_primary_10_1002_jbio_201400018 crossref_primary_10_1080_05704928_2021_1946822 crossref_primary_10_1080_10408347_2022_2036941 crossref_primary_10_1007_s13770_021_00352_1 crossref_primary_10_1038_s41467_021_21668_5 crossref_primary_10_1155_2023_5557441 crossref_primary_10_1093_gerona_glad081 crossref_primary_10_3390_biology11060890 crossref_primary_10_1016_j_chemolab_2021_104401 crossref_primary_10_1021_acs_analchem_3c02590 crossref_primary_10_1039_C8AN02092B crossref_primary_10_1111_srt_13733 crossref_primary_10_1002_jbio_202100307 crossref_primary_10_1177_00037028211012722 crossref_primary_10_1016_j_vibspec_2020_103092 crossref_primary_10_1016_j_euromechflu_2021_10_003 crossref_primary_10_1103_PhysRevE_89_042402 crossref_primary_10_1080_20013078_2020_1741174 crossref_primary_10_1111_2041_210X_12697 crossref_primary_10_1002_jbio_201800064 crossref_primary_10_1016_j_pdpdt_2022_103177 crossref_primary_10_3390_molecules27020549 crossref_primary_10_1039_C4AN01874E crossref_primary_10_1039_C4AN01842G crossref_primary_10_1039_C7AN01909B |
Cites_doi | 10.1039/c2an16300d 10.1366/000370204773580293 10.1039/c3an36654e 10.1158/0008-5472.CAN-11-1154 10.1177/106689690501300203 10.1039/b922045c 10.1039/c0an00778a 10.1007/s00216-006-0841-3 10.1172/JCI26022 10.1007/s00216-010-3590-2 10.1016/0022-2860(73)85254-8 10.1016/j.chemolab.2011.07.005 10.1200/JCO.2010.31.3577 10.1039/b602376m 10.1007/s00345-009-0383-3 10.1366/0003702053641360 10.1186/1471-2105-7-3 10.1023/A:1010933404324 10.1366/000370202760171581 10.1016/j.vetmic.2007.04.010 10.1007/s00439-011-1090-x 10.1080/03008880802285032 10.1073/pnas.0804721105 10.1016/j.patrec.2010.03.014 10.3233/JAD-122041 10.1186/gb-2000-1-2-research0003 10.1117/1.1917844 10.1002/jbio.201200132 10.1366/000370207782217680 10.1366/00037020360695937 10.1366/0003702854248494 10.1080/00365590050509869 10.1371/journal.pone.0047199 10.1002/jbio.201000021 10.1016/S0090-4295(02)02136-2 10.1111/j.1464-410X.2010.09515.x 10.1371/journal.pone.0043345 10.1039/B408950M 10.1039/b820923e 10.1366/0003702944027598 10.1109/TPAMI.2005.159 10.1038/39827 10.1038/nprot.2010.133 10.1016/j.urolonc.2009.06.007 10.1158/1078-0432.CCR-05-2081 10.1093/bioinformatics/btm344 10.1016/j.chroma.2005.04.082 10.1016/S0022-5347(01)61899-8 10.1111/j.1442-2042.2012.03110.x 10.1016/0584-8539(94)00167-7 10.1007/s00216-006-1070-5 10.1186/1471-2105-10-213 10.1039/c2an35582e 10.1021/ac030259a 10.1080/03008880802283664 10.1093/bib/bbp016 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/c3an00337j |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-5528 |
EndPage | 4102 |
ExternalDocumentID | 23712384 10_1039_c3an00337j |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- -~X .GJ .HR 0-7 0R~ 0UZ 186 1TJ 23M 2WC 3EH 3O- 4.4 53G 5RE 705 70~ 71~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABOCM ABPDG ABRYZ ABXOH ACGFS ACHDF ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN ADXHL AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AIDUJ AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP AQHUZ ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C1A C6K CAG CITATION COF CS3 EBS ECGLT EE0 EEHRC EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDY IDZ J3G J3H J3I L-8 LPU M4U MVM N9A NDZJH O9- P2P R56 R7B R7E RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RRXOS RSCEA SC5 SKM SKR SKZ SLC SLF SLH TN5 UPT VH6 WH7 XOL XXG ZCG ZKB ZXP ~02 CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c320t-b37652eda1e3e63f7332b6dfd59a1d7aea6de7d743ba730f13496d050fc3f9903 |
ISSN | 0003-2654 1364-5528 |
IngestDate | Thu Jul 10 18:08:49 EDT 2025 Fri Jul 11 06:10:44 EDT 2025 Mon Jul 21 05:56:00 EDT 2025 Tue Jul 01 02:26:26 EDT 2025 Thu Apr 24 23:08:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-b37652eda1e3e63f7332b6dfd59a1d7aea6de7d743ba730f13496d050fc3f9903 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 23712384 |
PQID | 1369717978 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1671573164 proquest_miscellaneous_1369717978 pubmed_primary_23712384 crossref_primary_10_1039_c3an00337j crossref_citationtrail_10_1039_c3an00337j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-21 |
PublicationDateYYYYMMDD | 2013-07-21 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Analyst (London) |
PublicationTitleAlternate | Analyst |
PublicationYear | 2013 |
References | Chen (c3an00337j-(cit37)/*[position()=1]) 2012; 7 Kallenbach-Thieltges (c3an00337j-(cit65)/*[position()=1]) 2013; 6 Summers (c3an00337j-(cit20)/*[position()=1]) 1983; 43 Fabian (c3an00337j-(cit49)/*[position()=1]) 2005; 10 Díaz-Uriarte (c3an00337j-(cit64)/*[position()=1]) 2006; 7 Hoşafçı (c3an00337j-(cit4)/*[position()=1]) 2007; 387 Otto (c3an00337j-(cit36)/*[position()=1]) 2011; 107 Karagas (c3an00337j-(cit28)/*[position()=1]) 2011; 131 Ellis (c3an00337j-(cit8)/*[position()=1]) 2006; 131 Menze (c3an00337j-(cit31)/*[position()=1]) 2007; 387 Vahlsing (c3an00337j-(cit48)/*[position()=1]) 2010; 3 Peng (c3an00337j-(cit62)/*[position()=1]) 2005; 27 Parkin (c3an00337j-(cit15)/*[position()=1]) 2008; 42 Armenta (c3an00337j-(cit60)/*[position()=1]) 2010; 397 Jarman (c3an00337j-(cit57)/*[position()=1]) 2003; 57 Heise (c3an00337j-(cit52)/*[position()=1]) 2009; 13 Trevisan (c3an00337j-(cit11)/*[position()=1]) 2012; 137 Jones (c3an00337j-(cit51)/*[position()=1]) 1973; 19 Villanueva (c3an00337j-(cit23)/*[position()=1]) 2005; 116 Ploeg (c3an00337j-(cit16)/*[position()=1]) 2009; 27 Ramakumar (c3an00337j-(cit21)/*[position()=1]) 1999; 161 Beekes (c3an00337j-(cit9)/*[position()=1]) 2007; 123 Haberkorn (c3an00337j-(cit58)/*[position()=1]) 2002; 56 Baek (c3an00337j-(cit66)/*[position()=1]) 2009; 10 Miljkovic (c3an00337j-(cit53)/*[position()=1]) 2012; 137 Diessel (c3an00337j-(cit45)/*[position()=1]) 2004; 58 Deegan (c3an00337j-(cit54)/*[position()=1]) 1997; 389 Genuer (c3an00337j-(cit33)/*[position()=1]) 2010; 31 Breiman (c3an00337j-(cit63)/*[position()=1]) 2001; 45 Surowiec (c3an00337j-(cit59)/*[position()=1]) 2005; 1080 Zhang (c3an00337j-(cit41)/*[position()=1]) 2010; 135 Saeys (c3an00337j-(cit34)/*[position()=1]) 2007; 23 Carmona (c3an00337j-(cit12)/*[position()=1]) 2013; 34 Goormaghtigh (c3an00337j-(cit38)/*[position()=1]) 1994; 50 Liaw (c3an00337j-(cit44)/*[position()=1]) 2002; 2 Gajjar (c3an00337j-(cit13)/*[position()=1]) 2013 Adibi (c3an00337j-(cit19)/*[position()=1]) 2012; 19 Kompier (c3an00337j-(cit24)/*[position()=1]) 2010; 28 Martin (c3an00337j-(cit7)/*[position()=1]) 2004; 129 Montironi (c3an00337j-(cit35)/*[position()=1]) 2005; 13 Heise (c3an00337j-(cit50)/*[position()=1]) 1994; 48 van Tilborg (c3an00337j-(cit27)/*[position()=1]) 2012; 7 Petrich (c3an00337j-(cit6)/*[position()=1]) 2009; 134 Putluri (c3an00337j-(cit26)/*[position()=1]) 2011; 71 Menze (c3an00337j-(cit32)/*[position()=1]) 2009; 10 Elfrink (c3an00337j-(cit40)/*[position()=1]) 2008; 105 Diessel (c3an00337j-(cit46)/*[position()=1]) 2005; 59 Martin (c3an00337j-(cit47)/*[position()=1]) 2010; 5 Cohen (c3an00337j-(cit18)/*[position()=1]) 2000 Boffetta (c3an00337j-(cit17)/*[position()=1]) 2008; 42 Hirschfeld (c3an00337j-(cit55)/*[position()=1]) 1985; 39 Osman (c3an00337j-(cit22)/*[position()=1]) 2006; 12 Lotan (c3an00337j-(cit29)/*[position()=1]) 2003; 61 Lasch (c3an00337j-(cit5)/*[position()=1]) 2003; 75 Marsit (c3an00337j-(cit25)/*[position()=1]) 2011; 29 Hastie (c3an00337j-(cit30)/*[position()=1]) 2000; 1 Ollesch (c3an00337j-(cit39)/*[position()=1]) 2007; 61 Liland (c3an00337j-(cit43)/*[position()=1]) 2011; 109 Bellisola (c3an00337j-(cit10)/*[position()=1]) 2012; 2 Prakash (c3an00337j-(cit42)/*[position()=1]) 2011; 136 |
References_xml | – volume: 137 start-page: 3202 year: 2012 ident: c3an00337j-(cit11)/*[position()=1] publication-title: Analyst doi: 10.1039/c2an16300d – volume: 58 start-page: 442 year: 2004 ident: c3an00337j-(cit45)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/000370204773580293 – year: 2013 ident: c3an00337j-(cit13)/*[position()=1] publication-title: Analyst doi: 10.1039/c3an36654e – volume: 71 start-page: 7376 year: 2011 ident: c3an00337j-(cit26)/*[position()=1] publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-1154 – volume: 13 start-page: 143 year: 2005 ident: c3an00337j-(cit35)/*[position()=1] publication-title: Int. J. Surg. Pathol. doi: 10.1177/106689690501300203 – volume: 135 start-page: 1138 year: 2010 ident: c3an00337j-(cit41)/*[position()=1] publication-title: Analyst doi: 10.1039/b922045c – volume: 136 start-page: 3130 year: 2011 ident: c3an00337j-(cit42)/*[position()=1] publication-title: Analyst doi: 10.1039/c0an00778a – volume: 387 start-page: 1815 year: 2007 ident: c3an00337j-(cit4)/*[position()=1] publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-006-0841-3 – volume: 43 start-page: 934 year: 1983 ident: c3an00337j-(cit20)/*[position()=1] publication-title: Cancer Res. – volume: 116 start-page: 271 year: 2005 ident: c3an00337j-(cit23)/*[position()=1] publication-title: J. Clin. Invest. doi: 10.1172/JCI26022 – volume: 397 start-page: 297 year: 2010 ident: c3an00337j-(cit60)/*[position()=1] publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-010-3590-2 – volume: 19 start-page: 21 year: 1973 ident: c3an00337j-(cit51)/*[position()=1] publication-title: J. Mol. Struct. doi: 10.1016/0022-2860(73)85254-8 – volume: 109 start-page: 51 year: 2011 ident: c3an00337j-(cit43)/*[position()=1] publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2011.07.005 – volume: 29 start-page: 1133 year: 2011 ident: c3an00337j-(cit25)/*[position()=1] publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2010.31.3577 – volume: 131 start-page: 875 year: 2006 ident: c3an00337j-(cit8)/*[position()=1] publication-title: Analyst doi: 10.1039/b602376m – volume: 27 start-page: 289 year: 2009 ident: c3an00337j-(cit16)/*[position()=1] publication-title: World J. Urol. doi: 10.1007/s00345-009-0383-3 – volume: 59 start-page: 442 year: 2005 ident: c3an00337j-(cit46)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/0003702053641360 – volume: 7 start-page: 3 year: 2006 ident: c3an00337j-(cit64)/*[position()=1] publication-title: BMC Bioinf. doi: 10.1186/1471-2105-7-3 – volume: 45 start-page: 5 year: 2001 ident: c3an00337j-(cit63)/*[position()=1] publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 56 start-page: 902 year: 2002 ident: c3an00337j-(cit58)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/000370202760171581 – volume: 123 start-page: 305 year: 2007 ident: c3an00337j-(cit9)/*[position()=1] publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2007.04.010 – volume: 131 start-page: 453 year: 2011 ident: c3an00337j-(cit28)/*[position()=1] publication-title: Hum. Genet. doi: 10.1007/s00439-011-1090-x – volume: 42 start-page: 12 issue: s218 year: 2008 ident: c3an00337j-(cit15)/*[position()=1] publication-title: Scand. J. Urol. Nephrol., Suppl. doi: 10.1080/03008880802285032 – volume: 105 start-page: 10815 year: 2008 ident: c3an00337j-(cit40)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0804721105 – volume: 2 start-page: 18 year: 2002 ident: c3an00337j-(cit44)/*[position()=1] publication-title: R News – volume: 31 start-page: 2225 year: 2010 ident: c3an00337j-(cit33)/*[position()=1] publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2010.03.014 – volume: 34 start-page: 911 year: 2013 ident: c3an00337j-(cit12)/*[position()=1] publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-122041 – volume: 1 year: 2000 ident: c3an00337j-(cit30)/*[position()=1] publication-title: Genome Biol. doi: 10.1186/gb-2000-1-2-research0003 – volume: 10 start-page: 031103 year: 2005 ident: c3an00337j-(cit49)/*[position()=1] publication-title: J. Biomed. Opt. doi: 10.1117/1.1917844 – volume: 6 start-page: 88 year: 2013 ident: c3an00337j-(cit65)/*[position()=1] publication-title: J. Biophotonics doi: 10.1002/jbio.201200132 – volume: 61 start-page: 1025 year: 2007 ident: c3an00337j-(cit39)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/000370207782217680 – volume: 57 start-page: 1078 year: 2003 ident: c3an00337j-(cit57)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/00037020360695937 – volume: 39 start-page: 426 year: 1985 ident: c3an00337j-(cit55)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/0003702854248494 – start-page: 105 year: 2000 ident: c3an00337j-(cit18)/*[position()=1] publication-title: Scand. J. Urol. Nephrol., Suppl. doi: 10.1080/00365590050509869 – volume: 7 start-page: e47199 year: 2012 ident: c3an00337j-(cit37)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0047199 – volume: 3 start-page: 567 year: 2010 ident: c3an00337j-(cit48)/*[position()=1] publication-title: J. Biophotonics doi: 10.1002/jbio.201000021 – volume: 61 start-page: 109 year: 2003 ident: c3an00337j-(cit29)/*[position()=1] publication-title: Urology doi: 10.1016/S0090-4295(02)02136-2 – volume: 107 start-page: 404 year: 2011 ident: c3an00337j-(cit36)/*[position()=1] publication-title: BJU Int. doi: 10.1111/j.1464-410X.2010.09515.x – volume: 7 start-page: e43345 year: 2012 ident: c3an00337j-(cit27)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0043345 – volume: 129 start-page: 897 year: 2004 ident: c3an00337j-(cit7)/*[position()=1] publication-title: Analyst doi: 10.1039/B408950M – volume: 134 start-page: 1092 year: 2009 ident: c3an00337j-(cit6)/*[position()=1] publication-title: Analyst doi: 10.1039/b820923e – volume: 48 start-page: 85 year: 1994 ident: c3an00337j-(cit50)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/0003702944027598 – volume: 27 start-page: 1226 year: 2005 ident: c3an00337j-(cit62)/*[position()=1] publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2005.159 – volume: 389 start-page: 827 year: 1997 ident: c3an00337j-(cit54)/*[position()=1] publication-title: Nature doi: 10.1038/39827 – volume: 5 start-page: 1748 year: 2010 ident: c3an00337j-(cit47)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.133 – volume: 28 start-page: 91 year: 2010 ident: c3an00337j-(cit24)/*[position()=1] publication-title: Urol. Oncol. doi: 10.1016/j.urolonc.2009.06.007 – volume: 12 start-page: 3374 year: 2006 ident: c3an00337j-(cit22)/*[position()=1] publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-05-2081 – volume: 23 start-page: 2507 year: 2007 ident: c3an00337j-(cit34)/*[position()=1] publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 1080 start-page: 132 year: 2005 ident: c3an00337j-(cit59)/*[position()=1] publication-title: J. Chromatogr., A doi: 10.1016/j.chroma.2005.04.082 – volume: 13 start-page: 163 year: 2009 ident: c3an00337j-(cit52)/*[position()=1] publication-title: Asian Chem. Lett. – volume: 161 start-page: 388 year: 1999 ident: c3an00337j-(cit21)/*[position()=1] publication-title: J. Urol. doi: 10.1016/S0022-5347(01)61899-8 – volume: 19 start-page: 1060 year: 2012 ident: c3an00337j-(cit19)/*[position()=1] publication-title: Int. J. Urol. doi: 10.1111/j.1442-2042.2012.03110.x – volume: 50 start-page: 2137 year: 1994 ident: c3an00337j-(cit38)/*[position()=1] publication-title: Spectrochim. Acta, Part A doi: 10.1016/0584-8539(94)00167-7 – volume: 2 start-page: 1 year: 2012 ident: c3an00337j-(cit10)/*[position()=1] publication-title: Am. J. Cancer Res. – volume: 387 start-page: 1801 year: 2007 ident: c3an00337j-(cit31)/*[position()=1] publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-006-1070-5 – volume: 10 start-page: 213 year: 2009 ident: c3an00337j-(cit32)/*[position()=1] publication-title: BMC Bioinf. doi: 10.1186/1471-2105-10-213 – volume: 137 start-page: 3954 year: 2012 ident: c3an00337j-(cit53)/*[position()=1] publication-title: Analyst doi: 10.1039/c2an35582e – volume: 75 start-page: 6673 year: 2003 ident: c3an00337j-(cit5)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac030259a – volume: 42 start-page: 45 issue: s218 year: 2008 ident: c3an00337j-(cit17)/*[position()=1] publication-title: Scand. J. Urol. Nephrol., Suppl. doi: 10.1080/03008880802283664 – volume: 10 start-page: 537 year: 2009 ident: c3an00337j-(cit66)/*[position()=1] publication-title: Briefings Bioinf. doi: 10.1093/bib/bbp016 |
SSID | ssj0001050 |
Score | 2.4095538 |
Snippet | The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human body fluids demands the highest standards of accuracy... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 4092 |
SubjectTerms | Aged Biomarkers Biomarkers, Tumor - blood Bladder Blood Cancer Carcinoma, Papillary - blood Carcinoma, Papillary - diagnosis Case-Control Studies Discriminant Analysis Droplets Female Humans Male Microscopy, Atomic Force Middle Aged Neoplasm Grading Neoplasm Recurrence, Local - blood Neoplasm Recurrence, Local - diagnosis Neoplasm Staging Patients Spectra Spectroscopy, Fourier Transform Infrared - methods Urinary Bladder - pathology Urinary Bladder Neoplasms - blood Urinary Bladder Neoplasms - diagnosis |
Title | FTIR spectroscopy of biofluids revisited: an automated approach to spectral biomarker identification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23712384 https://www.proquest.com/docview/1369717978 https://www.proquest.com/docview/1671573164 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4AL4pvxJSO4oMqlyUvihNs0NnVocIBO2q1yElsrmpKpSy477w_nvSR20lHQ4BJVkZ06fr-897P9Phh7j8toCUjERRobEEHmKRFDlgqtjE-h6AqaKNev36L5SfDlNDwdja4HXkt1lU6zq61xJf8jVbyHcqUo2X-QrHso3sDfKF-8ooTxeisZHy6Ovk-aWEnKSVleNKfl6ao05_Uqv2zCUuhwuCnjjN-xqqsSCSpSTJtJnJhn2x8lRZH45KyznqzyzoeoF5vLt0w5TKphIZDBPi3lhjqzUdc97D6vdauMflTkPlJMjqf9Fuyqrew4n2548DeRQ-QJeNOLqdugoGIRUrRRz07pgvCjNlf0VLd6FqJAhGEXF24VMcRDxAUDvYqrUH-rwp8B5UvNQBVUlU7-7M2aPcq_Ye2cD2Jz-g7Jsu97h-34uNjwx2xn72BxdOwsOnLQma28SC9i09xC8rHvvUls_rBaaVjL4gG73y03-F6LnYdspItH7O6-rfL3mOWEIT7EEC8NdxjiDkOfuCq4QxC3COJVyS2CuEMQ30TQE3ZyeLDYn4uu8obIwJ9VIkWzE_o6V54GHYGRAH4a5SYPE-XlUmkV5VrmyD5ThSbCUI7LKMdZMhkY5DfwlI2LstDPGY_xiVkCHiVVCgJfKokEViZmBlJ6Kgp22Qc7bcusS0tP1VHOl78LaJe9c20v2mQsW1u9tbO_xMmkAzBV6LK-XCLqEokWSMZ_aRNJHCt4NLJnrejcf_kgkejFwYtbjeMlu9d_Dq_YuFrX-jUy2Cp90wHsF632ncw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FTIR+spectroscopy+of+biofluids+revisited%3A+an+automated+approach+to+spectral+biomarker+identification&rft.jtitle=Analyst+%28London%29&rft.au=Ollesch%2C+Julian&rft.au=Drees%2C+Steffen+L.&rft.au=Heise%2C+H.+Michael&rft.au=Behrens%2C+Thomas&rft.date=2013-07-21&rft.issn=0003-2654&rft.eissn=1364-5528&rft.volume=138&rft.issue=14&rft.spage=4092&rft_id=info:doi/10.1039%2Fc3an00337j&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_c3an00337j |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon |