Beam coupling in hybrid photorefractive inorganic-cholesteric liquid crystal cells: Impact of optical rotation
We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed between two inorganic substrates. One of the substrates is photorefractive (Ce:SBN). Weak and strong light beams are incident on the hybrid cell....
Saved in:
Published in | Journal of applied physics Vol. 115; no. 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
14.03.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-8979 1089-7550 |
DOI | 10.1063/1.4867479 |
Cover
Loading…
Abstract | We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed between two inorganic substrates. One of the substrates is photorefractive (Ce:SBN). Weak and strong light beams are incident on the hybrid cell. The interfering light beams induce a periodic space-charge field in the photorefractive window. This penetrates into the cholesteric liquid crystal (LC), inducing a diffraction grating written on the LC director. In the theory, the flexoelectric mechanism for electric field-director coupling is more important than the LC static dielectric anisotropy coupling. The LC optics is described in the Bragg regime. Each beam induces two circular polarized waves propagating in the cholesteric cell with different velocities. The model thus includes optical rotation in the cholesteric LC. The incident light beam wavelength can fall above, below, or inside the cholesteric gap. The theory calculates the energy gain of the weak beam, as a result of its interaction with the pump beam within the diffraction grating. Theoretical results for exponential gain coefficients are compared with experimental results for hybrid cells filled with cholesteric mixture BL038/CB15 at different concentrations of chiral agent CB15. Reconciliation between theory and experiment requires the inclusion of a phenomenological multiplier in the magnitude of the director grating. This multiplier is cubic in the space-charge field, and we provide a justification of the q-dependence of the multiplier. Within this paradigm, we are able to fit theory to experimental data for cholesteric mixtures with different spectral position of cholesteric gap relative to the wavelength of incident beams, subject to the use of some fitting parameters. |
---|---|
AbstractList | We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed between two inorganic substrates. One of the substrates is photorefractive (Ce:SBN). Weak and strong light beams are incident on the hybrid cell. The interfering light beams induce a periodic space-charge field in the photorefractive window. This penetrates into the cholesteric liquid crystal (LC), inducing a diffraction grating written on the LC director. In the theory, the flexoelectric mechanism for electric field-director coupling is more important than the LC static dielectric anisotropy coupling. The LC optics is described in the Bragg regime. Each beam induces two circular polarized waves propagating in the cholesteric cell with different velocities. The model thus includes optical rotation in the cholesteric LC. The incident light beam wavelength can fall above, below, or inside the cholesteric gap. The theory calculates the energy gain of the weak beam, as a result of its interaction with the pump beam within the diffraction grating. Theoretical results for exponential gain coefficients are compared with experimental results for hybrid cells filled with cholesteric mixture BL038/CB15 at different concentrations of chiral agent CB15. Reconciliation between theory and experiment requires the inclusion of a phenomenological multiplier in the magnitude of the director grating. This multiplier is cubic in the space-charge field, and we provide a justification of the q-dependence of the multiplier. Within this paradigm, we are able to fit theory to experimental data for cholesteric mixtures with different spectral position of cholesteric gap relative to the wavelength of incident beams, subject to the use of some fitting parameters. |
Author | Reshetnyak, V. Yu Sluckin, T. J. Pinkevych, I. P. Evans, D. R. Cook, G. |
Author_xml | – sequence: 1 givenname: V. Yu surname: Reshetnyak fullname: Reshetnyak, V. Yu – sequence: 2 givenname: I. P. surname: Pinkevych fullname: Pinkevych, I. P. – sequence: 3 givenname: T. J. surname: Sluckin fullname: Sluckin, T. J. – sequence: 4 givenname: G. surname: Cook fullname: Cook, G. – sequence: 5 givenname: D. R. surname: Evans fullname: Evans, D. R. |
BackLink | https://www.osti.gov/biblio/22277889$$D View this record in Osti.gov |
BookMark | eNptkE1LAzEQhoNUsK0e_AcBTx62zcfuJvGmxY9CwUvvIZvNtinbZJukQv-90XoQ8TQD87wz874TMHLeGQBuMZphVNM5npW8ZiUTF2CMERcFqyo0AmOECC64YOIKTGLcIYQxp2IM3JNRe6j9ceit20Dr4PbUBNvCYeuTD6YLSif7YfLEh41yVhd663sTkwlWw94ejhnW4RST6qE2fR8f4HI_ZBX0HfRDsjoPgk8qWe-uwWWn-mhufuoUrF-e14u3YvX-ulw8rgpNCUpFTVrRqbYtWdPSStC2qihiVac56TDCJW2QqVWnWc0MFqrqclM1dV1yIXgr6BTcndf6mKyM2iajt9o7Z3SShBDGOP9FDcEfjtmS3PljcPkvSTBhNS9LTDN1f6Z08DHmROQQ7F6Fk8RIfmUusfzJPLPzP2w-_W08BWX7fxSfmGKFbA |
CitedBy_id | crossref_primary_10_1016_j_molliq_2017_12_070 crossref_primary_10_1103_PhysRevE_97_062701 crossref_primary_10_1080_15421406_2017_1288796 crossref_primary_10_1364_OME_7_001317 crossref_primary_10_3390_cryst10121104 crossref_primary_10_1063_1_4962936 crossref_primary_10_1063_1_5142079 |
Cites_doi | 10.1103/PhysRevE.75.041701 10.1080/02678290010029996 10.1103/PhysRevE.71.031704 10.1364/OL.22.001229 10.1103/PhysRevE.71.051708 10.1002/j.1538-7305.1969.tb01198.x 10.1063/1.123967 10.1103/PhysRevE.87.022503 10.1080/15421400600651591 10.1080/02678292.2011.568637 10.1126/science.270.5243.1794 10.1364/OL.19.001723 10.1016/S0030-4018(00)01090-7 10.1016/j.optcom.2003.12.050 10.1021/ja051865l 10.1364/OE.16.017591 10.1364/OE.20.013923 10.1080/02678290902854086 10.1063/1.369609 10.1364/JOSAB.15.001912 10.1364/OL.22.001855 10.1002/adma.201003577 10.1080/15421400390242887 10.1364/OE.14.005365 10.1080/15421406.2012.661950 10.1142/S0218863507003767 10.1103/PhysRevE.81.031705 10.1007/s101890170127 |
ContentType | Journal Article |
Copyright | 2014 AIP Publishing LLC. |
Copyright_xml | – notice: 2014 AIP Publishing LLC. |
DBID | AAYXX CITATION 8FD H8D L7M OTOTI |
DOI | 10.1063/1.4867479 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 22277889 10_1063_1_4867479 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAGWI AAIKC AAMNW AAPUP AAYIH AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P0- P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UHB UPT WH7 XSW YQT YZZ ZCA ~02 8FD H8D L7M 0ZJ AAEUA ABPTK AGIHO ESX OTOTI TAF UCJ UE8 |
ID | FETCH-LOGICAL-c320t-62d9fadd47bd3593d553075fc82f10143b0e6afc767e19a5f7675b6648998d93 |
ISSN | 0021-8979 |
IngestDate | Thu May 18 18:36:18 EDT 2023 Sun Jun 29 16:14:10 EDT 2025 Thu Apr 24 23:02:54 EDT 2025 Tue Jul 01 03:49:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-62d9fadd47bd3593d553075fc82f10143b0e6afc767e19a5f7675b6648998d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://pubs.aip.org/aip/jap/article-pdf/doi/10.1063/1.4867479/15128848/103103_1_online.pdf |
PQID | 2127684413 |
PQPubID | 2050677 |
ParticipantIDs | osti_scitechconnect_22277889 proquest_journals_2127684413 crossref_primary_10_1063_1_4867479 crossref_citationtrail_10_1063_1_4867479 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-14 20140314 |
PublicationDateYYYYMMDD | 2014-03-14 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville – name: United States |
PublicationTitle | Journal of applied physics |
PublicationYear | 2014 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023070602054978800_c22) 1993 (2023070602054978800_c15) 2010; 81 (2023070602054978800_c5) 1999; 74 (2023070602054978800_c24) 2012; 20 (2023070602054978800_c25) 1989; 13 (2023070602054978800_c31) 2007; 75 (2023070602054978800_c27) 2004 (2023070602054978800_c18) 2005; 71 (2023070602054978800_c20) 2013; 87 (2023070602054978800_c9) 1999; 85 (2023070602054978800_c14) 2004; 232 (2023070602054978800_c8) 1997; 22 (2023070602054978800_c3) 1994; 19 Abramowitz (2023070602054978800_c23) 1972 (2023070602054978800_c36) 2011; 38 (2023070602054978800_c1) 1994; 59 (2023070602054978800_c21) 1993 (2023070602054978800_c26) 1969; 48 (2023070602054978800_c10) 2006; 453 (2023070602054978800_c6) 2001; 187 (2023070602054978800_c19) 2005; 71 (2023070602054978800_c4) 1997; 22 (2023070602054978800_c29) 2001; 4 (2023070602054978800_c34) 2013; 23 (2023070602054978800_c33) 1993 (2023070602054978800_c28) 2001; 28 (2023070602054978800_c7) 1995; 270 (2023070602054978800_c35a) 2005; 127 (2023070602054978800_c16) 2007 (2023070602054978800_c32) 2009; 36 (2023070602054978800_c12) 2007; 16 (2023070602054978800_c35b) 2008; 16 (2023070602054978800_c30) 2003; 400 (2023070602054978800_c11) 2006; 14 (2023070602054978800_c13) 1998; 15 (2023070602054978800_c2) 1994; 78 (2023070602054978800_c17) 2012; 560 |
References_xml | – volume: 75 start-page: 041701 year: 2007 ident: 2023070602054978800_c31 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.75.041701 – volume: 28 start-page: 1761 year: 2001 ident: 2023070602054978800_c28 publication-title: Liq. Cryst. doi: 10.1080/02678290010029996 – volume: 71 start-page: 031704 year: 2005 ident: 2023070602054978800_c18 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.031704 – volume: 22 start-page: 1229 year: 1997 ident: 2023070602054978800_c8 publication-title: Opt. Lett. doi: 10.1364/OL.22.001229 – volume: 71 start-page: 051708 year: 2005 ident: 2023070602054978800_c19 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.051708 – volume: 48 start-page: 2909 year: 1969 ident: 2023070602054978800_c26 publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1969.tb01198.x – volume: 74 start-page: 2924 year: 1999 ident: 2023070602054978800_c5 publication-title: Appl. Phys. Lett. doi: 10.1063/1.123967 – volume: 87 start-page: 022503 year: 2013 ident: 2023070602054978800_c20 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.022503 – volume: 453 start-page: 141 year: 2006 ident: 2023070602054978800_c10 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/15421400600651591 – volume: 38 start-page: 673 year: 2011 ident: 2023070602054978800_c36 publication-title: Liq. Cryst. doi: 10.1080/02678292.2011.568637 – volume-title: Optics and Nonlinear Optics of Liquid Crystals year: 1993 ident: 2023070602054978800_c33 – volume: 270 start-page: 1794 year: 1995 ident: 2023070602054978800_c7 publication-title: Science doi: 10.1126/science.270.5243.1794 – volume-title: The Langevin Equation: With Applications to Stochastic Problems in Physics year: 2004 ident: 2023070602054978800_c27 – volume-title: Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables year: 1972 ident: 2023070602054978800_c23 – volume: 19 start-page: 1723 year: 1994 ident: 2023070602054978800_c3 publication-title: Opt. Lett. doi: 10.1364/OL.19.001723 – volume: 13 start-page: 1 year: 1989 ident: 2023070602054978800_c25 publication-title: Sov. Sci. Rev. A – volume: 187 start-page: 257 year: 2001 ident: 2023070602054978800_c6 publication-title: Opt. Commun. doi: 10.1016/S0030-4018(00)01090-7 – volume: 232 start-page: 399 year: 2004 ident: 2023070602054978800_c14 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2003.12.050 – volume: 127 start-page: 11047 year: 2005 ident: 2023070602054978800_c35a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja051865l – volume-title: Introduction to Photorefractive Nonlinear Optics year: 1993 ident: 2023070602054978800_c21 – volume: 59 start-page: 142 year: 1994 ident: 2023070602054978800_c1 publication-title: JETP Lett. – volume: 16 start-page: 17591 year: 2008 ident: 2023070602054978800_c35b publication-title: Opt. Express doi: 10.1364/OE.16.017591 – volume: 20 start-page: 13923 year: 2012 ident: 2023070602054978800_c24 publication-title: Opt. Express doi: 10.1364/OE.20.013923 – volume-title: The Physics of Liquid Crystals year: 1993 ident: 2023070602054978800_c22 – volume: 36 start-page: 1119 year: 2009 ident: 2023070602054978800_c32 publication-title: Liq. Cryst. doi: 10.1080/02678290902854086 – volume: 85 start-page: 2482 year: 1999 ident: 2023070602054978800_c9 publication-title: J. Appl. Phys. doi: 10.1063/1.369609 – volume: 15 start-page: 1912 year: 1998 ident: 2023070602054978800_c13 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.15.001912 – volume: 22 start-page: 1855 year: 1997 ident: 2023070602054978800_c4 publication-title: Opt. Lett. doi: 10.1364/OL.22.001855 – volume: 23 start-page: 1389 year: 2013 ident: 2023070602054978800_c34 publication-title: Adv. Mater. doi: 10.1002/adma.201003577 – volume-title: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More (PR) Squaw Creek, California, October 2007 year: 2007 ident: 2023070602054978800_c16 article-title: Controlling light with light: Photorefractive effects, photosensitivity, fiber gratings, photonic materials and more: OSA technical digest (CD) – volume: 400 start-page: 13 year: 2003 ident: 2023070602054978800_c30 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/15421400390242887 – volume: 14 start-page: 5365 year: 2006 ident: 2023070602054978800_c11 publication-title: Opt. Express doi: 10.1364/OE.14.005365 – volume: 560 start-page: 8 year: 2012 ident: 2023070602054978800_c17 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/15421406.2012.661950 – volume: 16 start-page: 271 year: 2007 ident: 2023070602054978800_c12 publication-title: J. Nonlinear Opt. Phys. Mater. doi: 10.1142/S0218863507003767 – volume: 78 start-page: 875 year: 1994 ident: 2023070602054978800_c2 publication-title: JETP – volume: 81 start-page: 031705 year: 2010 ident: 2023070602054978800_c15 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.81.031705 – volume: 4 start-page: 183 year: 2001 ident: 2023070602054978800_c29 publication-title: Eur. Phys. J. E doi: 10.1007/s101890170127 |
SSID | ssj0011839 |
Score | 2.1760643 |
Snippet | We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed... |
SourceID | osti proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
SubjectTerms | Anisotropy Applied physics CERIUM COMPOUNDS Cholesteric liquid crystals COMPARATIVE EVALUATIONS CONCENTRATION RATIO CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY COUPLING Dependence DIFFRACTION GRATINGS ELECTRIC FIELDS GAIN Gratings (spectra) Incident light LAYERS Light beams LIQUID CRYSTALS Optical properties Optical rotation PERIODICITY Photorefractivity ROTATION SPACE CHARGE SUBSTRATES Theory VISIBLE RADIATION Wave propagation |
Title | Beam coupling in hybrid photorefractive inorganic-cholesteric liquid crystal cells: Impact of optical rotation |
URI | https://www.proquest.com/docview/2127684413 https://www.osti.gov/biblio/22277889 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA-6h6APoqfifShBfBBKa9ukX76dp3J3eHLgKudTSdKUXVjbdbc9WP96Z5q0u-ctor6Uks2Gkvl1OjOZ3wwhLwshEiHD1E2yUuExY-EKEUhXplwjlTMqul6H55_iky_87DK6XFMIOnZJIz31cyuv5H-kCmMgV2TJ_oNkh0VhAO5BvnAFCcP1r2T8Vovvjqrb-cwyUyYrJGA580ndYAORjgF1hWVBTPMm5aKy62ojTJUzm_5oYbJarJbIiMQQfpcfdzoQJ-u5iXQv6o0D-5uWrLCWrImSrJPn9XKim2olOoX71XO-tYMiBg9YX61MG6pTz7nw1rHaVtkOYWPPORvGj8EZ6GL43macIuCYqGX4oQNvIHDTzLSO8bRRt36auUlkSs8O-tjwO3vg-VsVPVhWGHPwsGAg79e8VjcbSb7g32e3yQ7chKC0d47enX_8PJwxoW1oEoDMc_V1p2L2elj3mrUyqkHr3vhmd4bI-AG5b_edHhk4PCS3dLVL7m3Uldwldy6MJB6RCiFCe4jQaUUNROhvEKFbIUINRKiFCO0g8oYagNC6pBYgtAfIYzL-8H58fOLaFhuuYqHfuHFYZCV84ngiCxZlrMAuUgnm9YUldnFm0texKFUSJzrIRFRi7R8Zxxzd9CJjT8ioqiv9lFDOlYq5L-ENz3hZRqJIU8lKJougUJL7e-RVv5O5suXnsQvKLO_SIGKWB7nd9D3yYpg6NzVXtk06RHHkYChitWOFaWGqyXupw8-9mHL7xi5z7GYQp-AAsP0___uA3F1D-JCMmkWrn4Hx2cjnFkW_AJGph5E |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beam+coupling+in+hybrid+photorefractive+inorganic-cholesteric+liquid+crystal+cells%3A+Impact+of+optical+rotation&rft.jtitle=Journal+of+applied+physics&rft.au=Reshetnyak%2C+V.+Yu&rft.au=Pinkevych%2C+I.+P.&rft.au=Sluckin%2C+T.+J.&rft.au=Cook%2C+G.&rft.date=2014-03-14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=115&rft.issue=10&rft_id=info:doi/10.1063%2F1.4867479&rft.externalDocID=22277889 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |