Quasi solution of a backward space fractional diffusion equation
In this paper, based on a quasi solution approach, i.e., a methodology involving minimization of a least squares cost functional, we study a backward space fractional diffusion equation. To this end, we give existence and uniqueness theorems of a quasi solution in an appropriate class of admissible...
Saved in:
Published in | Journal of inverse and ill-posed problems Vol. 27; no. 6; pp. 795 - 814 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
01.12.2019
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, based on a quasi solution approach, i.e., a methodology involving minimization of a least squares cost functional, we study a backward space fractional diffusion equation.
To this end, we give existence and uniqueness theorems of a quasi solution in an appropriate class of admissible initial data.
In addition, in order to approximate the quasi solution, the finite element method is used.
Since the obtained system of linear equations is ill-posed, we apply TSVD regularization.
Finally, three numerical examples are given.
Numerical results reveal the efficiency and applicability of the proposed method. |
---|---|
AbstractList | In this paper, based on a quasi solution approach, i.e., a methodology involving minimization of a least squares cost functional, we study a backward space fractional diffusion equation.
To this end, we give existence and uniqueness theorems of a quasi solution in an appropriate class of admissible initial data.
In addition, in order to approximate the quasi solution, the finite element method is used.
Since the obtained system of linear equations is ill-posed, we apply TSVD regularization.
Finally, three numerical examples are given.
Numerical results reveal the efficiency and applicability of the proposed method. In this paper, based on a quasi solution approach, i.e., a methodology involving minimization of a least squares cost functional, we study a backward space fractional diffusion equation. To this end, we give existence and uniqueness theorems of a quasi solution in an appropriate class of admissible initial data. In addition, in order to approximate the quasi solution, the finite element method is used. Since the obtained system of linear equations is ill-posed, we apply TSVD regularization. Finally, three numerical examples are given. Numerical results reveal the efficiency and applicability of the proposed method. |
Author | Zakeri, Ali Salehi Shayegan, Amir Hossein |
Author_xml | – sequence: 1 givenname: Amir Hossein surname: Salehi Shayegan fullname: Salehi Shayegan, Amir Hossein email: ah.salehi@mail.kntu.ac.ir organization: Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran – sequence: 2 givenname: Ali surname: Zakeri fullname: Zakeri, Ali email: azakeri@kntu.ac.ir organization: Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran |
BookMark | eNp1kM1LAzEQxYNUsK1ePS943pqPzSYBD0rxCwoi6DlMk6ykrs022aX0v3fXFQTR08y8md_weDM02YatQ-ic4AXhhF9uvG9yionMMS7oEZoSXqqcqYJP0BQr2uuUqBM0S2mDMRGc0im6fu4g-SyFumt92GahyiBbg3nfQ7RZasC4rIpghiXUmfVV1aXh0O06GMRTdFxBndzZd52j17vbl-VDvnq6f1zerHLDKG7zUnBpFJNSGFwQak3JDLecg1oT6OeSY6ewtaqgUljpFGEKeCl7K9LQgrM5uhj_NjHsOpdavQld7D0lTRlRgmHSM3NUjFcmhpSiq7Tx7ZfPNoKvNcF6yEoPWekhKz1k1WOLX1gT_QfEw__A1QjsoW5dtO4tdoe--TH1N0hFKRRnn38-gSY |
CitedBy_id | crossref_primary_10_1515_cmam_2022_0178 crossref_primary_10_1515_jiip_2018_0109 crossref_primary_10_1515_jiip_2022_0054 |
Cites_doi | 10.1080/17415977.2017.1384826 10.1007/s11075-015-0065-8 10.1016/j.amc.2005.11.114 10.1007/s10444-004-1811-y 10.1137/S0036142994276785 10.1137/080714130 10.1088/0266-5611/20/2/019 10.4208/cicp.020709.221209a 10.1016/j.jmaa.2006.08.040 10.1515/jip-2011-0021 10.1016/j.apm.2013.03.071 10.1080/10682760410001710141 10.1016/S0168-9274(00)00025-8 10.1016/j.camwa.2015.11.023 10.1155/2012/596184 10.1080/00036810903479731 10.3934/ipi.2018033 10.1007/BF01937276 10.1016/j.aml.2007.06.007 10.2478/s13540-011-0028-2 10.1137/1034115 10.1002/num.20112 10.1002/mma.4284 10.1016/j.trmi.2017.05.003 10.1007/s002110050073 |
ContentType | Journal Article |
Copyright | Copyright Walter de Gruyter GmbH Dec 2019 |
Copyright_xml | – notice: Copyright Walter de Gruyter GmbH Dec 2019 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1515/jiip-2018-0042 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1569-3945 |
EndPage | 814 |
ExternalDocumentID | 10_1515_jiip_2018_0042 10_1515_jiip_2018_0042276795 |
GroupedDBID | 0R~ 0~D 4.4 5GY AAAEU AADQG AAFPC AAGVJ AAJBH AALGR AAOUV AAPJK AAQCX AARVR AASOL AASQH AAWFC AAXCG ABAOT ABAQN ABFKT ABIQR ABJNI ABMBZ ABPLS ABSOE ABUVI ABWLS ABXMZ ABYKJ ACDEB ACEFL ACGFS ACIWK ACPMA ACUND ACZBO ADEQT ADGQD ADGYE ADJVZ ADOZN AECWL AEGVQ AEICA AEJTT AENEX AEQDQ AERZL AEXIE AFBAA AFBDD AFCXV AFQUK AFYRI AGBEV AHGBP AHVWV AHXUK AIERV AIWOI AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS AMVHM ASYPN BAKPI BBCWN BCIFA CFGNV CS3 DU5 EBS FSTRU HZ~ IY9 KDIRW O9- P2P PQQKQ QD8 RDG SA. SLJYH UK5 WTRAM AAYXX CITATION 7SC 7TB 8FD ADNPR FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c320t-6758c93887c0412dc63c5d55a9b1a12d650e90dd94287d8e9139a568bac8c2453 |
ISSN | 0928-0219 |
IngestDate | Wed Aug 13 07:53:59 EDT 2025 Thu Apr 24 22:51:59 EDT 2025 Tue Jul 01 01:23:32 EDT 2025 Thu Jul 10 10:38:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-6758c93887c0412dc63c5d55a9b1a12d650e90dd94287d8e9139a568bac8c2453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2319730191 |
PQPubID | 2030080 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2319730191 crossref_citationtrail_10_1515_jiip_2018_0042 crossref_primary_10_1515_jiip_2018_0042 walterdegruyter_journals_10_1515_jiip_2018_0042276795 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Journal of inverse and ill-posed problems |
PublicationYear | 2019 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | Zakeri, A.; Salehi Shayegan, A. H.; Sakaki, S. (j_jiip-2018-0042_ref_027) 2017; 171 Hào, D. N. (j_jiip-2018-0042_ref_013) 1994; 68 Xiong, X.-T.; Fu, C.-L.; Qian, Z. (j_jiip-2018-0042_ref_026) 2006; 179 Ames, K. A.; Epperson, J. F. (j_jiip-2018-0042_ref_001) 1997; 34 Hasanov, A.; Liu, Z. (j_jiip-2018-0042_ref_014) 2008; 21 Feng, L. B.; Zhuang, P.; Liu, F.; Turner, I.; Gu, Y. T. (j_jiip-2018-0042_ref_008) 2016; 72 Ford, N. J.; Xiao, J.; Yan, Y. (j_jiip-2018-0042_ref_009) 2011; 14 Mera, N. S. (j_jiip-2018-0042_ref_020) 2005; 13 Salehi Shayegan, A. H.; Zakeri, A. (j_jiip-2018-0042_ref_023) 2018; 26 Dou, F. F.; Hon, Y. C. (j_jiip-2018-0042_ref_005) 2016; 71 Jia, J.; Peng, J.; Gao, J.; Li, Y. (j_jiip-2018-0042_ref_017) 2018; 12 Nguyen Huy, T.; Trong, D. D.; Hai, D. N. D.; Thanh, D. D. X. (j_jiip-2018-0042_ref_021) 2017; 40 Wang, J.-G.; Wei, T.; Zhou, Y.-B. (j_jiip-2018-0042_ref_025) 2013; 37 Höllig, K.; Apprich, C.; Streit, A. (j_jiip-2018-0042_ref_016) 2005; 23 Clark, G. W.; Oppenheimer, S. F. (j_jiip-2018-0042_ref_003) 1994; 1994 Fu, C.-L.; Xiong, X.-T.; Qian, Z. (j_jiip-2018-0042_ref_010) 2007; 331 Hasanov, A.; Mueller, J. L. (j_jiip-2018-0042_ref_015) 2001; 37 Choi, Y. J.; Chung, S. K. (j_jiip-2018-0042_ref_002) 2012; 2012 Deng, W. (j_jiip-2018-0042_ref_004) 2008/09; 47 DuChateau, P.; Thelwell, R.; Butters, G. (j_jiip-2018-0042_ref_006) 2004; 20 Ervin, V. J.; Roop, J. P. (j_jiip-2018-0042_ref_007) 2006; 22 Hansen, P. C. (j_jiip-2018-0042_ref_012) 1992; 34 Li, X.; Xu, C. (j_jiip-2018-0042_ref_018) 2010; 8 Liu, J. J.; Yamamoto, M. (j_jiip-2018-0042_ref_019) 2010; 89 Hansen, P. C. (j_jiip-2018-0042_ref_011) 1987; 27 Ren, C.; Xu, X.; Lu, S. (j_jiip-2018-0042_ref_022) 2014; 22 2023040100292066699_j_jiip-2018-0042_ref_005_w2aab3b7b4b1b6b1ab1b5b5Aa 2023040100292066699_j_jiip-2018-0042_ref_017_w2aab3b7b4b1b6b1ab1b5c17Aa 2023040100292066699_j_jiip-2018-0042_ref_009_w2aab3b7b4b1b6b1ab1b5b9Aa 2023040100292066699_j_jiip-2018-0042_ref_001_w2aab3b7b4b1b6b1ab1b5b1Aa 2023040100292066699_j_jiip-2018-0042_ref_022_w2aab3b7b4b1b6b1ab1b5c22Aa 2023040100292066699_j_jiip-2018-0042_ref_013_w2aab3b7b4b1b6b1ab1b5c13Aa 2023040100292066699_j_jiip-2018-0042_ref_026_w2aab3b7b4b1b6b1ab1b5c26Aa 2023040100292066699_j_jiip-2018-0042_ref_018_w2aab3b7b4b1b6b1ab1b5c18Aa 2023040100292066699_j_jiip-2018-0042_ref_006_w2aab3b7b4b1b6b1ab1b5b6Aa 2023040100292066699_j_jiip-2018-0042_ref_027_w2aab3b7b4b1b6b1ab1b5c27Aa 2023040100292066699_j_jiip-2018-0042_ref_010_w2aab3b7b4b1b6b1ab1b5c10Aa 2023040100292066699_j_jiip-2018-0042_ref_014_w2aab3b7b4b1b6b1ab1b5c14Aa 2023040100292066699_j_jiip-2018-0042_ref_023_w2aab3b7b4b1b6b1ab1b5c23Aa 2023040100292066699_j_jiip-2018-0042_ref_003_w2aab3b7b4b1b6b1ab1b5b3Aa 2023040100292066699_j_jiip-2018-0042_ref_007_w2aab3b7b4b1b6b1ab1b5b7Aa 2023040100292066699_j_jiip-2018-0042_ref_019_w2aab3b7b4b1b6b1ab1b5c19Aa 2023040100292066699_j_jiip-2018-0042_ref_020_w2aab3b7b4b1b6b1ab1b5c20Aa 2023040100292066699_j_jiip-2018-0042_ref_011_w2aab3b7b4b1b6b1ab1b5c11Aa 2023040100292066699_j_jiip-2018-0042_ref_002_w2aab3b7b4b1b6b1ab1b5b2Aa 2023040100292066699_j_jiip-2018-0042_ref_024_w2aab3b7b4b1b6b1ab1b5c24Aa 2023040100292066699_j_jiip-2018-0042_ref_015_w2aab3b7b4b1b6b1ab1b5c15Aa 2023040100292066699_j_jiip-2018-0042_ref_004_w2aab3b7b4b1b6b1ab1b5b4Aa 2023040100292066699_j_jiip-2018-0042_ref_012_w2aab3b7b4b1b6b1ab1b5c12Aa 2023040100292066699_j_jiip-2018-0042_ref_021_w2aab3b7b4b1b6b1ab1b5c21Aa 2023040100292066699_j_jiip-2018-0042_ref_016_w2aab3b7b4b1b6b1ab1b5c16Aa 2023040100292066699_j_jiip-2018-0042_ref_008_w2aab3b7b4b1b6b1ab1b5b8Aa 2023040100292066699_j_jiip-2018-0042_ref_025_w2aab3b7b4b1b6b1ab1b5c25Aa |
References_xml | – volume: 2012 year: 2012 ident: j_jiip-2018-0042_ref_002 article-title: Finite element solutions for the space fractional diffusion equation with a nonlinear source term publication-title: Abstr. Appl. Anal. – volume: 72 start-page: 749 issue: 3 year: 2016 end-page: 767 ident: j_jiip-2018-0042_ref_008 article-title: Finite element method for space-time fractional diffusion equation publication-title: Numer. Algorithms – volume: 68 start-page: 469 issue: 4 year: 1994 end-page: 506 ident: j_jiip-2018-0042_ref_013 article-title: A mollification method for ill-posed problems publication-title: Numer. Math. – volume: 12 start-page: 773 issue: 3 year: 2018 end-page: 799 ident: j_jiip-2018-0042_ref_017 article-title: Backward problem for a time-space fractional diffusion equation publication-title: Inverse Probl. Imaging – volume: 22 start-page: 558 issue: 3 year: 2006 end-page: 576 ident: j_jiip-2018-0042_ref_007 article-title: Variational formulation for the stationary fractional advection dispersion equation publication-title: Numer. Methods Partial Differential Equations – volume: 171 start-page: 411 issue: 3 year: 2017 end-page: 423 ident: j_jiip-2018-0042_ref_027 article-title: Application of sinc-Galerkin method for solving a nonlinear inverse parabolic problem publication-title: Trans. A. Razmadze Math. Inst. – volume: 40 start-page: 4040 issue: 11 year: 2017 end-page: 4064 ident: j_jiip-2018-0042_ref_021 article-title: A Riesz–Feller space-fractional backward diffusion problem with a time-dependent coefficient: Regularization and error estimates publication-title: Math. Methods Appl. Sci. – volume: 8 start-page: 1016 issue: 5 year: 2010 end-page: 1051 ident: j_jiip-2018-0042_ref_018 article-title: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation publication-title: Commun. Comput. Phys. – volume: 47 start-page: 204 issue: 1 year: 2008/09 end-page: 226 ident: j_jiip-2018-0042_ref_004 article-title: Finite element method for the space and time fractional Fokker–Planck equation publication-title: SIAM J. Numer. Anal. – volume: 13 start-page: 65 issue: 1 year: 2005 end-page: 78 ident: j_jiip-2018-0042_ref_020 article-title: The method of fundamental solutions for the backward heat conduction problem publication-title: Inverse Probl. Sci. Eng. – volume: 14 start-page: 454 issue: 3 year: 2011 end-page: 474 ident: j_jiip-2018-0042_ref_009 article-title: A finite element method for time fractional partial differential equations publication-title: Fract. Calc. Appl. Anal. – volume: 179 start-page: 370 issue: 1 year: 2006 end-page: 377 ident: j_jiip-2018-0042_ref_026 article-title: Two numerical methods for solving a backward heat conduction problem publication-title: Appl. Math. Comput. – volume: 37 start-page: 8518 issue: 18–19 year: 2013 end-page: 8532 ident: j_jiip-2018-0042_ref_025 article-title: Tikhonov regularization method for a backward problem for the time-fractional diffusion equation publication-title: Appl. Math. Model. – volume: 34 start-page: 1357 issue: 4 year: 1997 end-page: 1390 ident: j_jiip-2018-0042_ref_001 article-title: A kernel-based method for the approximate solution of backward parabolic problems publication-title: SIAM J. Numer. Anal. – volume: 20 start-page: 601 issue: 2 year: 2004 end-page: 625 ident: j_jiip-2018-0042_ref_006 article-title: Analysis of an adjoint problem approach to the identification of an unknown diffusion coefficient publication-title: Inverse Problems – volume: 27 start-page: 534 issue: 4 year: 1987 end-page: 553 ident: j_jiip-2018-0042_ref_011 article-title: The truncated SVD as a method for regularization publication-title: BIT – volume: 331 start-page: 472 issue: 1 year: 2007 end-page: 480 ident: j_jiip-2018-0042_ref_010 article-title: Fourier regularization for a backward heat equation publication-title: J. Math. Anal. Appl. – volume: 71 start-page: 356 issue: 1 year: 2016 end-page: 367 ident: j_jiip-2018-0042_ref_005 article-title: Fundamental kernel-based method for backward space-time fractional diffusion problem publication-title: Comput. Math. Appl. – volume: 22 start-page: 121 issue: 1 year: 2014 end-page: 139 ident: j_jiip-2018-0042_ref_022 article-title: Regularization by projection for a backward problem of the time-fractional diffusion equation publication-title: J. Inverse Ill-Posed Probl. – volume: 1994 year: 1994 ident: j_jiip-2018-0042_ref_003 article-title: Quasireversibility methods for non-well-posed problems publication-title: Electron. J. Differential Equations – volume: 34 start-page: 561 issue: 4 year: 1992 end-page: 580 ident: j_jiip-2018-0042_ref_012 article-title: Analysis of discrete ill-posed problems by means of the 𝖫 {\mathsf{L}} -curve publication-title: SIAM Rev. – volume: 21 start-page: 563 issue: 6 year: 2008 end-page: 570 ident: j_jiip-2018-0042_ref_014 article-title: An inverse coefficient problem for a nonlinear parabolic variational inequality publication-title: Appl. Math. Lett. – volume: 89 start-page: 1769 issue: 11 year: 2010 end-page: 1788 ident: j_jiip-2018-0042_ref_019 article-title: A backward problem for the time-fractional diffusion equation publication-title: Appl. Anal. – volume: 23 start-page: 215 issue: 1–2 year: 2005 end-page: 237 ident: j_jiip-2018-0042_ref_016 article-title: Introduction to the Web-method and its applications publication-title: Adv. Comput. Math. – volume: 37 start-page: 55 issue: 1–2 year: 2001 end-page: 78 ident: j_jiip-2018-0042_ref_015 article-title: A numerical method for backward parabolic problems with non-selfadjoint elliptic operators publication-title: Appl. Numer. Math. – volume: 26 start-page: 1130 issue: 8 year: 2018 end-page: 1154 ident: j_jiip-2018-0042_ref_023 article-title: A numerical method for determining a quasi solution of a backward time-fractional diffusion equation publication-title: Inverse Probl. Sci. Eng. – ident: 2023040100292066699_j_jiip-2018-0042_ref_023_w2aab3b7b4b1b6b1ab1b5c23Aa doi: 10.1080/17415977.2017.1384826 – ident: 2023040100292066699_j_jiip-2018-0042_ref_024_w2aab3b7b4b1b6b1ab1b5c24Aa – ident: 2023040100292066699_j_jiip-2018-0042_ref_008_w2aab3b7b4b1b6b1ab1b5b8Aa doi: 10.1007/s11075-015-0065-8 – ident: 2023040100292066699_j_jiip-2018-0042_ref_026_w2aab3b7b4b1b6b1ab1b5c26Aa doi: 10.1016/j.amc.2005.11.114 – ident: 2023040100292066699_j_jiip-2018-0042_ref_016_w2aab3b7b4b1b6b1ab1b5c16Aa doi: 10.1007/s10444-004-1811-y – ident: 2023040100292066699_j_jiip-2018-0042_ref_001_w2aab3b7b4b1b6b1ab1b5b1Aa doi: 10.1137/S0036142994276785 – ident: 2023040100292066699_j_jiip-2018-0042_ref_003_w2aab3b7b4b1b6b1ab1b5b3Aa – ident: 2023040100292066699_j_jiip-2018-0042_ref_004_w2aab3b7b4b1b6b1ab1b5b4Aa doi: 10.1137/080714130 – ident: 2023040100292066699_j_jiip-2018-0042_ref_006_w2aab3b7b4b1b6b1ab1b5b6Aa doi: 10.1088/0266-5611/20/2/019 – ident: 2023040100292066699_j_jiip-2018-0042_ref_018_w2aab3b7b4b1b6b1ab1b5c18Aa doi: 10.4208/cicp.020709.221209a – ident: 2023040100292066699_j_jiip-2018-0042_ref_010_w2aab3b7b4b1b6b1ab1b5c10Aa doi: 10.1016/j.jmaa.2006.08.040 – ident: 2023040100292066699_j_jiip-2018-0042_ref_022_w2aab3b7b4b1b6b1ab1b5c22Aa doi: 10.1515/jip-2011-0021 – ident: 2023040100292066699_j_jiip-2018-0042_ref_025_w2aab3b7b4b1b6b1ab1b5c25Aa doi: 10.1016/j.apm.2013.03.071 – ident: 2023040100292066699_j_jiip-2018-0042_ref_020_w2aab3b7b4b1b6b1ab1b5c20Aa doi: 10.1080/10682760410001710141 – ident: 2023040100292066699_j_jiip-2018-0042_ref_015_w2aab3b7b4b1b6b1ab1b5c15Aa doi: 10.1016/S0168-9274(00)00025-8 – ident: 2023040100292066699_j_jiip-2018-0042_ref_005_w2aab3b7b4b1b6b1ab1b5b5Aa doi: 10.1016/j.camwa.2015.11.023 – ident: 2023040100292066699_j_jiip-2018-0042_ref_002_w2aab3b7b4b1b6b1ab1b5b2Aa doi: 10.1155/2012/596184 – ident: 2023040100292066699_j_jiip-2018-0042_ref_019_w2aab3b7b4b1b6b1ab1b5c19Aa doi: 10.1080/00036810903479731 – ident: 2023040100292066699_j_jiip-2018-0042_ref_017_w2aab3b7b4b1b6b1ab1b5c17Aa doi: 10.3934/ipi.2018033 – ident: 2023040100292066699_j_jiip-2018-0042_ref_011_w2aab3b7b4b1b6b1ab1b5c11Aa doi: 10.1007/BF01937276 – ident: 2023040100292066699_j_jiip-2018-0042_ref_014_w2aab3b7b4b1b6b1ab1b5c14Aa doi: 10.1016/j.aml.2007.06.007 – ident: 2023040100292066699_j_jiip-2018-0042_ref_009_w2aab3b7b4b1b6b1ab1b5b9Aa doi: 10.2478/s13540-011-0028-2 – ident: 2023040100292066699_j_jiip-2018-0042_ref_012_w2aab3b7b4b1b6b1ab1b5c12Aa doi: 10.1137/1034115 – ident: 2023040100292066699_j_jiip-2018-0042_ref_007_w2aab3b7b4b1b6b1ab1b5b7Aa doi: 10.1002/num.20112 – ident: 2023040100292066699_j_jiip-2018-0042_ref_021_w2aab3b7b4b1b6b1ab1b5c21Aa doi: 10.1002/mma.4284 – ident: 2023040100292066699_j_jiip-2018-0042_ref_027_w2aab3b7b4b1b6b1ab1b5c27Aa doi: 10.1016/j.trmi.2017.05.003 – ident: 2023040100292066699_j_jiip-2018-0042_ref_013_w2aab3b7b4b1b6b1ab1b5c13Aa doi: 10.1007/s002110050073 |
SSID | ssj0017522 |
Score | 2.173615 |
Snippet | In this paper, based on a quasi solution approach, i.e., a methodology involving minimization of a least squares cost functional, we study a backward space... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 795 |
SubjectTerms | 35R11 65N21 Backward space fractional diffusion equation Existence theorems Finite element method Ill posed problems Linear equations quasi solution Regularization stability TSVD regularization Uniqueness theorems |
Title | Quasi solution of a backward space fractional diffusion equation |
URI | https://www.degruyter.com/doi/10.1515/jiip-2018-0042 https://www.proquest.com/docview/2319730191 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPE5-iMJAfkHioAkljJ_UbBXUraBtCtFDxEiW2swW6tjSN0PjruYudj24DAS9REll2dPfL-e7s-5mQZ1oKFvuMOyzQgcP4wHMSJkKHscTVvvCYSrEa-fgkGE_ZuxmfdTpvW7uWik3yQv68tq7kf7QK70CvWCX7D5qtO4UXcA_6hStoGK5_peMPRZxnvWoMU-qYYEIOcwNgKuCfTdemcqFci0nTApNjPf29aBRy1TPNFrhXw64rzOfOaplrZBMoj56pffCPMLWcZcj4fKFPTRp1eJ6t8SSSXGc15r7E32w1-3CetXMMnri0X-NzuXLfU4DbdXGBt4fnybidS0Sa68r2aWtJA-H4wnBFVqbW0ABYSLXtZmhO2rxiz3lJffE1y1ageA8GcQ0X1zZx9sn76GB6dBRNRrPJDbLbh4gBTN7u8PD16FO9pBRa6vjqWy2DJ4zwcrv_bQ-lCTv2fpRiUPrUCKHlh0xukz2rJjo0aLhDOnpxl9w6rtl383vkVYkLWuGCLlMa0woXtMQFbXBBa1zQChf3yfRgNHkzduxJGY70--7GwahPCh8mDIn8aUoGvuSK81gkXgzP4IZr4SolMEBWA41csDEPBjD0QPYZ9x-QncVyoR8SGntuyiGI9oNUstCXMUTsfRmGmHBUisVd4lTSiaSlkcfTTOYRhpMgzQilGaE0I5Rmlzyv268MgcpvW-5Xwo7sT5ZHEH4InISE1yX8kgKaVtd32A_hm_mjP3f7mNxsEL9PdjbrQj8BP3OTPLUI-gXbCH9_ |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB6h5dBy2L5ALKWtD604md0kdhIfKpW2wFJYpEqAuAXHdtptYZfuJkL0Z_FX-EOdaR4UaC9IHHqM4ljOvDwzHn8D8NoZJXQgJBehC7mQscdToSIuRNpzgfKEzeg28mA37O-LT4fycAYu6rswVFZp3ZdJcZ6XCKldOzYFJcoarAHcgbvfhsNTZLAXc5K67tf85LgqrNx252cYtk3fbn1EHr_x_Y31vQ99XnUW4CbwezknL9moABXMEN6UNWFgpJVSq9TT-Ixui1M9axUFFDZ2hJ2pZRin2sTGF9QpAs3-bEzILy2YXdt8v37QnF1EFUa5IuxnNAgVVOTtZV_fCq_82_bZ75Pyhgx_bHgbj-CyJlVZ5_J9tcjTVfPzBork_0XLx9Cu_G-2VirME5hxo6cwN2jAa6fP4N3nQk-HrFZKNs6YZinlOVGbGFpg41g2KS-E4FTUYqagnCNzP0rc9HnYv5dfWIDWaDxyi8C018skxqBBmBkRBUZjwOubKKJ8nbVCd4DXPE9MhcJOzUCOE4rGkB0JsSMhdiTEjg6sNONPS_yRf45crkUoqezQNEHvXZENV14H5A2xuhr19wn9CNcsl-743St40N8b7CQ7W7vbz-EhvlVlFdAytPJJ4V6gL5enLyvlYXB03zL2C_m8UWs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB6hRarKAfpCbKGtD616MpuHncQHJGhhgVJQK0HFLTi2U21Bu9vdRIj-q_4VfhEzzYMW2gsShx6jOJYzL8-Mx98AvHZGCR0KyUXkIi5k4vNMqJgLkXkuVL6wOd1G3j-Ido7Eh2N5PAM_m7swVFZp3ddJeVFUCKk9OzIlJcparAHcgXvfBoMxMthPOEldb2zzuq5yz12cY9Q2XdvdRBa_CYL-1uH7HV43FuAmDLyCk5NsVIj6ZQhuypooNNJKqVXma3xGr8Upz1pF8YRNHEFnahklmTaJCQQ1ikCrP5sI30s6MLux_W7rS3t0EdcQ5Yqgn9Ee1EiRt1f950547d7On_86KG-p8Nt-11-Ay4ZSVZnL6WpZZKvmxw0Qyf-KlI9gvva-2UalLo9hxg2fwNx-C107fQrrn0s9HbBGJdkoZ5pllOVEXWJof41j-aS6DoJTUYOZkjKOzH2vUNOfwdG9_MIidIajoVsCpn0vlxiBhlFuRBwajeFuYOKYsnXWCt0F3rA8NTUGO7UCOUspFkNupMSNlLiREje68LYdP67QR_45cqWRoLS2QtMUfXdFFlz5XZA3pOp61N8nDGJcs3x-x-9ewYNPm_304-7B3jI8xJeqKgFagU4xKd0LdOSK7GWtOgxO7lvErgCGP1AS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi+solution+of+a+backward+space+fractional+diffusion+equation&rft.jtitle=Journal+of+inverse+and+ill-posed+problems&rft.au=Salehi+Shayegan%2C+Amir+Hossein&rft.au=Zakeri%2C+Ali&rft.date=2019-12-01&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=0928-0219&rft.eissn=1569-3945&rft.volume=27&rft.issue=6&rft.spage=795&rft_id=info:doi/10.1515%2Fjiip-2018-0042&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0219&client=summon |