Beam coupling in hybrid photorefractive inorganic-cholesteric liquid crystal cells: Impact of optical rotation

We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed between two inorganic substrates. One of the substrates is photorefractive (Ce:SBN). Weak and strong light beams are incident on the hybrid cell....

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 115; no. 10
Main Authors Reshetnyak, V. Yu, Pinkevych, I. P., Sluckin, T. J., Cook, G., Evans, D. R.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 14.03.2014
Subjects
Online AccessGet full text
ISSN0021-8979
1089-7550
DOI10.1063/1.4867479

Cover

Loading…
Abstract We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed between two inorganic substrates. One of the substrates is photorefractive (Ce:SBN). Weak and strong light beams are incident on the hybrid cell. The interfering light beams induce a periodic space-charge field in the photorefractive window. This penetrates into the cholesteric liquid crystal (LC), inducing a diffraction grating written on the LC director. In the theory, the flexoelectric mechanism for electric field-director coupling is more important than the LC static dielectric anisotropy coupling. The LC optics is described in the Bragg regime. Each beam induces two circular polarized waves propagating in the cholesteric cell with different velocities. The model thus includes optical rotation in the cholesteric LC. The incident light beam wavelength can fall above, below, or inside the cholesteric gap. The theory calculates the energy gain of the weak beam, as a result of its interaction with the pump beam within the diffraction grating. Theoretical results for exponential gain coefficients are compared with experimental results for hybrid cells filled with cholesteric mixture BL038/CB15 at different concentrations of chiral agent CB15. Reconciliation between theory and experiment requires the inclusion of a phenomenological multiplier in the magnitude of the director grating. This multiplier is cubic in the space-charge field, and we provide a justification of the q-dependence of the multiplier. Within this paradigm, we are able to fit theory to experimental data for cholesteric mixtures with different spectral position of cholesteric gap relative to the wavelength of incident beams, subject to the use of some fitting parameters.
AbstractList We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed between two inorganic substrates. One of the substrates is photorefractive (Ce:SBN). Weak and strong light beams are incident on the hybrid cell. The interfering light beams induce a periodic space-charge field in the photorefractive window. This penetrates into the cholesteric liquid crystal (LC), inducing a diffraction grating written on the LC director. In the theory, the flexoelectric mechanism for electric field-director coupling is more important than the LC static dielectric anisotropy coupling. The LC optics is described in the Bragg regime. Each beam induces two circular polarized waves propagating in the cholesteric cell with different velocities. The model thus includes optical rotation in the cholesteric LC. The incident light beam wavelength can fall above, below, or inside the cholesteric gap. The theory calculates the energy gain of the weak beam, as a result of its interaction with the pump beam within the diffraction grating. Theoretical results for exponential gain coefficients are compared with experimental results for hybrid cells filled with cholesteric mixture BL038/CB15 at different concentrations of chiral agent CB15. Reconciliation between theory and experiment requires the inclusion of a phenomenological multiplier in the magnitude of the director grating. This multiplier is cubic in the space-charge field, and we provide a justification of the q-dependence of the multiplier. Within this paradigm, we are able to fit theory to experimental data for cholesteric mixtures with different spectral position of cholesteric gap relative to the wavelength of incident beams, subject to the use of some fitting parameters.
Author Reshetnyak, V. Yu
Sluckin, T. J.
Pinkevych, I. P.
Evans, D. R.
Cook, G.
Author_xml – sequence: 1
  givenname: V. Yu
  surname: Reshetnyak
  fullname: Reshetnyak, V. Yu
– sequence: 2
  givenname: I. P.
  surname: Pinkevych
  fullname: Pinkevych, I. P.
– sequence: 3
  givenname: T. J.
  surname: Sluckin
  fullname: Sluckin, T. J.
– sequence: 4
  givenname: G.
  surname: Cook
  fullname: Cook, G.
– sequence: 5
  givenname: D. R.
  surname: Evans
  fullname: Evans, D. R.
BackLink https://www.osti.gov/biblio/22277889$$D View this record in Osti.gov
BookMark eNptkE1LAzEQhoNUsK0e_AcBTx62zcfuJvGmxY9CwUvvIZvNtinbZJukQv-90XoQ8TQD87wz874TMHLeGQBuMZphVNM5npW8ZiUTF2CMERcFqyo0AmOECC64YOIKTGLcIYQxp2IM3JNRe6j9ceit20Dr4PbUBNvCYeuTD6YLSif7YfLEh41yVhd663sTkwlWw94ejhnW4RST6qE2fR8f4HI_ZBX0HfRDsjoPgk8qWe-uwWWn-mhufuoUrF-e14u3YvX-ulw8rgpNCUpFTVrRqbYtWdPSStC2qihiVac56TDCJW2QqVWnWc0MFqrqclM1dV1yIXgr6BTcndf6mKyM2iajt9o7Z3SShBDGOP9FDcEfjtmS3PljcPkvSTBhNS9LTDN1f6Z08DHmROQQ7F6Fk8RIfmUusfzJPLPzP2w-_W08BWX7fxSfmGKFbA
CitedBy_id crossref_primary_10_1016_j_molliq_2017_12_070
crossref_primary_10_1103_PhysRevE_97_062701
crossref_primary_10_1080_15421406_2017_1288796
crossref_primary_10_1364_OME_7_001317
crossref_primary_10_3390_cryst10121104
crossref_primary_10_1063_1_4962936
crossref_primary_10_1063_1_5142079
Cites_doi 10.1103/PhysRevE.75.041701
10.1080/02678290010029996
10.1103/PhysRevE.71.031704
10.1364/OL.22.001229
10.1103/PhysRevE.71.051708
10.1002/j.1538-7305.1969.tb01198.x
10.1063/1.123967
10.1103/PhysRevE.87.022503
10.1080/15421400600651591
10.1080/02678292.2011.568637
10.1126/science.270.5243.1794
10.1364/OL.19.001723
10.1016/S0030-4018(00)01090-7
10.1016/j.optcom.2003.12.050
10.1021/ja051865l
10.1364/OE.16.017591
10.1364/OE.20.013923
10.1080/02678290902854086
10.1063/1.369609
10.1364/JOSAB.15.001912
10.1364/OL.22.001855
10.1002/adma.201003577
10.1080/15421400390242887
10.1364/OE.14.005365
10.1080/15421406.2012.661950
10.1142/S0218863507003767
10.1103/PhysRevE.81.031705
10.1007/s101890170127
ContentType Journal Article
Copyright 2014 AIP Publishing LLC.
Copyright_xml – notice: 2014 AIP Publishing LLC.
DBID AAYXX
CITATION
8FD
H8D
L7M
OTOTI
DOI 10.1063/1.4867479
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 22277889
10_1063_1_4867479
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAGWI
AAIKC
AAMNW
AAPUP
AAYIH
AAYXX
ABFTF
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
8FD
H8D
L7M
0ZJ
AAEUA
ABPTK
AGIHO
ESX
OTOTI
TAF
UCJ
UE8
ID FETCH-LOGICAL-c320t-62d9fadd47bd3593d553075fc82f10143b0e6afc767e19a5f7675b6648998d93
ISSN 0021-8979
IngestDate Thu May 18 18:36:18 EDT 2023
Sun Jun 29 16:14:10 EDT 2025
Thu Apr 24 23:02:54 EDT 2025
Tue Jul 01 03:49:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-62d9fadd47bd3593d553075fc82f10143b0e6afc767e19a5f7675b6648998d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://pubs.aip.org/aip/jap/article-pdf/doi/10.1063/1.4867479/15128848/103103_1_online.pdf
PQID 2127684413
PQPubID 2050677
ParticipantIDs osti_scitechconnect_22277889
proquest_journals_2127684413
crossref_primary_10_1063_1_4867479
crossref_citationtrail_10_1063_1_4867479
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-14
20140314
PublicationDateYYYYMMDD 2014-03-14
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-14
  day: 14
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Journal of applied physics
PublicationYear 2014
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023070602054978800_c22) 1993
(2023070602054978800_c15) 2010; 81
(2023070602054978800_c5) 1999; 74
(2023070602054978800_c24) 2012; 20
(2023070602054978800_c25) 1989; 13
(2023070602054978800_c31) 2007; 75
(2023070602054978800_c27) 2004
(2023070602054978800_c18) 2005; 71
(2023070602054978800_c20) 2013; 87
(2023070602054978800_c9) 1999; 85
(2023070602054978800_c14) 2004; 232
(2023070602054978800_c8) 1997; 22
(2023070602054978800_c3) 1994; 19
Abramowitz (2023070602054978800_c23) 1972
(2023070602054978800_c36) 2011; 38
(2023070602054978800_c1) 1994; 59
(2023070602054978800_c21) 1993
(2023070602054978800_c26) 1969; 48
(2023070602054978800_c10) 2006; 453
(2023070602054978800_c6) 2001; 187
(2023070602054978800_c19) 2005; 71
(2023070602054978800_c4) 1997; 22
(2023070602054978800_c29) 2001; 4
(2023070602054978800_c34) 2013; 23
(2023070602054978800_c33) 1993
(2023070602054978800_c28) 2001; 28
(2023070602054978800_c7) 1995; 270
(2023070602054978800_c35a) 2005; 127
(2023070602054978800_c16) 2007
(2023070602054978800_c32) 2009; 36
(2023070602054978800_c12) 2007; 16
(2023070602054978800_c35b) 2008; 16
(2023070602054978800_c30) 2003; 400
(2023070602054978800_c11) 2006; 14
(2023070602054978800_c13) 1998; 15
(2023070602054978800_c2) 1994; 78
(2023070602054978800_c17) 2012; 560
References_xml – volume: 75
  start-page: 041701
  year: 2007
  ident: 2023070602054978800_c31
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.75.041701
– volume: 28
  start-page: 1761
  year: 2001
  ident: 2023070602054978800_c28
  publication-title: Liq. Cryst.
  doi: 10.1080/02678290010029996
– volume: 71
  start-page: 031704
  year: 2005
  ident: 2023070602054978800_c18
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.031704
– volume: 22
  start-page: 1229
  year: 1997
  ident: 2023070602054978800_c8
  publication-title: Opt. Lett.
  doi: 10.1364/OL.22.001229
– volume: 71
  start-page: 051708
  year: 2005
  ident: 2023070602054978800_c19
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.051708
– volume: 48
  start-page: 2909
  year: 1969
  ident: 2023070602054978800_c26
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1969.tb01198.x
– volume: 74
  start-page: 2924
  year: 1999
  ident: 2023070602054978800_c5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123967
– volume: 87
  start-page: 022503
  year: 2013
  ident: 2023070602054978800_c20
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.022503
– volume: 453
  start-page: 141
  year: 2006
  ident: 2023070602054978800_c10
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/15421400600651591
– volume: 38
  start-page: 673
  year: 2011
  ident: 2023070602054978800_c36
  publication-title: Liq. Cryst.
  doi: 10.1080/02678292.2011.568637
– volume-title: Optics and Nonlinear Optics of Liquid Crystals
  year: 1993
  ident: 2023070602054978800_c33
– volume: 270
  start-page: 1794
  year: 1995
  ident: 2023070602054978800_c7
  publication-title: Science
  doi: 10.1126/science.270.5243.1794
– volume-title: The Langevin Equation: With Applications to Stochastic Problems in Physics
  year: 2004
  ident: 2023070602054978800_c27
– volume-title: Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
  year: 1972
  ident: 2023070602054978800_c23
– volume: 19
  start-page: 1723
  year: 1994
  ident: 2023070602054978800_c3
  publication-title: Opt. Lett.
  doi: 10.1364/OL.19.001723
– volume: 13
  start-page: 1
  year: 1989
  ident: 2023070602054978800_c25
  publication-title: Sov. Sci. Rev. A
– volume: 187
  start-page: 257
  year: 2001
  ident: 2023070602054978800_c6
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(00)01090-7
– volume: 232
  start-page: 399
  year: 2004
  ident: 2023070602054978800_c14
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2003.12.050
– volume: 127
  start-page: 11047
  year: 2005
  ident: 2023070602054978800_c35a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja051865l
– volume-title: Introduction to Photorefractive Nonlinear Optics
  year: 1993
  ident: 2023070602054978800_c21
– volume: 59
  start-page: 142
  year: 1994
  ident: 2023070602054978800_c1
  publication-title: JETP Lett.
– volume: 16
  start-page: 17591
  year: 2008
  ident: 2023070602054978800_c35b
  publication-title: Opt. Express
  doi: 10.1364/OE.16.017591
– volume: 20
  start-page: 13923
  year: 2012
  ident: 2023070602054978800_c24
  publication-title: Opt. Express
  doi: 10.1364/OE.20.013923
– volume-title: The Physics of Liquid Crystals
  year: 1993
  ident: 2023070602054978800_c22
– volume: 36
  start-page: 1119
  year: 2009
  ident: 2023070602054978800_c32
  publication-title: Liq. Cryst.
  doi: 10.1080/02678290902854086
– volume: 85
  start-page: 2482
  year: 1999
  ident: 2023070602054978800_c9
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.369609
– volume: 15
  start-page: 1912
  year: 1998
  ident: 2023070602054978800_c13
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.15.001912
– volume: 22
  start-page: 1855
  year: 1997
  ident: 2023070602054978800_c4
  publication-title: Opt. Lett.
  doi: 10.1364/OL.22.001855
– volume: 23
  start-page: 1389
  year: 2013
  ident: 2023070602054978800_c34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003577
– volume-title: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More (PR) Squaw Creek, California, October 2007
  year: 2007
  ident: 2023070602054978800_c16
  article-title: Controlling light with light: Photorefractive effects, photosensitivity, fiber gratings, photonic materials and more: OSA technical digest (CD)
– volume: 400
  start-page: 13
  year: 2003
  ident: 2023070602054978800_c30
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/15421400390242887
– volume: 14
  start-page: 5365
  year: 2006
  ident: 2023070602054978800_c11
  publication-title: Opt. Express
  doi: 10.1364/OE.14.005365
– volume: 560
  start-page: 8
  year: 2012
  ident: 2023070602054978800_c17
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/15421406.2012.661950
– volume: 16
  start-page: 271
  year: 2007
  ident: 2023070602054978800_c12
  publication-title: J. Nonlinear Opt. Phys. Mater.
  doi: 10.1142/S0218863507003767
– volume: 78
  start-page: 875
  year: 1994
  ident: 2023070602054978800_c2
  publication-title: JETP
– volume: 81
  start-page: 031705
  year: 2010
  ident: 2023070602054978800_c15
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.81.031705
– volume: 4
  start-page: 183
  year: 2001
  ident: 2023070602054978800_c29
  publication-title: Eur. Phys. J. E
  doi: 10.1007/s101890170127
SSID ssj0011839
Score 2.1760643
Snippet We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed...
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Anisotropy
Applied physics
CERIUM COMPOUNDS
Cholesteric liquid crystals
COMPARATIVE EVALUATIONS
CONCENTRATION RATIO
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
COUPLING
Dependence
DIFFRACTION GRATINGS
ELECTRIC FIELDS
GAIN
Gratings (spectra)
Incident light
LAYERS
Light beams
LIQUID CRYSTALS
Optical properties
Optical rotation
PERIODICITY
Photorefractivity
ROTATION
SPACE CHARGE
SUBSTRATES
Theory
VISIBLE RADIATION
Wave propagation
Title Beam coupling in hybrid photorefractive inorganic-cholesteric liquid crystal cells: Impact of optical rotation
URI https://www.proquest.com/docview/2127684413
https://www.osti.gov/biblio/22277889
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA-6h6APoqfifShBfBBKa9ukX76dp3J3eHLgKudTSdKUXVjbdbc9WP96Z5q0u-ctor6Uks2Gkvl1OjOZ3wwhLwshEiHD1E2yUuExY-EKEUhXplwjlTMqul6H55_iky_87DK6XFMIOnZJIz31cyuv5H-kCmMgV2TJ_oNkh0VhAO5BvnAFCcP1r2T8Vovvjqrb-cwyUyYrJGA580ndYAORjgF1hWVBTPMm5aKy62ojTJUzm_5oYbJarJbIiMQQfpcfdzoQJ-u5iXQv6o0D-5uWrLCWrImSrJPn9XKim2olOoX71XO-tYMiBg9YX61MG6pTz7nw1rHaVtkOYWPPORvGj8EZ6GL43macIuCYqGX4oQNvIHDTzLSO8bRRt36auUlkSs8O-tjwO3vg-VsVPVhWGHPwsGAg79e8VjcbSb7g32e3yQ7chKC0d47enX_8PJwxoW1oEoDMc_V1p2L2elj3mrUyqkHr3vhmd4bI-AG5b_edHhk4PCS3dLVL7m3Uldwldy6MJB6RCiFCe4jQaUUNROhvEKFbIUINRKiFCO0g8oYagNC6pBYgtAfIYzL-8H58fOLaFhuuYqHfuHFYZCV84ngiCxZlrMAuUgnm9YUldnFm0texKFUSJzrIRFRi7R8Zxxzd9CJjT8ioqiv9lFDOlYq5L-ENz3hZRqJIU8lKJougUJL7e-RVv5O5suXnsQvKLO_SIGKWB7nd9D3yYpg6NzVXtk06RHHkYChitWOFaWGqyXupw8-9mHL7xi5z7GYQp-AAsP0___uA3F1D-JCMmkWrn4Hx2cjnFkW_AJGph5E
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beam+coupling+in+hybrid+photorefractive+inorganic-cholesteric+liquid+crystal+cells%3A+Impact+of+optical+rotation&rft.jtitle=Journal+of+applied+physics&rft.au=Reshetnyak%2C+V.+Yu&rft.au=Pinkevych%2C+I.+P.&rft.au=Sluckin%2C+T.+J.&rft.au=Cook%2C+G.&rft.date=2014-03-14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=115&rft.issue=10&rft_id=info:doi/10.1063%2F1.4867479&rft.externalDocID=22277889
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon