Solar Power Generation Forecast Using Multivariate Convolution Gated Recurrent Unit Network

For the advancement of smart grids, solar power generation predictions have become an important research topic. In the case of using traditional modeling methods, excessive computational costs may be incurred and it is difficult for these methods to learn the multi-variable dependencies of the data....

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 17; no. 13; p. 3073
Main Authors Cheng, Hsu-Yung, Yu, Chih-Chang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For the advancement of smart grids, solar power generation predictions have become an important research topic. In the case of using traditional modeling methods, excessive computational costs may be incurred and it is difficult for these methods to learn the multi-variable dependencies of the data. Therefore, in this paper, a deep learning model was used to combine convolutional neural networks and long short-term memory recurrent network predictions. This method enables hourly power generation one day into the future. Convolutional neural networks are used to extract the features of multiple time series, while long short-term memory neural networks predict multivariate outcomes simultaneously. In order to obtain more accurate prediction results, we performed feature selection on meteorological features and combined the selected weather features to train the prediction model. We further distinguished sunny- and rainy-day models according to the predicted daily rainfall conditions. In the experiment, it was shown that the method of combining meteorological features further reduced the error. Finally, taking into account the differences in climate conditions between the northern and southern regions of Taiwan, the experimental results of case studies involving multiple regions were evaluated to verify the proposed method. The results showed that training combined with selected meteorological features can be widely used in regions with different climates in Taiwan.
AbstractList For the advancement of smart grids, solar power generation predictions have become an important research topic. In the case of using traditional modeling methods, excessive computational costs may be incurred and it is difficult for these methods to learn the multi-variable dependencies of the data. Therefore, in this paper, a deep learning model was used to combine convolutional neural networks and long short-term memory recurrent network predictions. This method enables hourly power generation one day into the future. Convolutional neural networks are used to extract the features of multiple time series, while long short-term memory neural networks predict multivariate outcomes simultaneously. In order to obtain more accurate prediction results, we performed feature selection on meteorological features and combined the selected weather features to train the prediction model. We further distinguished sunny- and rainy-day models according to the predicted daily rainfall conditions. In the experiment, it was shown that the method of combining meteorological features further reduced the error. Finally, taking into account the differences in climate conditions between the northern and southern regions of Taiwan, the experimental results of case studies involving multiple regions were evaluated to verify the proposed method. The results showed that training combined with selected meteorological features can be widely used in regions with different climates in Taiwan.
Author Cheng, Hsu-Yung
Yu, Chih-Chang
Author_xml – sequence: 1
  givenname: Hsu-Yung
  orcidid: 0000-0002-8342-7450
  surname: Cheng
  fullname: Cheng, Hsu-Yung
– sequence: 2
  givenname: Chih-Chang
  orcidid: 0000-0003-1611-0223
  surname: Yu
  fullname: Yu, Chih-Chang
BookMark eNpNkVtLAzEQhYNUsNa--AsCvgmruewtj1K0FuoFtU8-hGx2tqSuSc1mW_z3xlbUeZnD4ePMMHOMBtZZQOiUkgvOBbkESwvKOSn4ARpSIfKERj34p4_QuOtWJBbnkeRD9PrsWuXxo9uCx1Ow4FUwzuIb50GrLuBFZ-wS3_VtMBvljQqAJ85uXNvvuGk0avwEuvcebMStCfgewtb5txN02Ki2g_FPH6HFzfXL5DaZP0xnk6t5ojkjIcnKlOqyVCkrWF6JnDYMypwQXVPeqKrQuiCQ64qQWmeMVZwQEFpHLK-Ybhgfodk-t3ZqJdfevCv_KZ0ycmc4v5TKB6NbkIXgqqjrrBKpSDktSwE1CA4KGpLpKo1ZZ_ustXcfPXRBrlzvbVxfxsMKwvI03nGEzveU9q7rPDS_UymR37-Qf7_gX4U3fYU
Cites_doi 10.1016/j.renene.2021.08.038
10.3390/en14020436
10.1109/TSTE.2014.2313600
10.3390/app8010028
10.1049/iet-gtd.2018.6687
10.1016/j.enpol.2023.113922
10.1109/ICDS50568.2020.9268755
10.1016/j.protcy.2016.01.053
10.1162/neco.1997.9.8.1735
10.1109/IRSEC53969.2021.9741154
10.1016/j.egyr.2023.07.042
10.1007/s00450-016-0316-5
10.3390/en13030723
10.1109/TIA.2012.2190816
10.1002/er.4883
10.1109/MWSCAS.2017.8053243
10.5194/amt-10-199-2017
10.1007/s00521-022-07841-x
10.1016/j.solener.2012.04.004
10.1145/3209978.3210006
10.1109/TIE.2017.2714127
10.3390/electronics9071117
10.1177/18479790211032920
10.3390/en13081879
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/en17133073
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_793a7dd5b949431889ede93eaef05cb4
10_3390_en17133073
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c320t-5841c88a42726b961f2e8600cd13fab7cc70e6cb00dc522b300e9cc1f26b2cf23
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Wed Aug 27 01:09:45 EDT 2025
Mon Jun 30 14:42:45 EDT 2025
Tue Jul 01 04:13:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c320t-5841c88a42726b961f2e8600cd13fab7cc70e6cb00dc522b300e9cc1f26b2cf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1611-0223
0000-0002-8342-7450
OpenAccessLink https://doaj.org/article/793a7dd5b949431889ede93eaef05cb4
PQID 3079026407
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_793a7dd5b949431889ede93eaef05cb4
proquest_journals_3079026407
crossref_primary_10_3390_en17133073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Tang (ref_20) 2019; 13
Yang (ref_27) 2014; 5
Cheng (ref_25) 2017; 10
Tol (ref_1) 2024; 185
ref_11
ref_10
Ordiano (ref_13) 2017; 32
ref_31
ref_30
Dumitrul (ref_15) 2016; 22
ref_19
ref_17
Zhen (ref_24) 2020; 56
Sheng (ref_12) 2017; 65
Shi (ref_28) 2012; 48
Cheng (ref_21) 2021; 179
Pedro (ref_9) 2012; 86
Ciresan (ref_16) 2011; 2
Demir (ref_6) 2023; 35
Ledmaoui (ref_8) 2023; 10
ref_22
ref_3
Cheng (ref_23) 2020; 34
ref_29
Hochreiter (ref_18) 1997; 9
ref_26
Li (ref_2) 2009; 8
Ma (ref_5) 2011; 33
Rathor (ref_4) 2020; 44
Alomari (ref_14) 2018; 8
ref_7
References_xml – volume: 56
  start-page: 3385
  year: 2020
  ident: ref_24
  article-title: Deep learning based surface irradiance mapping model for solar PV power forecasting using sky image
  publication-title: IEEE Trans. Ind. Appl.
– volume: 179
  start-page: 2300
  year: 2021
  ident: ref_21
  article-title: Day-ahead to week-ahead solar irradiance prediction using convolutional long short-term memory networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.08.038
– ident: ref_30
  doi: 10.3390/en14020436
– volume: 5
  start-page: 917
  year: 2014
  ident: ref_27
  article-title: A Weather-Based Hybrid Method for 1-day Ahead Hourly Forecasting of PV Power Output
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2014.2313600
– ident: ref_26
  doi: 10.3390/app8010028
– volume: 13
  start-page: 3847
  year: 2019
  ident: ref_20
  article-title: Short-term power load forecasting based on multi-layer bidirectional recurrent neural network
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2018.6687
– volume: 185
  start-page: 113922
  year: 2024
  ident: ref_1
  article-title: A meta-analysis of the total economic impact of climate change
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2023.113922
– ident: ref_10
  doi: 10.1109/ICDS50568.2020.9268755
– volume: 22
  start-page: 808
  year: 2016
  ident: ref_15
  article-title: Solar photovoltaic energy production forecast using neural networks
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2016.01.053
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_18
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_7
  doi: 10.1109/IRSEC53969.2021.9741154
– volume: 10
  start-page: 1004
  year: 2023
  ident: ref_8
  article-title: Forecasting solar energy production: A comparative study of machine learning algorithms
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.07.042
– volume: 32
  start-page: 237
  year: 2017
  ident: ref_13
  article-title: Photovoltaic power forecasting using simple data-driven models without weather data
  publication-title: Comput. Sci.-Res. Dev.
  doi: 10.1007/s00450-016-0316-5
– ident: ref_11
  doi: 10.3390/en13030723
– volume: 48
  start-page: 1064
  year: 2012
  ident: ref_28
  article-title: Forecasting power output of photovoltaic systems based on weather classification and support vector machines
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2012.2190816
– ident: ref_31
– volume: 33
  start-page: 829
  year: 2011
  ident: ref_5
  article-title: A review on methods of solar energy forecasting and its application
  publication-title: Resour. Sci.
– volume: 44
  start-page: 4067
  year: 2020
  ident: ref_4
  article-title: Energy management system for smart grid: An overview and key issues
  publication-title: Int. J Energy Res.
  doi: 10.1002/er.4883
– ident: ref_19
  doi: 10.1109/MWSCAS.2017.8053243
– volume: 10
  start-page: 199
  year: 2017
  ident: ref_25
  article-title: Cloud detection in all-sky images via multi-scale neighborhood features and multiple supervised learning techniques
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-10-199-2017
– volume: 8
  start-page: 497
  year: 2018
  ident: ref_14
  article-title: Solar photovoltaic power forecasting in Jordan using artificial neural networks
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 35
  start-page: 887
  year: 2023
  ident: ref_6
  article-title: Forecasting of solar radiation using different machine learning approaches
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07841-x
– volume: 8
  start-page: 18
  year: 2009
  ident: ref_2
  article-title: The analysis of Solar photovoltaic power generation market
  publication-title: Adv. Mater. Ind.
– volume: 86
  start-page: 2017
  year: 2012
  ident: ref_9
  article-title: Assessment of forecasting techniques for solar power production with no exogenous inputs
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.04.004
– ident: ref_22
  doi: 10.1145/3209978.3210006
– volume: 65
  start-page: 300
  year: 2017
  ident: ref_12
  article-title: Short-term solar power forecasting based on weighted Gaussian process regression
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2714127
– ident: ref_29
  doi: 10.3390/electronics9071117
– ident: ref_3
  doi: 10.1177/18479790211032920
– volume: 2
  start-page: 1237
  year: 2011
  ident: ref_16
  article-title: Flexible, High Performance Convolutional Neural Networks for Image Classification
  publication-title: Proc. Twenty-Second Int. Jt. Conf. Artif. Intell.
– ident: ref_17
  doi: 10.3390/en13081879
– volume: 34
  start-page: 3593
  year: 2020
  ident: ref_23
  article-title: Towards better forecasting by fusing near and distant future visions
  publication-title: Proc. AAAI Conf. Artif. Intell.
SSID ssj0000331333
Score 2.3723156
Snippet For the advancement of smart grids, solar power generation predictions have become an important research topic. In the case of using traditional modeling...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 3073
SubjectTerms Alternative energy sources
Datasets
Deep learning
Energy management
gated recurrent unit
Machine learning
Neural networks
photovoltaics
power generation prediction
Renewable resources
Seasonal variations
Solar energy
Statistical methods
Time series
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfuJ0SkCvZWnTj-QkbmwMD2NMBwMPpXlJvbVzq_v7fWmzTRG8timF95Xf7zX9PUIefalYZJTwNADzQplpL5Mh92JE58CU3WNrtc9JPJ6HL4to4Rpua3esclsT60KtS7A98h7GokS-gPzjafnp2alR9uuqG6FxSNpYgoVokXZ_OJnOdl0WxjmSMN7oknLk9z1T-JaXsYT_2olqwf4_9bjeZEan5MShQ_rcuPOMHJjinBz_0Ay8IO-vlozSqZ1uRhvRaGtbamdsQrauaH0IgNY_1m6QCCOWpIOy2LgQo7ZdpunMttmtMBO1oJNOmsPgl2Q-Gr4Nxp6bkOABD1jlIXrwQYgsDJIgVjL288AINC9on-eZSgASZmLA1NKAQEtxxowEwGWxCiAP-BVpFWVhrgmFBB_FDPfRp6ECmUXowkYgTJjMRB3ysLVWumyEMFIkENam6d6mHdK3htytsOLV9YVy9ZG6XEixJGSJ1pGSIYaFL4Q02kiOb8lZBCrskO7WDanLqHW69__N_7dvyVGAwKM5UtslrWr1Ze4QOFTq3kXHN_pFxIo
  priority: 102
  providerName: ProQuest
Title Solar Power Generation Forecast Using Multivariate Convolution Gated Recurrent Unit Network
URI https://www.proquest.com/docview/3079026407
https://doaj.org/article/793a7dd5b949431889ede93eaef05cb4
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgLDAgPkWhVJZgjWrH-bBHivohhqoqVKrEENkXZ0wRLf39nO0UihhYWDJEiRO9s33vOc47Qu65Miy1RkYlAIsSpctIq0REGbJzYMblWO_2OcnG8-RpkS52Sn25PWHBHjgA18P-o_OyTI1KsA0upbKlVcJqW7EUjHcCxZy3I6b8HCwEii8R_EgF6vqerbnTYywXPzKQN-r_NQ_75DI8IccNK6QP4W1OyZ6tz8jRjlfgOXl9diKUTl1VMxrMoh2m1NXWBL1aU__xn_ofajcogJFD0sdlvWm6FnXLZCWdueV1Z8hEHdmkk7AJ_ILMh4OXx3HUVEaIQMRsHSFr4CClTuI8zozKeBVbibBCyUWlTQ6QM5sBDqkSkGAZwZhVAHhZZmKoYnFJWvWytleEQo634sjmGMvEgNIphi4Yg0kEOW2Tuy1axVswwChQODhMi29M26TvgPy6wplW-xMYyqIJZfFXKNuksw1D0YykVYGtK9SJqDuv_-MZN-QwRloSNtx2SGv9_mFvkVasTZfsy-GoSw76g8l01vX9CY-jBf8E_sPPxQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB2hcKA9IAqtGgplJcrRYu311x4qBLQhaSBCbSJF6sH1zm64OZSkIP4Uv5EZfyRFSNy4em3Zmn07M289-wbgi6-NjJxJPYsovVDn1st1qLyYsnOUhmNsqfY5iLuj8Mc4Gq_AQ3MWhssqG59YOmo7Rd4jPyQsauILxD-Orv963DWK_642LTQqWPTd_R1RttnX3jea34Mg6Hwfnna9uquAhyqQc48iro9pmodBEsRGx_4kcCl9ElpfTXKTICbSxdy43iIlJ0ZJ6TQi3RabACcsdEAufzVUFMn5ZHrnbLGnI5UiyqcqFVQal4eu8JkFykQ9iXtle4Bn3r8MaZ0NWK9zUXFcgecdrLhiE97-p1C4Bb9_MfUVl9xLTVQS1TyTgjt6Yj6bi7LkQJTHeG-JdlPmKk6nxW0NaMGbc1b85E19loESnOKKQVV6_h5Gr2K5D9AqpoX7CAITepT8iU8ICg3qPCLAVHJkqctd1Ib9xlrZdSW7kRFdYZtmS5u24YQNubiDpbLLC9Obq6xeeRk5oDyxNjI6JBD6aaqddVrRWyYyQhO2YaeZhqxev7Nsibbtl4f3YK07vDjPznuD_id4E1DKUxXz7kBrfvPP7VLKMjefS5wI-PPawHwER_j_5g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS-RAEC5kBNk9iI9ddnw2qMcwnXRefRDxNfhiGFwFwUM2Xd3xllFnVPxr_jqr8tAVwZvXpENC9ddV9XWqvwLY9LWRkTOpZxGlF-rcerkOlRdTdo7ScIyt1D4H8dFleHIVXU3BS3sWhssqW59YOWo7Qt4j7xEWNfEF4h-9oimLGB70d27vPO4gxX9a23YaNURO3fMT0bfx9vEBzfVWEPQPL_aPvKbDgIcqkBOPoq-PaZqHQRLERsd-EbiUPg-tr4rcJIiJdDE3sbdIiYpRUjqNSMNiE2DBogfk_qcTZkUdmN47HAzP33Z4pFJEAFWtiaqUlj1X-swJZaI-RMGqWcCnWFAFuP4czDaZqditoTQPU65cgJ__6RUuwvVfJsJiyJ3VRC1YzfMquL8n5uOJqAoQRHWo95FIOOWxYn9UPjbwFrxVZ8U5b_GzKJTghFcM6kL0X3D5Lbb7DZ1yVLo_IDChR8m7-ISn0KDOI4JPLU6WutxFXdhorZXd1iIcGZEXtmn2btMu7LEh30awcHZ1YXR_kzXrMCN3lCfWRkaHBEk_TbWzTit6SyEjNGEXVtppyJrVPM7esbf09e11mCFQZmfHg9Nl-BFQ_lNX9q5AZ3L_4FYpf5mYtQYoAv59NzZfAS4oBYc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solar+Power+Generation+Forecast+Using+Multivariate+Convolution+Gated+Recurrent+Unit+Network&rft.jtitle=Energies+%28Basel%29&rft.au=Hsu-Yung+Cheng&rft.au=Chih-Chang+Yu&rft.date=2024-07-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=17&rft.issue=13&rft.spage=3073&rft_id=info:doi/10.3390%2Fen17133073&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_793a7dd5b949431889ede93eaef05cb4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon