Solution of the backward problem for the space-time fractional diffusion equation related to the release history of a groundwater contaminant
Finding the history of a groundwater contaminant plume from final measurements is an ill-posed problem and, consequently, its solution is extremely sensitive to errors in the input data. In this paper, we study this problem mathematically. So, firstly, existence and uniqueness theorems of a quasi-so...
Saved in:
Published in | Journal of inverse and ill-posed problems Vol. 32; no. 1; pp. 107 - 126 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
01.02.2024
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Finding the history of a groundwater contaminant plume from final measurements is an ill-posed problem and, consequently, its solution is extremely sensitive to errors in the input data. In this paper, we study this problem mathematically. So, firstly, existence and uniqueness theorems of a quasi-solution in an appropriate class of admissible initial data are given. Secondly, in order to overcome the ill-posedness of the problem and also approximate the quasi-solution, two approaches (computational and iterative algorithms) are provided. In the computational algorithm, the finite element method and TSVD regularization are applied. This method is tested by two numerical examples. The results reveal the efficiency and applicability of the proposed method. Also, in order to construct the iterative methods, an explicit formula for the gradient of the cost functional
is given. This result helps us to construct two iterative methods, i.e., the conjugate gradient algorithm and Landweber iteration algorithm. We prove the Lipschitz continuity of the gradient of the cost functional, monotonicity and convergence of the iterative methods.
At the end of the paper, a numerical example is given to show the validation of the iterative algorithms. |
---|---|
AbstractList | Finding the history of a groundwater contaminant plume from final measurements is an ill-posed problem and, consequently, its solution is extremely sensitive to errors in the input data. In this paper, we study this problem mathematically. So, firstly, existence and uniqueness theorems of a quasi-solution in an appropriate class of admissible initial data are given. Secondly, in order to overcome the ill-posedness of the problem and also approximate the quasi-solution, two approaches (computational and iterative algorithms) are provided. In the computational algorithm, the finite element method and TSVD regularization are applied. This method is tested by two numerical examples. The results reveal the efficiency and applicability of the proposed method. Also, in order to construct the iterative methods, an explicit formula for the gradient of the cost functional
J
is given. This result helps us to construct two iterative methods, i.e., the conjugate gradient algorithm and Landweber iteration algorithm. We prove the Lipschitz continuity of the gradient of the cost functional, monotonicity and convergence of the iterative methods.
At the end of the paper, a numerical example is given to show the validation of the iterative algorithms. Finding the history of a groundwater contaminant plume from final measurements is an ill-posed problem and, consequently, its solution is extremely sensitive to errors in the input data. In this paper, we study this problem mathematically. So, firstly, existence and uniqueness theorems of a quasi-solution in an appropriate class of admissible initial data are given. Secondly, in order to overcome the ill-posedness of the problem and also approximate the quasi-solution, two approaches (computational and iterative algorithms) are provided. In the computational algorithm, the finite element method and TSVD regularization are applied. This method is tested by two numerical examples. The results reveal the efficiency and applicability of the proposed method. Also, in order to construct the iterative methods, an explicit formula for the gradient of the cost functional J is given. This result helps us to construct two iterative methods, i.e., the conjugate gradient algorithm and Landweber iteration algorithm. We prove the Lipschitz continuity of the gradient of the cost functional, monotonicity and convergence of the iterative methods. At the end of the paper, a numerical example is given to show the validation of the iterative algorithms. Finding the history of a groundwater contaminant plume from final measurements is an ill-posed problem and, consequently, its solution is extremely sensitive to errors in the input data. In this paper, we study this problem mathematically. So, firstly, existence and uniqueness theorems of a quasi-solution in an appropriate class of admissible initial data are given. Secondly, in order to overcome the ill-posedness of the problem and also approximate the quasi-solution, two approaches (computational and iterative algorithms) are provided. In the computational algorithm, the finite element method and TSVD regularization are applied. This method is tested by two numerical examples. The results reveal the efficiency and applicability of the proposed method. Also, in order to construct the iterative methods, an explicit formula for the gradient of the cost functional is given. This result helps us to construct two iterative methods, i.e., the conjugate gradient algorithm and Landweber iteration algorithm. We prove the Lipschitz continuity of the gradient of the cost functional, monotonicity and convergence of the iterative methods. At the end of the paper, a numerical example is given to show the validation of the iterative algorithms. |
Author | Salehi Shayegan, Adib Zakeri, Ali Salehi Shayegan, Amir Hossein |
Author_xml | – sequence: 1 givenname: Amir Hossein surname: Salehi Shayegan fullname: Salehi Shayegan, Amir Hossein email: ahsalehi.kau@gmail.com organization: Mathematics Department, Faculty of Basic Science, Khatam-ol-Anbia (PBU) University, Tehran, Iran – sequence: 2 givenname: Ali orcidid: 0000-0002-6273-7855 surname: Zakeri fullname: Zakeri, Ali email: azakeri@kntu.ac.ir organization: Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran – sequence: 3 givenname: Adib surname: Salehi Shayegan fullname: Salehi Shayegan, Adib email: ckntu.exe@gmail.com organization: Department of Computer, Safadasht Branch, Islamic Azad University, Tehran, Iran |
BookMark | eNp1kM1qGzEUhUVxIM7PNmtB1-NKGml-oJsS2jRg6KLNergjXSVyxyNb0mD8EHnnauxAoJCVJHS-K53viixGPyIhd5ytuOLqy8a5XSGYEAVjSn4iS66qtihbqRZkyVrRFEzw9pJcxbhhjNdKiCV5_e2HKTk_Um9pekHag_57gGDoLvh-wC21Ppwu4g40FsltkdoAemZgoMZZO8WZx_0Ep0EBB0hoaPInLh8RItIXF5MPx_kdoM_BT6M55Fyg2o8Jtm6EMd2QCwtDxNu39Zo8_fj-5_5nsf718Hj_bV3oUrBUtMCFamVjctvWSNlXFS8r1pd9qVBD3aMAND2ztW2s0sClqRsrpNbSagBdXpPP57m55H7CmLqNn0LuE7uSV62oG86rnJLnlA4-xoC20y6dOqYAbug462bx3Sy-m8V3s_iMrf7DdsFtIRw_Br6egQMMWYjB5zAd8-b9Ux-AgnNWl_8AA76f1g |
CitedBy_id | crossref_primary_10_3390_computation11100204 |
Cites_doi | 10.1016/j.camwa.2018.02.022 10.1051/m2an/2019019 10.1515/156939406778247615 10.4208/cicp.020709.221209a 10.4171/RLM/906 10.1007/s00229-012-0586-6 10.1137/1034115 10.1016/j.aml.2007.06.007 10.1029/93WR02656 10.1515/fca-2020-0084 10.1016/j.matcom.2017.12.005 10.1007/978-3-319-62797-7 10.1007/s40840-021-01113-y 10.1088/1361-6420/abbc5e 10.1029/95WR02383 10.1007/s11075-015-0065-8 10.1080/00036810903479731 10.1515/jiip-2018-0042 10.1002/mma.4151 10.1007/BF01937276 10.1137/1.9780898719697 10.21136/AM.2019.0251-18 10.1142/S0219876213410016 10.1515/fca-2021-0037 10.1016/j.mcm.2009.01.004 10.1137/080714130 10.1016/j.aml.2019.02.025 10.1016/S0168-9274(00)00025-8 10.1080/15502287.2018.1502838 10.1515/fca-2018-0045 10.1515/jiip-2017-0106 10.1080/17415977.2017.1384826 |
ContentType | Journal Article |
Copyright | 2023 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2023 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1515/jiip-2022-0054 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1569-3945 |
EndPage | 126 |
ExternalDocumentID | 10_1515_jiip_2022_0054 10_1515_jiip_2022_0054321107 |
GroupedDBID | 0R~ 0~D 4.4 5GY AAAEU AADQG AAFPC AAGVJ AAJBH AALGR AAOUV AAPJK AAQCX AARVR AASOL AASQH AAXCG ABAOT ABAQN ABFKT ABIQR ABJNI ABMBZ ABPLS ABSOE ABUVI ABWLS ABXMZ ABYKJ ACDEB ACEFL ACGFS ACIWK ACPMA ACUND ACZBO ADEQT ADGQD ADGYE ADJVZ ADOZN AECWL AEGVQ AEICA AEJTT AENEX AEQDQ AERZL AEXIE AFBAA AFBDD AFCXV AFQUK AFYRI AGBEV AHGBP AHVWV AHXUK AIERV AIWOI AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS AMVHM ASYPN BAKPI BBCWN BCIFA CFGNV CS3 DU5 EBS HZ~ IY9 KDIRW O9- P2P PQQKQ QD8 RDG SA. SLJYH UK5 WTRAM AAWFC AAYXX CITATION 7SC 7TB 8FD ADNPR FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c320t-9a125948d2029d44b661360b3b35eca7be2aedb0f7f8f5ca14d78f24cc4fcaac3 |
ISSN | 0928-0219 |
IngestDate | Wed Aug 13 11:15:03 EDT 2025 Tue Jul 01 01:23:34 EDT 2025 Thu Apr 24 23:11:44 EDT 2025 Thu Jul 10 10:30:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-9a125948d2029d44b661360b3b35eca7be2aedb0f7f8f5ca14d78f24cc4fcaac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6273-7855 |
PQID | 3169278116 |
PQPubID | 2030080 |
PageCount | 20 |
ParticipantIDs | proquest_journals_3169278116 crossref_citationtrail_10_1515_jiip_2022_0054 crossref_primary_10_1515_jiip_2022_0054 walterdegruyter_journals_10_1515_jiip_2022_0054321107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Journal of inverse and ill-posed problems |
PublicationYear | 2024 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2023022714030999041_j_jiip-2022-0054_ref_019 2023022714030999041_j_jiip-2022-0054_ref_030 2023022714030999041_j_jiip-2022-0054_ref_031 2023022714030999041_j_jiip-2022-0054_ref_010 2023022714030999041_j_jiip-2022-0054_ref_032 2023022714030999041_j_jiip-2022-0054_ref_011 2023022714030999041_j_jiip-2022-0054_ref_033 2023022714030999041_j_jiip-2022-0054_ref_012 2023022714030999041_j_jiip-2022-0054_ref_013 2023022714030999041_j_jiip-2022-0054_ref_014 2023022714030999041_j_jiip-2022-0054_ref_015 2023022714030999041_j_jiip-2022-0054_ref_016 2023022714030999041_j_jiip-2022-0054_ref_017 2023022714030999041_j_jiip-2022-0054_ref_018 2023022714030999041_j_jiip-2022-0054_ref_008 2023022714030999041_j_jiip-2022-0054_ref_009 2023022714030999041_j_jiip-2022-0054_ref_020 2023022714030999041_j_jiip-2022-0054_ref_021 2023022714030999041_j_jiip-2022-0054_ref_022 2023022714030999041_j_jiip-2022-0054_ref_001 2023022714030999041_j_jiip-2022-0054_ref_023 2023022714030999041_j_jiip-2022-0054_ref_002 2023022714030999041_j_jiip-2022-0054_ref_024 2023022714030999041_j_jiip-2022-0054_ref_003 2023022714030999041_j_jiip-2022-0054_ref_025 2023022714030999041_j_jiip-2022-0054_ref_004 2023022714030999041_j_jiip-2022-0054_ref_026 2023022714030999041_j_jiip-2022-0054_ref_005 2023022714030999041_j_jiip-2022-0054_ref_027 2023022714030999041_j_jiip-2022-0054_ref_006 2023022714030999041_j_jiip-2022-0054_ref_028 2023022714030999041_j_jiip-2022-0054_ref_007 2023022714030999041_j_jiip-2022-0054_ref_029 |
References_xml | – ident: 2023022714030999041_j_jiip-2022-0054_ref_032 doi: 10.1016/j.camwa.2018.02.022 – ident: 2023022714030999041_j_jiip-2022-0054_ref_031 doi: 10.1051/m2an/2019019 – ident: 2023022714030999041_j_jiip-2022-0054_ref_013 doi: 10.1515/156939406778247615 – ident: 2023022714030999041_j_jiip-2022-0054_ref_018 doi: 10.4208/cicp.020709.221209a – ident: 2023022714030999041_j_jiip-2022-0054_ref_006 doi: 10.4171/RLM/906 – ident: 2023022714030999041_j_jiip-2022-0054_ref_017 doi: 10.1007/s00229-012-0586-6 – ident: 2023022714030999041_j_jiip-2022-0054_ref_010 doi: 10.1137/1034115 – ident: 2023022714030999041_j_jiip-2022-0054_ref_014 doi: 10.1016/j.aml.2007.06.007 – ident: 2023022714030999041_j_jiip-2022-0054_ref_026 doi: 10.1029/93WR02656 – ident: 2023022714030999041_j_jiip-2022-0054_ref_028 doi: 10.1515/fca-2020-0084 – ident: 2023022714030999041_j_jiip-2022-0054_ref_033 doi: 10.1016/j.matcom.2017.12.005 – ident: 2023022714030999041_j_jiip-2022-0054_ref_016 doi: 10.1007/978-3-319-62797-7 – ident: 2023022714030999041_j_jiip-2022-0054_ref_004 doi: 10.1007/s40840-021-01113-y – ident: 2023022714030999041_j_jiip-2022-0054_ref_007 doi: 10.1088/1361-6420/abbc5e – ident: 2023022714030999041_j_jiip-2022-0054_ref_027 doi: 10.1029/95WR02383 – ident: 2023022714030999041_j_jiip-2022-0054_ref_005 doi: 10.1007/s11075-015-0065-8 – ident: 2023022714030999041_j_jiip-2022-0054_ref_020 doi: 10.1080/00036810903479731 – ident: 2023022714030999041_j_jiip-2022-0054_ref_024 doi: 10.1515/jiip-2018-0042 – ident: 2023022714030999041_j_jiip-2022-0054_ref_001 doi: 10.1002/mma.4151 – ident: 2023022714030999041_j_jiip-2022-0054_ref_009 doi: 10.1007/BF01937276 – ident: 2023022714030999041_j_jiip-2022-0054_ref_011 doi: 10.1137/1.9780898719697 – ident: 2023022714030999041_j_jiip-2022-0054_ref_025 doi: 10.21136/AM.2019.0251-18 – ident: 2023022714030999041_j_jiip-2022-0054_ref_030 – ident: 2023022714030999041_j_jiip-2022-0054_ref_019 doi: 10.1142/S0219876213410016 – ident: 2023022714030999041_j_jiip-2022-0054_ref_029 doi: 10.1515/fca-2021-0037 – ident: 2023022714030999041_j_jiip-2022-0054_ref_022 doi: 10.1016/j.mcm.2009.01.004 – ident: 2023022714030999041_j_jiip-2022-0054_ref_003 doi: 10.1137/080714130 – ident: 2023022714030999041_j_jiip-2022-0054_ref_008 doi: 10.1016/j.aml.2019.02.025 – ident: 2023022714030999041_j_jiip-2022-0054_ref_015 doi: 10.1016/S0168-9274(00)00025-8 – ident: 2023022714030999041_j_jiip-2022-0054_ref_021 doi: 10.1080/15502287.2018.1502838 – ident: 2023022714030999041_j_jiip-2022-0054_ref_002 doi: 10.1515/fca-2018-0045 – ident: 2023022714030999041_j_jiip-2022-0054_ref_012 doi: 10.1515/jiip-2017-0106 – ident: 2023022714030999041_j_jiip-2022-0054_ref_023 doi: 10.1080/17415977.2017.1384826 |
SSID | ssj0017522 |
Score | 2.316379 |
Snippet | Finding the history of a groundwater contaminant plume from final measurements is an ill-posed problem and, consequently, its solution is extremely sensitive... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107 |
SubjectTerms | 47A52 65N21 Algorithms Backward space-time fractional diffusion equation computational algorithm conjugate gradient algorithm Contaminants Existence theorems Finite element method Groundwater Ill posed problems Iterative algorithms Iterative methods Landweber iteration algorithm Landweber's iteration algorithm Lipschitz condition Mathematical analysis quasi-solution Regularization Uniqueness theorems |
Title | Solution of the backward problem for the space-time fractional diffusion equation related to the release history of a groundwater contaminant |
URI | https://www.degruyter.com/doi/10.1515/jiip-2022-0054 https://www.proquest.com/docview/3169278116 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4HDxKcoDOQDEocpkNrO17GgwYQ0Lmxo4hL5cwRKWtpUU_kfkPiTeU5spxsdGvQQRa7tWHm_PD-_T4SeyTjnBcmkNf3ziBECd1TEUSKUpNKwVBurhzx6nx6esHenyelg8GvDa2nViBfyx9a4kv-hKrQBXW2U7D9QNkwKDXAP9IUrUBiu16Kx12l5Q7-wyjirF3BlYoIPIbANqSNbR37fLLpQhtY4Y8zKasv29fcu43cX2gIyqJNIbUUVHrISr7tgShsIUqtzbtMrWk933nnTXCHmVrV1_HBGiuk0ms-WOiwwCPQfYJ_6XNn00Wt91ulkJ9-qhS1rstRVAPAn_tWFxk-m1d_Gqkps6jMI8y7QvWLS5sz2jFQ7tpwWES26xJN_MP2kzY_xparmgA44W1sxtN_evEn_0q4XfBHtKQhmKO340o4v7fgbaIfAwYMM0c7k7auDj8EylbkM9H6VLhEozPDy4gouCjr96WX3vPWDUPpssVo33u7eijPHt9GuIxCedKC6gwa6votuHYUkvst76KeHF54ZDO3Ywws76mGAV_tHDy_cwwsHeGEPL-zghZtZO87BCzt42edwvAEvvAGv--jkzcHx68PIVe-IJCVxExUcZOeC5QreSKEYEyAJ0jQWVNBES54JTbhWIjaZyU0i-ZipLDeEScmM5FzSB2hYz2r9EGE4lROlYq2oyVhOKE_zgsHP5MB_GDEjFPlXXUqX2t5WWJmW24k7Qs9D_3mX1OXKnnuecqX78JclHafA3vLxOB2h5BI1-17bJ6StwuXRtRfwGN3sP5I9NGwWK_0ExOBGPHXI_A0tErwZ |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9QwDNbA9gAcyntYKOADM5zSzdpO4hzbTtsFuj21TG8ZP6FQdss2mU75D_xnpDibPoAL5JSJHceW5ViSpU8Ab2yqdMkLS0f_OpGc450waZIZZ4UNMveB7JDT_XxyKN8fZUdXYmHIrdL5T4vmoo4IqSM3tw0ZynqsAdyBR1-Oj09xglGRIplj9Ln-dnIbVpREfWUAKxu7m9sf-7OEosMMLwmLGRdoB934ezPXt6ZLeXP1vD257rt1ZQPauQ922fXod_J1vanNuv1xA9Xx_8b2AFY7-ZRtRIZ6CLf87BHcm_bgrmeP4efSlMbmgeFzZsgGiJzGuuw0DAXhtgD_VtYnlL6ehUWMoMC2KSdLQ0Y65r9HoHHWRtR4x-p5-x4lcsHdlUUw5Av6jmYUfzJz51hvwcjBXkcnnidwuLN9sDVJuqwOiRU8rZNSo0xVSuVwiKWT0qCEIPLUCCMyb3VhPNfemTQUQYXM6rF0hQpcWiuD1dqKpzCYzWf-GTDU1rhzqXciFFJxoXNVSryCQr6UPAwhWU5oZTvIc8q8cVKR6oO0rojWFdG6IloP4W1f_zSCffy15tqSP6pu0Z9VYpwj26vxOB9CdoNnLmv9uUHRKuLP__G913BncjDdq_be7X94AXexVEbP8jUY1IvGv0TBqTavupXxC-dTGO8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkL0UN7qQgEfkDilm42dxDkW6FIerThQxC3ysyqg3WU3UVX-A_-ZmdhJocAFcoriiePHOPPw-BuAJyaVqspKQ1v_KhFZhndcp0mureHGi8J58kMeHhUHx-L1x7yPJlzHsErrTlbteRMQUid2YVpylA1YAyiBJ59OT5c4wWhIkc4xWVp_FTakQFtmBBt7L5_tfxi2EsoIGV4RFDOuz4jc-Hstv0qmC3Vz66zbuB5a9ZP8md0A3bc8hJ183m0bvWu-XQJ1_K-u3YStqJ2yvcBOt-CKm9-GzcMB2nV9B773jjS28AyfM00eQOQzFnPTMFSDuwL8VxmXUPJ65lfh_ATWTRlZWnLRMfc1wIyz7jyNs6xZdO9RGheUrSxAIZ_TdxSj0ydze4Z0K0bh9SqE8NyF49n---cHSczpkBiepU1SKdSoKiEt9rCyQmjUD3iRaq557owqtcuUszr1pZc-N2oqbCl9JowR3ihl-D0YzRdztw0MbbXM2tRZ7kshM64KWQm8vESuFJkfQ9LPZ20i4Dnl3fhSk-GDQ13TUNc01DUN9RieDvTLAPXxV8qdnj3quOTXNZ8WyPRyOi3GkF9imQuqP1fIOzP8_j--9xiuvXsxq9--OnrzAK5joQhh5Tswalate4haU6MfxXXxA5DHF5Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+the+backward+problem+for+the+space-time+fractional+diffusion+equation+related+to+the+release+history+of+a+groundwater+contaminant&rft.jtitle=Journal+of+inverse+and+ill-posed+problems&rft.au=Salehi+Shayegan%2C+Amir+Hossein&rft.au=Zakeri%2C+Ali&rft.au=Salehi+Shayegan%2C+Adib&rft.date=2024-02-01&rft.issn=0928-0219&rft.eissn=1569-3945&rft_id=info:doi/10.1515%2Fjiip-2022-0054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_jiip_2022_0054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0219&client=summon |