On proving that an unsafe controller is not proven safe

Cyber-physical systems are often safety-critical and their correctness is crucial, such as in the case of automated driving. Using formal mathematical methods is one way to guarantee correctness and improve safety. Although these methods have shown their usefulness, care must be taken because modell...

Full description

Saved in:
Bibliographic Details
Published inJournal of logical and algebraic methods in programming Vol. 137; p. 100939
Main Authors Selvaraj, Yuvaraj, Krook, Jonas, Ahrendt, Wolfgang, Fabian, Martin
Format Journal Article
LanguageEnglish
Published 01.02.2024
Subjects
Online AccessGet full text
ISSN2352-2208
2352-2216
DOI10.1016/j.jlamp.2023.100939

Cover

Loading…
Abstract Cyber-physical systems are often safety-critical and their correctness is crucial, such as in the case of automated driving. Using formal mathematical methods is one way to guarantee correctness and improve safety. Although these methods have shown their usefulness, care must be taken because modelling errors might result in proving a faulty controller safe, which is potentially catastrophic in practice. This paper deals with two such modelling errors in differential dynamic logic, a formal specification and verification language for hybrid systems, which are mathematical models of cyber-physical systems. The main contributions are to provide conditions under which these two modelling errors cannot cause a faulty controller to be proven safe, and to show how these conditions can be proven with help of the interactive theorem prover KeYmaera X. The problems are illustrated with a real world example of a safety controller for automated driving, and it is shown that the formulated conditions have the intended effect both for a faulty and a correct controller. It is also shown how the formulated conditions aid in finding a loop invariant candidate to prove properties of hybrid systems with feedback loops. Furthermore, the relation between such a loop invariant and the characterisation of the maximal control invariant set is discussed.
AbstractList Cyber-physical systems are often safety-critical and their correctness is crucial, such as in the case of automated driving. Using formal mathematical methods is one way to guarantee correctness and improve safety. Although these methods have shown their usefulness, care must be taken because modelling errors might result in proving a faulty controller safe, which is potentially catastrophic in practice. This paper deals with two such modelling errors in differential dynamic logic, a formal specification and verification language for hybrid systems, which are mathematical models of cyber-physical systems. The main contributions are to provide conditions under which these two modelling errors cannot cause a faulty controller to be proven safe, and to show how these conditions can be proven with help of the interactive theorem prover KeYmaera X. The problems are illustrated with a real world example of a safety controller for automated driving, and it is shown that the formulated conditions have the intended effect both for a faulty and a correct controller. It is also shown how the formulated conditions aid in finding a loop invariant candidate to prove properties of hybrid systems with feedback loops. Furthermore, the relation between such a loop invariant and the characterisation of the maximal control invariant set is discussed.
ArticleNumber 100939
Author Ahrendt, Wolfgang
Selvaraj, Yuvaraj
Krook, Jonas
Fabian, Martin
Author_xml – sequence: 1
  givenname: Yuvaraj
  orcidid: 0000-0003-2184-3069
  surname: Selvaraj
  fullname: Selvaraj, Yuvaraj
– sequence: 2
  givenname: Jonas
  orcidid: 0000-0002-9810-4697
  surname: Krook
  fullname: Krook, Jonas
– sequence: 3
  givenname: Wolfgang
  orcidid: 0000-0002-5671-2555
  surname: Ahrendt
  fullname: Ahrendt, Wolfgang
– sequence: 4
  givenname: Martin
  orcidid: 0000-0003-1287-9748
  surname: Fabian
  fullname: Fabian, Martin
BackLink https://research.chalmers.se/publication/539378$$DView record from Swedish Publication Index
BookMark eNo9kMtOwzAURL0oEqX0C9j4B1L8iBN7iSpeUqUugPXVtWPTRKkT2SmIv6cPxGqkmdFZnBsyi0P0hNxxtuKMV_fdqutxP64EE_LYMCPNjMyFVKIQgulrssy5Y-x41bWWfE7qbaRjGr7a-EmnHU4UIz3EjMFTN8QpDX3vE20zjcN0PvpIT-stuQrYZ7_8ywX5eHp8X78Um-3z6_phUzgp2FRUXAerpCoVZ4EJNMppY9EYJcpQas6NtY5VrAzBSy8UOhNYqGpR2brhzskFebtw87cfDxbG1O4x_cCALSSfPSa3A7fDfu9ThuxBlBW3okGwVjVQlkYAorCgG1nVjTQN6vpIlReqS0POyYd_LmdwEgkdnEXCSSRcRMpfkyNrqg
Cites_doi 10.1007/s10703-016-0241-z
10.1007/s10009-015-0367-0
10.1109/MC.2021.3055883
10.1109/TIV.2022.3204574
10.1007/s10009-018-0502-9
ContentType Journal Article
DBID AAYXX
CITATION
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOI 10.1016/j.jlamp.2023.100939
DatabaseName CrossRef
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID oai_research_chalmers_se_2461b2da_bb5d_4492_aa2b_8d367d39da87
10_1016_j_jlamp_2023_100939
GroupedDBID --M
0R~
4.4
457
4G.
7-5
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
AAYXX
ABBOA
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BKOJK
BLXMC
BNPGV
CITATION
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
GBLVA
GBOLZ
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSH
SSV
SSZ
T5K
~G-
ABBSD
ADTPV
AOWAS
D8T
EFKBS
F1S
ZZAVC
ID FETCH-LOGICAL-c320t-618fb5354510f02a95c89ba99524f48119bbc0604ffe3e25ac9f0f6726b7d1cc3
ISSN 2352-2208
2352-2216
IngestDate Thu Aug 21 06:59:33 EDT 2025
Tue Jul 01 00:37:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-618fb5354510f02a95c89ba99524f48119bbc0604ffe3e25ac9f0f6726b7d1cc3
ORCID 0000-0003-2184-3069
0000-0002-5671-2555
0000-0002-9810-4697
0000-0003-1287-9748
OpenAccessLink https://research.chalmers.se/publication/539378
ParticipantIDs swepub_primary_oai_research_chalmers_se_2461b2da_bb5d_4492_aa2b_8d367d39da87
crossref_primary_10_1016_j_jlamp_2023_100939
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of logical and algebraic methods in programming
PublicationYear 2024
References Kupferman (10.1016/j.jlamp.2023.100939_br0140) 2000; vol. 1877
Furia (10.1016/j.jlamp.2023.100939_br0240) 2010
Fulton (10.1016/j.jlamp.2023.100939_br0060) 2015
Doeser (10.1016/j.jlamp.2023.100939_br0110) 2020
Platzer (10.1016/j.jlamp.2023.100939_br0130) 2009
Mitsch (10.1016/j.jlamp.2023.100939_br0150) 2020
Platzer (10.1016/j.jlamp.2023.100939_br0100) 2012
Selvaraj (10.1016/j.jlamp.2023.100939_br0160)
Selvaraj (10.1016/j.jlamp.2023.100939_br0030) 2022; 8
Selvaraj (10.1016/j.jlamp.2023.100939_br0180)
Koopman (10.1016/j.jlamp.2023.100939_br0080) 2019
Mitsch (10.1016/j.jlamp.2023.100939_br0200) 2016; 49
Majumdar (10.1016/j.jlamp.2023.100939_br0220) 2019
Platzer (10.1016/j.jlamp.2023.100939_br0090) 2018; vol. 662
Quesel (10.1016/j.jlamp.2023.100939_br0170) 2016; 18
Bloem (10.1016/j.jlamp.2023.100939_br0210) 2014; vol. 157
Selvaraj (10.1016/j.jlamp.2023.100939_br0120) 2022
Müller (10.1016/j.jlamp.2023.100939_br0230) 2018; 20
Alur (10.1016/j.jlamp.2023.100939_br0050) 2011
Lee (10.1016/j.jlamp.2023.100939_br0010) 2006
Michael (10.1016/j.jlamp.2023.100939_br0020) 2021; 54
(10.1016/j.jlamp.2023.100939_br0040) 1996; vol. 1066
Benveniste (10.1016/j.jlamp.2023.100939_br0070) 1996
Mitsch (10.1016/j.jlamp.2023.100939_br0190) 2021; vol. 338
References_xml – volume: vol. 338
  year: 2021
  ident: 10.1016/j.jlamp.2023.100939_br0190
  article-title: Implicit and explicit proof management in KeYmaera X
– start-page: 3814
  year: 2020
  ident: 10.1016/j.jlamp.2023.100939_br0110
  article-title: Invariant sets for integrators and quadrotor obstacle avoidance
– start-page: 246
  year: 2009
  ident: 10.1016/j.jlamp.2023.100939_br0130
  article-title: European train control system: a case study in formal verification
– start-page: 41
  year: 1996
  ident: 10.1016/j.jlamp.2023.100939_br0070
  article-title: Compositional and uniform modelling of hybrid systems
– volume: 49
  year: 2016
  ident: 10.1016/j.jlamp.2023.100939_br0200
  article-title: ModelPlex: verified runtime validation of verified cyber-physical system models
  publication-title: Form. Methods Syst. Des.
  doi: 10.1007/s10703-016-0241-z
– ident: 10.1016/j.jlamp.2023.100939_br0160
– volume: 18
  year: 2016
  ident: 10.1016/j.jlamp.2023.100939_br0170
  article-title: How to model and prove hybrid systems with KeYmaera: a tutorial on safety
  publication-title: Int. J. Softw. Tools Technol. Transf.
  doi: 10.1007/s10009-015-0367-0
– volume: 54
  start-page: 15
  year: 2021
  ident: 10.1016/j.jlamp.2023.100939_br0020
  article-title: Formal verification of cyberphysical systems
  publication-title: Computer
  doi: 10.1109/MC.2021.3055883
– volume: 8
  start-page: 988
  year: 2022
  ident: 10.1016/j.jlamp.2023.100939_br0030
  article-title: Formal development of safe automated driving using differential dynamic logic
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2022.3204574
– start-page: 527
  year: 2015
  ident: 10.1016/j.jlamp.2023.100939_br0060
  article-title: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems
– start-page: 229
  year: 2019
  ident: 10.1016/j.jlamp.2023.100939_br0220
  article-title: Environmentally-friendly GR(1) synthesis
– volume: vol. 662
  year: 2018
  ident: 10.1016/j.jlamp.2023.100939_br0090
– year: 2006
  ident: 10.1016/j.jlamp.2023.100939_br0010
  article-title: Cyber-physical systems - are computing foundations adequate?
– start-page: 34
  year: 2019
  ident: 10.1016/j.jlamp.2023.100939_br0080
  article-title: Credible autonomy safety argumentation
– start-page: 281
  year: 2022
  ident: 10.1016/j.jlamp.2023.100939_br0120
  article-title: On how to not prove faulty controllers safe in differential dynamic logic
– start-page: 273
  year: 2011
  ident: 10.1016/j.jlamp.2023.100939_br0050
  article-title: Formal verification of hybrid systems
– volume: vol. 1877
  start-page: 92
  year: 2000
  ident: 10.1016/j.jlamp.2023.100939_br0140
  article-title: Open systems in reactive environments: control and synthesis
– ident: 10.1016/j.jlamp.2023.100939_br0180
– volume: 20
  start-page: 615
  year: 2018
  ident: 10.1016/j.jlamp.2023.100939_br0230
  article-title: Tactical contract composition for hybrid system component verification
  publication-title: Int. J. Softw. Tools Technol. Transf.
  doi: 10.1007/s10009-018-0502-9
– start-page: 13
  year: 2012
  ident: 10.1016/j.jlamp.2023.100939_br0100
  article-title: Logics of dynamical systems
– start-page: 277
  year: 2010
  ident: 10.1016/j.jlamp.2023.100939_br0240
  article-title: Inferring loop invariants using postconditions
– start-page: 21
  year: 2020
  ident: 10.1016/j.jlamp.2023.100939_br0150
  article-title: A retrospective on developing hybrid system provers in the keymaera family: a tale of three provers
– volume: vol. 1066
  year: 1996
  ident: 10.1016/j.jlamp.2023.100939_br0040
– volume: vol. 157
  start-page: 34
  year: 2014
  ident: 10.1016/j.jlamp.2023.100939_br0210
  article-title: How to handle assumptions in synthesis
SSID ssj0001687831
ssib023362453
Score 2.2605085
Snippet Cyber-physical systems are often safety-critical and their correctness is crucial, such as in the case of automated driving. Using formal mathematical methods...
SourceID swepub
crossref
SourceType Open Access Repository
Index Database
StartPage 100939
SubjectTerms Automated driving
Formal verification
Hybrid systems
Loop invariant
Theorem proving
Title On proving that an unsafe controller is not proven safe
URI https://research.chalmers.se/publication/539378
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZge-FCeYpSQD5wK6kSx4nt4wpRLQ-1l1aUk-Vn22XJot1sD_x6_Ey0apF4XSIriaxk5tNkYn_zDQCvJW0IEQoXTBtaYN2UhVBEFkZrKmuGpdCBIHvczs7wh_PmfKTbhuqSXh6qH7fWlfyNV90551dfJfsHnh0mdSfc2PnXHZ2H3fG3fHwS-FXXseJJeK74waZbCzsw0Bdm5TuWd8s-3Gi6A3_1FwlpjoJBvnVx4XeUr1RqMR3Z5pHL9S1_7QJNeHEtViJsAX3ZhOEQwl1O_jUv0A-Z-9TT-3SI_J-XC3shxrmOhNc_TwVEWRE8LUggnDnMOW4hl9MVCJV0K8hGaZcbATuuHcwP5w7_Xj4U1Z63waLA0S1K2EkC6ZKry9BfZs3XhntNPIm04FI2mmPMEBcCSU513RJdMy0ouQt2kPuTQBOwM33_cXacgw6q3Sccp5wlLMy1lNDQx3J4kXFctVm5KnAEbzz1VnazpT0b8pXTB-B-8iucRtQ8BHdM9wjs5iYeMMX0x4CcdDCBCHoQQdHBCCI4ggheraEDEYwggv7qE3B29O707axI3TQKVaOyL9qKWtnULmOuSlsiwRpFmRSMNQhbTKuKSam8lJK1pjaoEYrZ0rYEtZLoSqn6KZh0y848A9BIrAhxf_5SlxgLIqQpa2YrjLz-G2n3wJtsBf49iqbwzCac82A07o3Go9H2wKdoqeHmf_L08_873T64N6L8BZj0q4156RLRXr5KUPoJt7WKWA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+proving+that+an+unsafe+controller+is+not+proven+safe&rft.jtitle=Journal+of+logical+and+algebraic+methods+in+programming&rft.au=Selvaraj%2C+Yuvaraj&rft.au=Krook%2C+Jonas&rft.au=Ahrendt%2C+Wolfgang&rft.au=Fabian%2C+Martin&rft.date=2024-02-01&rft.issn=2352-2208&rft.volume=137&rft_id=info:doi/10.1016%2Fj.jlamp.2023.100939&rft.externalDocID=oai_research_chalmers_se_2461b2da_bb5d_4492_aa2b_8d367d39da87
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-2208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-2208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-2208&client=summon