Quasi solution of a backward space fractional diffusion equation

In this paper, based on a quasi solution approach, i.e., a methodology involving minimization of a least squares cost functional, we study a backward space fractional diffusion equation. To this end, we give existence and uniqueness theorems of a quasi solution in an appropriate class of admissible...

Full description

Saved in:
Bibliographic Details
Published inJournal of inverse and ill-posed problems Vol. 27; no. 6; pp. 795 - 814
Main Authors Salehi Shayegan, Amir Hossein, Zakeri, Ali
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.12.2019
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, based on a quasi solution approach, i.e., a methodology involving minimization of a least squares cost functional, we study a backward space fractional diffusion equation. To this end, we give existence and uniqueness theorems of a quasi solution in an appropriate class of admissible initial data. In addition, in order to approximate the quasi solution, the finite element method is used. Since the obtained system of linear equations is ill-posed, we apply TSVD regularization. Finally, three numerical examples are given. Numerical results reveal the efficiency and applicability of the proposed method.
AbstractList In this paper, based on a quasi solution approach, i.e., a methodology involving minimization of a least squares cost functional, we study a backward space fractional diffusion equation. To this end, we give existence and uniqueness theorems of a quasi solution in an appropriate class of admissible initial data. In addition, in order to approximate the quasi solution, the finite element method is used. Since the obtained system of linear equations is ill-posed, we apply TSVD regularization. Finally, three numerical examples are given. Numerical results reveal the efficiency and applicability of the proposed method.
In this paper, based on a quasi solution approach, i.e., a methodology involving minimization of a least squares cost functional, we study a backward space fractional diffusion equation. To this end, we give existence and uniqueness theorems of a quasi solution in an appropriate class of admissible initial data. In addition, in order to approximate the quasi solution, the finite element method is used. Since the obtained system of linear equations is ill-posed, we apply TSVD regularization. Finally, three numerical examples are given. Numerical results reveal the efficiency and applicability of the proposed method.
Author Zakeri, Ali
Salehi Shayegan, Amir Hossein
Author_xml – sequence: 1
  givenname: Amir Hossein
  surname: Salehi Shayegan
  fullname: Salehi Shayegan, Amir Hossein
  email: ah.salehi@mail.kntu.ac.ir
  organization: Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 2
  givenname: Ali
  surname: Zakeri
  fullname: Zakeri, Ali
  email: azakeri@kntu.ac.ir
  organization: Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran
BookMark eNp1kM1LAzEQxYNUsK1ePS943pqPzSYBD0rxCwoi6DlMk6ykrs022aX0v3fXFQTR08y8md_weDM02YatQ-ic4AXhhF9uvG9yionMMS7oEZoSXqqcqYJP0BQr2uuUqBM0S2mDMRGc0im6fu4g-SyFumt92GahyiBbg3nfQ7RZasC4rIpghiXUmfVV1aXh0O06GMRTdFxBndzZd52j17vbl-VDvnq6f1zerHLDKG7zUnBpFJNSGFwQak3JDLecg1oT6OeSY6ewtaqgUljpFGEKeCl7K9LQgrM5uhj_NjHsOpdavQld7D0lTRlRgmHSM3NUjFcmhpSiq7Tx7ZfPNoKvNcF6yEoPWekhKz1k1WOLX1gT_QfEw__A1QjsoW5dtO4tdoe--TH1N0hFKRRnn38-gSY
CitedBy_id crossref_primary_10_1515_cmam_2022_0178
crossref_primary_10_1515_jiip_2018_0109
crossref_primary_10_1515_jiip_2022_0054
Cites_doi 10.1080/17415977.2017.1384826
10.1007/s11075-015-0065-8
10.1016/j.amc.2005.11.114
10.1007/s10444-004-1811-y
10.1137/S0036142994276785
10.1137/080714130
10.1088/0266-5611/20/2/019
10.4208/cicp.020709.221209a
10.1016/j.jmaa.2006.08.040
10.1515/jip-2011-0021
10.1016/j.apm.2013.03.071
10.1080/10682760410001710141
10.1016/S0168-9274(00)00025-8
10.1016/j.camwa.2015.11.023
10.1155/2012/596184
10.1080/00036810903479731
10.3934/ipi.2018033
10.1007/BF01937276
10.1016/j.aml.2007.06.007
10.2478/s13540-011-0028-2
10.1137/1034115
10.1002/num.20112
10.1002/mma.4284
10.1016/j.trmi.2017.05.003
10.1007/s002110050073
ContentType Journal Article
Copyright Copyright Walter de Gruyter GmbH Dec 2019
Copyright_xml – notice: Copyright Walter de Gruyter GmbH Dec 2019
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1515/jiip-2018-0042
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1569-3945
EndPage 814
ExternalDocumentID 10_1515_jiip_2018_0042
10_1515_jiip_2018_0042276795
GroupedDBID 0R~
0~D
4.4
5GY
AAAEU
AADQG
AAFPC
AAGVJ
AAJBH
AALGR
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABMBZ
ABPLS
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACIWK
ACPMA
ACUND
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADOZN
AECWL
AEGVQ
AEICA
AEJTT
AENEX
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFQUK
AFYRI
AGBEV
AHGBP
AHVWV
AHXUK
AIERV
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ASYPN
BAKPI
BBCWN
BCIFA
CFGNV
CS3
DU5
EBS
FSTRU
HZ~
IY9
KDIRW
O9-
P2P
PQQKQ
QD8
RDG
SA.
SLJYH
UK5
WTRAM
AAYXX
CITATION
7SC
7TB
8FD
ADNPR
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c320t-6758c93887c0412dc63c5d55a9b1a12d650e90dd94287d8e9139a568bac8c2453
ISSN 0928-0219
IngestDate Wed Aug 13 07:53:59 EDT 2025
Thu Apr 24 22:51:59 EDT 2025
Tue Jul 01 01:23:32 EDT 2025
Thu Jul 10 10:38:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-6758c93887c0412dc63c5d55a9b1a12d650e90dd94287d8e9139a568bac8c2453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2319730191
PQPubID 2030080
PageCount 20
ParticipantIDs proquest_journals_2319730191
crossref_citationtrail_10_1515_jiip_2018_0042
crossref_primary_10_1515_jiip_2018_0042
walterdegruyter_journals_10_1515_jiip_2018_0042276795
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of inverse and ill-posed problems
PublicationYear 2019
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References Zakeri, A.; Salehi Shayegan, A. H.; Sakaki, S. (j_jiip-2018-0042_ref_027) 2017; 171
Hào, D. N. (j_jiip-2018-0042_ref_013) 1994; 68
Xiong, X.-T.; Fu, C.-L.; Qian, Z. (j_jiip-2018-0042_ref_026) 2006; 179
Ames, K. A.; Epperson, J. F. (j_jiip-2018-0042_ref_001) 1997; 34
Hasanov, A.; Liu, Z. (j_jiip-2018-0042_ref_014) 2008; 21
Feng, L. B.; Zhuang, P.; Liu, F.; Turner, I.; Gu, Y. T. (j_jiip-2018-0042_ref_008) 2016; 72
Ford, N. J.; Xiao, J.; Yan, Y. (j_jiip-2018-0042_ref_009) 2011; 14
Mera, N. S. (j_jiip-2018-0042_ref_020) 2005; 13
Salehi Shayegan, A. H.; Zakeri, A. (j_jiip-2018-0042_ref_023) 2018; 26
Dou, F. F.; Hon, Y. C. (j_jiip-2018-0042_ref_005) 2016; 71
Jia, J.; Peng, J.; Gao, J.; Li, Y. (j_jiip-2018-0042_ref_017) 2018; 12
Nguyen Huy, T.; Trong, D. D.; Hai, D. N. D.; Thanh, D. D. X. (j_jiip-2018-0042_ref_021) 2017; 40
Wang, J.-G.; Wei, T.; Zhou, Y.-B. (j_jiip-2018-0042_ref_025) 2013; 37
Höllig, K.; Apprich, C.; Streit, A. (j_jiip-2018-0042_ref_016) 2005; 23
Clark, G. W.; Oppenheimer, S. F. (j_jiip-2018-0042_ref_003) 1994; 1994
Fu, C.-L.; Xiong, X.-T.; Qian, Z. (j_jiip-2018-0042_ref_010) 2007; 331
Hasanov, A.; Mueller, J. L. (j_jiip-2018-0042_ref_015) 2001; 37
Choi, Y. J.; Chung, S. K. (j_jiip-2018-0042_ref_002) 2012; 2012
Deng, W. (j_jiip-2018-0042_ref_004) 2008/09; 47
DuChateau, P.; Thelwell, R.; Butters, G. (j_jiip-2018-0042_ref_006) 2004; 20
Ervin, V. J.; Roop, J. P. (j_jiip-2018-0042_ref_007) 2006; 22
Hansen, P. C. (j_jiip-2018-0042_ref_012) 1992; 34
Li, X.; Xu, C. (j_jiip-2018-0042_ref_018) 2010; 8
Liu, J. J.; Yamamoto, M. (j_jiip-2018-0042_ref_019) 2010; 89
Hansen, P. C. (j_jiip-2018-0042_ref_011) 1987; 27
Ren, C.; Xu, X.; Lu, S. (j_jiip-2018-0042_ref_022) 2014; 22
2023040100292066699_j_jiip-2018-0042_ref_005_w2aab3b7b4b1b6b1ab1b5b5Aa
2023040100292066699_j_jiip-2018-0042_ref_017_w2aab3b7b4b1b6b1ab1b5c17Aa
2023040100292066699_j_jiip-2018-0042_ref_009_w2aab3b7b4b1b6b1ab1b5b9Aa
2023040100292066699_j_jiip-2018-0042_ref_001_w2aab3b7b4b1b6b1ab1b5b1Aa
2023040100292066699_j_jiip-2018-0042_ref_022_w2aab3b7b4b1b6b1ab1b5c22Aa
2023040100292066699_j_jiip-2018-0042_ref_013_w2aab3b7b4b1b6b1ab1b5c13Aa
2023040100292066699_j_jiip-2018-0042_ref_026_w2aab3b7b4b1b6b1ab1b5c26Aa
2023040100292066699_j_jiip-2018-0042_ref_018_w2aab3b7b4b1b6b1ab1b5c18Aa
2023040100292066699_j_jiip-2018-0042_ref_006_w2aab3b7b4b1b6b1ab1b5b6Aa
2023040100292066699_j_jiip-2018-0042_ref_027_w2aab3b7b4b1b6b1ab1b5c27Aa
2023040100292066699_j_jiip-2018-0042_ref_010_w2aab3b7b4b1b6b1ab1b5c10Aa
2023040100292066699_j_jiip-2018-0042_ref_014_w2aab3b7b4b1b6b1ab1b5c14Aa
2023040100292066699_j_jiip-2018-0042_ref_023_w2aab3b7b4b1b6b1ab1b5c23Aa
2023040100292066699_j_jiip-2018-0042_ref_003_w2aab3b7b4b1b6b1ab1b5b3Aa
2023040100292066699_j_jiip-2018-0042_ref_007_w2aab3b7b4b1b6b1ab1b5b7Aa
2023040100292066699_j_jiip-2018-0042_ref_019_w2aab3b7b4b1b6b1ab1b5c19Aa
2023040100292066699_j_jiip-2018-0042_ref_020_w2aab3b7b4b1b6b1ab1b5c20Aa
2023040100292066699_j_jiip-2018-0042_ref_011_w2aab3b7b4b1b6b1ab1b5c11Aa
2023040100292066699_j_jiip-2018-0042_ref_002_w2aab3b7b4b1b6b1ab1b5b2Aa
2023040100292066699_j_jiip-2018-0042_ref_024_w2aab3b7b4b1b6b1ab1b5c24Aa
2023040100292066699_j_jiip-2018-0042_ref_015_w2aab3b7b4b1b6b1ab1b5c15Aa
2023040100292066699_j_jiip-2018-0042_ref_004_w2aab3b7b4b1b6b1ab1b5b4Aa
2023040100292066699_j_jiip-2018-0042_ref_012_w2aab3b7b4b1b6b1ab1b5c12Aa
2023040100292066699_j_jiip-2018-0042_ref_021_w2aab3b7b4b1b6b1ab1b5c21Aa
2023040100292066699_j_jiip-2018-0042_ref_016_w2aab3b7b4b1b6b1ab1b5c16Aa
2023040100292066699_j_jiip-2018-0042_ref_008_w2aab3b7b4b1b6b1ab1b5b8Aa
2023040100292066699_j_jiip-2018-0042_ref_025_w2aab3b7b4b1b6b1ab1b5c25Aa
References_xml – volume: 2012
  year: 2012
  ident: j_jiip-2018-0042_ref_002
  article-title: Finite element solutions for the space fractional diffusion equation with a nonlinear source term
  publication-title: Abstr. Appl. Anal.
– volume: 72
  start-page: 749
  issue: 3
  year: 2016
  end-page: 767
  ident: j_jiip-2018-0042_ref_008
  article-title: Finite element method for space-time fractional diffusion equation
  publication-title: Numer. Algorithms
– volume: 68
  start-page: 469
  issue: 4
  year: 1994
  end-page: 506
  ident: j_jiip-2018-0042_ref_013
  article-title: A mollification method for ill-posed problems
  publication-title: Numer. Math.
– volume: 12
  start-page: 773
  issue: 3
  year: 2018
  end-page: 799
  ident: j_jiip-2018-0042_ref_017
  article-title: Backward problem for a time-space fractional diffusion equation
  publication-title: Inverse Probl. Imaging
– volume: 22
  start-page: 558
  issue: 3
  year: 2006
  end-page: 576
  ident: j_jiip-2018-0042_ref_007
  article-title: Variational formulation for the stationary fractional advection dispersion equation
  publication-title: Numer. Methods Partial Differential Equations
– volume: 171
  start-page: 411
  issue: 3
  year: 2017
  end-page: 423
  ident: j_jiip-2018-0042_ref_027
  article-title: Application of sinc-Galerkin method for solving a nonlinear inverse parabolic problem
  publication-title: Trans. A. Razmadze Math. Inst.
– volume: 40
  start-page: 4040
  issue: 11
  year: 2017
  end-page: 4064
  ident: j_jiip-2018-0042_ref_021
  article-title: A Riesz–Feller space-fractional backward diffusion problem with a time-dependent coefficient: Regularization and error estimates
  publication-title: Math. Methods Appl. Sci.
– volume: 8
  start-page: 1016
  issue: 5
  year: 2010
  end-page: 1051
  ident: j_jiip-2018-0042_ref_018
  article-title: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation
  publication-title: Commun. Comput. Phys.
– volume: 47
  start-page: 204
  issue: 1
  year: 2008/09
  end-page: 226
  ident: j_jiip-2018-0042_ref_004
  article-title: Finite element method for the space and time fractional Fokker–Planck equation
  publication-title: SIAM J. Numer. Anal.
– volume: 13
  start-page: 65
  issue: 1
  year: 2005
  end-page: 78
  ident: j_jiip-2018-0042_ref_020
  article-title: The method of fundamental solutions for the backward heat conduction problem
  publication-title: Inverse Probl. Sci. Eng.
– volume: 14
  start-page: 454
  issue: 3
  year: 2011
  end-page: 474
  ident: j_jiip-2018-0042_ref_009
  article-title: A finite element method for time fractional partial differential equations
  publication-title: Fract. Calc. Appl. Anal.
– volume: 179
  start-page: 370
  issue: 1
  year: 2006
  end-page: 377
  ident: j_jiip-2018-0042_ref_026
  article-title: Two numerical methods for solving a backward heat conduction problem
  publication-title: Appl. Math. Comput.
– volume: 37
  start-page: 8518
  issue: 18–19
  year: 2013
  end-page: 8532
  ident: j_jiip-2018-0042_ref_025
  article-title: Tikhonov regularization method for a backward problem for the time-fractional diffusion equation
  publication-title: Appl. Math. Model.
– volume: 34
  start-page: 1357
  issue: 4
  year: 1997
  end-page: 1390
  ident: j_jiip-2018-0042_ref_001
  article-title: A kernel-based method for the approximate solution of backward parabolic problems
  publication-title: SIAM J. Numer. Anal.
– volume: 20
  start-page: 601
  issue: 2
  year: 2004
  end-page: 625
  ident: j_jiip-2018-0042_ref_006
  article-title: Analysis of an adjoint problem approach to the identification of an unknown diffusion coefficient
  publication-title: Inverse Problems
– volume: 27
  start-page: 534
  issue: 4
  year: 1987
  end-page: 553
  ident: j_jiip-2018-0042_ref_011
  article-title: The truncated SVD as a method for regularization
  publication-title: BIT
– volume: 331
  start-page: 472
  issue: 1
  year: 2007
  end-page: 480
  ident: j_jiip-2018-0042_ref_010
  article-title: Fourier regularization for a backward heat equation
  publication-title: J. Math. Anal. Appl.
– volume: 71
  start-page: 356
  issue: 1
  year: 2016
  end-page: 367
  ident: j_jiip-2018-0042_ref_005
  article-title: Fundamental kernel-based method for backward space-time fractional diffusion problem
  publication-title: Comput. Math. Appl.
– volume: 22
  start-page: 121
  issue: 1
  year: 2014
  end-page: 139
  ident: j_jiip-2018-0042_ref_022
  article-title: Regularization by projection for a backward problem of the time-fractional diffusion equation
  publication-title: J. Inverse Ill-Posed Probl.
– volume: 1994
  year: 1994
  ident: j_jiip-2018-0042_ref_003
  article-title: Quasireversibility methods for non-well-posed problems
  publication-title: Electron. J. Differential Equations
– volume: 34
  start-page: 561
  issue: 4
  year: 1992
  end-page: 580
  ident: j_jiip-2018-0042_ref_012
  article-title: Analysis of discrete ill-posed problems by means of the 𝖫 {\mathsf{L}} -curve
  publication-title: SIAM Rev.
– volume: 21
  start-page: 563
  issue: 6
  year: 2008
  end-page: 570
  ident: j_jiip-2018-0042_ref_014
  article-title: An inverse coefficient problem for a nonlinear parabolic variational inequality
  publication-title: Appl. Math. Lett.
– volume: 89
  start-page: 1769
  issue: 11
  year: 2010
  end-page: 1788
  ident: j_jiip-2018-0042_ref_019
  article-title: A backward problem for the time-fractional diffusion equation
  publication-title: Appl. Anal.
– volume: 23
  start-page: 215
  issue: 1–2
  year: 2005
  end-page: 237
  ident: j_jiip-2018-0042_ref_016
  article-title: Introduction to the Web-method and its applications
  publication-title: Adv. Comput. Math.
– volume: 37
  start-page: 55
  issue: 1–2
  year: 2001
  end-page: 78
  ident: j_jiip-2018-0042_ref_015
  article-title: A numerical method for backward parabolic problems with non-selfadjoint elliptic operators
  publication-title: Appl. Numer. Math.
– volume: 26
  start-page: 1130
  issue: 8
  year: 2018
  end-page: 1154
  ident: j_jiip-2018-0042_ref_023
  article-title: A numerical method for determining a quasi solution of a backward time-fractional diffusion equation
  publication-title: Inverse Probl. Sci. Eng.
– ident: 2023040100292066699_j_jiip-2018-0042_ref_023_w2aab3b7b4b1b6b1ab1b5c23Aa
  doi: 10.1080/17415977.2017.1384826
– ident: 2023040100292066699_j_jiip-2018-0042_ref_024_w2aab3b7b4b1b6b1ab1b5c24Aa
– ident: 2023040100292066699_j_jiip-2018-0042_ref_008_w2aab3b7b4b1b6b1ab1b5b8Aa
  doi: 10.1007/s11075-015-0065-8
– ident: 2023040100292066699_j_jiip-2018-0042_ref_026_w2aab3b7b4b1b6b1ab1b5c26Aa
  doi: 10.1016/j.amc.2005.11.114
– ident: 2023040100292066699_j_jiip-2018-0042_ref_016_w2aab3b7b4b1b6b1ab1b5c16Aa
  doi: 10.1007/s10444-004-1811-y
– ident: 2023040100292066699_j_jiip-2018-0042_ref_001_w2aab3b7b4b1b6b1ab1b5b1Aa
  doi: 10.1137/S0036142994276785
– ident: 2023040100292066699_j_jiip-2018-0042_ref_003_w2aab3b7b4b1b6b1ab1b5b3Aa
– ident: 2023040100292066699_j_jiip-2018-0042_ref_004_w2aab3b7b4b1b6b1ab1b5b4Aa
  doi: 10.1137/080714130
– ident: 2023040100292066699_j_jiip-2018-0042_ref_006_w2aab3b7b4b1b6b1ab1b5b6Aa
  doi: 10.1088/0266-5611/20/2/019
– ident: 2023040100292066699_j_jiip-2018-0042_ref_018_w2aab3b7b4b1b6b1ab1b5c18Aa
  doi: 10.4208/cicp.020709.221209a
– ident: 2023040100292066699_j_jiip-2018-0042_ref_010_w2aab3b7b4b1b6b1ab1b5c10Aa
  doi: 10.1016/j.jmaa.2006.08.040
– ident: 2023040100292066699_j_jiip-2018-0042_ref_022_w2aab3b7b4b1b6b1ab1b5c22Aa
  doi: 10.1515/jip-2011-0021
– ident: 2023040100292066699_j_jiip-2018-0042_ref_025_w2aab3b7b4b1b6b1ab1b5c25Aa
  doi: 10.1016/j.apm.2013.03.071
– ident: 2023040100292066699_j_jiip-2018-0042_ref_020_w2aab3b7b4b1b6b1ab1b5c20Aa
  doi: 10.1080/10682760410001710141
– ident: 2023040100292066699_j_jiip-2018-0042_ref_015_w2aab3b7b4b1b6b1ab1b5c15Aa
  doi: 10.1016/S0168-9274(00)00025-8
– ident: 2023040100292066699_j_jiip-2018-0042_ref_005_w2aab3b7b4b1b6b1ab1b5b5Aa
  doi: 10.1016/j.camwa.2015.11.023
– ident: 2023040100292066699_j_jiip-2018-0042_ref_002_w2aab3b7b4b1b6b1ab1b5b2Aa
  doi: 10.1155/2012/596184
– ident: 2023040100292066699_j_jiip-2018-0042_ref_019_w2aab3b7b4b1b6b1ab1b5c19Aa
  doi: 10.1080/00036810903479731
– ident: 2023040100292066699_j_jiip-2018-0042_ref_017_w2aab3b7b4b1b6b1ab1b5c17Aa
  doi: 10.3934/ipi.2018033
– ident: 2023040100292066699_j_jiip-2018-0042_ref_011_w2aab3b7b4b1b6b1ab1b5c11Aa
  doi: 10.1007/BF01937276
– ident: 2023040100292066699_j_jiip-2018-0042_ref_014_w2aab3b7b4b1b6b1ab1b5c14Aa
  doi: 10.1016/j.aml.2007.06.007
– ident: 2023040100292066699_j_jiip-2018-0042_ref_009_w2aab3b7b4b1b6b1ab1b5b9Aa
  doi: 10.2478/s13540-011-0028-2
– ident: 2023040100292066699_j_jiip-2018-0042_ref_012_w2aab3b7b4b1b6b1ab1b5c12Aa
  doi: 10.1137/1034115
– ident: 2023040100292066699_j_jiip-2018-0042_ref_007_w2aab3b7b4b1b6b1ab1b5b7Aa
  doi: 10.1002/num.20112
– ident: 2023040100292066699_j_jiip-2018-0042_ref_021_w2aab3b7b4b1b6b1ab1b5c21Aa
  doi: 10.1002/mma.4284
– ident: 2023040100292066699_j_jiip-2018-0042_ref_027_w2aab3b7b4b1b6b1ab1b5c27Aa
  doi: 10.1016/j.trmi.2017.05.003
– ident: 2023040100292066699_j_jiip-2018-0042_ref_013_w2aab3b7b4b1b6b1ab1b5c13Aa
  doi: 10.1007/s002110050073
SSID ssj0017522
Score 2.173615
Snippet In this paper, based on a quasi solution approach, i.e., a methodology involving minimization of a least squares cost functional, we study a backward space...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 795
SubjectTerms 35R11
65N21
Backward space fractional diffusion equation
Existence theorems
Finite element method
Ill posed problems
Linear equations
quasi solution
Regularization
stability
TSVD regularization
Uniqueness theorems
Title Quasi solution of a backward space fractional diffusion equation
URI https://www.degruyter.com/doi/10.1515/jiip-2018-0042
https://www.proquest.com/docview/2319730191
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPE5-iMJAfkHioAkljJ_UbBXUraBtCtFDxEiW2swW6tjSN0PjruYudj24DAS9REll2dPfL-e7s-5mQZ1oKFvuMOyzQgcP4wHMSJkKHscTVvvCYSrEa-fgkGE_ZuxmfdTpvW7uWik3yQv68tq7kf7QK70CvWCX7D5qtO4UXcA_6hStoGK5_peMPRZxnvWoMU-qYYEIOcwNgKuCfTdemcqFci0nTApNjPf29aBRy1TPNFrhXw64rzOfOaplrZBMoj56pffCPMLWcZcj4fKFPTRp1eJ6t8SSSXGc15r7E32w1-3CetXMMnri0X-NzuXLfU4DbdXGBt4fnybidS0Sa68r2aWtJA-H4wnBFVqbW0ABYSLXtZmhO2rxiz3lJffE1y1ageA8GcQ0X1zZx9sn76GB6dBRNRrPJDbLbh4gBTN7u8PD16FO9pBRa6vjqWy2DJ4zwcrv_bQ-lCTv2fpRiUPrUCKHlh0xukz2rJjo0aLhDOnpxl9w6rtl383vkVYkLWuGCLlMa0woXtMQFbXBBa1zQChf3yfRgNHkzduxJGY70--7GwahPCh8mDIn8aUoGvuSK81gkXgzP4IZr4SolMEBWA41csDEPBjD0QPYZ9x-QncVyoR8SGntuyiGI9oNUstCXMUTsfRmGmHBUisVd4lTSiaSlkcfTTOYRhpMgzQilGaE0I5Rmlzyv268MgcpvW-5Xwo7sT5ZHEH4InISE1yX8kgKaVtd32A_hm_mjP3f7mNxsEL9PdjbrQj8BP3OTPLUI-gXbCH9_
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB6h5dBy2L5ALKWtD604md0kdhIfKpW2wFJYpEqAuAXHdtptYZfuJkL0Z_FX-EOdaR4UaC9IHHqM4ljOvDwzHn8D8NoZJXQgJBehC7mQscdToSIuRNpzgfKEzeg28mA37O-LT4fycAYu6rswVFZp3ZdJcZ6XCKldOzYFJcoarAHcgbvfhsNTZLAXc5K67tf85LgqrNx252cYtk3fbn1EHr_x_Y31vQ99XnUW4CbwezknL9moABXMEN6UNWFgpJVSq9TT-Ixui1M9axUFFDZ2hJ2pZRin2sTGF9QpAs3-bEzILy2YXdt8v37QnF1EFUa5IuxnNAgVVOTtZV_fCq_82_bZ75Pyhgx_bHgbj-CyJlVZ5_J9tcjTVfPzBork_0XLx9Cu_G-2VirME5hxo6cwN2jAa6fP4N3nQk-HrFZKNs6YZinlOVGbGFpg41g2KS-E4FTUYqagnCNzP0rc9HnYv5dfWIDWaDxyi8C018skxqBBmBkRBUZjwOubKKJ8nbVCd4DXPE9MhcJOzUCOE4rGkB0JsSMhdiTEjg6sNONPS_yRf45crkUoqezQNEHvXZENV14H5A2xuhr19wn9CNcsl-743St40N8b7CQ7W7vbz-EhvlVlFdAytPJJ4V6gL5enLyvlYXB03zL2C_m8UWs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB6hRarKAfpCbKGtD616MpuHncQHJGhhgVJQK0HFLTi2U21Bu9vdRIj-q_4VfhEzzYMW2gsShx6jOJYzL8-Mx98AvHZGCR0KyUXkIi5k4vNMqJgLkXkuVL6wOd1G3j-Ido7Eh2N5PAM_m7swVFZp3ddJeVFUCKk9OzIlJcparAHcgXvfBoMxMthPOEldb2zzuq5yz12cY9Q2XdvdRBa_CYL-1uH7HV43FuAmDLyCk5NsVIj6ZQhuypooNNJKqVXma3xGr8Upz1pF8YRNHEFnahklmTaJCQQ1ikCrP5sI30s6MLux_W7rS3t0EdcQ5Yqgn9Ee1EiRt1f950547d7On_86KG-p8Nt-11-Ay4ZSVZnL6WpZZKvmxw0Qyf-KlI9gvva-2UalLo9hxg2fwNx-C107fQrrn0s9HbBGJdkoZ5pllOVEXWJof41j-aS6DoJTUYOZkjKOzH2vUNOfwdG9_MIidIajoVsCpn0vlxiBhlFuRBwajeFuYOKYsnXWCt0F3rA8NTUGO7UCOUspFkNupMSNlLiREje68LYdP67QR_45cqWRoLS2QtMUfXdFFlz5XZA3pOp61N8nDGJcs3x-x-9ewYNPm_304-7B3jI8xJeqKgFagU4xKd0LdOSK7GWtOgxO7lvErgCGP1AS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi+solution+of+a+backward+space+fractional+diffusion+equation&rft.jtitle=Journal+of+inverse+and+ill-posed+problems&rft.au=Salehi+Shayegan%2C+Amir+Hossein&rft.au=Zakeri%2C+Ali&rft.date=2019-12-01&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=0928-0219&rft.eissn=1569-3945&rft.volume=27&rft.issue=6&rft.spage=795&rft_id=info:doi/10.1515%2Fjiip-2018-0042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0219&client=summon