A comparative study of variational autoencoders, normalizing flows, and score-based diffusion models for electrical impedance tomography

Electrical Impedance Tomography (EIT) is a widely employed imaging technique in industrial inspection, geophysical prospecting, and medical imaging. However, the inherent nonlinearity and ill-posedness of EIT image reconstruction present challenges for classical regularization techniques, such as th...

Full description

Saved in:
Bibliographic Details
Published inJournal of inverse and ill-posed problems Vol. 32; no. 4; pp. 795 - 813
Main Authors Wang, Huihui, Xu, Guixian, Zhou, Qingping
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.08.2024
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN0928-0219
1569-3945
DOI10.1515/jiip-2023-0037

Cover

Loading…
Abstract Electrical Impedance Tomography (EIT) is a widely employed imaging technique in industrial inspection, geophysical prospecting, and medical imaging. However, the inherent nonlinearity and ill-posedness of EIT image reconstruction present challenges for classical regularization techniques, such as the critical selection of regularization terms and the lack of prior knowledge. Deep generative models (DGMs) have been shown to play a crucial role in learning implicit regularizers and prior knowledge. This study aims to investigate the potential of three DGMs – variational autoencoder networks, normalizing flow, and score-based diffusion model – to learn implicit regularizers in learning-based EIT imaging. We first introduce background information on EIT imaging and its inverse problem formulation. Next, we propose three algorithms for performing EIT inverse problems based on corresponding DGMs. Finally, we present numerical and visual experiments, which reveal that (1) no single method consistently outperforms the others across all settings, and (2) when reconstructing an object with two anomalies using a well-trained model based on a training dataset containing four anomalies, the conditional normalizing flow (CNF) model exhibits the best generalization in low-level noise, while the conditional score-based diffusion model (CSD*) demonstrates the best generalization in high-level noise settings. We hope our preliminary efforts will encourage other researchers to assess their DGMs in EIT and other nonlinear inverse problems.
AbstractList Electrical Impedance Tomography (EIT) is a widely employed imaging technique in industrial inspection, geophysical prospecting, and medical imaging. However, the inherent nonlinearity and ill-posedness of EIT image reconstruction present challenges for classical regularization techniques, such as the critical selection of regularization terms and the lack of prior knowledge. Deep generative models (DGMs) have been shown to play a crucial role in learning implicit regularizers and prior knowledge. This study aims to investigate the potential of three DGMs – variational autoencoder networks, normalizing flow, and score-based diffusion model – to learn implicit regularizers in learning-based EIT imaging. We first introduce background information on EIT imaging and its inverse problem formulation. Next, we propose three algorithms for performing EIT inverse problems based on corresponding DGMs. Finally, we present numerical and visual experiments, which reveal that (1) no single method consistently outperforms the others across all settings, and (2) when reconstructing an object with two anomalies using a well-trained model based on a training dataset containing four anomalies, the conditional normalizing flow (CNF) model exhibits the best generalization in low-level noise, while the conditional score-based diffusion model (CSD*) demonstrates the best generalization in high-level noise settings. We hope our preliminary efforts will encourage other researchers to assess their DGMs in EIT and other nonlinear inverse problems.
Author Xu, Guixian
Zhou, Qingping
Wang, Huihui
Author_xml – sequence: 1
  givenname: Huihui
  surname: Wang
  fullname: Wang, Huihui
  email: huihuiwang@csu.edu.cn
  organization: School of Mathematics and Statistics, Central South University, Changsha, P. R. China
– sequence: 2
  givenname: Guixian
  surname: Xu
  fullname: Xu, Guixian
  email: xuguixian@csu.edu.cn
  organization: School of Mathematics and Statistics, Central South University, Changsha, P. R. China
– sequence: 3
  givenname: Qingping
  surname: Zhou
  fullname: Zhou, Qingping
  email: qpzhou@csu.edu.cn
  organization: School of Mathematics and Statistics, Central South University, Changsha, P. R. China
BookMark eNp1kM9LHTEQx0NR6FN77TngtWvzc7MBLyK1FgQvel7ykslrHrubNckqr39B_-zm9QmC4GmG4fsZZj4n6GiKEyD0lZILKqn8vg1hbhhhvCGEq09oRWWrG66FPEIrolnXEEb1Z3SS85YQqiRjK_T3Cts4ziaZEp4B57K4HY4eP5sU6ihOZsBmKREmGx2k_A1PMY1mCH_CtMF-iC91ZCaHs40JmrXJ4LAL3i-5wnis0JCxjwnDALakYOvCMM7gzGQBlzjGTTLz790ZOvZmyPDltZ6ix5sfD9e3zd39z1_XV3eN5YyUpiXSKKtb6YFqDR0QIbh0ggjWGacUJdytrRet7LxXXLcdBVAKhKfaMrPmp-j8sHdO8WmBXPptXFJ9M_ectlqSljBVUxeHlE0x5wS-n1MYTdr1lPR72_3edr-33e9tV0C8A2wo_wWWZMLwMXZ5wF7MUCA52KRlV5u3oz4AmVBa8n_glJ01
CitedBy_id crossref_primary_10_1109_TIM_2025_3550245
crossref_primary_10_1088_1361_6420_ad35e3
crossref_primary_10_1016_j_csda_2024_107930
crossref_primary_10_1109_TIM_2025_3547525
crossref_primary_10_2478_joeb_2024_0001
Cites_doi 10.1109/TIM.2004.831180
10.1109/TIP.2003.819861
10.1109/TCI.2021.3132190
10.1145/3422622
10.1109/TCI.2023.3236155
10.1109/CVPR52688.2022.01209
10.3390/jimaging7110243
10.1137/20M1332827
10.1007/s10915-021-01716-4
10.1016/j.cam.2011.09.035
10.1111/j.2517-6161.1994.tb02000.x
10.1109/TCI.2021.3098937
10.1109/MSP.2022.3198805
10.1109/TBME.2020.3027827
10.1109/TPAMI.2022.3204461
10.1016/j.softx.2018.09.005
10.1137/18M1222600
10.1016/0550-3213(81)90056-0
10.1162/NECO_a_00142
10.1201/9780429399886
10.1137/20M1367350
ContentType Journal Article
Copyright 2024 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2024 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1515/jiip-2023-0037
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1569-3945
EndPage 813
ExternalDocumentID 10_1515_jiip_2023_0037
10_1515_jiip_2023_0037324795
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12101614
– fundername: Natural Science Foundation of Hunan Province
  grantid: 2021JJ40715
GroupedDBID 0R~
0~D
4.4
5GY
AAAEU
AADQG
AAFPC
AAGVJ
AAJBH
AALGR
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABMBZ
ABPLS
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACIWK
ACPMA
ACUND
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADOZN
AECWL
AEGVQ
AEICA
AEJTT
AENEX
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFQUK
AFYRI
AGBEV
AHGBP
AHVWV
AHXUK
AIERV
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ASYPN
BAKPI
BBCWN
BCIFA
CFGNV
CS3
DU5
EBS
HZ~
IY9
KDIRW
O9-
P2P
PQQKQ
QD8
RDG
SA.
SLJYH
UK5
WTRAM
AAYXX
AMVHM
CITATION
7SC
7TB
8FD
ADNPR
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c320t-605a7c965fe199e8e04435d40428ad77103dbcf4658ff739681ee77e4f19c2ab3
ISSN 0928-0219
IngestDate Wed Aug 13 09:18:45 EDT 2025
Tue Jul 01 01:23:34 EDT 2025
Thu Apr 24 22:52:42 EDT 2025
Thu Jul 10 10:34:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-605a7c965fe199e8e04435d40428ad77103dbcf4658ff739681ee77e4f19c2ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3169506027
PQPubID 2030080
PageCount 19
ParticipantIDs proquest_journals_3169506027
crossref_primary_10_1515_jiip_2023_0037
crossref_citationtrail_10_1515_jiip_2023_0037
walterdegruyter_journals_10_1515_jiip_2023_0037324795
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of inverse and ill-posed problems
PublicationYear 2024
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2024042015030886364_j_jiip-2023-0037_ref_006
2024042015030886364_j_jiip-2023-0037_ref_028
2024042015030886364_j_jiip-2023-0037_ref_007
2024042015030886364_j_jiip-2023-0037_ref_029
2024042015030886364_j_jiip-2023-0037_ref_008
2024042015030886364_j_jiip-2023-0037_ref_009
2024042015030886364_j_jiip-2023-0037_ref_020
2024042015030886364_j_jiip-2023-0037_ref_021
2024042015030886364_j_jiip-2023-0037_ref_022
2024042015030886364_j_jiip-2023-0037_ref_001
2024042015030886364_j_jiip-2023-0037_ref_023
2024042015030886364_j_jiip-2023-0037_ref_002
2024042015030886364_j_jiip-2023-0037_ref_024
2024042015030886364_j_jiip-2023-0037_ref_003
2024042015030886364_j_jiip-2023-0037_ref_025
2024042015030886364_j_jiip-2023-0037_ref_004
2024042015030886364_j_jiip-2023-0037_ref_026
2024042015030886364_j_jiip-2023-0037_ref_005
2024042015030886364_j_jiip-2023-0037_ref_027
2024042015030886364_j_jiip-2023-0037_ref_030
2024042015030886364_j_jiip-2023-0037_ref_017
2024042015030886364_j_jiip-2023-0037_ref_018
2024042015030886364_j_jiip-2023-0037_ref_019
2024042015030886364_j_jiip-2023-0037_ref_031
2024042015030886364_j_jiip-2023-0037_ref_010
2024042015030886364_j_jiip-2023-0037_ref_032
2024042015030886364_j_jiip-2023-0037_ref_011
2024042015030886364_j_jiip-2023-0037_ref_033
2024042015030886364_j_jiip-2023-0037_ref_012
2024042015030886364_j_jiip-2023-0037_ref_034
2024042015030886364_j_jiip-2023-0037_ref_013
2024042015030886364_j_jiip-2023-0037_ref_035
2024042015030886364_j_jiip-2023-0037_ref_014
2024042015030886364_j_jiip-2023-0037_ref_015
2024042015030886364_j_jiip-2023-0037_ref_016
References_xml – ident: 2024042015030886364_j_jiip-2023-0037_ref_032
  doi: 10.1109/TIM.2004.831180
– ident: 2024042015030886364_j_jiip-2023-0037_ref_020
– ident: 2024042015030886364_j_jiip-2023-0037_ref_028
– ident: 2024042015030886364_j_jiip-2023-0037_ref_033
  doi: 10.1109/TIP.2003.819861
– ident: 2024042015030886364_j_jiip-2023-0037_ref_016
  doi: 10.1109/TCI.2021.3132190
– ident: 2024042015030886364_j_jiip-2023-0037_ref_012
  doi: 10.1145/3422622
– ident: 2024042015030886364_j_jiip-2023-0037_ref_026
– ident: 2024042015030886364_j_jiip-2023-0037_ref_009
– ident: 2024042015030886364_j_jiip-2023-0037_ref_034
– ident: 2024042015030886364_j_jiip-2023-0037_ref_003
  doi: 10.1109/TCI.2023.3236155
– ident: 2024042015030886364_j_jiip-2023-0037_ref_006
  doi: 10.1109/CVPR52688.2022.01209
– ident: 2024042015030886364_j_jiip-2023-0037_ref_005
– ident: 2024042015030886364_j_jiip-2023-0037_ref_030
– ident: 2024042015030886364_j_jiip-2023-0037_ref_008
  doi: 10.3390/jimaging7110243
– ident: 2024042015030886364_j_jiip-2023-0037_ref_019
  doi: 10.1137/20M1332827
– ident: 2024042015030886364_j_jiip-2023-0037_ref_007
  doi: 10.1007/s10915-021-01716-4
– ident: 2024042015030886364_j_jiip-2023-0037_ref_011
  doi: 10.1016/j.cam.2011.09.035
– ident: 2024042015030886364_j_jiip-2023-0037_ref_017
– ident: 2024042015030886364_j_jiip-2023-0037_ref_013
  doi: 10.1111/j.2517-6161.1994.tb02000.x
– ident: 2024042015030886364_j_jiip-2023-0037_ref_004
  doi: 10.1109/TCI.2021.3098937
– ident: 2024042015030886364_j_jiip-2023-0037_ref_014
  doi: 10.1109/MSP.2022.3198805
– ident: 2024042015030886364_j_jiip-2023-0037_ref_035
  doi: 10.1109/TBME.2020.3027827
– ident: 2024042015030886364_j_jiip-2023-0037_ref_025
– ident: 2024042015030886364_j_jiip-2023-0037_ref_023
  doi: 10.1109/TPAMI.2022.3204461
– ident: 2024042015030886364_j_jiip-2023-0037_ref_002
– ident: 2024042015030886364_j_jiip-2023-0037_ref_021
  doi: 10.1016/j.softx.2018.09.005
– ident: 2024042015030886364_j_jiip-2023-0037_ref_029
– ident: 2024042015030886364_j_jiip-2023-0037_ref_024
  doi: 10.1137/18M1222600
– ident: 2024042015030886364_j_jiip-2023-0037_ref_027
– ident: 2024042015030886364_j_jiip-2023-0037_ref_010
– ident: 2024042015030886364_j_jiip-2023-0037_ref_022
  doi: 10.1016/0550-3213(81)90056-0
– ident: 2024042015030886364_j_jiip-2023-0037_ref_031
  doi: 10.1162/NECO_a_00142
– ident: 2024042015030886364_j_jiip-2023-0037_ref_001
  doi: 10.1201/9780429399886
– ident: 2024042015030886364_j_jiip-2023-0037_ref_015
  doi: 10.1137/20M1367350
– ident: 2024042015030886364_j_jiip-2023-0037_ref_018
SSID ssj0017522
Score 2.3837893
Snippet Electrical Impedance Tomography (EIT) is a widely employed imaging technique in industrial inspection, geophysical prospecting, and medical imaging. However,...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 795
SubjectTerms 68U10
78A46
Algorithms
Anomalies
Comparative studies
deep generative model
deep learning
Diffusion models
Electrical impedance
Electrical impedance tomography
Image reconstruction
Imaging techniques
Inverse problems
Learning
Medical imaging
Nonlinearity
Regularization
Tomography
Title A comparative study of variational autoencoders, normalizing flows, and score-based diffusion models for electrical impedance tomography
URI https://www.degruyter.com/doi/10.1515/jiip-2023-0037
https://www.proquest.com/docview/3169506027
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVK9wIPE59iMJAfkHiZoUmcOH4saFAhDQlpg4qXKI4dlikk1Zqwj1_Az-basZNsK9LgJapcx3F7juN7r-1zEXpFYxkKRVOi19AIVX5OhGAw3GcyCpkvuSf02eGDz9HiiH5ahsvJ5Gx8uqQRb7LLjedK_gdVKANc9SnZf0C2bxQK4DPgC1dAGK63wnhut5B34t1rpw_9C_xfF-NL26bWWpXS5kKrtI1aFpdmA2VZd4m-TfBc61kSPalJkzWl1WG0LlHOutMFNwlzDKYF2NrSnDVo6p9jzeubVm5R6X0fdo2iLMmq1g-waWx6e_6bjVov2uK4LVzpsjVR-7Y4H3H4-3Ftir_AL1i5edeGLXzab5rr449aGtu9L5V9-0acBLzTl7zxbg-NDMZJUayIzvlOtHTOMIu5lftrk1u_5VA7O9BCou9P9P1aFZXdQVs--Bf-FG3NP77b_9ovQDErNO96afU-oYW3V3tw1Z4ZnJTtM7PdQaofp-1F45bXjdVyeB9tWyDwvOPOAzRR1UN076DX6l0_Qr_neMQibFiE6xyPWITHLNrDIw5hw6E9DPDiEYNwzyDcMQgDg_DAINwzCA8MeoyOPuwfvl8Qm5-DZIE_awh4winLeBTmyuNcxWpGwfiWVLvhqWRguwZSZDkFIzfPWcCj2FOKMUVzj2d-KoInaFrVlXqKsEi9mHupEjQLwKQPeAaGJlVZGBvNTrGDiPuXk8yK1-scKmWyGdcd9Lqvv-pkW_5ac9eBltihvU4CL-JaedOHr8NrQA61NjcIHgrj4bNbd-A5ujuMj100bU5b9QIM3Ua8tKT8A9k1r_U
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LU9RAEMe7dDkoBxQfJYg4B6u8OOwmmWQyx9UCFmE5gcUtlXlEV5eEYhMp-QR-bLs3s1kEveg1M5maTHqq_z2PXwO8EamNtRM5pz00LlxYcK0lTveBTWIZWhVoujs8Pk5Gp-LjWXx24y4MHau07vNl86NuCal9W5mGFso61gB64P7XyeSCU-ZvTgCV_pf6fHofVlKB8UoPVob773c_dXsJ0jPDFbGYcYJ6dOPdZn53TUu9uXY137nuunXDAe09ArPoenvu5NtOU-sdc32L6vh_3_YY1rw-ZcPWoNbhniufwOq4g7vOnsLPITNLZjibA2pZVbDvGHb7pUWWN3VFiEw6Jv2OlSSMp5NrdJOsmFZX-CgvLZsRQpOTH7WMErU0tHLH5rl5ZgzFNGtz9JAZsQnKe0sWyurq3GO2n8Hp3u7JhxH3CR24icJBzTF0yqVRSVy4QCmXuoFAtWYFxW25lSh2IqtNIVAVFYWMVJIGzknpRBEoE-Y6eg69sirdC2A6D1IV5E4LE6EGjJRBZSKcidM55FFvAF_8y8x42jkl3ZhmFPXgMGc0zBkNM-FR5Qa87epftJyPv9bcWphG5uf7LIuCRBGqMcTi-Ja5LGv9uUGUtFLFm__43mt4MDoZH2VHB8eHL-Ehlor2fOIW9OrLxr1CzVTrbT8pfgFjmRYo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHsJUQHMpbFAr4gMQFdzeJE8fHBbqURysOFHGL4hdaWJJVk1DRT8DHZmbjzUKBC1xjx0qcseY_9uQ3AI9EblPtRMnpDI0LF3uutcTlPrFZKmOrIk3_Dh8eZQfH4tWHdJ1N2IS0Sus-nnTf2p6QOra16WijbGANoAcef5rPl5wqf3MCqIyX1l-ErVxgLDOCremLp_vvh6MEGZDhilDMuD4DufH3UX71TBu5uX26Orgenuon_zO7Cnr95H3ayee9rtV75uwc1PG_Xu0abAd1yqa9OV2HC666AVcOB7RrcxO-T5nZEMPZCk_Las--YtAdNhZZ2bU1ATIpSfoJq0gWL-Zn6CSZX9SneKmsLGsIoMnJi1pGZVo62rdjq8o8DUMpzfoKPWREbI7i3pJ9srb-EiDbt-B4tv_u2QEP5Ry4SeJJyzFwKqVRWepdpJTL3USgVrOCorbSSpQ6idXGC9RE3stEZXnknJRO-EiZuNTJbRhVdeXuANNllKuodFqYBBVgogzqEuFMmq8Qj3oH-PpTFiawzqnkxqKgmAdnuaBZLmiWCY4qd-Dx0H_ZUz7-2nN3bRlFWO1NkUSZIlBjjM3pOWvZ9PrzgChopUrv_uN9D-HS2-ez4s3Lo9f34DI2ij45cRdG7Unn7qNgavWDsCR-ABUXFM8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+variational+autoencoders%2C+normalizing+flows%2C+and+score-based+diffusion+models+for+electrical+impedance+tomography&rft.jtitle=Journal+of+inverse+and+ill-posed+problems&rft.au=Wang%2C+Huihui&rft.au=Xu%2C+Guixian&rft.au=Zhou%2C+Qingping&rft.date=2024-08-01&rft.issn=0928-0219&rft.eissn=1569-3945&rft_id=info:doi/10.1515%2Fjiip-2023-0037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_jiip_2023_0037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0219&client=summon