Comparing and Optimizing Four Machine Learning Approaches to Radar-Based Quantitative Precipitation Estimation

To improve radar-based quantitative precipitation estimation (QPE) methods, this study investigated the relationship between radar reflectivity (Z) and hourly rainfall intensity (R) using data from 289 precipitation events in Shanghai between September 2020 and March 2024. Two Z-R relationship model...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 24; p. 4713
Main Authors Liu, Miaomiao, Zuo, Juncheng, Tan, Jianguo, Liu, Dongwei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To improve radar-based quantitative precipitation estimation (QPE) methods, this study investigated the relationship between radar reflectivity (Z) and hourly rainfall intensity (R) using data from 289 precipitation events in Shanghai between September 2020 and March 2024. Two Z-R relationship models were compared in terms of their fitting performance: Z = 270.81 R1.09 (empirically fitted relationship) and Z = 300 R1.4 (standard relationship). The results show that the Z = 270.81 R1.09 model outperforms the Z = 300 R1.4 model in terms of fitting accuracy. Specifically, the Z = 270.81 R1.09 model more effectively captures the nonlinear relationship between radar reflectivity and rainfall intensity, with a higher degree of agreement between the fitted curve and the observed data points. This model demonstrated superior performance across all 289 precipitation events. This study evaluated the performance of four machine learning approaches while incorporating five meteorological features: specific differential phase shift (KDP), echo-top height (ET), vertical liquid water content (VIL), differential reflectivity (ZDR), and correlation coefficient (CC). Nine QPE models were constructed using these inputs. The key findings are as follows: (1) For models with a single-variable input, the KAN deep learning model outperformed Random Forest, Gradient Boosting Decision Trees, Support Vector Machines, and the traditional Z-R relationship. (2) When six features were used as inputs, the accuracy of the machine learning models improved significantly, with the KAN deep learning model outperforming other machine learning methods. Compared to using only radar reflectivity, the KAN deep learning model reduced the MRE by 20.78%, MAE by 4.07%, and RMSE by 12.74%, while increasing the coefficient of determination (R2) by 18.74%. (3) The integration of multiple meteorological features and machine learning optimization significantly enhanced QPE accuracy, with the KAN deep learning model performing best under varying meteorological conditions. This approach offers a promising method for improving radar-based QPE, particularly considering seasonal, weather system, and precipitation stage differentiation.
AbstractList To improve radar-based quantitative precipitation estimation (QPE) methods, this study investigated the relationship between radar reflectivity (Z) and hourly rainfall intensity (R) using data from 289 precipitation events in Shanghai between September 2020 and March 2024. Two Z-R relationship models were compared in terms of their fitting performance: Z = 270.81 R1.09 (empirically fitted relationship) and Z = 300 R1.4 (standard relationship). The results show that the Z = 270.81 R1.09 model outperforms the Z = 300 R1.4 model in terms of fitting accuracy. Specifically, the Z = 270.81 R1.09 model more effectively captures the nonlinear relationship between radar reflectivity and rainfall intensity, with a higher degree of agreement between the fitted curve and the observed data points. This model demonstrated superior performance across all 289 precipitation events. This study evaluated the performance of four machine learning approaches while incorporating five meteorological features: specific differential phase shift (KDP), echo-top height (ET), vertical liquid water content (VIL), differential reflectivity (ZDR), and correlation coefficient (CC). Nine QPE models were constructed using these inputs. The key findings are as follows: (1) For models with a single-variable input, the KAN deep learning model outperformed Random Forest, Gradient Boosting Decision Trees, Support Vector Machines, and the traditional Z-R relationship. (2) When six features were used as inputs, the accuracy of the machine learning models improved significantly, with the KAN deep learning model outperforming other machine learning methods. Compared to using only radar reflectivity, the KAN deep learning model reduced the MRE by 20.78%, MAE by 4.07%, and RMSE by 12.74%, while increasing the coefficient of determination (R2) by 18.74%. (3) The integration of multiple meteorological features and machine learning optimization significantly enhanced QPE accuracy, with the KAN deep learning model performing best under varying meteorological conditions. This approach offers a promising method for improving radar-based QPE, particularly considering seasonal, weather system, and precipitation stage differentiation.
Author Liu, Miaomiao
Tan, Jianguo
Zuo, Juncheng
Liu, Dongwei
Author_xml – sequence: 1
  givenname: Miaomiao
  surname: Liu
  fullname: Liu, Miaomiao
– sequence: 2
  givenname: Juncheng
  surname: Zuo
  fullname: Zuo, Juncheng
– sequence: 3
  givenname: Jianguo
  surname: Tan
  fullname: Tan, Jianguo
– sequence: 4
  givenname: Dongwei
  surname: Liu
  fullname: Liu, Dongwei
BookMark eNpNkU1vFDEMhiNUJErphV8QiRvS0Mk4H5NjWbVQaVEBwTnyJp6SVZsMyWwl-PVkdyvAF9uPrNdfL9lJyokYey36dwC2vyhV6EFKI-AZOx16M3RysMPJf_ELdl7rtm8GIGwvT1la5YcZS0x3HFPgt_MSH-LvfXqdd4V_Qv8jJuJrwpL29HKeS26QKl8y_4oBS_ceKwX-ZYdpiQsu8ZH450I-zocsJ35Vm-ohfMWeT3hf6fzJn7Hv11ffVh-79e2Hm9XluvMw9EtnldHDRoI3gMr6caP1QAoBVB8UgQqCEELQRm-EmMZGLZAe7TRSIxbhjN0cdUPGrZtLa19-uYzRHUAudw7LEv09uTBamGAyVmmS3hKGUVgpJBr0aKxuWm-OWm3znzuqi9u206Q2vgMhrVFCadGq3h6rfMm1Fpr-dhW927_H_XsP_AEiOYQQ
Cites_doi 10.3390/rs13163157
10.1007/s00376-023-3039-0
10.3390/rs14194752
10.1111/j.1365-2966.2011.18359.x
10.3390/rs12223767
10.1007/s00376-022-2127-x
10.3390/rs11141632
10.1007/s13351-020-9036-7
10.1029/RS021i002p00235
10.3390/rs14163988
10.3390/rs13010154
10.3390/atmos11121382
10.1007/s00376-011-1139-8
10.1002/met.1638
10.3390/rs12020262
10.3390/rs12213572
10.1016/j.jhydrol.2011.01.015
10.1016/j.atmosres.2020.105372
10.1175/JHM-D-17-0109.1
10.3390/rs13234956
10.3390/rs14020344
10.1155/2021/9349738
10.3390/rs13020214
10.5194/nhess-10-149-2010
10.1175/JHM-D-20-0033.1
10.1016/j.atmosres.2023.107024
10.1007/s13351-018-7163-1
10.1175/JTECH-D-15-0239.1
10.3390/rs14071695
10.3390/rs15041111
10.1016/j.atmosres.2019.104834
10.3390/hydrology9080137
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs16244713
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_d893f3f7956e4c9ead819414a7aca796
10_3390_rs16244713
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c320t-95762b43c73a59c8b662e5a3350d5e35d1ea3dd676b11f850d93e689f8e6b19a3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:24:12 EDT 2025
Fri Jul 25 11:51:54 EDT 2025
Tue Jul 01 01:33:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c320t-95762b43c73a59c8b662e5a3350d5e35d1ea3dd676b11f850d93e689f8e6b19a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/d893f3f7956e4c9ead819414a7aca796
PQID 3149751561
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_d893f3f7956e4c9ead819414a7aca796
proquest_journals_3149751561
crossref_primary_10_3390_rs16244713
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zeng (ref_12) 2021; 250
Wijayarathne (ref_6) 2020; 21
Li (ref_7) 2020; 236
Huangfu (ref_4) 2024; 41
Wang (ref_8) 2012; 29
ref_11
ref_33
Zeng (ref_13) 2023; 295
ref_19
ref_18
ref_17
ref_16
Zou (ref_28) 2023; 40
ref_15
Liu (ref_24) 2011; 413
Zhang (ref_31) 2020; 34
Yang (ref_26) 2017; 24
Hazenberg (ref_23) 2011; 402
ref_25
Sachidananda (ref_22) 1986; 21
Fang (ref_14) 2018; 32
Ma (ref_32) 2018; 19
Alfieri (ref_10) 2010; 10
ref_21
Feng (ref_20) 2021; 2021
ref_1
ref_3
ref_2
ref_29
ref_27
ref_9
ref_5
Krause (ref_30) 2016; 33
References_xml – ident: ref_29
  doi: 10.3390/rs13163157
– volume: 41
  start-page: 1147
  year: 2024
  ident: ref_4
  article-title: Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-023-3039-0
– ident: ref_21
  doi: 10.3390/rs14194752
– volume: 413
  start-page: 2877
  year: 2011
  ident: ref_24
  article-title: The hourly average solar wind velocity prediction based on support vector regression method: Solar wind velocity prediction based on SVR
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2011.18359.x
– ident: ref_9
  doi: 10.3390/rs12223767
– volume: 40
  start-page: 1043
  year: 2023
  ident: ref_28
  article-title: Radar Quantitative Precipitation Estimation Based on the Gated Recurrent Unit Neural Network and Echo-Top Data
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-022-2127-x
– ident: ref_25
  doi: 10.3390/rs11141632
– volume: 34
  start-page: 413
  year: 2020
  ident: ref_31
  article-title: Short-Term Dynamic Radar Quantitative Precipitation Estimation Based on Wavelet Transform and Support Vector Machine
  publication-title: J. Meteorol. Res.
  doi: 10.1007/s13351-020-9036-7
– volume: 21
  start-page: 235
  year: 1986
  ident: ref_22
  article-title: Differential Propagation Phase Shift and Rainfall Rate Estimation
  publication-title: Radio Sci.
  doi: 10.1029/RS021i002p00235
– ident: ref_18
  doi: 10.3390/rs14163988
– ident: ref_2
  doi: 10.3390/rs13010154
– ident: ref_19
  doi: 10.3390/atmos11121382
– volume: 29
  start-page: 575
  year: 2012
  ident: ref_8
  article-title: Improvement of radar quantitative precipitation estimation based on real-time adjustments to Z-R relationships and inverse distance weighting correction schemes
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-011-1139-8
– volume: 24
  start-page: 404
  year: 2017
  ident: ref_26
  article-title: A terrain-based weighted random forests method for radar quantitative precipitation estimation: A TWRF method for QPE
  publication-title: Meteorol. Appl.
  doi: 10.1002/met.1638
– ident: ref_3
  doi: 10.3390/rs12020262
– ident: ref_16
  doi: 10.3390/rs12213572
– volume: 402
  start-page: 179
  year: 2011
  ident: ref_23
  article-title: Scaling of raindrop size distributions and classification of radar reflectivity–rain rate relations in intense Mediterranean precipitation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.01.015
– volume: 250
  start-page: 105372
  year: 2021
  ident: ref_12
  article-title: An investigation of convective features and Z-R relationships for a local extreme precipitation event
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2020.105372
– volume: 19
  start-page: 761
  year: 2018
  ident: ref_32
  article-title: Using the Gradient Boosting Decision Tree to Improve the Delineation of Hourly Rain Areas during the Summer from Advanced Himawari Imager Data
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-17-0109.1
– ident: ref_5
  doi: 10.3390/rs13234956
– ident: ref_33
– ident: ref_1
  doi: 10.3390/rs14020344
– volume: 2021
  start-page: 9349738
  year: 2021
  ident: ref_20
  article-title: Characteristics of Raindrop Size Distribution in Typhoon Nida (2016) before and after Landfall in Southern China from 2D Video Disdrometer Data
  publication-title: Adv. Meteorol.
  doi: 10.1155/2021/9349738
– ident: ref_17
  doi: 10.3390/rs13020214
– volume: 10
  start-page: 149
  year: 2010
  ident: ref_10
  article-title: Time-dependent ZR relationships for estimating rainfall fields from radar measurements
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-10-149-2010
– volume: 21
  start-page: 1847
  year: 2020
  ident: ref_6
  article-title: Evaluation of Radar Quantitative Precipitation Estimates (QPEs) as an Input of Hydrological Models for Hydrometeorological Applications
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-20-0033.1
– volume: 295
  start-page: 107024
  year: 2023
  ident: ref_13
  article-title: Seasonal variation of microphysical characteristics for different rainfall types in the Tianshan Mountains of China
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2023.107024
– volume: 32
  start-page: 598
  year: 2018
  ident: ref_14
  article-title: Statistics of the Z–R Relationship for Strong Convective Weather over the Yangtze–Huaihe River Basin and Its Application to Radar Reflectivity Data Assimilation for a Heavy Rain Event
  publication-title: J. Meteorol. Res.
  doi: 10.1007/s13351-018-7163-1
– volume: 33
  start-page: 1875
  year: 2016
  ident: ref_30
  article-title: A Simple Algorithm to Discriminate between Meteorological and Nonmeteorological Radar Echoes
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-15-0239.1
– ident: ref_11
  doi: 10.3390/rs14071695
– ident: ref_27
  doi: 10.3390/rs15041111
– volume: 236
  start-page: 104834
  year: 2020
  ident: ref_7
  article-title: Assessment of GPM IMERG and radar quantitative precipitation estimation (QPE) products using dense rain gauge observations in the Guangdong-Hong Kong-Macao Greater Bay Area, China
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2019.104834
– ident: ref_15
  doi: 10.3390/hydrology9080137
SSID ssj0000331904
Score 2.3885672
Snippet To improve radar-based quantitative precipitation estimation (QPE) methods, this study investigated the relationship between radar reflectivity (Z) and hourly...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 4713
SubjectTerms Accuracy
Correlation coefficient
Correlation coefficients
Data collection
Data points
Decision trees
Deep learning
Estimates
KAN deep learning
Learning algorithms
Machine learning
machine learning method
Moisture content
multivariable
Neural networks
Observational learning
Optimization
Performance evaluation
Precipitation
Quality control
Radar
Radar systems
radar-based quantitative precipitation estimation
Rain
Rainfall
Rainfall intensity
random forest
Reflectance
Support vector machines
Water
Water content
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagHWBBPEV5yRKsFnYuseMJtagVQgIKAoktcmKnMJCWPgb49ZwTF4SQGHNxlvM9vnPO3xFyxoWNFdYdzJpSsthxzbQyCQPHiygqlZ-R5LstbuXVU3z9nDyHA7dZaKtcxsQ6UNtx4c_IzwGhvMLkK8XF5J35qVH-72oYobFK2hiCUyy-2r3-7fDh-5SFA5oYjxteUsD6_nw6ExJTmhLwKxPVhP1_4nGdZAabZCOgQ9pttnOLrLhqm6yFQeUvHzukumzmBlYjaipL79Dh314__eMAv6U3dWuko4E1dUS7gTLczeh8TB-MNVPWw8Rl6f3CVPUFMwx3dOg5LiaBrpv20e2bG4275GnQf7y8YmFkAisg4nOmsXyI8hgKBSbRRZpLGbnEACTcJg4SK5wBa6WSuRBlilINTqa6TB1KtIE90qrGldsnNEdgUyTCRBZyz-hinC09ItDcWgBedsjpUn3ZpGHGyLCi8ErOfpTcIT2v2e8Vns26Foynoyw4R2YRNJVQKqzVXFxoNG7EKbGIjTKFUVp2yNFyX7LgYrPsxyAO_n99SNYjRCJND8oRac2nC3eMSGKenwRz-QKMG8nM
  priority: 102
  providerName: ProQuest
Title Comparing and Optimizing Four Machine Learning Approaches to Radar-Based Quantitative Precipitation Estimation
URI https://www.proquest.com/docview/3149751561
https://doaj.org/article/d893f3f7956e4c9ead819414a7aca796
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgDLAgPkX5qCzBGhHnYjse29JSISjfUrfIiZ3CQFq1YYBfzzkJUMTAwhTFSpTkLvZ7Tzq_I-TEZyaUqDs8ozPhhdZXnpKae2D9NAgy6XokuWqLoRg8hhcjPlpo9eVqwip74CpwpwYBNYNMIo-3YarwwxHDQhZqqVMtVWm2jZi3IKbKNRjw1_LDyo8UUNefzuZMIJRJBj8QqDTq_7UOl-DS3yDrNSuk7eptNsmSzbfIat2g_Oltm-Tdql9gPqYo_ek1TvSX53d32sd76VVZEmlp7ZY6pu3aKtzOaTGhd9romddBwDL09lXn5cYyXObojfO2mNY23bSH073aybhDHvu9h-7Aq1sleCkEfuEplA1BEkIqQXOVRokQgeUagPuGW-CGWQ3GCCkSxrIIRxVYEakssjiiNOySRj7J7R6hCRKalDMdGEick4u2JnNMQPnGAPhZkxx_hi-eVo4YMSoJF-T4O8hN0nGR_brCuViXA5jbuM5t_Fdum-TwMy9xPbXmMaCmk8jCBNv_j2cckLUAeUpVoXJIGsXs1R4hzyiSFlmO-uctstI-u7q8x2OnN7y5a5U_2ged69VN
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMsFLAEHK3aHseODwi1pcuWPniolXoLTuwsHMguu1uh8qP4jYzzaIWQuPUYO8lhPI9v7PE3AC-FDNpS3sGDrw3XUTjurM84RlEpVdvUIylVWxybyal-f5adrcHv4S5MKqscfGLrqMOsSnvkW0hQ3lLwNfLN_AdPXaPS6erQQqNTi4N48ZNStuXr_be0vq-UGu-d7E5431WAV6jEijtC2KrUWFn0mavy0hgVM4-YiZBFzIKMHkMw1pRS1jmNOowmd3UeacR5pP_egJsa0SWLysfvLvd0BJJCC92xoNK82FospaEAaiX-Fffa9gD_eP82pI3vwO0ei7LtTnnuwlps7sFG3xb968V9aHa7LoXNlPkmsA_kXr5_-5Uex_QtO2oLMSPrOVqnbLsnKI9Ltpqxzz74Bd-hMBnYp3PftNfZyLmyj4lRY96Tg7M9cjLd_ckHcHotonwI682siY-AlQSjqkx6FbBM_DE-hjrhDydCQBT1CF4M4ivmHQ9HQflLEnJxJeQR7CTJXr6RuLPbgdliWvSmWASCaDXWljLDqCtHpkSoSEvtra-8dWYEm8O6FL1BL4sr9Xv8_-nnsDE5OTosDvePD57ALUUYqKt-2YT11eI8PiUMsyqftYrD4Mt1a-ofCJcEfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2VVAIuiE-RUsAScLRi7-za8QGhpk3UUgiholJvi3ftDRy6CUkqVH4av47xrrcVQuLW43o_DuPnmTfe8RuA10K6VFPewZ2tFE-9MNxom3H0okySSoceSaHaYqoOT9P3Z9nZFvzuzsKEssrOJzaO2i3KsEc-QKLymoKvkoMqlkXMDibvlj946CAV_rR27TRaiBz7y5-Uvq3fHh3QXL9Jksn4y_4hjx0GeImJ2HBDbDspUiw12syUw0KpxGcWMRMu85g56S06p7QqpKyGNGrQq6Gphp5GjEX67i3Y1pQViR5sj8bT2cnVDo9AgrdIW01URCMGq7VUFE61xL-iYNMs4J9Y0AS4yX24F5kp22uh9AC2fP0Q7sQm6d8uH0G93_YsrOfM1o59Imdz_v1XuJzQu-xjU5bpWVRsnbO9KFfu12yzYCfW2RUfUdB07POFrZvDbeRq2SzoayyjVDgbk8tpT1M-htMbMeYT6NWL2j8FVhCpKjNpE4dFUJOx3lWBjRjhHKKo-vCqM1--bFU5cspmgpHzayP3YRQse_VEUNJuBhareR4XZu6IsFVYacoTfVoaWljEkVKZWm1Lq43qw243L3lc3uv8Gow7_7_9Em4TSvMPR9PjZ3A3IULUlsLsQm-zuvDPidBsihcROQy-3jRY_wBHhQoR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+and+Optimizing+Four+Machine+Learning+Approaches+to+Radar-Based+Quantitative+Precipitation+Estimation&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Miaomiao+Liu&rft.au=Juncheng+Zuo&rft.au=Jianguo+Tan&rft.au=Dongwei+Liu&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=24&rft.spage=4713&rft_id=info:doi/10.3390%2Frs16244713&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d893f3f7956e4c9ead819414a7aca796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon