The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes
Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GN...
Saved in:
Published in | Nanoscale Vol. 7; no. 15; pp. 6504 - 6509 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
21.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes – [Ru(NH
3
)
6
]
3+/2+
, [Fe(CN)
6
]
3−/4−
and important bio-analytes – dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm
−2
) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices. |
---|---|
AbstractList | Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes--[Ru(NH3)6](3+/2+), [Fe(CN)6](3-/4-) and important bio-analytes--dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm(-2)) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices.Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes--[Ru(NH3)6](3+/2+), [Fe(CN)6](3-/4-) and important bio-analytes--dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm(-2)) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices. Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes - [Ru(NH sub(3)) sub(6)] super(3+/2+), [Fe(CN) sub(6)] super(3-/4-) and important bio-analytes - dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 mu F cm super(-2)) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices. Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes – [Ru(NH 3 ) 6 ] 3+/2+ , [Fe(CN) 6 ] 3−/4− and important bio-analytes – dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm −2 ) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices. Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes--[Ru(NH3)6](3+/2+), [Fe(CN)6](3-/4-) and important bio-analytes--dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm(-2)) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices. |
Author | Alwarappan, Subbiah Narayanan, Tharangattu N. Vineesh, Thazhe Veettil |
Author_xml | – sequence: 1 givenname: Thazhe Veettil surname: Vineesh fullname: Vineesh, Thazhe Veettil organization: CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi-630006, India – sequence: 2 givenname: Subbiah surname: Alwarappan fullname: Alwarappan, Subbiah organization: CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi-630006, India – sequence: 3 givenname: Tharangattu N. surname: Narayanan fullname: Narayanan, Tharangattu N. organization: TIFR-Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Sciences, Hyderabad - 500 075, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25712510$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0U1LxDAQBuAgiuuuXvwB0qMI1SSTJu1R1k8UBdFzSbMTN9oma9IV_PfWbxAPnmYOzzswM2Oy6oNHQrYZ3WcUqoOpuLqhClhxsUI2OBU0B1B89buXYkTGKT1QKiuQsE5GvFCMF4xuEHM7x8x1ixiecZZhi6aPwcyxc0a32QKjDbHT3mAWbGZiSClvnX8cLBxl91Ev5ugx89qH6Jom-KwLPrSun3_NmmHaJGtWtwm3PuuE3J0c307P8svr0_Pp4WVugNM-LwVywYSCRpdKS6CqASUFpeWwHKpyppQAYay1GgpZFoZztNxWRoBhEguYkN2PucM2T0tMfd25ZLBttcewTDUbQqpiomT_oLIqoQSpBrrzSZdNh7N6EV2n40v9dcMB7H2A9_NEtN-E0frtQfXPgwZMf2Hjet274PuoXftX5BUUA5Fc |
CitedBy_id | crossref_primary_10_1007_s10853_020_04391_2 crossref_primary_10_1021_jacs_8b06414 crossref_primary_10_1039_C7TA07874A crossref_primary_10_1016_j_pmatsci_2020_100665 crossref_primary_10_1016_j_bios_2022_114229 crossref_primary_10_1149_1945_7111_ab6c54 crossref_primary_10_1016_j_matdes_2020_108487 crossref_primary_10_1016_j_jcis_2024_08_191 crossref_primary_10_1002_adma_201802403 crossref_primary_10_1016_j_compscitech_2018_12_014 crossref_primary_10_1016_j_bios_2020_112033 crossref_primary_10_1007_s12274_022_5176_7 crossref_primary_10_1016_j_jallcom_2024_178136 crossref_primary_10_1039_C6RA19496F crossref_primary_10_1016_j_mtener_2021_100814 crossref_primary_10_1016_j_electacta_2018_08_103 crossref_primary_10_1016_j_carbon_2016_03_058 crossref_primary_10_1039_C7CC03060F crossref_primary_10_1002_ppsc_201600346 crossref_primary_10_1080_00032719_2024_2320825 crossref_primary_10_1021_acsanm_1c00178 crossref_primary_10_1557_jmr_2015_349 crossref_primary_10_1016_j_snb_2022_131617 crossref_primary_10_1149_1945_7111_ac035e crossref_primary_10_1002_cnma_202100155 crossref_primary_10_1016_j_microc_2024_111261 crossref_primary_10_1021_acs_jpclett_5b01595 crossref_primary_10_1016_j_ces_2022_118402 crossref_primary_10_1016_j_ijbiomac_2023_124269 crossref_primary_10_1039_C6RA03429B |
Cites_doi | 10.1002/adma.200902986 10.1021/nn402272u 10.1002/macp.201200001 10.1039/c000417k 10.1002/adma.200803003 10.1176/ajp.148.11.1474 10.1002/adma.201202289 10.1039/c3cc46907g 10.1002/adfm.201301077 10.1021/nn103537q 10.1039/c3ta14070a 10.1039/c2cs35105f 10.1038/nn1265 10.1002/adfm.200900377 10.1038/nchem.686 10.1021/cm9902772 10.1038/srep00363 10.1021/ar3001487 10.1016/j.snb.2008.03.015 10.1021/nn300082k 10.1021/ac960492r 10.1016/0008-6223(95)00120-3 10.1021/nl3027372 10.1039/C1JM14694G 10.1039/C3CS60248F 10.1039/c1cp21665a 10.1016/j.carbon.2008.09.045 10.1039/B512688F 10.1002/adfm.200900166 10.1002/adma.201200197 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7SP 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
DOI | 10.1039/C4NR07315K |
DatabaseName | CrossRef PubMed MEDLINE - Academic Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 6509 |
ExternalDocumentID | 25712510 10_1039_C4NR07315K |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF DU5 EBS ECGLT EE0 EF- EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 P2P R56 RAOCF RCNCU RNS RPMJG RSCEA RVUXY NPM 7X8 7SP 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
ID | FETCH-LOGICAL-c320t-84e241473ba87a6307b3764008073e78d77434cfffa35685c22ef2f9c43c16e53 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Thu Jul 10 20:47:04 EDT 2025 Fri Jul 11 00:37:05 EDT 2025 Mon Jul 21 05:33:28 EDT 2025 Tue Jul 01 00:33:17 EDT 2025 Thu Apr 24 23:08:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-84e241473ba87a6307b3764008073e78d77434cfffa35685c22ef2f9c43c16e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25712510 |
PQID | 1669838367 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1685791481 proquest_miscellaneous_1669838367 pubmed_primary_25712510 crossref_primary_10_1039_C4NR07315K crossref_citationtrail_10_1039_C4NR07315K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-21 |
PublicationDateYYYYMMDD | 2015-04-21 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2015 |
References | Wang (C4NR07315K-(cit28)/*[position()=1]) 2014; 43 Sheng (C4NR07315K-(cit30)/*[position()=1]) 2012; 22 Banks (C4NR07315K-(cit15)/*[position()=1]) 2006; 131 Barinov (C4NR07315K-(cit21)/*[position()=1]) 2009; 21 Hashim (C4NR07315K-(cit1)/*[position()=1]) 2012; 2 Wang (C4NR07315K-(cit22)/*[position()=1]) 1999; 11 Mattevi (C4NR07315K-(cit17)/*[position()=1]) 2009; 19 Cong (C4NR07315K-(cit7)/*[position()=1]) 2012; 6 Sudeep (C4NR07315K-(cit10)/*[position()=1]) 2013; 7 Hahm (C4NR07315K-(cit3)/*[position()=1]) 2012; 12 Biener (C4NR07315K-(cit5)/*[position()=1]) 2012; 24 Li (C4NR07315K-(cit9)/*[position()=1]) 2011; 5 James (C4NR07315K-(cit16)/*[position()=1]) 2012; 213 Yang (C4NR07315K-(cit19)/*[position()=1]) 2009; 47 Hoglinger (C4NR07315K-(cit26)/*[position()=1]) 2004; 7 Streeter (C4NR07315K-(cit24)/*[position()=1]) 2008; 133 Zhang (C4NR07315K-(cit12)/*[position()=1]) 2010; 20 Brownson (C4NR07315K-(cit14)/*[position()=1]) 2012; 41 Hontoria-Lucas (C4NR07315K-(cit20)/*[position()=1]) 1995; 33 Niu (C4NR07315K-(cit6)/*[position()=1]) 2012; 24 Kim (C4NR07315K-(cit13)/*[position()=1]) 2011; 13 Tang (C4NR07315K-(cit25)/*[position()=1]) 2009; 19 He (C4NR07315K-(cit29)/*[position()=1]) 2014; 2 Gui (C4NR07315K-(cit8)/*[position()=1]) 2010; 22 Yazyev (C4NR07315K-(cit11)/*[position()=1]) 2013; 46 Kumar (C4NR07315K-(cit2)/*[position()=1]) 2014; 50 Chen (C4NR07315K-(cit23)/*[position()=1]) 1996; 68 Bagri (C4NR07315K-(cit18)/*[position()=1]) 2010; 2 Jiang (C4NR07315K-(cit4)/*[position()=1]) 2013; 23 Davis (C4NR07315K-(cit27)/*[position()=1]) 1991; 148 |
References_xml | – volume: 22 start-page: 617 year: 2010 ident: C4NR07315K-(cit8)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200902986 – volume: 7 start-page: 7034 year: 2013 ident: C4NR07315K-(cit10)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn402272u – volume: 213 start-page: 1033 year: 2012 ident: C4NR07315K-(cit16)/*[position()=1] publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201200001 – volume: 20 start-page: 5983 year: 2010 ident: C4NR07315K-(cit12)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c000417k – volume: 21 start-page: 1916 year: 2009 ident: C4NR07315K-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200803003 – volume: 148 start-page: 1474 year: 1991 ident: C4NR07315K-(cit27)/*[position()=1] publication-title: Am. J. Psychiatry doi: 10.1176/ajp.148.11.1474 – volume: 24 start-page: 5083 year: 2012 ident: C4NR07315K-(cit5)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201202289 – volume: 50 start-page: 2015 year: 2014 ident: C4NR07315K-(cit2)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc46907g – volume: 23 start-page: 5846 year: 2013 ident: C4NR07315K-(cit4)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201301077 – volume: 5 start-page: 2264 year: 2011 ident: C4NR07315K-(cit9)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn103537q – volume: 2 start-page: 3231 year: 2014 ident: C4NR07315K-(cit29)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta14070a – volume: 41 start-page: 6944 year: 2012 ident: C4NR07315K-(cit14)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35105f – volume: 7 start-page: 726 year: 2004 ident: C4NR07315K-(cit26)/*[position()=1] publication-title: Nat. Neurosci. doi: 10.1038/nn1265 – volume: 19 start-page: 2782 year: 2009 ident: C4NR07315K-(cit25)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200900377 – volume: 2 start-page: 581 year: 2010 ident: C4NR07315K-(cit18)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.686 – volume: 11 start-page: 2573 year: 1999 ident: C4NR07315K-(cit22)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm9902772 – volume: 2 start-page: 363 year: 2012 ident: C4NR07315K-(cit1)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep00363 – volume: 46 start-page: 2319 year: 2013 ident: C4NR07315K-(cit11)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar3001487 – volume: 133 start-page: 462 year: 2008 ident: C4NR07315K-(cit24)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2008.03.015 – volume: 6 start-page: 2693 year: 2012 ident: C4NR07315K-(cit7)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn300082k – volume: 68 start-page: 3958 year: 1996 ident: C4NR07315K-(cit23)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac960492r – volume: 33 start-page: 1585 year: 1995 ident: C4NR07315K-(cit20)/*[position()=1] publication-title: Carbon doi: 10.1016/0008-6223(95)00120-3 – volume: 12 start-page: 5616 year: 2012 ident: C4NR07315K-(cit3)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl3027372 – volume: 22 start-page: 390 year: 2012 ident: C4NR07315K-(cit30)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/C1JM14694G – volume: 43 start-page: 7746 year: 2014 ident: C4NR07315K-(cit28)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60248F – volume: 13 start-page: 17505 year: 2011 ident: C4NR07315K-(cit13)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp21665a – volume: 47 start-page: 145 year: 2009 ident: C4NR07315K-(cit19)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2008.09.045 – volume: 131 start-page: 15 year: 2006 ident: C4NR07315K-(cit15)/*[position()=1] publication-title: Analyst doi: 10.1039/B512688F – volume: 19 start-page: 2577 year: 2009 ident: C4NR07315K-(cit17)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200900166 – volume: 24 start-page: 4144 year: 2012 ident: C4NR07315K-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201200197 |
SSID | ssj0069363 |
Score | 2.3043535 |
Snippet | Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 6504 |
SubjectTerms | Capacitance Crosslinking Devices Electrodes Graphene Nanostructure Three dimensional Two dimensional |
Title | The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25712510 https://www.proquest.com/docview/1669838367 https://www.proquest.com/docview/1685791481 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcAB8WbLQ0ZwQVVKEj_iHJcWqKjoAbWlt8iv0BVtstrNCtFfzzixkxRtEXCJotixLc-nzzP2zBih1wksK4mhJjI2jiNqwGaVhqmIlmWilDQ8bzMxfT7k-8f00yk7HUVcu-iSRu3oy7VxJf8jVfgGcnVRsv8g2b5R-ADvIF94goTh-dcynrW7AqA2-gttdMgAMB-FBDjfcbccRu68FuqSve02UzUQ3XYlq3oxUwpgAAN37nBnoS3jHQy98gpMXC-h6R4LJy6V4fKsczSSlzCaE2ubZvDamJ7_kNDP3O-yrpSajfafoeinDPcju8TR1TfZNCt_OuS3IhLmTlW6-OYd21JW6vwTCcmu8Gs2hhEbkSUoh3Qti8fEJUHVtFoAASXs-7gSSGB-0coTyMZpZ_GwkvX-haHoJtpMwXwA_tucHrz7-DWs0TwnnIRktSR_O3TlkkP7n69qKteYH60acnQX3fH2A552YLiHbtjqPro9yir5AGmABQ6wwL_BAo9ggesSj2GByR4OsMADLHCABR5g8RAdf3h_tLsf-bs0Ik3SuIkEtaCr0YwoKTLJgdkVLC3UGQwZsZkwYAYQqsuylIRxwXSa2jItc02JTrhl5BHaqOrKPkFYM5pZUFyVAfUvLW2uuRDwm3S2LWVigt6EeSu0TzTv7js5L1qHB5IXu_TwSzvdBxP0qq8779KrrK31Mkx_AeznjrRkZevVskg4zwURhGd_qiNYloPZn0zQ4052fV9B1lvXljxFtwaoP0MbzWJln4Me2qgXHlS_AAQ5jHw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+improved+electrochemical+performance+of+cross-linked+3D+graphene+nanoribbon+monolith+electrodes&rft.jtitle=Nanoscale&rft.au=Vineesh%2C+Thazhe+Veettil&rft.au=Alwarappan%2C+Subbiah&rft.au=Narayanan%2C+Tharangattu+N&rft.date=2015-04-21&rft.eissn=2040-3372&rft.volume=7&rft.issue=15&rft.spage=6504&rft_id=info:doi/10.1039%2Fc4nr07315k&rft_id=info%3Apmid%2F25712510&rft.externalDocID=25712510 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |