Solution of the backward problem for the space-time fractional diffusion equation related to the release history of a groundwater contaminant

Finding the history of a groundwater contaminant plume from final measurements is an ill-posed problem and, consequently, its solution is extremely sensitive to errors in the input data. In this paper, we study this problem mathematically. So, firstly, existence and uniqueness theorems of a quasi-so...

Full description

Saved in:
Bibliographic Details
Published inJournal of inverse and ill-posed problems Vol. 32; no. 1; pp. 107 - 126
Main Authors Salehi Shayegan, Amir Hossein, Zakeri, Ali, Salehi Shayegan, Adib
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.02.2024
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Finding the history of a groundwater contaminant plume from final measurements is an ill-posed problem and, consequently, its solution is extremely sensitive to errors in the input data. In this paper, we study this problem mathematically. So, firstly, existence and uniqueness theorems of a quasi-solution in an appropriate class of admissible initial data are given. Secondly, in order to overcome the ill-posedness of the problem and also approximate the quasi-solution, two approaches (computational and iterative algorithms) are provided. In the computational algorithm, the finite element method and TSVD regularization are applied. This method is tested by two numerical examples. The results reveal the efficiency and applicability of the proposed method. Also, in order to construct the iterative methods, an explicit formula for the gradient of the cost functional is given. This result helps us to construct two iterative methods, i.e., the conjugate gradient algorithm and Landweber iteration algorithm. We prove the Lipschitz continuity of the gradient of the cost functional, monotonicity and convergence of the iterative methods. At the end of the paper, a numerical example is given to show the validation of the iterative algorithms.
AbstractList Finding the history of a groundwater contaminant plume from final measurements is an ill-posed problem and, consequently, its solution is extremely sensitive to errors in the input data. In this paper, we study this problem mathematically. So, firstly, existence and uniqueness theorems of a quasi-solution in an appropriate class of admissible initial data are given. Secondly, in order to overcome the ill-posedness of the problem and also approximate the quasi-solution, two approaches (computational and iterative algorithms) are provided. In the computational algorithm, the finite element method and TSVD regularization are applied. This method is tested by two numerical examples. The results reveal the efficiency and applicability of the proposed method. Also, in order to construct the iterative methods, an explicit formula for the gradient of the cost functional J is given. This result helps us to construct two iterative methods, i.e., the conjugate gradient algorithm and Landweber iteration algorithm. We prove the Lipschitz continuity of the gradient of the cost functional, monotonicity and convergence of the iterative methods. At the end of the paper, a numerical example is given to show the validation of the iterative algorithms.
Finding the history of a groundwater contaminant plume from final measurements is an ill-posed problem and, consequently, its solution is extremely sensitive to errors in the input data. In this paper, we study this problem mathematically. So, firstly, existence and uniqueness theorems of a quasi-solution in an appropriate class of admissible initial data are given. Secondly, in order to overcome the ill-posedness of the problem and also approximate the quasi-solution, two approaches (computational and iterative algorithms) are provided. In the computational algorithm, the finite element method and TSVD regularization are applied. This method is tested by two numerical examples. The results reveal the efficiency and applicability of the proposed method. Also, in order to construct the iterative methods, an explicit formula for the gradient of the cost functional J is given. This result helps us to construct two iterative methods, i.e., the conjugate gradient algorithm and Landweber iteration algorithm. We prove the Lipschitz continuity of the gradient of the cost functional, monotonicity and convergence of the iterative methods. At the end of the paper, a numerical example is given to show the validation of the iterative algorithms.
Finding the history of a groundwater contaminant plume from final measurements is an ill-posed problem and, consequently, its solution is extremely sensitive to errors in the input data. In this paper, we study this problem mathematically. So, firstly, existence and uniqueness theorems of a quasi-solution in an appropriate class of admissible initial data are given. Secondly, in order to overcome the ill-posedness of the problem and also approximate the quasi-solution, two approaches (computational and iterative algorithms) are provided. In the computational algorithm, the finite element method and TSVD regularization are applied. This method is tested by two numerical examples. The results reveal the efficiency and applicability of the proposed method. Also, in order to construct the iterative methods, an explicit formula for the gradient of the cost functional is given. This result helps us to construct two iterative methods, i.e., the conjugate gradient algorithm and Landweber iteration algorithm. We prove the Lipschitz continuity of the gradient of the cost functional, monotonicity and convergence of the iterative methods. At the end of the paper, a numerical example is given to show the validation of the iterative algorithms.
Author Salehi Shayegan, Adib
Zakeri, Ali
Salehi Shayegan, Amir Hossein
Author_xml – sequence: 1
  givenname: Amir Hossein
  surname: Salehi Shayegan
  fullname: Salehi Shayegan, Amir Hossein
  email: ahsalehi.kau@gmail.com
  organization: Mathematics Department, Faculty of Basic Science, Khatam-ol-Anbia (PBU) University, Tehran, Iran
– sequence: 2
  givenname: Ali
  orcidid: 0000-0002-6273-7855
  surname: Zakeri
  fullname: Zakeri, Ali
  email: azakeri@kntu.ac.ir
  organization: Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 3
  givenname: Adib
  surname: Salehi Shayegan
  fullname: Salehi Shayegan, Adib
  email: ckntu.exe@gmail.com
  organization: Department of Computer, Safadasht Branch, Islamic Azad University, Tehran, Iran
BookMark eNp1kM1qGzEUhUVxIM7PNmtB1-NKGml-oJsS2jRg6KLNergjXSVyxyNb0mD8EHnnauxAoJCVJHS-K53viixGPyIhd5ytuOLqy8a5XSGYEAVjSn4iS66qtihbqRZkyVrRFEzw9pJcxbhhjNdKiCV5_e2HKTk_Um9pekHag_57gGDoLvh-wC21Ppwu4g40FsltkdoAemZgoMZZO8WZx_0Ep0EBB0hoaPInLh8RItIXF5MPx_kdoM_BT6M55Fyg2o8Jtm6EMd2QCwtDxNu39Zo8_fj-5_5nsf718Hj_bV3oUrBUtMCFamVjctvWSNlXFS8r1pd9qVBD3aMAND2ztW2s0sClqRsrpNbSagBdXpPP57m55H7CmLqNn0LuE7uSV62oG86rnJLnlA4-xoC20y6dOqYAbug462bx3Sy-m8V3s_iMrf7DdsFtIRw_Br6egQMMWYjB5zAd8-b9Ux-AgnNWl_8AA76f1g
CitedBy_id crossref_primary_10_3390_computation11100204
Cites_doi 10.1016/j.camwa.2018.02.022
10.1051/m2an/2019019
10.1515/156939406778247615
10.4208/cicp.020709.221209a
10.4171/RLM/906
10.1007/s00229-012-0586-6
10.1137/1034115
10.1016/j.aml.2007.06.007
10.1029/93WR02656
10.1515/fca-2020-0084
10.1016/j.matcom.2017.12.005
10.1007/978-3-319-62797-7
10.1007/s40840-021-01113-y
10.1088/1361-6420/abbc5e
10.1029/95WR02383
10.1007/s11075-015-0065-8
10.1080/00036810903479731
10.1515/jiip-2018-0042
10.1002/mma.4151
10.1007/BF01937276
10.1137/1.9780898719697
10.21136/AM.2019.0251-18
10.1142/S0219876213410016
10.1515/fca-2021-0037
10.1016/j.mcm.2009.01.004
10.1137/080714130
10.1016/j.aml.2019.02.025
10.1016/S0168-9274(00)00025-8
10.1080/15502287.2018.1502838
10.1515/fca-2018-0045
10.1515/jiip-2017-0106
10.1080/17415977.2017.1384826
ContentType Journal Article
Copyright 2023 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2023 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1515/jiip-2022-0054
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1569-3945
EndPage 126
ExternalDocumentID 10_1515_jiip_2022_0054
10_1515_jiip_2022_0054321107
GroupedDBID 0R~
0~D
4.4
5GY
AAAEU
AADQG
AAFPC
AAGVJ
AAJBH
AALGR
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABMBZ
ABPLS
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACIWK
ACPMA
ACUND
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADOZN
AECWL
AEGVQ
AEICA
AEJTT
AENEX
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFQUK
AFYRI
AGBEV
AHGBP
AHVWV
AHXUK
AIERV
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ASYPN
BAKPI
BBCWN
BCIFA
CFGNV
CS3
DU5
EBS
HZ~
IY9
KDIRW
O9-
P2P
PQQKQ
QD8
RDG
SA.
SLJYH
UK5
WTRAM
AAWFC
AAYXX
CITATION
7SC
7TB
8FD
ADNPR
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c320t-9a125948d2029d44b661360b3b35eca7be2aedb0f7f8f5ca14d78f24cc4fcaac3
ISSN 0928-0219
IngestDate Wed Aug 13 11:15:03 EDT 2025
Tue Jul 01 01:23:34 EDT 2025
Thu Apr 24 23:11:44 EDT 2025
Thu Jul 10 10:30:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-9a125948d2029d44b661360b3b35eca7be2aedb0f7f8f5ca14d78f24cc4fcaac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6273-7855
PQID 3169278116
PQPubID 2030080
PageCount 20
ParticipantIDs proquest_journals_3169278116
crossref_citationtrail_10_1515_jiip_2022_0054
crossref_primary_10_1515_jiip_2022_0054
walterdegruyter_journals_10_1515_jiip_2022_0054321107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of inverse and ill-posed problems
PublicationYear 2024
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023022714030999041_j_jiip-2022-0054_ref_019
2023022714030999041_j_jiip-2022-0054_ref_030
2023022714030999041_j_jiip-2022-0054_ref_031
2023022714030999041_j_jiip-2022-0054_ref_010
2023022714030999041_j_jiip-2022-0054_ref_032
2023022714030999041_j_jiip-2022-0054_ref_011
2023022714030999041_j_jiip-2022-0054_ref_033
2023022714030999041_j_jiip-2022-0054_ref_012
2023022714030999041_j_jiip-2022-0054_ref_013
2023022714030999041_j_jiip-2022-0054_ref_014
2023022714030999041_j_jiip-2022-0054_ref_015
2023022714030999041_j_jiip-2022-0054_ref_016
2023022714030999041_j_jiip-2022-0054_ref_017
2023022714030999041_j_jiip-2022-0054_ref_018
2023022714030999041_j_jiip-2022-0054_ref_008
2023022714030999041_j_jiip-2022-0054_ref_009
2023022714030999041_j_jiip-2022-0054_ref_020
2023022714030999041_j_jiip-2022-0054_ref_021
2023022714030999041_j_jiip-2022-0054_ref_022
2023022714030999041_j_jiip-2022-0054_ref_001
2023022714030999041_j_jiip-2022-0054_ref_023
2023022714030999041_j_jiip-2022-0054_ref_002
2023022714030999041_j_jiip-2022-0054_ref_024
2023022714030999041_j_jiip-2022-0054_ref_003
2023022714030999041_j_jiip-2022-0054_ref_025
2023022714030999041_j_jiip-2022-0054_ref_004
2023022714030999041_j_jiip-2022-0054_ref_026
2023022714030999041_j_jiip-2022-0054_ref_005
2023022714030999041_j_jiip-2022-0054_ref_027
2023022714030999041_j_jiip-2022-0054_ref_006
2023022714030999041_j_jiip-2022-0054_ref_028
2023022714030999041_j_jiip-2022-0054_ref_007
2023022714030999041_j_jiip-2022-0054_ref_029
References_xml – ident: 2023022714030999041_j_jiip-2022-0054_ref_032
  doi: 10.1016/j.camwa.2018.02.022
– ident: 2023022714030999041_j_jiip-2022-0054_ref_031
  doi: 10.1051/m2an/2019019
– ident: 2023022714030999041_j_jiip-2022-0054_ref_013
  doi: 10.1515/156939406778247615
– ident: 2023022714030999041_j_jiip-2022-0054_ref_018
  doi: 10.4208/cicp.020709.221209a
– ident: 2023022714030999041_j_jiip-2022-0054_ref_006
  doi: 10.4171/RLM/906
– ident: 2023022714030999041_j_jiip-2022-0054_ref_017
  doi: 10.1007/s00229-012-0586-6
– ident: 2023022714030999041_j_jiip-2022-0054_ref_010
  doi: 10.1137/1034115
– ident: 2023022714030999041_j_jiip-2022-0054_ref_014
  doi: 10.1016/j.aml.2007.06.007
– ident: 2023022714030999041_j_jiip-2022-0054_ref_026
  doi: 10.1029/93WR02656
– ident: 2023022714030999041_j_jiip-2022-0054_ref_028
  doi: 10.1515/fca-2020-0084
– ident: 2023022714030999041_j_jiip-2022-0054_ref_033
  doi: 10.1016/j.matcom.2017.12.005
– ident: 2023022714030999041_j_jiip-2022-0054_ref_016
  doi: 10.1007/978-3-319-62797-7
– ident: 2023022714030999041_j_jiip-2022-0054_ref_004
  doi: 10.1007/s40840-021-01113-y
– ident: 2023022714030999041_j_jiip-2022-0054_ref_007
  doi: 10.1088/1361-6420/abbc5e
– ident: 2023022714030999041_j_jiip-2022-0054_ref_027
  doi: 10.1029/95WR02383
– ident: 2023022714030999041_j_jiip-2022-0054_ref_005
  doi: 10.1007/s11075-015-0065-8
– ident: 2023022714030999041_j_jiip-2022-0054_ref_020
  doi: 10.1080/00036810903479731
– ident: 2023022714030999041_j_jiip-2022-0054_ref_024
  doi: 10.1515/jiip-2018-0042
– ident: 2023022714030999041_j_jiip-2022-0054_ref_001
  doi: 10.1002/mma.4151
– ident: 2023022714030999041_j_jiip-2022-0054_ref_009
  doi: 10.1007/BF01937276
– ident: 2023022714030999041_j_jiip-2022-0054_ref_011
  doi: 10.1137/1.9780898719697
– ident: 2023022714030999041_j_jiip-2022-0054_ref_025
  doi: 10.21136/AM.2019.0251-18
– ident: 2023022714030999041_j_jiip-2022-0054_ref_030
– ident: 2023022714030999041_j_jiip-2022-0054_ref_019
  doi: 10.1142/S0219876213410016
– ident: 2023022714030999041_j_jiip-2022-0054_ref_029
  doi: 10.1515/fca-2021-0037
– ident: 2023022714030999041_j_jiip-2022-0054_ref_022
  doi: 10.1016/j.mcm.2009.01.004
– ident: 2023022714030999041_j_jiip-2022-0054_ref_003
  doi: 10.1137/080714130
– ident: 2023022714030999041_j_jiip-2022-0054_ref_008
  doi: 10.1016/j.aml.2019.02.025
– ident: 2023022714030999041_j_jiip-2022-0054_ref_015
  doi: 10.1016/S0168-9274(00)00025-8
– ident: 2023022714030999041_j_jiip-2022-0054_ref_021
  doi: 10.1080/15502287.2018.1502838
– ident: 2023022714030999041_j_jiip-2022-0054_ref_002
  doi: 10.1515/fca-2018-0045
– ident: 2023022714030999041_j_jiip-2022-0054_ref_012
  doi: 10.1515/jiip-2017-0106
– ident: 2023022714030999041_j_jiip-2022-0054_ref_023
  doi: 10.1080/17415977.2017.1384826
SSID ssj0017522
Score 2.316379
Snippet Finding the history of a groundwater contaminant plume from final measurements is an ill-posed problem and, consequently, its solution is extremely sensitive...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107
SubjectTerms 47A52
65N21
Algorithms
Backward space-time fractional diffusion equation
computational algorithm
conjugate gradient algorithm
Contaminants
Existence theorems
Finite element method
Groundwater
Ill posed problems
Iterative algorithms
Iterative methods
Landweber iteration algorithm
Landweber's iteration algorithm
Lipschitz condition
Mathematical analysis
quasi-solution
Regularization
Uniqueness theorems
Title Solution of the backward problem for the space-time fractional diffusion equation related to the release history of a groundwater contaminant
URI https://www.degruyter.com/doi/10.1515/jiip-2022-0054
https://www.proquest.com/docview/3169278116
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4HDxKcoDOQDEocpkNrO17GgwYQ0Lmxo4hL5cwRKWtpUU_kfkPiTeU5spxsdGvQQRa7tWHm_PD-_T4SeyTjnBcmkNf3ziBECd1TEUSKUpNKwVBurhzx6nx6esHenyelg8GvDa2nViBfyx9a4kv-hKrQBXW2U7D9QNkwKDXAP9IUrUBiu16Kx12l5Q7-wyjirF3BlYoIPIbANqSNbR37fLLpQhtY4Y8zKasv29fcu43cX2gIyqJNIbUUVHrISr7tgShsIUqtzbtMrWk933nnTXCHmVrV1_HBGiuk0ms-WOiwwCPQfYJ_6XNn00Wt91ulkJ9-qhS1rstRVAPAn_tWFxk-m1d_Gqkps6jMI8y7QvWLS5sz2jFQ7tpwWES26xJN_MP2kzY_xparmgA44W1sxtN_evEn_0q4XfBHtKQhmKO340o4v7fgbaIfAwYMM0c7k7auDj8EylbkM9H6VLhEozPDy4gouCjr96WX3vPWDUPpssVo33u7eijPHt9GuIxCedKC6gwa6votuHYUkvst76KeHF54ZDO3Ywws76mGAV_tHDy_cwwsHeGEPL-zghZtZO87BCzt42edwvAEvvAGv--jkzcHx68PIVe-IJCVxExUcZOeC5QreSKEYEyAJ0jQWVNBES54JTbhWIjaZyU0i-ZipLDeEScmM5FzSB2hYz2r9EGE4lROlYq2oyVhOKE_zgsHP5MB_GDEjFPlXXUqX2t5WWJmW24k7Qs9D_3mX1OXKnnuecqX78JclHafA3vLxOB2h5BI1-17bJ6StwuXRtRfwGN3sP5I9NGwWK_0ExOBGPHXI_A0tErwZ
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9QwDNbA9gAcyntYKOADM5zSzdpO4hzbTtsFuj21TG8ZP6FQdss2mU75D_xnpDibPoAL5JSJHceW5ViSpU8Ab2yqdMkLS0f_OpGc450waZIZZ4UNMveB7JDT_XxyKN8fZUdXYmHIrdL5T4vmoo4IqSM3tw0ZynqsAdyBR1-Oj09xglGRIplj9Ln-dnIbVpREfWUAKxu7m9sf-7OEosMMLwmLGRdoB934ezPXt6ZLeXP1vD257rt1ZQPauQ922fXod_J1vanNuv1xA9Xx_8b2AFY7-ZRtRIZ6CLf87BHcm_bgrmeP4efSlMbmgeFzZsgGiJzGuuw0DAXhtgD_VtYnlL6ehUWMoMC2KSdLQ0Y65r9HoHHWRtR4x-p5-x4lcsHdlUUw5Av6jmYUfzJz51hvwcjBXkcnnidwuLN9sDVJuqwOiRU8rZNSo0xVSuVwiKWT0qCEIPLUCCMyb3VhPNfemTQUQYXM6rF0hQpcWiuD1dqKpzCYzWf-GTDU1rhzqXciFFJxoXNVSryCQr6UPAwhWU5oZTvIc8q8cVKR6oO0rojWFdG6IloP4W1f_zSCffy15tqSP6pu0Z9VYpwj26vxOB9CdoNnLmv9uUHRKuLP__G913BncjDdq_be7X94AXexVEbP8jUY1IvGv0TBqTavupXxC-dTGO8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkL0UN7qQgEfkDilm42dxDkW6FIerThQxC3ysyqg3WU3UVX-A_-ZmdhJocAFcoriiePHOPPw-BuAJyaVqspKQ1v_KhFZhndcp0mureHGi8J58kMeHhUHx-L1x7yPJlzHsErrTlbteRMQUid2YVpylA1YAyiBJ59OT5c4wWhIkc4xWVp_FTakQFtmBBt7L5_tfxi2EsoIGV4RFDOuz4jc-Hstv0qmC3Vz66zbuB5a9ZP8md0A3bc8hJ183m0bvWu-XQJ1_K-u3YStqJ2yvcBOt-CKm9-GzcMB2nV9B773jjS28AyfM00eQOQzFnPTMFSDuwL8VxmXUPJ65lfh_ATWTRlZWnLRMfc1wIyz7jyNs6xZdO9RGheUrSxAIZ_TdxSj0ydze4Z0K0bh9SqE8NyF49n---cHSczpkBiepU1SKdSoKiEt9rCyQmjUD3iRaq557owqtcuUszr1pZc-N2oqbCl9JowR3ihl-D0YzRdztw0MbbXM2tRZ7kshM64KWQm8vESuFJkfQ9LPZ20i4Dnl3fhSk-GDQ13TUNc01DUN9RieDvTLAPXxV8qdnj3quOTXNZ8WyPRyOi3GkF9imQuqP1fIOzP8_j--9xiuvXsxq9--OnrzAK5joQhh5Tswalate4haU6MfxXXxA5DHF5Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+the+backward+problem+for+the+space-time+fractional+diffusion+equation+related+to+the+release+history+of+a+groundwater+contaminant&rft.jtitle=Journal+of+inverse+and+ill-posed+problems&rft.au=Salehi+Shayegan%2C+Amir+Hossein&rft.au=Zakeri%2C+Ali&rft.au=Salehi+Shayegan%2C+Adib&rft.date=2024-02-01&rft.issn=0928-0219&rft.eissn=1569-3945&rft_id=info:doi/10.1515%2Fjiip-2022-0054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_jiip_2022_0054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0219&client=summon