A comparative study of variational autoencoders, normalizing flows, and score-based diffusion models for electrical impedance tomography
Electrical Impedance Tomography (EIT) is a widely employed imaging technique in industrial inspection, geophysical prospecting, and medical imaging. However, the inherent nonlinearity and ill-posedness of EIT image reconstruction present challenges for classical regularization techniques, such as th...
Saved in:
Published in | Journal of inverse and ill-posed problems Vol. 32; no. 4; pp. 795 - 813 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
01.08.2024
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 0928-0219 1569-3945 |
DOI | 10.1515/jiip-2023-0037 |
Cover
Loading…
Abstract | Electrical Impedance Tomography (EIT) is a widely employed imaging technique in industrial inspection, geophysical prospecting, and medical imaging. However, the inherent nonlinearity and ill-posedness of EIT image reconstruction present challenges for classical regularization techniques, such as the critical selection of regularization terms and the lack of prior knowledge. Deep generative models (DGMs) have been shown to play a crucial role in learning implicit regularizers and prior knowledge. This study aims to investigate the potential of three DGMs – variational autoencoder networks, normalizing flow, and score-based diffusion model – to learn implicit regularizers in learning-based EIT imaging. We first introduce background information on EIT imaging and its inverse problem formulation. Next, we propose three algorithms for performing EIT inverse problems based on corresponding DGMs. Finally, we present numerical and visual experiments, which reveal that (1) no single method consistently outperforms the others across all settings, and (2) when reconstructing an object with two anomalies using a well-trained model based on a training dataset containing four anomalies, the conditional normalizing flow (CNF) model exhibits the best generalization in low-level noise, while the conditional score-based diffusion model (CSD*) demonstrates the best generalization in high-level noise settings. We hope our preliminary efforts will encourage other researchers to assess their DGMs in EIT and other nonlinear inverse problems. |
---|---|
AbstractList | Electrical Impedance Tomography (EIT) is a widely employed imaging technique in industrial inspection, geophysical prospecting, and medical imaging. However, the inherent nonlinearity and ill-posedness of EIT image reconstruction present challenges for classical regularization techniques, such as the critical selection of regularization terms and the lack of prior knowledge. Deep generative models (DGMs) have been shown to play a crucial role in learning implicit regularizers and prior knowledge. This study aims to investigate the potential of three DGMs – variational autoencoder networks, normalizing flow, and score-based diffusion model – to learn implicit regularizers in learning-based EIT imaging. We first introduce background information on EIT imaging and its inverse problem formulation. Next, we propose three algorithms for performing EIT inverse problems based on corresponding DGMs. Finally, we present numerical and visual experiments, which reveal that (1) no single method consistently outperforms the others across all settings, and (2) when reconstructing an object with two anomalies using a well-trained model based on a training dataset containing four anomalies, the conditional normalizing flow (CNF) model exhibits the best generalization in low-level noise, while the conditional score-based diffusion model (CSD*) demonstrates the best generalization in high-level noise settings. We hope our preliminary efforts will encourage other researchers to assess their DGMs in EIT and other nonlinear inverse problems. |
Author | Xu, Guixian Zhou, Qingping Wang, Huihui |
Author_xml | – sequence: 1 givenname: Huihui surname: Wang fullname: Wang, Huihui email: huihuiwang@csu.edu.cn organization: School of Mathematics and Statistics, Central South University, Changsha, P. R. China – sequence: 2 givenname: Guixian surname: Xu fullname: Xu, Guixian email: xuguixian@csu.edu.cn organization: School of Mathematics and Statistics, Central South University, Changsha, P. R. China – sequence: 3 givenname: Qingping surname: Zhou fullname: Zhou, Qingping email: qpzhou@csu.edu.cn organization: School of Mathematics and Statistics, Central South University, Changsha, P. R. China |
BookMark | eNp1kM9LHTEQx0NR6FN77TngtWvzc7MBLyK1FgQvel7ykslrHrubNckqr39B_-zm9QmC4GmG4fsZZj4n6GiKEyD0lZILKqn8vg1hbhhhvCGEq09oRWWrG66FPEIrolnXEEb1Z3SS85YQqiRjK_T3Cts4ziaZEp4B57K4HY4eP5sU6ihOZsBmKREmGx2k_A1PMY1mCH_CtMF-iC91ZCaHs40JmrXJ4LAL3i-5wnis0JCxjwnDALakYOvCMM7gzGQBlzjGTTLz790ZOvZmyPDltZ6ix5sfD9e3zd39z1_XV3eN5YyUpiXSKKtb6YFqDR0QIbh0ggjWGacUJdytrRet7LxXXLcdBVAKhKfaMrPmp-j8sHdO8WmBXPptXFJ9M_ectlqSljBVUxeHlE0x5wS-n1MYTdr1lPR72_3edr-33e9tV0C8A2wo_wWWZMLwMXZ5wF7MUCA52KRlV5u3oz4AmVBa8n_glJ01 |
CitedBy_id | crossref_primary_10_1109_TIM_2025_3550245 crossref_primary_10_1088_1361_6420_ad35e3 crossref_primary_10_1016_j_csda_2024_107930 crossref_primary_10_1109_TIM_2025_3547525 crossref_primary_10_2478_joeb_2024_0001 |
Cites_doi | 10.1109/TIM.2004.831180 10.1109/TIP.2003.819861 10.1109/TCI.2021.3132190 10.1145/3422622 10.1109/TCI.2023.3236155 10.1109/CVPR52688.2022.01209 10.3390/jimaging7110243 10.1137/20M1332827 10.1007/s10915-021-01716-4 10.1016/j.cam.2011.09.035 10.1111/j.2517-6161.1994.tb02000.x 10.1109/TCI.2021.3098937 10.1109/MSP.2022.3198805 10.1109/TBME.2020.3027827 10.1109/TPAMI.2022.3204461 10.1016/j.softx.2018.09.005 10.1137/18M1222600 10.1016/0550-3213(81)90056-0 10.1162/NECO_a_00142 10.1201/9780429399886 10.1137/20M1367350 |
ContentType | Journal Article |
Copyright | 2024 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2024 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1515/jiip-2023-0037 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1569-3945 |
EndPage | 813 |
ExternalDocumentID | 10_1515_jiip_2023_0037 10_1515_jiip_2023_0037324795 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12101614 – fundername: Natural Science Foundation of Hunan Province grantid: 2021JJ40715 |
GroupedDBID | 0R~ 0~D 4.4 5GY AAAEU AADQG AAFPC AAGVJ AAJBH AALGR AAOUV AAPJK AAQCX AARVR AASOL AASQH AAXCG ABAOT ABAQN ABFKT ABIQR ABJNI ABMBZ ABPLS ABSOE ABUVI ABWLS ABXMZ ABYKJ ACDEB ACEFL ACGFS ACIWK ACPMA ACUND ACZBO ADEQT ADGQD ADGYE ADJVZ ADOZN AECWL AEGVQ AEICA AEJTT AENEX AEQDQ AERZL AEXIE AFBAA AFBDD AFCXV AFQUK AFYRI AGBEV AHGBP AHVWV AHXUK AIERV AIWOI AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS ASYPN BAKPI BBCWN BCIFA CFGNV CS3 DU5 EBS HZ~ IY9 KDIRW O9- P2P PQQKQ QD8 RDG SA. SLJYH UK5 WTRAM AAYXX AMVHM CITATION 7SC 7TB 8FD ADNPR FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c320t-605a7c965fe199e8e04435d40428ad77103dbcf4658ff739681ee77e4f19c2ab3 |
ISSN | 0928-0219 |
IngestDate | Wed Aug 13 09:18:45 EDT 2025 Tue Jul 01 01:23:34 EDT 2025 Thu Apr 24 22:52:42 EDT 2025 Thu Jul 10 10:34:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-605a7c965fe199e8e04435d40428ad77103dbcf4658ff739681ee77e4f19c2ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3169506027 |
PQPubID | 2030080 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3169506027 crossref_primary_10_1515_jiip_2023_0037 crossref_citationtrail_10_1515_jiip_2023_0037 walterdegruyter_journals_10_1515_jiip_2023_0037324795 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Journal of inverse and ill-posed problems |
PublicationYear | 2024 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2024042015030886364_j_jiip-2023-0037_ref_006 2024042015030886364_j_jiip-2023-0037_ref_028 2024042015030886364_j_jiip-2023-0037_ref_007 2024042015030886364_j_jiip-2023-0037_ref_029 2024042015030886364_j_jiip-2023-0037_ref_008 2024042015030886364_j_jiip-2023-0037_ref_009 2024042015030886364_j_jiip-2023-0037_ref_020 2024042015030886364_j_jiip-2023-0037_ref_021 2024042015030886364_j_jiip-2023-0037_ref_022 2024042015030886364_j_jiip-2023-0037_ref_001 2024042015030886364_j_jiip-2023-0037_ref_023 2024042015030886364_j_jiip-2023-0037_ref_002 2024042015030886364_j_jiip-2023-0037_ref_024 2024042015030886364_j_jiip-2023-0037_ref_003 2024042015030886364_j_jiip-2023-0037_ref_025 2024042015030886364_j_jiip-2023-0037_ref_004 2024042015030886364_j_jiip-2023-0037_ref_026 2024042015030886364_j_jiip-2023-0037_ref_005 2024042015030886364_j_jiip-2023-0037_ref_027 2024042015030886364_j_jiip-2023-0037_ref_030 2024042015030886364_j_jiip-2023-0037_ref_017 2024042015030886364_j_jiip-2023-0037_ref_018 2024042015030886364_j_jiip-2023-0037_ref_019 2024042015030886364_j_jiip-2023-0037_ref_031 2024042015030886364_j_jiip-2023-0037_ref_010 2024042015030886364_j_jiip-2023-0037_ref_032 2024042015030886364_j_jiip-2023-0037_ref_011 2024042015030886364_j_jiip-2023-0037_ref_033 2024042015030886364_j_jiip-2023-0037_ref_012 2024042015030886364_j_jiip-2023-0037_ref_034 2024042015030886364_j_jiip-2023-0037_ref_013 2024042015030886364_j_jiip-2023-0037_ref_035 2024042015030886364_j_jiip-2023-0037_ref_014 2024042015030886364_j_jiip-2023-0037_ref_015 2024042015030886364_j_jiip-2023-0037_ref_016 |
References_xml | – ident: 2024042015030886364_j_jiip-2023-0037_ref_032 doi: 10.1109/TIM.2004.831180 – ident: 2024042015030886364_j_jiip-2023-0037_ref_020 – ident: 2024042015030886364_j_jiip-2023-0037_ref_028 – ident: 2024042015030886364_j_jiip-2023-0037_ref_033 doi: 10.1109/TIP.2003.819861 – ident: 2024042015030886364_j_jiip-2023-0037_ref_016 doi: 10.1109/TCI.2021.3132190 – ident: 2024042015030886364_j_jiip-2023-0037_ref_012 doi: 10.1145/3422622 – ident: 2024042015030886364_j_jiip-2023-0037_ref_026 – ident: 2024042015030886364_j_jiip-2023-0037_ref_009 – ident: 2024042015030886364_j_jiip-2023-0037_ref_034 – ident: 2024042015030886364_j_jiip-2023-0037_ref_003 doi: 10.1109/TCI.2023.3236155 – ident: 2024042015030886364_j_jiip-2023-0037_ref_006 doi: 10.1109/CVPR52688.2022.01209 – ident: 2024042015030886364_j_jiip-2023-0037_ref_005 – ident: 2024042015030886364_j_jiip-2023-0037_ref_030 – ident: 2024042015030886364_j_jiip-2023-0037_ref_008 doi: 10.3390/jimaging7110243 – ident: 2024042015030886364_j_jiip-2023-0037_ref_019 doi: 10.1137/20M1332827 – ident: 2024042015030886364_j_jiip-2023-0037_ref_007 doi: 10.1007/s10915-021-01716-4 – ident: 2024042015030886364_j_jiip-2023-0037_ref_011 doi: 10.1016/j.cam.2011.09.035 – ident: 2024042015030886364_j_jiip-2023-0037_ref_017 – ident: 2024042015030886364_j_jiip-2023-0037_ref_013 doi: 10.1111/j.2517-6161.1994.tb02000.x – ident: 2024042015030886364_j_jiip-2023-0037_ref_004 doi: 10.1109/TCI.2021.3098937 – ident: 2024042015030886364_j_jiip-2023-0037_ref_014 doi: 10.1109/MSP.2022.3198805 – ident: 2024042015030886364_j_jiip-2023-0037_ref_035 doi: 10.1109/TBME.2020.3027827 – ident: 2024042015030886364_j_jiip-2023-0037_ref_025 – ident: 2024042015030886364_j_jiip-2023-0037_ref_023 doi: 10.1109/TPAMI.2022.3204461 – ident: 2024042015030886364_j_jiip-2023-0037_ref_002 – ident: 2024042015030886364_j_jiip-2023-0037_ref_021 doi: 10.1016/j.softx.2018.09.005 – ident: 2024042015030886364_j_jiip-2023-0037_ref_029 – ident: 2024042015030886364_j_jiip-2023-0037_ref_024 doi: 10.1137/18M1222600 – ident: 2024042015030886364_j_jiip-2023-0037_ref_027 – ident: 2024042015030886364_j_jiip-2023-0037_ref_010 – ident: 2024042015030886364_j_jiip-2023-0037_ref_022 doi: 10.1016/0550-3213(81)90056-0 – ident: 2024042015030886364_j_jiip-2023-0037_ref_031 doi: 10.1162/NECO_a_00142 – ident: 2024042015030886364_j_jiip-2023-0037_ref_001 doi: 10.1201/9780429399886 – ident: 2024042015030886364_j_jiip-2023-0037_ref_015 doi: 10.1137/20M1367350 – ident: 2024042015030886364_j_jiip-2023-0037_ref_018 |
SSID | ssj0017522 |
Score | 2.3837893 |
Snippet | Electrical Impedance Tomography (EIT) is a widely employed imaging technique in industrial inspection, geophysical prospecting, and medical imaging. However,... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 795 |
SubjectTerms | 68U10 78A46 Algorithms Anomalies Comparative studies deep generative model deep learning Diffusion models Electrical impedance Electrical impedance tomography Image reconstruction Imaging techniques Inverse problems Learning Medical imaging Nonlinearity Regularization Tomography |
Title | A comparative study of variational autoencoders, normalizing flows, and score-based diffusion models for electrical impedance tomography |
URI | https://www.degruyter.com/doi/10.1515/jiip-2023-0037 https://www.proquest.com/docview/3169506027 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVK9wIPE59iMJAfkHiZoUmcOH4saFAhDQlpg4qXKI4dlikk1Zqwj1_Az-basZNsK9LgJapcx3F7juN7r-1zEXpFYxkKRVOi19AIVX5OhGAw3GcyCpkvuSf02eGDz9HiiH5ahsvJ5Gx8uqQRb7LLjedK_gdVKANc9SnZf0C2bxQK4DPgC1dAGK63wnhut5B34t1rpw_9C_xfF-NL26bWWpXS5kKrtI1aFpdmA2VZd4m-TfBc61kSPalJkzWl1WG0LlHOutMFNwlzDKYF2NrSnDVo6p9jzeubVm5R6X0fdo2iLMmq1g-waWx6e_6bjVov2uK4LVzpsjVR-7Y4H3H4-3Ftir_AL1i5edeGLXzab5rr449aGtu9L5V9-0acBLzTl7zxbg-NDMZJUayIzvlOtHTOMIu5lftrk1u_5VA7O9BCou9P9P1aFZXdQVs--Bf-FG3NP77b_9ovQDErNO96afU-oYW3V3tw1Z4ZnJTtM7PdQaofp-1F45bXjdVyeB9tWyDwvOPOAzRR1UN076DX6l0_Qr_neMQibFiE6xyPWITHLNrDIw5hw6E9DPDiEYNwzyDcMQgDg_DAINwzCA8MeoyOPuwfvl8Qm5-DZIE_awh4winLeBTmyuNcxWpGwfiWVLvhqWRguwZSZDkFIzfPWcCj2FOKMUVzj2d-KoInaFrVlXqKsEi9mHupEjQLwKQPeAaGJlVZGBvNTrGDiPuXk8yK1-scKmWyGdcd9Lqvv-pkW_5ac9eBltihvU4CL-JaedOHr8NrQA61NjcIHgrj4bNbd-A5ujuMj100bU5b9QIM3Ua8tKT8A9k1r_U |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LU9RAEMe7dDkoBxQfJYg4B6u8OOwmmWQyx9UCFmE5gcUtlXlEV5eEYhMp-QR-bLs3s1kEveg1M5maTHqq_z2PXwO8EamNtRM5pz00LlxYcK0lTveBTWIZWhVoujs8Pk5Gp-LjWXx24y4MHau07vNl86NuCal9W5mGFso61gB64P7XyeSCU-ZvTgCV_pf6fHofVlKB8UoPVob773c_dXsJ0jPDFbGYcYJ6dOPdZn53TUu9uXY137nuunXDAe09ArPoenvu5NtOU-sdc32L6vh_3_YY1rw-ZcPWoNbhniufwOq4g7vOnsLPITNLZjibA2pZVbDvGHb7pUWWN3VFiEw6Jv2OlSSMp5NrdJOsmFZX-CgvLZsRQpOTH7WMErU0tHLH5rl5ZgzFNGtz9JAZsQnKe0sWyurq3GO2n8Hp3u7JhxH3CR24icJBzTF0yqVRSVy4QCmXuoFAtWYFxW25lSh2IqtNIVAVFYWMVJIGzknpRBEoE-Y6eg69sirdC2A6D1IV5E4LE6EGjJRBZSKcidM55FFvAF_8y8x42jkl3ZhmFPXgMGc0zBkNM-FR5Qa87epftJyPv9bcWphG5uf7LIuCRBGqMcTi-Ja5LGv9uUGUtFLFm__43mt4MDoZH2VHB8eHL-Ehlor2fOIW9OrLxr1CzVTrbT8pfgFjmRYo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHsJUQHMpbFAr4gMQFdzeJE8fHBbqURysOFHGL4hdaWJJVk1DRT8DHZmbjzUKBC1xjx0qcseY_9uQ3AI9EblPtRMnpDI0LF3uutcTlPrFZKmOrIk3_Dh8eZQfH4tWHdJ1N2IS0Sus-nnTf2p6QOra16WijbGANoAcef5rPl5wqf3MCqIyX1l-ErVxgLDOCremLp_vvh6MEGZDhilDMuD4DufH3UX71TBu5uX26Orgenuon_zO7Cnr95H3ayee9rtV75uwc1PG_Xu0abAd1yqa9OV2HC666AVcOB7RrcxO-T5nZEMPZCk_Las--YtAdNhZZ2bU1ATIpSfoJq0gWL-Zn6CSZX9SneKmsLGsIoMnJi1pGZVo62rdjq8o8DUMpzfoKPWREbI7i3pJ9srb-EiDbt-B4tv_u2QEP5Ry4SeJJyzFwKqVRWepdpJTL3USgVrOCorbSSpQ6idXGC9RE3stEZXnknJRO-EiZuNTJbRhVdeXuANNllKuodFqYBBVgogzqEuFMmq8Qj3oH-PpTFiawzqnkxqKgmAdnuaBZLmiWCY4qd-Dx0H_ZUz7-2nN3bRlFWO1NkUSZIlBjjM3pOWvZ9PrzgChopUrv_uN9D-HS2-ez4s3Lo9f34DI2ij45cRdG7Unn7qNgavWDsCR-ABUXFM8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+variational+autoencoders%2C+normalizing+flows%2C+and+score-based+diffusion+models+for+electrical+impedance+tomography&rft.jtitle=Journal+of+inverse+and+ill-posed+problems&rft.au=Wang%2C+Huihui&rft.au=Xu%2C+Guixian&rft.au=Zhou%2C+Qingping&rft.date=2024-08-01&rft.issn=0928-0219&rft.eissn=1569-3945&rft_id=info:doi/10.1515%2Fjiip-2023-0037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_jiip_2023_0037 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0219&client=summon |