The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes

Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GN...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 7; no. 15; pp. 6504 - 6509
Main Authors Vineesh, Thazhe Veettil, Alwarappan, Subbiah, Narayanan, Tharangattu N.
Format Journal Article
LanguageEnglish
Published England 21.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes – [Ru(NH 3 ) 6 ] 3+/2+ , [Fe(CN) 6 ] 3−/4− and important bio-analytes – dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm −2 ) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices.
AbstractList Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes--[Ru(NH3)6](3+/2+), [Fe(CN)6](3-/4-) and important bio-analytes--dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm(-2)) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices.Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes--[Ru(NH3)6](3+/2+), [Fe(CN)6](3-/4-) and important bio-analytes--dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm(-2)) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices.
Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes - [Ru(NH sub(3)) sub(6)] super(3+/2+), [Fe(CN) sub(6)] super(3-/4-) and important bio-analytes - dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 mu F cm super(-2)) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices.
Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes – [Ru(NH 3 ) 6 ] 3+/2+ , [Fe(CN) 6 ] 3−/4− and important bio-analytes – dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm −2 ) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices.
Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes--[Ru(NH3)6](3+/2+), [Fe(CN)6](3-/4-) and important bio-analytes--dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm(-2)) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices.
Author Alwarappan, Subbiah
Narayanan, Tharangattu N.
Vineesh, Thazhe Veettil
Author_xml – sequence: 1
  givenname: Thazhe Veettil
  surname: Vineesh
  fullname: Vineesh, Thazhe Veettil
  organization: CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi-630006, India
– sequence: 2
  givenname: Subbiah
  surname: Alwarappan
  fullname: Alwarappan, Subbiah
  organization: CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi-630006, India
– sequence: 3
  givenname: Tharangattu N.
  surname: Narayanan
  fullname: Narayanan, Tharangattu N.
  organization: TIFR-Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Sciences, Hyderabad - 500 075, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25712510$$D View this record in MEDLINE/PubMed
BookMark eNqN0U1LxDAQBuAgiuuuXvwB0qMI1SSTJu1R1k8UBdFzSbMTN9oma9IV_PfWbxAPnmYOzzswM2Oy6oNHQrYZ3WcUqoOpuLqhClhxsUI2OBU0B1B89buXYkTGKT1QKiuQsE5GvFCMF4xuEHM7x8x1ixiecZZhi6aPwcyxc0a32QKjDbHT3mAWbGZiSClvnX8cLBxl91Ev5ugx89qH6Jom-KwLPrSun3_NmmHaJGtWtwm3PuuE3J0c307P8svr0_Pp4WVugNM-LwVywYSCRpdKS6CqASUFpeWwHKpyppQAYay1GgpZFoZztNxWRoBhEguYkN2PucM2T0tMfd25ZLBttcewTDUbQqpiomT_oLIqoQSpBrrzSZdNh7N6EV2n40v9dcMB7H2A9_NEtN-E0frtQfXPgwZMf2Hjet274PuoXftX5BUUA5Fc
CitedBy_id crossref_primary_10_1007_s10853_020_04391_2
crossref_primary_10_1021_jacs_8b06414
crossref_primary_10_1039_C7TA07874A
crossref_primary_10_1016_j_pmatsci_2020_100665
crossref_primary_10_1016_j_bios_2022_114229
crossref_primary_10_1149_1945_7111_ab6c54
crossref_primary_10_1016_j_matdes_2020_108487
crossref_primary_10_1016_j_jcis_2024_08_191
crossref_primary_10_1002_adma_201802403
crossref_primary_10_1016_j_compscitech_2018_12_014
crossref_primary_10_1016_j_bios_2020_112033
crossref_primary_10_1007_s12274_022_5176_7
crossref_primary_10_1016_j_jallcom_2024_178136
crossref_primary_10_1039_C6RA19496F
crossref_primary_10_1016_j_mtener_2021_100814
crossref_primary_10_1016_j_electacta_2018_08_103
crossref_primary_10_1016_j_carbon_2016_03_058
crossref_primary_10_1039_C7CC03060F
crossref_primary_10_1002_ppsc_201600346
crossref_primary_10_1080_00032719_2024_2320825
crossref_primary_10_1021_acsanm_1c00178
crossref_primary_10_1557_jmr_2015_349
crossref_primary_10_1016_j_snb_2022_131617
crossref_primary_10_1149_1945_7111_ac035e
crossref_primary_10_1002_cnma_202100155
crossref_primary_10_1016_j_microc_2024_111261
crossref_primary_10_1021_acs_jpclett_5b01595
crossref_primary_10_1016_j_ces_2022_118402
crossref_primary_10_1016_j_ijbiomac_2023_124269
crossref_primary_10_1039_C6RA03429B
Cites_doi 10.1002/adma.200902986
10.1021/nn402272u
10.1002/macp.201200001
10.1039/c000417k
10.1002/adma.200803003
10.1176/ajp.148.11.1474
10.1002/adma.201202289
10.1039/c3cc46907g
10.1002/adfm.201301077
10.1021/nn103537q
10.1039/c3ta14070a
10.1039/c2cs35105f
10.1038/nn1265
10.1002/adfm.200900377
10.1038/nchem.686
10.1021/cm9902772
10.1038/srep00363
10.1021/ar3001487
10.1016/j.snb.2008.03.015
10.1021/nn300082k
10.1021/ac960492r
10.1016/0008-6223(95)00120-3
10.1021/nl3027372
10.1039/C1JM14694G
10.1039/C3CS60248F
10.1039/c1cp21665a
10.1016/j.carbon.2008.09.045
10.1039/B512688F
10.1002/adfm.200900166
10.1002/adma.201200197
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
DOI 10.1039/C4NR07315K
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 6509
ExternalDocumentID 25712510
10_1039_C4NR07315K
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
P2P
R56
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
ID FETCH-LOGICAL-c320t-84e241473ba87a6307b3764008073e78d77434cfffa35685c22ef2f9c43c16e53
ISSN 2040-3364
2040-3372
IngestDate Thu Jul 10 20:47:04 EDT 2025
Fri Jul 11 00:37:05 EDT 2025
Mon Jul 21 05:33:28 EDT 2025
Tue Jul 01 00:33:17 EDT 2025
Thu Apr 24 23:08:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-84e241473ba87a6307b3764008073e78d77434cfffa35685c22ef2f9c43c16e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25712510
PQID 1669838367
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1685791481
proquest_miscellaneous_1669838367
pubmed_primary_25712510
crossref_primary_10_1039_C4NR07315K
crossref_citationtrail_10_1039_C4NR07315K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-21
PublicationDateYYYYMMDD 2015-04-21
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2015
References Wang (C4NR07315K-(cit28)/*[position()=1]) 2014; 43
Sheng (C4NR07315K-(cit30)/*[position()=1]) 2012; 22
Banks (C4NR07315K-(cit15)/*[position()=1]) 2006; 131
Barinov (C4NR07315K-(cit21)/*[position()=1]) 2009; 21
Hashim (C4NR07315K-(cit1)/*[position()=1]) 2012; 2
Wang (C4NR07315K-(cit22)/*[position()=1]) 1999; 11
Mattevi (C4NR07315K-(cit17)/*[position()=1]) 2009; 19
Cong (C4NR07315K-(cit7)/*[position()=1]) 2012; 6
Sudeep (C4NR07315K-(cit10)/*[position()=1]) 2013; 7
Hahm (C4NR07315K-(cit3)/*[position()=1]) 2012; 12
Biener (C4NR07315K-(cit5)/*[position()=1]) 2012; 24
Li (C4NR07315K-(cit9)/*[position()=1]) 2011; 5
James (C4NR07315K-(cit16)/*[position()=1]) 2012; 213
Yang (C4NR07315K-(cit19)/*[position()=1]) 2009; 47
Hoglinger (C4NR07315K-(cit26)/*[position()=1]) 2004; 7
Streeter (C4NR07315K-(cit24)/*[position()=1]) 2008; 133
Zhang (C4NR07315K-(cit12)/*[position()=1]) 2010; 20
Brownson (C4NR07315K-(cit14)/*[position()=1]) 2012; 41
Hontoria-Lucas (C4NR07315K-(cit20)/*[position()=1]) 1995; 33
Niu (C4NR07315K-(cit6)/*[position()=1]) 2012; 24
Kim (C4NR07315K-(cit13)/*[position()=1]) 2011; 13
Tang (C4NR07315K-(cit25)/*[position()=1]) 2009; 19
He (C4NR07315K-(cit29)/*[position()=1]) 2014; 2
Gui (C4NR07315K-(cit8)/*[position()=1]) 2010; 22
Yazyev (C4NR07315K-(cit11)/*[position()=1]) 2013; 46
Kumar (C4NR07315K-(cit2)/*[position()=1]) 2014; 50
Chen (C4NR07315K-(cit23)/*[position()=1]) 1996; 68
Bagri (C4NR07315K-(cit18)/*[position()=1]) 2010; 2
Jiang (C4NR07315K-(cit4)/*[position()=1]) 2013; 23
Davis (C4NR07315K-(cit27)/*[position()=1]) 1991; 148
References_xml – volume: 22
  start-page: 617
  year: 2010
  ident: C4NR07315K-(cit8)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902986
– volume: 7
  start-page: 7034
  year: 2013
  ident: C4NR07315K-(cit10)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn402272u
– volume: 213
  start-page: 1033
  year: 2012
  ident: C4NR07315K-(cit16)/*[position()=1]
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201200001
– volume: 20
  start-page: 5983
  year: 2010
  ident: C4NR07315K-(cit12)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c000417k
– volume: 21
  start-page: 1916
  year: 2009
  ident: C4NR07315K-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803003
– volume: 148
  start-page: 1474
  year: 1991
  ident: C4NR07315K-(cit27)/*[position()=1]
  publication-title: Am. J. Psychiatry
  doi: 10.1176/ajp.148.11.1474
– volume: 24
  start-page: 5083
  year: 2012
  ident: C4NR07315K-(cit5)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202289
– volume: 50
  start-page: 2015
  year: 2014
  ident: C4NR07315K-(cit2)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc46907g
– volume: 23
  start-page: 5846
  year: 2013
  ident: C4NR07315K-(cit4)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201301077
– volume: 5
  start-page: 2264
  year: 2011
  ident: C4NR07315K-(cit9)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn103537q
– volume: 2
  start-page: 3231
  year: 2014
  ident: C4NR07315K-(cit29)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta14070a
– volume: 41
  start-page: 6944
  year: 2012
  ident: C4NR07315K-(cit14)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35105f
– volume: 7
  start-page: 726
  year: 2004
  ident: C4NR07315K-(cit26)/*[position()=1]
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1265
– volume: 19
  start-page: 2782
  year: 2009
  ident: C4NR07315K-(cit25)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200900377
– volume: 2
  start-page: 581
  year: 2010
  ident: C4NR07315K-(cit18)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.686
– volume: 11
  start-page: 2573
  year: 1999
  ident: C4NR07315K-(cit22)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm9902772
– volume: 2
  start-page: 363
  year: 2012
  ident: C4NR07315K-(cit1)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep00363
– volume: 46
  start-page: 2319
  year: 2013
  ident: C4NR07315K-(cit11)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar3001487
– volume: 133
  start-page: 462
  year: 2008
  ident: C4NR07315K-(cit24)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2008.03.015
– volume: 6
  start-page: 2693
  year: 2012
  ident: C4NR07315K-(cit7)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn300082k
– volume: 68
  start-page: 3958
  year: 1996
  ident: C4NR07315K-(cit23)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac960492r
– volume: 33
  start-page: 1585
  year: 1995
  ident: C4NR07315K-(cit20)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/0008-6223(95)00120-3
– volume: 12
  start-page: 5616
  year: 2012
  ident: C4NR07315K-(cit3)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl3027372
– volume: 22
  start-page: 390
  year: 2012
  ident: C4NR07315K-(cit30)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM14694G
– volume: 43
  start-page: 7746
  year: 2014
  ident: C4NR07315K-(cit28)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60248F
– volume: 13
  start-page: 17505
  year: 2011
  ident: C4NR07315K-(cit13)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21665a
– volume: 47
  start-page: 145
  year: 2009
  ident: C4NR07315K-(cit19)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2008.09.045
– volume: 131
  start-page: 15
  year: 2006
  ident: C4NR07315K-(cit15)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/B512688F
– volume: 19
  start-page: 2577
  year: 2009
  ident: C4NR07315K-(cit17)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200900166
– volume: 24
  start-page: 4144
  year: 2012
  ident: C4NR07315K-(cit6)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200197
SSID ssj0069363
Score 2.3043535
Snippet Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 6504
SubjectTerms Capacitance
Crosslinking
Devices
Electrodes
Graphene
Nanostructure
Three dimensional
Two dimensional
Title The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes
URI https://www.ncbi.nlm.nih.gov/pubmed/25712510
https://www.proquest.com/docview/1669838367
https://www.proquest.com/docview/1685791481
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcAB8WbLQ0ZwQVVKEj_iHJcWqKjoAbWlt8iv0BVtstrNCtFfzzixkxRtEXCJotixLc-nzzP2zBih1wksK4mhJjI2jiNqwGaVhqmIlmWilDQ8bzMxfT7k-8f00yk7HUVcu-iSRu3oy7VxJf8jVfgGcnVRsv8g2b5R-ADvIF94goTh-dcynrW7AqA2-gttdMgAMB-FBDjfcbccRu68FuqSve02UzUQ3XYlq3oxUwpgAAN37nBnoS3jHQy98gpMXC-h6R4LJy6V4fKsczSSlzCaE2ubZvDamJ7_kNDP3O-yrpSajfafoeinDPcju8TR1TfZNCt_OuS3IhLmTlW6-OYd21JW6vwTCcmu8Gs2hhEbkSUoh3Qti8fEJUHVtFoAASXs-7gSSGB-0coTyMZpZ_GwkvX-haHoJtpMwXwA_tucHrz7-DWs0TwnnIRktSR_O3TlkkP7n69qKteYH60acnQX3fH2A552YLiHbtjqPro9yir5AGmABQ6wwL_BAo9ggesSj2GByR4OsMADLHCABR5g8RAdf3h_tLsf-bs0Ik3SuIkEtaCr0YwoKTLJgdkVLC3UGQwZsZkwYAYQqsuylIRxwXSa2jItc02JTrhl5BHaqOrKPkFYM5pZUFyVAfUvLW2uuRDwm3S2LWVigt6EeSu0TzTv7js5L1qHB5IXu_TwSzvdBxP0qq8779KrrK31Mkx_AeznjrRkZevVskg4zwURhGd_qiNYloPZn0zQ4052fV9B1lvXljxFtwaoP0MbzWJln4Me2qgXHlS_AAQ5jHw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+improved+electrochemical+performance+of+cross-linked+3D+graphene+nanoribbon+monolith+electrodes&rft.jtitle=Nanoscale&rft.au=Vineesh%2C+Thazhe+Veettil&rft.au=Alwarappan%2C+Subbiah&rft.au=Narayanan%2C+Tharangattu+N&rft.date=2015-04-21&rft.eissn=2040-3372&rft.volume=7&rft.issue=15&rft.spage=6504&rft_id=info:doi/10.1039%2Fc4nr07315k&rft_id=info%3Apmid%2F25712510&rft.externalDocID=25712510
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon