Alternative splicing in plants: current knowledge and future directions for assessing the biological relevance of splice variants
Alternative splicing is an important regulatory process that produces multiple transcripts from a single gene, significantly modulating the transcriptome and potentially the proteome, during development and in response to environmental cues. In the first part of this review, we summarize recent adva...
Saved in:
Published in | Journal of experimental botany Vol. 74; no. 7; pp. 2251 - 2272 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
09.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alternative splicing is an important regulatory process that produces multiple transcripts from a single gene, significantly modulating the transcriptome and potentially the proteome, during development and in response to environmental cues. In the first part of this review, we summarize recent advances and highlight the accumulated knowledge on the biological roles of alternative splicing isoforms that are key for different plant responses and during development. Remarkably, we found that many of the studies in this area use similar methodological approaches that need to be improved to gain more accurate conclusions, since they generally presume that stable isoforms undoubtedly have coding capacities. This is mostly done without data indicating that a particular RNA isoform is in fact translated. So, in the latter part of the review, we propose a thorough strategy to analyze, evaluate, and characterize putative functions for alternative splicing isoforms of interest. |
---|---|
AbstractList | Alternative splicing is an important regulatory process that produces multiple transcripts from a single gene, significantly modulating the transcriptome and potentially the proteome, during development and in response to environmental cues. In the first part of this review, we summarize recent advances and highlight the accumulated knowledge on the biological roles of alternative splicing isoforms that are key for different plant responses and during development. Remarkably, we found that many of the studies in this area use similar methodological approaches that need to be improved to gain more accurate conclusions, since they generally presume that stable isoforms undoubtedly have coding capacities. This is mostly done without data indicating that a particular RNA isoform is in fact translated. So, in the latter part of the review, we propose a thorough strategy to analyze, evaluate, and characterize putative functions for alternative splicing isoforms of interest.Alternative splicing is an important regulatory process that produces multiple transcripts from a single gene, significantly modulating the transcriptome and potentially the proteome, during development and in response to environmental cues. In the first part of this review, we summarize recent advances and highlight the accumulated knowledge on the biological roles of alternative splicing isoforms that are key for different plant responses and during development. Remarkably, we found that many of the studies in this area use similar methodological approaches that need to be improved to gain more accurate conclusions, since they generally presume that stable isoforms undoubtedly have coding capacities. This is mostly done without data indicating that a particular RNA isoform is in fact translated. So, in the latter part of the review, we propose a thorough strategy to analyze, evaluate, and characterize putative functions for alternative splicing isoforms of interest. Alternative splicing is an important regulatory process that produces multiple transcripts from a single gene, significantly modulating the transcriptome and potentially the proteome, during development and in response to environmental cues. In the first part of this review, we summarize recent advances and highlight the accumulated knowledge on the biological roles of alternative splicing isoforms that are key for different plant responses and during development. Remarkably, we found that many of the studies in this area use similar methodological approaches that need to be improved to gain more accurate conclusions, since they generally presume that stable isoforms undoubtedly have coding capacities. This is mostly done without data indicating that a particular RNA isoform is in fact translated. So, in the latter part of the review, we propose a thorough strategy to analyze, evaluate, and characterize putative functions for alternative splicing isoforms of interest. |
Author | Rodríguez, Florencia S Tognacca, Rocío S Aballay, Federico E Petrillo, Ezequiel Servi, Lucas Cartagena, Carla M |
Author_xml | – sequence: 1 givenname: Rocío S surname: Tognacca fullname: Tognacca, Rocío S – sequence: 2 givenname: Florencia S surname: Rodríguez fullname: Rodríguez, Florencia S – sequence: 3 givenname: Federico E surname: Aballay fullname: Aballay, Federico E – sequence: 4 givenname: Carla M surname: Cartagena fullname: Cartagena, Carla M – sequence: 5 givenname: Lucas surname: Servi fullname: Servi, Lucas – sequence: 6 givenname: Ezequiel surname: Petrillo fullname: Petrillo, Ezequiel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36306285$$D View this record in MEDLINE/PubMed |
BookMark | eNptkTFvFDEQhS0URC6Bih65REJLxvZ6b5cuiiBBikQDtTXrHR8OPvuwvRco-efs6S4NopopvvdG894FO4spEmOvBbwXMKirh1_jFWW0rRLP2Eq0HTRy2c_YCkDKBga9PmcXpTwAgAatX7Bz1SnoZK9X7M91qJQjVr8nXnbBWx833Ee-Cxhr-cDtnDPFyn_E9Bho2hDHOHE31zkTn3wmW32KhbuUOZZCpRwM6nfio08hbbzFwDMF2mO0xJM7XiG-x-wPJ16y5w5DoVenecm-ffr49eauuf9y-_nm-r6xSkJt1iM6GidoW4Gi02vdDyTtQHqaBCqQrkNQ2NvJ6bG3ltyo274j2bUkBtu36pK9Pfrucvo5U6lm64ulsPxJaS5GrhUo0UolFvTNCZ3HLU1ml_0W82_zFNsCiCNgcyolkzPWVzwEUTP6YASYQzVmqcacqlk07_7RPNn-j_4LFneU9w |
CitedBy_id | crossref_primary_10_1016_j_gene_2023_147699 crossref_primary_10_48130_FruRes_2023_0025 crossref_primary_10_1007_s11103_024_01514_0 crossref_primary_10_1111_tpj_16552 crossref_primary_10_1007_s12374_024_09444_6 crossref_primary_10_3389_fpls_2024_1524163 crossref_primary_10_3390_cells12202447 crossref_primary_10_1007_s11240_024_02931_1 crossref_primary_10_1111_nph_19198 crossref_primary_10_1111_nph_20327 crossref_primary_10_1186_s13059_025_03529_2 crossref_primary_10_3390_plants13233452 crossref_primary_10_1016_j_ijbiomac_2024_135067 crossref_primary_10_3389_fpls_2023_1135845 crossref_primary_10_3390_genes14050962 crossref_primary_10_1016_j_plantsci_2023_111822 crossref_primary_10_1093_jxb_erad070 crossref_primary_10_1016_j_cpb_2024_100334 crossref_primary_10_1038_s41437_023_00665_y crossref_primary_10_3390_plants12193508 crossref_primary_10_1016_j_pbi_2025_102698 crossref_primary_10_1111_ppl_14398 crossref_primary_10_1038_s41598_024_58903_0 |
Cites_doi | 10.1016/j.pbi.2004.04.007 10.1111/nph.15127 10.1016/j.tig.2018.05.008 10.1111/j.1365-313X.2007.03302.x 10.1105/tpc.112.104828 10.1093/nar/gkz121 10.1016/j.gpb.2015.08.002 10.1046/j.1365-313x.2001.01024.x 10.1002/advs.202103628 10.3835/plantgenome.2009.06.0018 10.1038/nplants.2016.55 10.1111/tpj.13914 10.1016/j.tplants.2010.09.008 10.1111/nph.13602 10.3389/fpls.2019.00707 10.1126/science.1167222 10.1016/S1360-1385(00)01595-8 10.1073/pnas.0808902106 10.1104/pp.113.218164 10.1126/science.1241097 10.1016/S0092-8674(00)80557-7 10.1111/j.1469-8137.2006.01761.x 10.3390/ijms222111692 10.1016/j.bbrc.2007.10.131 10.1111/j.1365-313X.2011.04629.x 10.1111/pbi.13514 10.1038/nrm3525 10.1016/j.gene.2017.04.001 10.1016/S0958-1669(03)00030-2 10.1046/j.1365-313X.2003.01661.x 10.1002/wrna.98 10.1016/j.molp.2019.11.004 10.3389/fpls.2019.00708 10.1111/j.1365-313X.2006.02723.x 10.1023/A:1025426920923 10.1371/journal.pone.0001510 10.1016/j.plantsci.2008.02.005 10.1016/j.xplc.2021.100169 10.1186/gb-2008-9-3-r50 10.3389/fbioe.2015.00033 10.3389/fpls.2020.586870 10.1016/j.molp.2015.12.018 10.1016/j.cub.2020.11.026 10.1104/pp.16.01305 10.1111/jipb.13088 10.1105/tpc.113.117523 10.1101/gr.093302.109 10.1105/tpc.110.075788 10.1105/tpc.111.093948 10.1111/nph.17175 10.1007/s00438-007-0297-y 10.1101/gad.2.6.754 10.1104/pp.105.073783 10.1093/pcp/pcm069 10.1093/nar/gkx267 10.1111/j.1365-313X.2004.02172.x 10.1146/annurev-genet-111212-133424 10.1111/ppl.13502 10.1038/s41477-020-0688-1 10.1073/pnas.94.22.11786 10.1515/znc-2016-0257 10.1105/tpc.113.115485 10.1007/s11103-012-9982-2 10.1146/annurev.bi.56.070187.002343 10.1016/j.molp.2014.10.011 10.1105/tpc.106.047688 10.1105/tpc.113.113340 10.1105/tpc.114.134874 10.1017/qpb.2022.9 10.1371/journal.pone.0211623 10.1146/annurev.arplant.57.032905.105444 10.3389/fpls.2014.00718 10.1016/S1369526602000031 10.1105/tpc.113.109751 10.1038/nature09470 10.1016/j.cell.2017.01.019 10.1104/pp.112.205864 10.1038/ncomms1303 10.1016/j.cell.2009.02.009 10.1104/pp.15.01929 10.1023/A:1006012218704 10.1146/annurev.arplant.58.032806.103754 10.1007/s11427-018-9392-7 10.1016/j.tplants.2012.06.001 10.1016/j.gene.2020.144514 10.1111/pce.13779 10.1093/plcell/koab046 10.1007/s11103-019-00864-4 10.1016/j.envexpbot.2014.06.014 10.1080/15592324.2021.1917170 10.1186/1471-2164-15-431 10.1093/pcp/pcz124 10.1890/12-0780.1 10.1093/jxb/erv189 10.1186/1745-6150-7-20 10.1242/dev.078212 10.1016/j.devcel.2016.06.008 10.1038/nrg.2016.49 10.1093/nar/gkr932 10.1038/nature12633 10.1093/nar/gkaa1260 10.1105/tpc.17.00840 10.1093/plcell/koac161 10.1186/s13059-022-02620-2 10.1111/nph.17792 10.1371/journal.pone.0102301 10.1105/tpc.108.062596 10.1074/jbc.C109.022384 10.3390/ijms21196984 10.1007/s00299-014-1613-8 10.1104/pp.109.138180 10.1105/tpc.15.00572 10.1111/plb.12267 10.1146/annurev.arplant.57.032905.105316 10.1111/j.1365-313X.2006.03020.x 10.1038/ncomms9138 10.1371/journal.pgen.1009898 10.1111/tpj.13351 10.1073/pnas.1403851111 10.1104/pp.19.00839 10.1101/gr.186585.114 10.1111/j.1438-8677.2008.00088.x 10.1093/aob/mcr300 10.1111/tpj.13571 10.1126/science.1250322 10.1093/jxb/err030 10.1186/s13059-022-02711-0 10.1080/21541264.2020.1796473 10.1038/ng.259 10.1104/pp.15.01267 10.1038/nmeth.3290 10.1530/rep.1.00306 10.1104/pp.18.00329 10.1016/S0065-2660(08)60048-6 10.1038/s41477-020-0725-0 10.1038/nature07509 10.1371/journal.pone.0207534 10.1105/tpc.113.118075 10.1016/j.molp.2015.01.011 10.1007/s11103-013-0050-3 10.1101/gr.134106.111 10.1046/j.1365-313X.2003.01966.x 10.3390/plants2030507 10.1111/nph.16221 10.3389/fpls.2019.00569 10.1111/tpj.15675 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/jxb/erac431 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1460-2431 |
EndPage | 2272 |
ExternalDocumentID | 36306285 10_1093_jxb_erac431 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29K 2WC 4.4 482 48X 5GY 5VS 5WA 5WD 70D AAHBH AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAVAP AAVLN AAXTN AAYXX ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ACUFI ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHGBF AHMBA AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CDBKE CITATION CS3 CZ4 D-I DAKXR DIK DILTD DU5 D~K E3Z EBS ECGQY EE~ F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z ML0 N9A NGC NLBLG NOMLY NU- O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y QBD R44 RD5 ROL ROX RUSNO RW1 RXO TLC TN5 TR2 UHB UPT W8F WH7 WOQ X7H YAYTL YKOAZ YQT YSK YXANX YZZ ZKX ~02 ~91 ~KM ADRIX AFXEN CGR CUY CVF ECM EIF ESX M49 NPM Z5M 7X8 |
ID | FETCH-LOGICAL-c320t-7bafebd0441a1657589e2c9e5dd1a302f6a03a8cdf5b8ccefb5486e264e19c843 |
ISSN | 0022-0957 1460-2431 |
IngestDate | Thu Jul 10 18:20:16 EDT 2025 Wed Feb 19 02:23:25 EST 2025 Thu Apr 24 22:55:33 EDT 2025 Tue Jul 01 03:05:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Alternative splicing plant development environmental stress crops Arabidopsis |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-7bafebd0441a1657589e2c9e5dd1a302f6a03a8cdf5b8ccefb5486e264e19c843 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
PMID | 36306285 |
PQID | 2730314231 |
PQPubID | 23479 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2730314231 pubmed_primary_36306285 crossref_citationtrail_10_1093_jxb_erac431 crossref_primary_10_1093_jxb_erac431 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-09 20230409 |
PublicationDateYYYYMMDD | 2023-04-09 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of experimental botany |
PublicationTitleAlternate | J Exp Bot |
PublicationYear | 2023 |
References | Nakano (2023040906084382500_) 2006; 140 Cheng (2023040906084382500_) 2015; 17 Li (2023040906084382500_) 2015; 114 Scortecci (2023040906084382500_) 2001; 26 Forsthoefel (2023040906084382500_) 2018; 178 Hu (2023040906084382500_) 2020; 225 Seok (2023040906084382500_) 2014; 33 Chaudhary (2023040906084382500_) 2019; 10 Beyer (2023040906084382500_) 1988; 2 Lim (2023040906084382500_) 2007; 58 Park (2023040906084382500_) 2019; 10 Cucinotta (2023040906084382500_) 2021; 31 Lorković (2023040906084382500_) 2000; 5 Jain (2023040906084382500_) 2015; 12 Filichkin (2023040906084382500_) 2012; 7 Seki (2023040906084382500_) 2003; 14 Rhoads (2023040906084382500_) 2015; 13 Wang (2023040906084382500_) 2019; 71 Schöning (2023040906084382500_) 2007; 52 Kornblihtt (2023040906084382500_) 2013; 14 Seok (2023040906084382500_) 2020; 21 He (2023040906084382500_) 2007; 364 Ling (2023040906084382500_) 2019; 10 Wang (2023040906084382500_) 2015; 6 Kim (2023040906084382500_) 1997; 94 Forsthoefel (2023040906084382500_) 2013; 2 Shen (2023040906084382500_) 2016; 38 Amano (2023040906084382500_) 2012; 109 Huang (2023040906084382500_) 2022; 23 Saez (2023040906084382500_) 2004; 37 Chamala (2023040906084382500_) 2015; 3 Yu (2023040906084382500_) 2016; 9 Filichkin (2023040906084382500_) 2015; 8 Reddy (2023040906084382500_) 2011; 2 Bradshaw (2023040906084382500_) 2006; 170 Xu (2023040906084382500_) 2020; 43 Wang (2023040906084382500_) 2021; 33 Jayaweera (2023040906084382500_) 2014; 9 Zhang (2023040906084382500_) 2017; 45 Nicotra (2023040906084382500_) 2010; 15 Liu (2023040906084382500_) 2021; 16 Sassi (2023040906084382500_) 2012; 139 Xu (2023040906084382500_) 2009; 284 Zhang (2023040906084382500_) 2009; 150 Tian (2023040906084382500_) 2019; 14 Martín-Trillo (2023040906084382500_) 2011; 67 van Dijk (2023040906084382500_) 2018; 34 Moreno (2023040906084382500_) 2013; 162 Wahl (2023040906084382500_) 2009; 136 Palusa (2023040906084382500_) 2007; 49 Fávero Peixoto-Junior (2023040906084382500_) 2018; 13 Tang (2023040906084382500_) 2021; 19 Kim (2023040906084382500_) 2016; 209 Ulmasov (2023040906084382500_) 1997; 9 Zhu (2023040906084382500_) 2020; 13 Sugio (2023040906084382500_) 2009; 21 Adamowski (2023040906084382500_) 2015; 27 Bradshaw (2023040906084382500_) 1965; 13 Yamaguchi-Shinozaki (2023040906084382500_) 2006; 57 Kurihara (2023040906084382500_) 2009; 106 Guo (2023040906084382500_) 2022; 34 Li (2023040906084382500_) 2017; 72 Filichkin (2023040906084382500_) 2010; 20 Wylie (2023040906084382500_) 1999; 96 Ren (2023040906084382500_) 2021; 22 Drechsel (2023040906084382500_) 2013; 25 Jia (2023040906084382500_) 2020; 6 McGuire (2023040906084382500_) 2008; 9 Breitbart (2023040906084382500_) 1987; 56 Xue (2023040906084382500_) 2018; 61 Fuchs (2023040906084382500_) 2021; 49 Donohue (2023040906084382500_) 2005; 59 Jiang (2023040906084382500_) 2017; 173 Göhring (2023040906084382500_) 2014; 26 Li (2023040906084382500_) 2021; 230 Kalyna (2023040906084382500_) 2012; 40 Bursch (2023040906084382500_) 2020; 6 Cecchini (2023040906084382500_) 2022; 110 Sanchez (2023040906084382500_) 2010; 468 Gangappa (2023040906084382500_) 2013; 25 Liu (2023040906084382500_) 2013; 162 Zhou (2023040906084382500_) 2021; 17 Wu (2023040906084382500_) 2019; 181 Balazadeh (2023040906084382500_) 2008; 10 Wilson (2023040906084382500_) 2004; 128 Rosloski (2023040906084382500_) 2013; 81 Worden (2023040906084382500_) 2009; 324 Zhu (2023040906084382500_) 2017; 91 Li (2023040906084382500_) 2017; 619 Matsumura (2023040906084382500_) 2009; 2 Ghelli (2023040906084382500_) 2018; 30 Feng (2023040906084382500_) 2015; 8 Niu (2023040906084382500_) 2020; 740 Marquez (2023040906084382500_) 2012; 22 Kashkan (2023040906084382500_) 2022; 3 Gapper (2023040906084382500_) 2013; 82 Steffen (2023040906084382500_) 2019; 60 Goodwin (2023040906084382500_) 2016; 17 Laxmi (2023040906084382500_) 2008; 3 Nibau (2023040906084382500_) 2020; 11 Brown (2023040906084382500_) 2015; 27 Graeber (2023040906084382500_) 2014; 111 Liancourt (2023040906084382500_) 2013; 94 Singh (2023040906084382500_) 2021; 173 Rodriguez (2023040906084382500_) 1998; 38 Sureshkumar (2023040906084382500_) 2016; 2 Reddy (2023040906084382500_) 2013; 25 Jones (2023040906084382500_) 2012; 24 Li (2023040906084382500_) 2013; 25 Kamranfar (2023040906084382500_) 2018; 218 Mazzucotelli (2023040906084382500_) 2008; 174 Xu (2023040906084382500_) 2022; 9 Thatcher (2023040906084382500_) 2016; 170 Hrtyan (2023040906084382500_) 2015; 66 Cavallari (2023040906084382500_) 2018; 94 Ner-Gaon (2023040906084382500_) 2004; 39 Posé (2023040906084382500_) 2013; 503 Scortecci (2023040906084382500_) 2003; 52 Lee (2023040906084382500_) 2007; 19 Friml (2023040906084382500_) 2003; 6 Jabre (2023040906084382500_) 2019; 47 Popp (2023040906084382500_) 2013; 47 Ang (2023040906084382500_) 1994; 6 Dubouzet (2023040906084382500_) 2003; 33 Baskin (2023040906084382500_) 2014 Tanabe (2023040906084382500_) 2007; 48 Lee (2023040906084382500_) 2013; 342 Guo (2023040906084382500_) 2006; 46 Pan (2023040906084382500_) 2008; 40 Tognacca (2023040906084382500_) 2020; 11 Ding (2023040906084382500_) 2014; 15 Gil (2023040906084382500_) 2017; 89 Weitbrecht (2023040906084382500_) 2011; 62 Jiang (2023040906084382500_) 2021; 63 Li (2023040906084382500_) 2010; 22 Petrillo (2023040906084382500_) 2014; 344 Tognacca (2023040906084382500_) 2021; 2 Albaqami (2023040906084382500_) 2019; 100 Marquez (2023040906084382500_) 2015; 25 Syed (2023040906084382500_) 2012; 17 Yokawa (2023040906084382500_) 2014; 5 Zhang (2023040906084382500_) 2022; 23 James (2023040906084382500_) 2012; 24 Kashkan (2023040906084382500_) 2022; 233 Woo (2023040906084382500_) 2016; 171 Gutterson (2023040906084382500_) 2004; 7 Lightfoot (2023040906084382500_) 2008; 279 Reddy (2023040906084382500_) 2007; 58 Seo (2023040906084382500_) 2011; 2 Wang (2023040906084382500_) 2008; 456 Williamson (2023040906084382500_) 2017; 168 |
References_xml | – volume: 7 start-page: 465 year: 2004 ident: 2023040906084382500_ article-title: Regulation of disease resistance pathways by AP2/ERF transcription factors. publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2004.04.007 – volume: 218 start-page: 1543 year: 2018 ident: 2023040906084382500_ article-title: Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence. publication-title: New Phytologist doi: 10.1111/nph.15127 – volume: 34 start-page: 666 year: 2018 ident: 2023040906084382500_ article-title: The third revolution in sequencing technology. publication-title: Trends in Genetics doi: 10.1016/j.tig.2018.05.008 – volume: 52 start-page: 1119 year: 2007 ident: 2023040906084382500_ article-title: Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2007.03302.x – volume: 24 start-page: 4066 year: 2012 ident: 2023040906084382500_ article-title: Mutation of Arabidopsis SPLICEOSOMAL TIMEKEEPER LOCUS1 causes circadian clock defects. publication-title: The Plant Cell doi: 10.1105/tpc.112.104828 – volume: 47 start-page: 2716 year: 2019 ident: 2023040906084382500_ article-title: Does co-transcriptional regulation of alternative splicing mediate plant stress responses? publication-title: Nucleic Acids Research doi: 10.1093/nar/gkz121 – volume: 13 start-page: 278 year: 2015 ident: 2023040906084382500_ article-title: PacBio sequencing and its applications. publication-title: Genomics, proteomics & bioinformatics doi: 10.1016/j.gpb.2015.08.002 – volume: 26 start-page: 229 year: 2001 ident: 2023040906084382500_ article-title: Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. publication-title: The Plant Journal doi: 10.1046/j.1365-313x.2001.01024.x – volume: 9 start-page: 2103628 year: 2022 ident: 2023040906084382500_ article-title: FIONA1-mediated m6A modification regulates the floral transition in Arabidopsis. publication-title: Advanced Science doi: 10.1002/advs.202103628 – volume: 2 start-page: 271 year: 2009 ident: 2023040906084382500_ article-title: Molecular cloning and linkage mapping of cryptochrome multigene family in soybean. publication-title: The Plant Genome doi: 10.3835/plantgenome.2009.06.0018 – volume-title: Seeds: ecology, biogeography, and, evolution of dormancy and germination year: 2014 ident: 2023040906084382500_ – volume: 2 start-page: 16055 year: 2016 ident: 2023040906084382500_ article-title: Nonsense-mediated mRNA decay modulates FLM-dependent thermosensory flowering response in Arabidopsis. publication-title: Nature Plants doi: 10.1038/nplants.2016.55 – volume: 94 start-page: 1010 year: 2018 ident: 2023040906084382500_ article-title: The cyclin-dependent kinase G group defines a thermo-sensitive alternative splicing circuit modulating the expression of Arabidopsis ATU2AF65A. publication-title: The Plant Journal doi: 10.1111/tpj.13914 – volume: 15 start-page: 684 year: 2010 ident: 2023040906084382500_ article-title: Plant phenotypic plasticity in a changing climate. publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2010.09.008 – volume: 209 start-page: 265 year: 2016 ident: 2023040906084382500_ article-title: High temperature attenuates the gravitropism of inflorescence stems by inducing SHOOT GRAVITROPISM 5 alternative splicing in Arabidopsis. publication-title: New Phytologist doi: 10.1111/nph.13602 – volume: 10 start-page: 707 year: 2019 ident: 2023040906084382500_ article-title: Evolution of alternative splicing in eudicots. publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2019.00707 – volume: 324 start-page: 268 year: 2009 ident: 2023040906084382500_ article-title: Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. publication-title: Science doi: 10.1126/science.1167222 – volume: 5 start-page: 160 year: 2000 ident: 2023040906084382500_ article-title: Pre-mRNA splicing in higher plants. publication-title: Trends in Plant Science doi: 10.1016/S1360-1385(00)01595-8 – volume: 106 start-page: 2453 year: 2009 ident: 2023040906084382500_ article-title: Genome-wide suppression of aberrant mRNA-like noncoding RNAs by NMD in Arabidopsis. publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.0808902106 – volume: 162 start-page: 1006 year: 2013 ident: 2023040906084382500_ article-title: Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10. publication-title: Plant Physiology doi: 10.1104/pp.113.218164 – volume: 342 start-page: 628 year: 2013 ident: 2023040906084382500_ article-title: Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. publication-title: Science doi: 10.1126/science.1241097 – volume: 96 start-page: 165 year: 1999 ident: 2023040906084382500_ article-title: Germ cells. publication-title: Cell doi: 10.1016/S0092-8674(00)80557-7 – volume: 170 start-page: 644 year: 2006 ident: 2023040906084382500_ article-title: Unravelling phenotypic plasticity – why should we bother? publication-title: New Phytologist doi: 10.1111/j.1469-8137.2006.01761.x – volume: 22 start-page: 11692 year: 2021 ident: 2023040906084382500_ article-title: Alternative splicing of TaGS3 differentially regulates grain weight and size in bread wheat. publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms222111692 – volume: 364 start-page: 1056 year: 2007 ident: 2023040906084382500_ article-title: Structure and alternative splicing of a heat shock transcription factor gene, MsHSF1, in Medicago sativa. publication-title: Biochemical and Biophysical Research Communications doi: 10.1016/j.bbrc.2007.10.131 – volume: 67 start-page: 701 year: 2011 ident: 2023040906084382500_ article-title: Role of tomato BRANCHED1-like genes in the control of shoot branching. publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2011.04629.x – volume: 19 start-page: 642 year: 2021 ident: 2023040906084382500_ article-title: CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice. publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.13514 – volume: 14 start-page: 153 year: 2013 ident: 2023040906084382500_ article-title: Alternative splicing: a pivotal step between eukaryotic transcription and translation. publication-title: Nature Reviews. Molecular Cell Biology doi: 10.1038/nrm3525 – volume: 619 start-page: 44 year: 2017 ident: 2023040906084382500_ article-title: Characterization and functional analysis of four HYH splicing variants in Arabidopsis hypocotyl elongation. publication-title: Gene doi: 10.1016/j.gene.2017.04.001 – volume: 14 start-page: 194 year: 2003 ident: 2023040906084382500_ article-title: Molecular responses to drought, salinity and frost: common and different paths for plant protection. publication-title: Current Opinion in Biotechnology doi: 10.1016/S0958-1669(03)00030-2 – volume: 33 start-page: 751 year: 2003 ident: 2023040906084382500_ article-title: OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. publication-title: The Plant Journal doi: 10.1046/j.1365-313X.2003.01661.x – volume: 2 start-page: 875 year: 2011 ident: 2023040906084382500_ article-title: Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. publication-title: Wiley Interdisciplinary Reviews. RNA doi: 10.1002/wrna.98 – volume: 13 start-page: 278 year: 2020 ident: 2023040906084382500_ article-title: The features and regulation of co-transcriptional splicing in Arabidopsis. publication-title: Molecular Plant doi: 10.1016/j.molp.2019.11.004 – volume: 10 start-page: 708 year: 2019 ident: 2023040906084382500_ article-title: Alternative splicing and protein diversity: plants versus animals. publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2019.00708 – volume: 46 start-page: 601 year: 2006 ident: 2023040906084382500_ article-title: AtNAP, a NAC family transcription factor, has an important role in leaf senescence. publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2006.02723.x – volume: 52 start-page: 915 year: 2003 ident: 2023040906084382500_ article-title: Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana. publication-title: Plant Molecular Biology doi: 10.1023/A:1025426920923 – volume: 3 start-page: e1510 year: 2008 ident: 2023040906084382500_ article-title: Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. publication-title: PLoS ONE doi: 10.1371/journal.pone.0001510 – volume: 174 start-page: 420 year: 2008 ident: 2023040906084382500_ article-title: Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. publication-title: Plant Science doi: 10.1016/j.plantsci.2008.02.005 – volume: 2 start-page: 100169 year: 2021 ident: 2023040906084382500_ article-title: Post-transcriptional regulation of seed dormancy and germination: current understanding and future directions. publication-title: Plant Communications doi: 10.1016/j.xplc.2021.100169 – volume: 9 start-page: R50 year: 2008 ident: 2023040906084382500_ article-title: Cross-kingdom patterns of alternative splicing and splice recognition. publication-title: Genome Biology doi: 10.1186/gb-2008-9-3-r50 – volume: 3 start-page: 33 year: 2015 ident: 2023040906084382500_ article-title: Genome-wide identification of evolutionarily conserved alternative splicing events in flowering plants. publication-title: Frontiers in Bioengineering and Biotechnology doi: 10.3389/fbioe.2015.00033 – volume: 11 start-page: 586870 year: 2020 ident: 2023040906084382500_ article-title: A functional kinase is necessary for cyclin-dependent kinase G1 (CDKG1) to maintain fertility at high ambient temperature in Arabidopsis. publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2020.586870 – volume: 9 start-page: 749 year: 2016 ident: 2023040906084382500_ article-title: Transcriptome survey of the contribution of alternative splicing to proteome diversity in Arabidopsis thaliana. publication-title: Molecular Plant doi: 10.1016/j.molp.2015.12.018 – volume: 31 start-page: 892 year: 2021 ident: 2023040906084382500_ article-title: Alternative splicing generates a MONOPTEROS isoform required for ovule development. publication-title: Current Biology doi: 10.1016/j.cub.2020.11.026 – volume: 173 start-page: 1502 year: 2017 ident: 2023040906084382500_ article-title: Integrating omics and alternative splicing reveals insights into grape response to high temperature. publication-title: Plant Physiology doi: 10.1104/pp.16.01305 – volume: 63 start-page: 1341 year: 2021 ident: 2023040906084382500_ article-title: Alternative splicing of MaMYB16L regulates starch degradation in banana fruit during ripening. publication-title: Journal of Integrative Plant Biology doi: 10.1111/jipb.13088 – volume: 25 start-page: 3657 year: 2013 ident: 2023040906084382500_ article-title: Complexity of the alternative splicing landscape in plants. publication-title: The Plant Cell doi: 10.1105/tpc.113.117523 – volume: 20 start-page: 45 year: 2010 ident: 2023040906084382500_ article-title: Genome-wide mapping of alternative splicing in Arabidopsis thaliana. publication-title: Genome Research doi: 10.1101/gr.093302.109 – volume: 22 start-page: 3634 year: 2010 ident: 2023040906084382500_ article-title: Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. publication-title: The Plant Cell doi: 10.1105/tpc.110.075788 – volume: 24 start-page: 961 year: 2012 ident: 2023040906084382500_ article-title: Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. publication-title: The Plant Cell doi: 10.1105/tpc.111.093948 – volume: 230 start-page: 641 year: 2021 ident: 2023040906084382500_ article-title: Dual roles of the serine/arginine-rich splicing factor SR45a in promoting and interacting with nuclear cap-binding complex to modulate the salt-stress response in Arabidopsis. publication-title: New Phytologist doi: 10.1111/nph.17175 – volume: 279 start-page: 75 year: 2008 ident: 2023040906084382500_ article-title: Evidence for alternative splicing of MADS-box transcripts in developing cotton fibre cells. publication-title: Molecular Genetics and Genomics doi: 10.1007/s00438-007-0297-y – volume: 2 start-page: 754 year: 1988 ident: 2023040906084382500_ article-title: Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. publication-title: Genes & Development doi: 10.1101/gad.2.6.754 – volume: 140 start-page: 411 year: 2006 ident: 2023040906084382500_ article-title: Genome-wide analysis of the ERF gene family in Arabidopsis and rice. publication-title: Plant Physiology doi: 10.1104/pp.105.073783 – volume: 48 start-page: 1036 year: 2007 ident: 2023040906084382500_ article-title: Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. publication-title: Plant & Cell Physiology doi: 10.1093/pcp/pcm069 – volume: 45 start-page: 5061 year: 2017 ident: 2023040906084382500_ article-title: A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing. publication-title: Nucleic Acids Research doi: 10.1093/nar/gkx267 – volume: 39 start-page: 877 year: 2004 ident: 2023040906084382500_ article-title: Intron retention is a major phenomenon in alternative splicing in Arabidopsis. publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2004.02172.x – volume: 47 start-page: 139 year: 2013 ident: 2023040906084382500_ article-title: Organizing principles of mammalian nonsense-mediated mRNA decay. publication-title: Annual Review of Genetics doi: 10.1146/annurev-genet-111212-133424 – volume: 173 start-page: 1556 year: 2021 ident: 2023040906084382500_ article-title: Gene regulation at transcriptional and post-transcriptional levels to combat salt stress in plants. publication-title: Physiologia Plantarum doi: 10.1111/ppl.13502 – volume: 6 start-page: 780 year: 2020 ident: 2023040906084382500_ article-title: Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. publication-title: Nature Plants doi: 10.1038/s41477-020-0688-1 – volume: 94 start-page: 11786 year: 1997 ident: 2023040906084382500_ article-title: Protein–protein interactions among the Aux/IAA proteins. publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.94.22.11786 – volume: 72 start-page: 325 year: 2017 ident: 2023040906084382500_ article-title: Response of alternative splice isoforms of OsRad9 gene from Oryza sativa to environmental stress. publication-title: Zeitschrift fur Naturforschung. C, Journal of Biosciences doi: 10.1515/znc-2016-0257 – volume: 25 start-page: 3726 year: 2013 ident: 2023040906084382500_ article-title: Nonsense-mediated decay of alternative precursor mRNA splicing variants is a major determinant of the Arabidopsis steady state transcriptome. publication-title: The Plant Cell doi: 10.1105/tpc.113.115485 – volume: 81 start-page: 57 year: 2013 ident: 2023040906084382500_ article-title: Functional analysis of splice variant expression of MADS AFFECTING FLOWERING 2 of Arabidopsis thaliana. publication-title: Plant Molecular Biology doi: 10.1007/s11103-012-9982-2 – volume: 56 start-page: 467 year: 1987 ident: 2023040906084382500_ article-title: Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. publication-title: Annual Review of Biochemistry doi: 10.1146/annurev.bi.56.070187.002343 – volume: 8 start-page: 207 year: 2015 ident: 2023040906084382500_ article-title: Environmental stresses modulate abundance and timing of alternatively spliced circadian transcripts in Arabidopsis. publication-title: Molecular Plant doi: 10.1016/j.molp.2014.10.011 – volume: 19 start-page: 731 year: 2007 ident: 2023040906084382500_ article-title: Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. publication-title: The Plant Cell doi: 10.1105/tpc.106.047688 – volume: 25 start-page: 3311 year: 2013 ident: 2023040906084382500_ article-title: ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. publication-title: The Plant Cell doi: 10.1105/tpc.113.113340 – volume: 27 start-page: 20 year: 2015 ident: 2023040906084382500_ article-title: PIN-dependent auxin transport: action, regulation, and evolution. publication-title: The Plant Cell doi: 10.1105/tpc.114.134874 – volume: 3 start-page: e14 year: 2022 ident: 2023040906084382500_ article-title: How alternative splicing changes the properties of plant proteins. publication-title: Quantitative Plant Biology doi: 10.1017/qpb.2022.9 – volume: 14 start-page: e0211623 year: 2019 ident: 2023040906084382500_ article-title: Alternative splicing of ZmCCA1 mediates drought response in tropical maize. publication-title: PLoS ONE doi: 10.1371/journal.pone.0211623 – volume: 57 start-page: 781 year: 2006 ident: 2023040906084382500_ article-title: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. publication-title: Annual Review of Plant Biology doi: 10.1146/annurev.arplant.57.032905.105444 – volume: 5 start-page: 718 year: 2014 ident: 2023040906084382500_ article-title: Light as stress factor to plant roots – case of root halotropism. publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2014.00718 – volume: 6 start-page: 7 year: 2003 ident: 2023040906084382500_ article-title: Auxin transport – shaping the plant. publication-title: Current Opinion in Plant Biology doi: 10.1016/S1369526602000031 – volume: 25 start-page: 1243 year: 2013 ident: 2023040906084382500_ article-title: The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. publication-title: The Plant Cell doi: 10.1105/tpc.113.109751 – volume: 468 start-page: 112 year: 2010 ident: 2023040906084382500_ article-title: A methyl transferase links the circadian clock to the regulation of alternative splicing. publication-title: Nature doi: 10.1038/nature09470 – volume: 168 start-page: 843 year: 2017 ident: 2023040906084382500_ article-title: UV irradiation induces a non-coding RNA that functionally opposes the protein encoded by the same gene. publication-title: Cell doi: 10.1016/j.cell.2017.01.019 – volume: 162 start-page: 512 year: 2013 ident: 2023040906084382500_ article-title: An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing. publication-title: Plant Physiology doi: 10.1104/pp.112.205864 – volume: 2 start-page: 303 year: 2011 ident: 2023040906084382500_ article-title: Two splice variants of the IDD14 transcription factor competitively form nonfunctional heterodimers which may regulate starch metabolism. publication-title: Nature Communications doi: 10.1038/ncomms1303 – volume: 136 start-page: 701 year: 2009 ident: 2023040906084382500_ article-title: The spliceosome: design principles of a dynamic RNP machine. publication-title: Cell doi: 10.1016/j.cell.2009.02.009 – volume: 171 start-page: 452 year: 2016 ident: 2023040906084382500_ article-title: Programming of plant leaf senescence with temporal and inter-organellar coordination of transcriptome in Arabidopsis. publication-title: Plant Physiology doi: 10.1104/pp.15.01929 – volume: 38 start-page: 879 year: 1998 ident: 2023040906084382500_ article-title: Molecular cloning in Arabidopsis thaliana of a new protein phosphatase 2C (PP2C) with homology to ABI1 and ABI2. publication-title: Plant Molecular Biology doi: 10.1023/A:1006012218704 – volume: 58 start-page: 267 year: 2007 ident: 2023040906084382500_ article-title: Alternative splicing of pre-messenger RNAs in plants in the genomic era. publication-title: Annual Review of Plant Biology doi: 10.1146/annurev.arplant.58.032806.103754 – volume: 61 start-page: 1293 year: 2018 ident: 2023040906084382500_ article-title: Manipulating mRNA splicing by base editing in plants. publication-title: Science China. Life Sciences doi: 10.1007/s11427-018-9392-7 – volume: 17 start-page: 616 year: 2012 ident: 2023040906084382500_ article-title: Alternative splicing in plants – coming of age. publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2012.06.001 – volume: 740 start-page: 144514 year: 2020 ident: 2023040906084382500_ article-title: Identification of wheat DREB genes and functional characterization of TaDREB3 in response to abiotic stresses. publication-title: Gene doi: 10.1016/j.gene.2020.144514 – volume: 43 start-page: 1879 year: 2020 ident: 2023040906084382500_ article-title: High temperature inhibits the accumulation of storage materials by inducing alternative splicing of OsbZIP58 during filling stage in rice. publication-title: Plant, Cell & Environment doi: 10.1111/pce.13779 – volume: 33 start-page: 1594 year: 2021 ident: 2023040906084382500_ article-title: An alternative splicing variant of PtRD26 delays leaf senescence by regulating multiple NAC transcription factors in Populus. publication-title: The Plant Cell doi: 10.1093/plcell/koab046 – volume: 100 start-page: 379 year: 2019 ident: 2023040906084382500_ article-title: The Arabidopsis splicing regulator SR45 confers salt tolerance in a splice isoform-dependent manner. publication-title: Plant Molecular Biology doi: 10.1007/s11103-019-00864-4 – volume: 114 start-page: 80 year: 2015 ident: 2023040906084382500_ article-title: MYB transcription factors, active players in abiotic stress signaling. publication-title: Environmental and Experimental Botany doi: 10.1016/j.envexpbot.2014.06.014 – volume: 16 start-page: 1917170 year: 2021 ident: 2023040906084382500_ article-title: Normal, novel or none: versatile regulation from alternative splicing. publication-title: Plant Signaling & Behavior doi: 10.1080/15592324.2021.1917170 – volume: 15 start-page: 431 year: 2014 ident: 2023040906084382500_ article-title: Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis. publication-title: BMC Genomics doi: 10.1186/1471-2164-15-431 – volume: 60 start-page: 2040 year: 2019 ident: 2023040906084382500_ article-title: Regulation of flowering time by the RNA-binding proteins AtGRP7 and AtGRP8. publication-title: Plant & Cell Physiology doi: 10.1093/pcp/pcz124 – volume: 94 start-page: 444 year: 2013 ident: 2023040906084382500_ article-title: Plant response to climate change varies with topography, interactions with neighbors, and ecotype. publication-title: Ecology doi: 10.1890/12-0780.1 – volume: 9 start-page: 1963 year: 1997 ident: 2023040906084382500_ article-title: Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. publication-title: The Plant Cell – volume: 66 start-page: 4897 year: 2015 ident: 2023040906084382500_ article-title: RNA processing in auxin and cytokinin pathways. publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erv189 – volume: 7 start-page: 20 year: 2012 ident: 2023040906084382500_ article-title: Unproductive alternative splicing and nonsense mRNAs: a widespread phenomenon among plant circadian clock genes. publication-title: Biology Direct doi: 10.1186/1745-6150-7-20 – volume: 71 start-page: 751 year: 2019 ident: 2023040906084382500_ article-title: Regulation of flowering transition by alternative splicing: the role of the U2 auxiliary factor. publication-title: Journal of Experimental Botany – volume: 139 start-page: 3402 year: 2012 ident: 2023040906084382500_ article-title: COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis. publication-title: Development doi: 10.1242/dev.078212 – volume: 38 start-page: 186 year: 2016 ident: 2023040906084382500_ article-title: N6-Methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis. publication-title: Developmental Cell doi: 10.1016/j.devcel.2016.06.008 – volume: 17 start-page: 333 year: 2016 ident: 2023040906084382500_ article-title: Coming of age: ten years of next-generation sequencing technologies. publication-title: Nature Reviews. Genetics doi: 10.1038/nrg.2016.49 – volume: 40 start-page: 2454 year: 2012 ident: 2023040906084382500_ article-title: Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. publication-title: Nucleic Acids Research doi: 10.1093/nar/gkr932 – volume: 503 start-page: 414 year: 2013 ident: 2023040906084382500_ article-title: Temperature-dependent regulation of flowering by antagonistic FLM variants. publication-title: Nature doi: 10.1038/nature12633 – volume: 49 start-page: 1133 year: 2021 ident: 2023040906084382500_ article-title: Targeting alternative splicing by RNAi: from the differential impact on splice variants to triggering artificial pre-mRNA splicing. publication-title: Nucleic Acids Research doi: 10.1093/nar/gkaa1260 – volume: 30 start-page: 620 year: 2018 ident: 2023040906084382500_ article-title: A newly identified flower-specific splice variant of AUXIN RESPONSE FACTOR8 regulates stamen elongation and endothecium lignification in Arabidopsis. publication-title: The Plant Cell doi: 10.1105/tpc.17.00840 – volume: 34 start-page: 3319 year: 2022 ident: 2023040906084382500_ article-title: Alternative splicing of REGULATOR OF LEAF INCLINATION 1 modulates phosphate starvation signaling and growth in plants. publication-title: The Plant Cell doi: 10.1093/plcell/koac161 – volume: 23 start-page: 50 year: 2022 ident: 2023040906084382500_ article-title: An improved repertoire of splicing variants and their potential roles in Arabidopsis photomorphogenic development. publication-title: Genome Biology doi: 10.1186/s13059-022-02620-2 – volume: 233 start-page: 329 year: 2022 ident: 2023040906084382500_ article-title: Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana. publication-title: New Phytologist doi: 10.1111/nph.17792 – volume: 9 start-page: e102301 year: 2014 ident: 2023040906084382500_ article-title: Alternative splicing of Arabidopsis IBR5 pre-mRNA generates two IBR5 isoforms with distinct and overlapping functions. publication-title: PLoS ONE doi: 10.1371/journal.pone.0102301 – volume: 21 start-page: 642 year: 2009 ident: 2023040906084382500_ article-title: The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. publication-title: The Plant Cell doi: 10.1105/tpc.108.062596 – volume: 284 start-page: 20457 year: 2009 ident: 2023040906084382500_ article-title: Structure and functional implications of the human Rad9-Hus1-Rad1 cell cycle checkpoint complex. publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.C109.022384 – volume: 21 start-page: 6984 year: 2020 ident: 2023040906084382500_ article-title: Two alternative splicing variants of AtERF73/HRE1, HRE1α and HRE1β, have differential transactivation activities in Arabidopsis. publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms21196984 – volume: 33 start-page: 1255 year: 2014 ident: 2023040906084382500_ article-title: Arabidopsis HRE1α, a splicing variant of AtERF73/HRE1, functions as a nuclear transcription activator in hypoxia response and root development. publication-title: Plant Cell Reports doi: 10.1007/s00299-014-1613-8 – volume: 150 start-page: 1450 year: 2009 ident: 2023040906084382500_ article-title: Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development. publication-title: Plant Physiology doi: 10.1104/pp.109.138180 – volume: 27 start-page: 2083 year: 2015 ident: 2023040906084382500_ article-title: Lost in translation: pitfalls in deciphering plant alternative splicing transcripts. publication-title: The Plant Cell doi: 10.1105/tpc.15.00572 – volume: 17 start-page: 419 year: 2015 ident: 2023040906084382500_ article-title: An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice. publication-title: Plant Biology doi: 10.1111/plb.12267 – volume: 58 start-page: 115 year: 2007 ident: 2023040906084382500_ article-title: Leaf senescence. publication-title: Annual Review of Plant Biology doi: 10.1146/annurev.arplant.57.032905.105316 – volume: 49 start-page: 1091 year: 2007 ident: 2023040906084382500_ article-title: Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2006.03020.x – volume: 6 start-page: 8138 year: 2015 ident: 2023040906084382500_ article-title: ABA signalling is fine-tuned by antagonistic HAB1 variants. publication-title: Nature Communications doi: 10.1038/ncomms9138 – volume: 17 start-page: e1009898 year: 2021 ident: 2023040906084382500_ article-title: Salt responsive alternative splicing of a RING finger E3 ligase modulates the salt stress tolerance by fine-tuning the balance of COP9 signalosome subunit 5A. publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1009898 – volume: 89 start-page: 128 year: 2017 ident: 2023040906084382500_ article-title: Alternative splicing provides a proactive mechanism for the diurnal CONSTANS dynamics in Arabidopsis photoperiodic flowering. publication-title: The Plant Journal doi: 10.1111/tpj.13351 – volume: 111 start-page: E3571 year: 2014 ident: 2023040906084382500_ article-title: DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.1403851111 – volume: 181 start-page: 1651 year: 2019 ident: 2023040906084382500_ article-title: Alternative splicing provides a mechanism to regulate LlHSFA3 function in response to heat stress in lily. publication-title: Plant Physiology doi: 10.1104/pp.19.00839 – volume: 25 start-page: 995 year: 2015 ident: 2023040906084382500_ article-title: Unmasking alternative splicing inside protein-coding exons defines exitrons and their role in proteome plasticity. publication-title: Genome Research doi: 10.1101/gr.186585.114 – volume: 10 start-page: 63 year: 2008 ident: 2023040906084382500_ article-title: Transcription factors regulating leaf senescence in Arabidopsis thaliana. publication-title: Plant Biology doi: 10.1111/j.1438-8677.2008.00088.x – volume: 109 start-page: 443 year: 2012 ident: 2023040906084382500_ article-title: Comparative studies of thermotolerance: different modes of heat acclimation between tolerant and intolerant aquatic plants of the genus Potamogeton. publication-title: Annals of Botany doi: 10.1093/aob/mcr300 – volume: 91 start-page: 518 year: 2017 ident: 2023040906084382500_ article-title: Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. publication-title: The Plant Journal doi: 10.1111/tpj.13571 – volume: 344 start-page: 427 year: 2014 ident: 2023040906084382500_ article-title: A chloroplast retrograde signal regulates nuclear alternative splicing. publication-title: Science doi: 10.1126/science.1250322 – volume: 62 start-page: 3289 year: 2011 ident: 2023040906084382500_ article-title: First off the mark: early seed germination. publication-title: Journal of Experimental Botany doi: 10.1093/jxb/err030 – volume: 23 start-page: 149 year: 2022 ident: 2023040906084382500_ article-title: A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis. publication-title: Genome Biology doi: 10.1186/s13059-022-02711-0 – volume: 11 start-page: 117 year: 2020 ident: 2023040906084382500_ article-title: Light in the transcription landscape: chromatin, RNA polymerase II and splicing throughout Arabidopsis thaliana’s life cycle. publication-title: Transcription doi: 10.1080/21541264.2020.1796473 – volume: 6 start-page: 613 year: 1994 ident: 2023040906084382500_ article-title: Regulatory hierarchy of photomorphogenic loci: allele-specific and light-dependent interaction between the HY5 and COP1 loci. publication-title: The Plant Cell – volume: 40 start-page: 1413 year: 2008 ident: 2023040906084382500_ article-title: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. publication-title: Nature Genetics doi: 10.1038/ng.259 – volume: 170 start-page: 586 year: 2016 ident: 2023040906084382500_ article-title: Genome-wide analysis of alternative splicing during development and drought stress in maize. publication-title: Plant Physiology doi: 10.1104/pp.15.01267 – volume: 12 start-page: 351 year: 2015 ident: 2023040906084382500_ article-title: Improved data analysis for the MinION nanopore sequencer. publication-title: Nature Methods doi: 10.1038/nmeth.3290 – volume: 59 start-page: 758 year: 2005 ident: 2023040906084382500_ article-title: The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. publication-title: Evolution – volume: 128 start-page: 483 year: 2004 ident: 2023040906084382500_ article-title: Plant gametogenesis: conservation and contrasts in development. publication-title: Reproduction doi: 10.1530/rep.1.00306 – volume: 178 start-page: 1154 year: 2018 ident: 2023040906084382500_ article-title: Arabidopsis PIRL6 is essential for male and female gametogenesis and is regulated by alternative splicing. publication-title: Plant Physiology doi: 10.1104/pp.18.00329 – volume: 13 start-page: 115 year: 1965 ident: 2023040906084382500_ article-title: Evolutionary significance of phenotypic plasticity in plants. publication-title: Advances in Genetics doi: 10.1016/S0065-2660(08)60048-6 – volume: 6 start-page: 921 year: 2020 ident: 2023040906084382500_ article-title: Identification of BBX proteins as rate-limiting cofactors of HY5. publication-title: Nature Plants doi: 10.1038/s41477-020-0725-0 – volume: 456 start-page: 470 year: 2008 ident: 2023040906084382500_ article-title: Alternative isoform regulation in human tissue transcriptomes. publication-title: Nature doi: 10.1038/nature07509 – volume: 13 start-page: e0207534 year: 2018 ident: 2023040906084382500_ article-title: Overexpression of ScMYBAS1 alternative splicing transcripts differentially impacts biomass accumulation and drought tolerance in rice transgenic plants. publication-title: PLoS ONE doi: 10.1371/journal.pone.0207534 – volume: 26 start-page: 754 year: 2014 ident: 2023040906084382500_ article-title: Imaging of endogenous messenger RNA splice variants in living cells reveals nuclear retention of transcripts inaccessible to nonsense-mediated decay in Arabidopsis. publication-title: The Plant Cell doi: 10.1105/tpc.113.118075 – volume: 8 start-page: 1038 year: 2015 ident: 2023040906084382500_ article-title: SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in Arabidopsis. publication-title: Molecular Plant doi: 10.1016/j.molp.2015.01.011 – volume: 82 start-page: 575 year: 2013 ident: 2023040906084382500_ article-title: Molecular and genetic regulation of fruit ripening. publication-title: Plant Molecular Biology doi: 10.1007/s11103-013-0050-3 – volume: 22 start-page: 1184 year: 2012 ident: 2023040906084382500_ article-title: Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. publication-title: Genome Research doi: 10.1101/gr.134106.111 – volume: 37 start-page: 354 year: 2004 ident: 2023040906084382500_ article-title: Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. publication-title: The Plant Journal doi: 10.1046/j.1365-313X.2003.01966.x – volume: 2 start-page: 507 year: 2013 ident: 2023040906084382500_ article-title: The Arabidopsis Plant Intracellular Ras-group LRR (PIRL) family and the value of reverse genetic analysis for identifying genes that function in gametophyte development. publication-title: Plants doi: 10.3390/plants2030507 – volume: 225 start-page: 1297 year: 2020 ident: 2023040906084382500_ article-title: Natural variation in HsfA2 pre-mRNA splicing is associated with changes in thermotolerance during tomato domestication. publication-title: New Phytologist doi: 10.1111/nph.16221 – volume: 10 start-page: 569 year: 2019 ident: 2023040906084382500_ article-title: Arabidopsis U2AF65 regulates flowering time and the growth of pollen tubes. publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2019.00569 – volume: 110 start-page: 377 year: 2022 ident: 2023040906084382500_ article-title: Alternative splicing of an exitron determines the subnuclear localization of the Arabidopsis DNA glycosylase MBD4L under heat stress. publication-title: The Plant Journal doi: 10.1111/tpj.15675 |
SSID | ssj0005055 |
Score | 2.5505688 |
SecondaryResourceType | review_article |
Snippet | Alternative splicing is an important regulatory process that produces multiple transcripts from a single gene, significantly modulating the transcriptome and... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2251 |
SubjectTerms | Alternative Splicing Arabidopsis - genetics Plants - genetics Plants - metabolism Protein Isoforms - genetics Protein Isoforms - metabolism |
Title | Alternative splicing in plants: current knowledge and future directions for assessing the biological relevance of splice variants |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36306285 https://www.proquest.com/docview/2730314231 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWglAviGcppchIPbEK9cZ5OL1tu6wKCA6olXqLbMepipZk1WYrxI3_w49kxnYeFVsJuERR4thSvk_j8TwJ2ZOiSNMsLQMZchOARswDlSYqgJ2lwLq4CVPo0f30OTk-jT6cxWej0a9B1NKqUW_1j7V5Jf-DKjwDXDFL9h-Q7SaFB3AP-MIVEIbrX2E8XXhz3rUZX6Ej2ieoLBcY3YKHfe3LL3WmM-sscIVExm47s5FwNpbS-n_b9ClXnclCiH1VbKQAapZ2HTO-hjO29GWg1ii3NxoHqLppRY61Z59XEhB1cd3aeupndW-C_VIXzn0_O1858_Z8UWNO4oXsB00VOgAsQeZYDgP4PMipgF8FYtJlux1hPK-3-XrrRshtUIyTocZJ5ChhQRj5rcKLbNfYx1MzHcrf0JWv_WNjcEWzvn5XSJRLqf2EA5Isv1mW8ITbtNJ-f-yiFttXd8jdEA4l2C9j9v5jH1DE4thngMJq-7DWvl9pk9xvv72p_txyprG6zclD8sDjRqeOYY_IyFSPyb1DC9sT8nNAM9rSjF5U1NHsgHqS0Y5kFEhGHcloTzIKJKMdySiQjPYkox3JaF26VQxtSfaUnM7fnRwdB75zR6B5yJogVbI0qmCga8sJuvZEZkKdmbgoJpKzsEwk41LoooyV0NqUCg7OiQHl3EwyLSL-jGxUdWWeE5qAviy4EUwVWcQlyBAtmMgE49wUgkfb5E37Q3Pty9pjd5VF7sIreA5A5B6IbbLXDV66ai7rh71ukclB2qILTVamXl3loOxjv4cQx2w5yLqJWohf3Ppmh2z2HH9JNprLldkFnbZRryyVfgOIyKoF |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternative+splicing+in+plants%3A+current+knowledge+and+future+directions+for+assessing+the+biological+relevance+of+splice+variants&rft.jtitle=Journal+of+experimental+botany&rft.au=Tognacca%2C+Roc%C3%ADo+S&rft.au=Rodr%C3%ADguez%2C+Florencia+S&rft.au=Aballay%2C+Federico+E&rft.au=Cartagena%2C+Carla+M&rft.date=2023-04-09&rft.eissn=1460-2431&rft.volume=74&rft.issue=7&rft.spage=2251&rft_id=info:doi/10.1093%2Fjxb%2Ferac431&rft_id=info%3Apmid%2F36306285&rft.externalDocID=36306285 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon |