Comparing and Optimizing Four Machine Learning Approaches to Radar-Based Quantitative Precipitation Estimation
To improve radar-based quantitative precipitation estimation (QPE) methods, this study investigated the relationship between radar reflectivity (Z) and hourly rainfall intensity (R) using data from 289 precipitation events in Shanghai between September 2020 and March 2024. Two Z-R relationship model...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 24; p. 4713 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To improve radar-based quantitative precipitation estimation (QPE) methods, this study investigated the relationship between radar reflectivity (Z) and hourly rainfall intensity (R) using data from 289 precipitation events in Shanghai between September 2020 and March 2024. Two Z-R relationship models were compared in terms of their fitting performance: Z = 270.81 R1.09 (empirically fitted relationship) and Z = 300 R1.4 (standard relationship). The results show that the Z = 270.81 R1.09 model outperforms the Z = 300 R1.4 model in terms of fitting accuracy. Specifically, the Z = 270.81 R1.09 model more effectively captures the nonlinear relationship between radar reflectivity and rainfall intensity, with a higher degree of agreement between the fitted curve and the observed data points. This model demonstrated superior performance across all 289 precipitation events. This study evaluated the performance of four machine learning approaches while incorporating five meteorological features: specific differential phase shift (KDP), echo-top height (ET), vertical liquid water content (VIL), differential reflectivity (ZDR), and correlation coefficient (CC). Nine QPE models were constructed using these inputs. The key findings are as follows: (1) For models with a single-variable input, the KAN deep learning model outperformed Random Forest, Gradient Boosting Decision Trees, Support Vector Machines, and the traditional Z-R relationship. (2) When six features were used as inputs, the accuracy of the machine learning models improved significantly, with the KAN deep learning model outperforming other machine learning methods. Compared to using only radar reflectivity, the KAN deep learning model reduced the MRE by 20.78%, MAE by 4.07%, and RMSE by 12.74%, while increasing the coefficient of determination (R2) by 18.74%. (3) The integration of multiple meteorological features and machine learning optimization significantly enhanced QPE accuracy, with the KAN deep learning model performing best under varying meteorological conditions. This approach offers a promising method for improving radar-based QPE, particularly considering seasonal, weather system, and precipitation stage differentiation. |
---|---|
AbstractList | To improve radar-based quantitative precipitation estimation (QPE) methods, this study investigated the relationship between radar reflectivity (Z) and hourly rainfall intensity (R) using data from 289 precipitation events in Shanghai between September 2020 and March 2024. Two Z-R relationship models were compared in terms of their fitting performance: Z = 270.81 R1.09 (empirically fitted relationship) and Z = 300 R1.4 (standard relationship). The results show that the Z = 270.81 R1.09 model outperforms the Z = 300 R1.4 model in terms of fitting accuracy. Specifically, the Z = 270.81 R1.09 model more effectively captures the nonlinear relationship between radar reflectivity and rainfall intensity, with a higher degree of agreement between the fitted curve and the observed data points. This model demonstrated superior performance across all 289 precipitation events. This study evaluated the performance of four machine learning approaches while incorporating five meteorological features: specific differential phase shift (KDP), echo-top height (ET), vertical liquid water content (VIL), differential reflectivity (ZDR), and correlation coefficient (CC). Nine QPE models were constructed using these inputs. The key findings are as follows: (1) For models with a single-variable input, the KAN deep learning model outperformed Random Forest, Gradient Boosting Decision Trees, Support Vector Machines, and the traditional Z-R relationship. (2) When six features were used as inputs, the accuracy of the machine learning models improved significantly, with the KAN deep learning model outperforming other machine learning methods. Compared to using only radar reflectivity, the KAN deep learning model reduced the MRE by 20.78%, MAE by 4.07%, and RMSE by 12.74%, while increasing the coefficient of determination (R2) by 18.74%. (3) The integration of multiple meteorological features and machine learning optimization significantly enhanced QPE accuracy, with the KAN deep learning model performing best under varying meteorological conditions. This approach offers a promising method for improving radar-based QPE, particularly considering seasonal, weather system, and precipitation stage differentiation. |
Author | Liu, Miaomiao Tan, Jianguo Zuo, Juncheng Liu, Dongwei |
Author_xml | – sequence: 1 givenname: Miaomiao surname: Liu fullname: Liu, Miaomiao – sequence: 2 givenname: Juncheng surname: Zuo fullname: Zuo, Juncheng – sequence: 3 givenname: Jianguo surname: Tan fullname: Tan, Jianguo – sequence: 4 givenname: Dongwei surname: Liu fullname: Liu, Dongwei |
BookMark | eNpNkU1vFDEMhiNUJErphV8QiRvS0Mk4H5NjWbVQaVEBwTnyJp6SVZsMyWwl-PVkdyvAF9uPrNdfL9lJyokYey36dwC2vyhV6EFKI-AZOx16M3RysMPJf_ELdl7rtm8GIGwvT1la5YcZS0x3HFPgt_MSH-LvfXqdd4V_Qv8jJuJrwpL29HKeS26QKl8y_4oBS_ceKwX-ZYdpiQsu8ZH450I-zocsJ35Vm-ohfMWeT3hf6fzJn7Hv11ffVh-79e2Hm9XluvMw9EtnldHDRoI3gMr6caP1QAoBVB8UgQqCEELQRm-EmMZGLZAe7TRSIxbhjN0cdUPGrZtLa19-uYzRHUAudw7LEv09uTBamGAyVmmS3hKGUVgpJBr0aKxuWm-OWm3znzuqi9u206Q2vgMhrVFCadGq3h6rfMm1Fpr-dhW927_H_XsP_AEiOYQQ |
Cites_doi | 10.3390/rs13163157 10.1007/s00376-023-3039-0 10.3390/rs14194752 10.1111/j.1365-2966.2011.18359.x 10.3390/rs12223767 10.1007/s00376-022-2127-x 10.3390/rs11141632 10.1007/s13351-020-9036-7 10.1029/RS021i002p00235 10.3390/rs14163988 10.3390/rs13010154 10.3390/atmos11121382 10.1007/s00376-011-1139-8 10.1002/met.1638 10.3390/rs12020262 10.3390/rs12213572 10.1016/j.jhydrol.2011.01.015 10.1016/j.atmosres.2020.105372 10.1175/JHM-D-17-0109.1 10.3390/rs13234956 10.3390/rs14020344 10.1155/2021/9349738 10.3390/rs13020214 10.5194/nhess-10-149-2010 10.1175/JHM-D-20-0033.1 10.1016/j.atmosres.2023.107024 10.1007/s13351-018-7163-1 10.1175/JTECH-D-15-0239.1 10.3390/rs14071695 10.3390/rs15041111 10.1016/j.atmosres.2019.104834 10.3390/hydrology9080137 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs16244713 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_d893f3f7956e4c9ead819414a7aca796 10_3390_rs16244713 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c320t-95762b43c73a59c8b662e5a3350d5e35d1ea3dd676b11f850d93e689f8e6b19a3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:24:12 EDT 2025 Fri Jul 25 11:51:54 EDT 2025 Tue Jul 01 01:33:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c320t-95762b43c73a59c8b662e5a3350d5e35d1ea3dd676b11f850d93e689f8e6b19a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/d893f3f7956e4c9ead819414a7aca796 |
PQID | 3149751561 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d893f3f7956e4c9ead819414a7aca796 proquest_journals_3149751561 crossref_primary_10_3390_rs16244713 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zeng (ref_12) 2021; 250 Wijayarathne (ref_6) 2020; 21 Li (ref_7) 2020; 236 Huangfu (ref_4) 2024; 41 Wang (ref_8) 2012; 29 ref_11 ref_33 Zeng (ref_13) 2023; 295 ref_19 ref_18 ref_17 ref_16 Zou (ref_28) 2023; 40 ref_15 Liu (ref_24) 2011; 413 Zhang (ref_31) 2020; 34 Yang (ref_26) 2017; 24 Hazenberg (ref_23) 2011; 402 ref_25 Sachidananda (ref_22) 1986; 21 Fang (ref_14) 2018; 32 Ma (ref_32) 2018; 19 Alfieri (ref_10) 2010; 10 ref_21 Feng (ref_20) 2021; 2021 ref_1 ref_3 ref_2 ref_29 ref_27 ref_9 ref_5 Krause (ref_30) 2016; 33 |
References_xml | – ident: ref_29 doi: 10.3390/rs13163157 – volume: 41 start-page: 1147 year: 2024 ident: ref_4 article-title: Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-023-3039-0 – ident: ref_21 doi: 10.3390/rs14194752 – volume: 413 start-page: 2877 year: 2011 ident: ref_24 article-title: The hourly average solar wind velocity prediction based on support vector regression method: Solar wind velocity prediction based on SVR publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2011.18359.x – ident: ref_9 doi: 10.3390/rs12223767 – volume: 40 start-page: 1043 year: 2023 ident: ref_28 article-title: Radar Quantitative Precipitation Estimation Based on the Gated Recurrent Unit Neural Network and Echo-Top Data publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-022-2127-x – ident: ref_25 doi: 10.3390/rs11141632 – volume: 34 start-page: 413 year: 2020 ident: ref_31 article-title: Short-Term Dynamic Radar Quantitative Precipitation Estimation Based on Wavelet Transform and Support Vector Machine publication-title: J. Meteorol. Res. doi: 10.1007/s13351-020-9036-7 – volume: 21 start-page: 235 year: 1986 ident: ref_22 article-title: Differential Propagation Phase Shift and Rainfall Rate Estimation publication-title: Radio Sci. doi: 10.1029/RS021i002p00235 – ident: ref_18 doi: 10.3390/rs14163988 – ident: ref_2 doi: 10.3390/rs13010154 – ident: ref_19 doi: 10.3390/atmos11121382 – volume: 29 start-page: 575 year: 2012 ident: ref_8 article-title: Improvement of radar quantitative precipitation estimation based on real-time adjustments to Z-R relationships and inverse distance weighting correction schemes publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-011-1139-8 – volume: 24 start-page: 404 year: 2017 ident: ref_26 article-title: A terrain-based weighted random forests method for radar quantitative precipitation estimation: A TWRF method for QPE publication-title: Meteorol. Appl. doi: 10.1002/met.1638 – ident: ref_3 doi: 10.3390/rs12020262 – ident: ref_16 doi: 10.3390/rs12213572 – volume: 402 start-page: 179 year: 2011 ident: ref_23 article-title: Scaling of raindrop size distributions and classification of radar reflectivity–rain rate relations in intense Mediterranean precipitation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.01.015 – volume: 250 start-page: 105372 year: 2021 ident: ref_12 article-title: An investigation of convective features and Z-R relationships for a local extreme precipitation event publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2020.105372 – volume: 19 start-page: 761 year: 2018 ident: ref_32 article-title: Using the Gradient Boosting Decision Tree to Improve the Delineation of Hourly Rain Areas during the Summer from Advanced Himawari Imager Data publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-17-0109.1 – ident: ref_5 doi: 10.3390/rs13234956 – ident: ref_33 – ident: ref_1 doi: 10.3390/rs14020344 – volume: 2021 start-page: 9349738 year: 2021 ident: ref_20 article-title: Characteristics of Raindrop Size Distribution in Typhoon Nida (2016) before and after Landfall in Southern China from 2D Video Disdrometer Data publication-title: Adv. Meteorol. doi: 10.1155/2021/9349738 – ident: ref_17 doi: 10.3390/rs13020214 – volume: 10 start-page: 149 year: 2010 ident: ref_10 article-title: Time-dependent ZR relationships for estimating rainfall fields from radar measurements publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-10-149-2010 – volume: 21 start-page: 1847 year: 2020 ident: ref_6 article-title: Evaluation of Radar Quantitative Precipitation Estimates (QPEs) as an Input of Hydrological Models for Hydrometeorological Applications publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-20-0033.1 – volume: 295 start-page: 107024 year: 2023 ident: ref_13 article-title: Seasonal variation of microphysical characteristics for different rainfall types in the Tianshan Mountains of China publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2023.107024 – volume: 32 start-page: 598 year: 2018 ident: ref_14 article-title: Statistics of the Z–R Relationship for Strong Convective Weather over the Yangtze–Huaihe River Basin and Its Application to Radar Reflectivity Data Assimilation for a Heavy Rain Event publication-title: J. Meteorol. Res. doi: 10.1007/s13351-018-7163-1 – volume: 33 start-page: 1875 year: 2016 ident: ref_30 article-title: A Simple Algorithm to Discriminate between Meteorological and Nonmeteorological Radar Echoes publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-15-0239.1 – ident: ref_11 doi: 10.3390/rs14071695 – ident: ref_27 doi: 10.3390/rs15041111 – volume: 236 start-page: 104834 year: 2020 ident: ref_7 article-title: Assessment of GPM IMERG and radar quantitative precipitation estimation (QPE) products using dense rain gauge observations in the Guangdong-Hong Kong-Macao Greater Bay Area, China publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2019.104834 – ident: ref_15 doi: 10.3390/hydrology9080137 |
SSID | ssj0000331904 |
Score | 2.3885672 |
Snippet | To improve radar-based quantitative precipitation estimation (QPE) methods, this study investigated the relationship between radar reflectivity (Z) and hourly... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 4713 |
SubjectTerms | Accuracy Correlation coefficient Correlation coefficients Data collection Data points Decision trees Deep learning Estimates KAN deep learning Learning algorithms Machine learning machine learning method Moisture content multivariable Neural networks Observational learning Optimization Performance evaluation Precipitation Quality control Radar Radar systems radar-based quantitative precipitation estimation Rain Rainfall Rainfall intensity random forest Reflectance Support vector machines Water Water content Wavelet transforms |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagHWBBPEV5yRKsFnYuseMJtagVQgIKAoktcmKnMJCWPgb49ZwTF4SQGHNxlvM9vnPO3xFyxoWNFdYdzJpSsthxzbQyCQPHiygqlZ-R5LstbuXVU3z9nDyHA7dZaKtcxsQ6UNtx4c_IzwGhvMLkK8XF5J35qVH-72oYobFK2hiCUyy-2r3-7fDh-5SFA5oYjxteUsD6_nw6ExJTmhLwKxPVhP1_4nGdZAabZCOgQ9pttnOLrLhqm6yFQeUvHzukumzmBlYjaipL79Dh314__eMAv6U3dWuko4E1dUS7gTLczeh8TB-MNVPWw8Rl6f3CVPUFMwx3dOg5LiaBrpv20e2bG4275GnQf7y8YmFkAisg4nOmsXyI8hgKBSbRRZpLGbnEACTcJg4SK5wBa6WSuRBlilINTqa6TB1KtIE90qrGldsnNEdgUyTCRBZyz-hinC09ItDcWgBedsjpUn3ZpGHGyLCi8ErOfpTcIT2v2e8Vns26Foynoyw4R2YRNJVQKqzVXFxoNG7EKbGIjTKFUVp2yNFyX7LgYrPsxyAO_n99SNYjRCJND8oRac2nC3eMSGKenwRz-QKMG8nM priority: 102 providerName: ProQuest |
Title | Comparing and Optimizing Four Machine Learning Approaches to Radar-Based Quantitative Precipitation Estimation |
URI | https://www.proquest.com/docview/3149751561 https://doaj.org/article/d893f3f7956e4c9ead819414a7aca796 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgDLAgPkX5qCzBGhHnYjse29JSISjfUrfIiZ3CQFq1YYBfzzkJUMTAwhTFSpTkLvZ7Tzq_I-TEZyaUqDs8ozPhhdZXnpKae2D9NAgy6XokuWqLoRg8hhcjPlpo9eVqwip74CpwpwYBNYNMIo-3YarwwxHDQhZqqVMtVWm2jZi3IKbKNRjw1_LDyo8UUNefzuZMIJRJBj8QqDTq_7UOl-DS3yDrNSuk7eptNsmSzbfIat2g_Oltm-Tdql9gPqYo_ek1TvSX53d32sd76VVZEmlp7ZY6pu3aKtzOaTGhd9romddBwDL09lXn5cYyXObojfO2mNY23bSH073aybhDHvu9h-7Aq1sleCkEfuEplA1BEkIqQXOVRokQgeUagPuGW-CGWQ3GCCkSxrIIRxVYEakssjiiNOySRj7J7R6hCRKalDMdGEick4u2JnNMQPnGAPhZkxx_hi-eVo4YMSoJF-T4O8hN0nGR_brCuViXA5jbuM5t_Fdum-TwMy9xPbXmMaCmk8jCBNv_j2cckLUAeUpVoXJIGsXs1R4hzyiSFlmO-uctstI-u7q8x2OnN7y5a5U_2ged69VN |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMsFLAEHK3aHseODwi1pcuWPniolXoLTuwsHMguu1uh8qP4jYzzaIWQuPUYO8lhPI9v7PE3AC-FDNpS3sGDrw3XUTjurM84RlEpVdvUIylVWxybyal-f5adrcHv4S5MKqscfGLrqMOsSnvkW0hQ3lLwNfLN_AdPXaPS6erQQqNTi4N48ZNStuXr_be0vq-UGu-d7E5431WAV6jEijtC2KrUWFn0mavy0hgVM4-YiZBFzIKMHkMw1pRS1jmNOowmd3UeacR5pP_egJsa0SWLysfvLvd0BJJCC92xoNK82FospaEAaiX-Fffa9gD_eP82pI3vwO0ei7LtTnnuwlps7sFG3xb968V9aHa7LoXNlPkmsA_kXr5_-5Uex_QtO2oLMSPrOVqnbLsnKI9Ltpqxzz74Bd-hMBnYp3PftNfZyLmyj4lRY96Tg7M9cjLd_ckHcHotonwI682siY-AlQSjqkx6FbBM_DE-hjrhDydCQBT1CF4M4ivmHQ9HQflLEnJxJeQR7CTJXr6RuLPbgdliWvSmWASCaDXWljLDqCtHpkSoSEvtra-8dWYEm8O6FL1BL4sr9Xv8_-nnsDE5OTosDvePD57ALUUYqKt-2YT11eI8PiUMsyqftYrD4Mt1a-ofCJcEfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2VVAIuiE-RUsAScLRi7-za8QGhpk3UUgiholJvi3ftDRy6CUkqVH4av47xrrcVQuLW43o_DuPnmTfe8RuA10K6VFPewZ2tFE-9MNxom3H0okySSoceSaHaYqoOT9P3Z9nZFvzuzsKEssrOJzaO2i3KsEc-QKLymoKvkoMqlkXMDibvlj946CAV_rR27TRaiBz7y5-Uvq3fHh3QXL9Jksn4y_4hjx0GeImJ2HBDbDspUiw12syUw0KpxGcWMRMu85g56S06p7QqpKyGNGrQq6Gphp5GjEX67i3Y1pQViR5sj8bT2cnVDo9AgrdIW01URCMGq7VUFE61xL-iYNMs4J9Y0AS4yX24F5kp22uh9AC2fP0Q7sQm6d8uH0G93_YsrOfM1o59Imdz_v1XuJzQu-xjU5bpWVRsnbO9KFfu12yzYCfW2RUfUdB07POFrZvDbeRq2SzoayyjVDgbk8tpT1M-htMbMeYT6NWL2j8FVhCpKjNpE4dFUJOx3lWBjRjhHKKo-vCqM1--bFU5cspmgpHzayP3YRQse_VEUNJuBhareR4XZu6IsFVYacoTfVoaWljEkVKZWm1Lq43qw243L3lc3uv8Gow7_7_9Em4TSvMPR9PjZ3A3IULUlsLsQm-zuvDPidBsihcROQy-3jRY_wBHhQoR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+and+Optimizing+Four+Machine+Learning+Approaches+to+Radar-Based+Quantitative+Precipitation+Estimation&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Miaomiao+Liu&rft.au=Juncheng+Zuo&rft.au=Jianguo+Tan&rft.au=Dongwei+Liu&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=24&rft.spage=4713&rft_id=info:doi/10.3390%2Frs16244713&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d893f3f7956e4c9ead819414a7aca796 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |