Solar Power Generation Forecast Using Multivariate Convolution Gated Recurrent Unit Network
For the advancement of smart grids, solar power generation predictions have become an important research topic. In the case of using traditional modeling methods, excessive computational costs may be incurred and it is difficult for these methods to learn the multi-variable dependencies of the data....
Saved in:
Published in | Energies (Basel) Vol. 17; no. 13; p. 3073 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For the advancement of smart grids, solar power generation predictions have become an important research topic. In the case of using traditional modeling methods, excessive computational costs may be incurred and it is difficult for these methods to learn the multi-variable dependencies of the data. Therefore, in this paper, a deep learning model was used to combine convolutional neural networks and long short-term memory recurrent network predictions. This method enables hourly power generation one day into the future. Convolutional neural networks are used to extract the features of multiple time series, while long short-term memory neural networks predict multivariate outcomes simultaneously. In order to obtain more accurate prediction results, we performed feature selection on meteorological features and combined the selected weather features to train the prediction model. We further distinguished sunny- and rainy-day models according to the predicted daily rainfall conditions. In the experiment, it was shown that the method of combining meteorological features further reduced the error. Finally, taking into account the differences in climate conditions between the northern and southern regions of Taiwan, the experimental results of case studies involving multiple regions were evaluated to verify the proposed method. The results showed that training combined with selected meteorological features can be widely used in regions with different climates in Taiwan. |
---|---|
AbstractList | For the advancement of smart grids, solar power generation predictions have become an important research topic. In the case of using traditional modeling methods, excessive computational costs may be incurred and it is difficult for these methods to learn the multi-variable dependencies of the data. Therefore, in this paper, a deep learning model was used to combine convolutional neural networks and long short-term memory recurrent network predictions. This method enables hourly power generation one day into the future. Convolutional neural networks are used to extract the features of multiple time series, while long short-term memory neural networks predict multivariate outcomes simultaneously. In order to obtain more accurate prediction results, we performed feature selection on meteorological features and combined the selected weather features to train the prediction model. We further distinguished sunny- and rainy-day models according to the predicted daily rainfall conditions. In the experiment, it was shown that the method of combining meteorological features further reduced the error. Finally, taking into account the differences in climate conditions between the northern and southern regions of Taiwan, the experimental results of case studies involving multiple regions were evaluated to verify the proposed method. The results showed that training combined with selected meteorological features can be widely used in regions with different climates in Taiwan. |
Author | Cheng, Hsu-Yung Yu, Chih-Chang |
Author_xml | – sequence: 1 givenname: Hsu-Yung orcidid: 0000-0002-8342-7450 surname: Cheng fullname: Cheng, Hsu-Yung – sequence: 2 givenname: Chih-Chang orcidid: 0000-0003-1611-0223 surname: Yu fullname: Yu, Chih-Chang |
BookMark | eNpNkVtLAzEQhYNUsNa--AsCvgmruewtj1K0FuoFtU8-hGx2tqSuSc1mW_z3xlbUeZnD4ePMMHOMBtZZQOiUkgvOBbkESwvKOSn4ARpSIfKERj34p4_QuOtWJBbnkeRD9PrsWuXxo9uCx1Ow4FUwzuIb50GrLuBFZ-wS3_VtMBvljQqAJ85uXNvvuGk0avwEuvcebMStCfgewtb5txN02Ki2g_FPH6HFzfXL5DaZP0xnk6t5ojkjIcnKlOqyVCkrWF6JnDYMypwQXVPeqKrQuiCQ64qQWmeMVZwQEFpHLK-Ybhgfodk-t3ZqJdfevCv_KZ0ycmc4v5TKB6NbkIXgqqjrrBKpSDktSwE1CA4KGpLpKo1ZZ_ustXcfPXRBrlzvbVxfxsMKwvI03nGEzveU9q7rPDS_UymR37-Qf7_gX4U3fYU |
Cites_doi | 10.1016/j.renene.2021.08.038 10.3390/en14020436 10.1109/TSTE.2014.2313600 10.3390/app8010028 10.1049/iet-gtd.2018.6687 10.1016/j.enpol.2023.113922 10.1109/ICDS50568.2020.9268755 10.1016/j.protcy.2016.01.053 10.1162/neco.1997.9.8.1735 10.1109/IRSEC53969.2021.9741154 10.1016/j.egyr.2023.07.042 10.1007/s00450-016-0316-5 10.3390/en13030723 10.1109/TIA.2012.2190816 10.1002/er.4883 10.1109/MWSCAS.2017.8053243 10.5194/amt-10-199-2017 10.1007/s00521-022-07841-x 10.1016/j.solener.2012.04.004 10.1145/3209978.3210006 10.1109/TIE.2017.2714127 10.3390/electronics9071117 10.1177/18479790211032920 10.3390/en13081879 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/en17133073 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_793a7dd5b949431889ede93eaef05cb4 10_3390_en17133073 |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c320t-5841c88a42726b961f2e8600cd13fab7cc70e6cb00dc522b300e9cc1f26b2cf23 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:09:45 EDT 2025 Mon Jun 30 14:42:45 EDT 2025 Tue Jul 01 04:13:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c320t-5841c88a42726b961f2e8600cd13fab7cc70e6cb00dc522b300e9cc1f26b2cf23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1611-0223 0000-0002-8342-7450 |
OpenAccessLink | https://doaj.org/article/793a7dd5b949431889ede93eaef05cb4 |
PQID | 3079026407 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_793a7dd5b949431889ede93eaef05cb4 proquest_journals_3079026407 crossref_primary_10_3390_en17133073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Tang (ref_20) 2019; 13 Yang (ref_27) 2014; 5 Cheng (ref_25) 2017; 10 Tol (ref_1) 2024; 185 ref_11 ref_10 Ordiano (ref_13) 2017; 32 ref_31 ref_30 Dumitrul (ref_15) 2016; 22 ref_19 ref_17 Zhen (ref_24) 2020; 56 Sheng (ref_12) 2017; 65 Shi (ref_28) 2012; 48 Cheng (ref_21) 2021; 179 Pedro (ref_9) 2012; 86 Ciresan (ref_16) 2011; 2 Demir (ref_6) 2023; 35 Ledmaoui (ref_8) 2023; 10 ref_22 ref_3 Cheng (ref_23) 2020; 34 ref_29 Hochreiter (ref_18) 1997; 9 ref_26 Li (ref_2) 2009; 8 Ma (ref_5) 2011; 33 Rathor (ref_4) 2020; 44 Alomari (ref_14) 2018; 8 ref_7 |
References_xml | – volume: 56 start-page: 3385 year: 2020 ident: ref_24 article-title: Deep learning based surface irradiance mapping model for solar PV power forecasting using sky image publication-title: IEEE Trans. Ind. Appl. – volume: 179 start-page: 2300 year: 2021 ident: ref_21 article-title: Day-ahead to week-ahead solar irradiance prediction using convolutional long short-term memory networks publication-title: Renew. Energy doi: 10.1016/j.renene.2021.08.038 – ident: ref_30 doi: 10.3390/en14020436 – volume: 5 start-page: 917 year: 2014 ident: ref_27 article-title: A Weather-Based Hybrid Method for 1-day Ahead Hourly Forecasting of PV Power Output publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2014.2313600 – ident: ref_26 doi: 10.3390/app8010028 – volume: 13 start-page: 3847 year: 2019 ident: ref_20 article-title: Short-term power load forecasting based on multi-layer bidirectional recurrent neural network publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2018.6687 – volume: 185 start-page: 113922 year: 2024 ident: ref_1 article-title: A meta-analysis of the total economic impact of climate change publication-title: Energy Policy doi: 10.1016/j.enpol.2023.113922 – ident: ref_10 doi: 10.1109/ICDS50568.2020.9268755 – volume: 22 start-page: 808 year: 2016 ident: ref_15 article-title: Solar photovoltaic energy production forecast using neural networks publication-title: Procedia Technol. doi: 10.1016/j.protcy.2016.01.053 – volume: 9 start-page: 1735 year: 1997 ident: ref_18 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_7 doi: 10.1109/IRSEC53969.2021.9741154 – volume: 10 start-page: 1004 year: 2023 ident: ref_8 article-title: Forecasting solar energy production: A comparative study of machine learning algorithms publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.07.042 – volume: 32 start-page: 237 year: 2017 ident: ref_13 article-title: Photovoltaic power forecasting using simple data-driven models without weather data publication-title: Comput. Sci.-Res. Dev. doi: 10.1007/s00450-016-0316-5 – ident: ref_11 doi: 10.3390/en13030723 – volume: 48 start-page: 1064 year: 2012 ident: ref_28 article-title: Forecasting power output of photovoltaic systems based on weather classification and support vector machines publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2012.2190816 – ident: ref_31 – volume: 33 start-page: 829 year: 2011 ident: ref_5 article-title: A review on methods of solar energy forecasting and its application publication-title: Resour. Sci. – volume: 44 start-page: 4067 year: 2020 ident: ref_4 article-title: Energy management system for smart grid: An overview and key issues publication-title: Int. J Energy Res. doi: 10.1002/er.4883 – ident: ref_19 doi: 10.1109/MWSCAS.2017.8053243 – volume: 10 start-page: 199 year: 2017 ident: ref_25 article-title: Cloud detection in all-sky images via multi-scale neighborhood features and multiple supervised learning techniques publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-10-199-2017 – volume: 8 start-page: 497 year: 2018 ident: ref_14 article-title: Solar photovoltaic power forecasting in Jordan using artificial neural networks publication-title: Int. J. Electr. Comput. Eng. – volume: 35 start-page: 887 year: 2023 ident: ref_6 article-title: Forecasting of solar radiation using different machine learning approaches publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07841-x – volume: 8 start-page: 18 year: 2009 ident: ref_2 article-title: The analysis of Solar photovoltaic power generation market publication-title: Adv. Mater. Ind. – volume: 86 start-page: 2017 year: 2012 ident: ref_9 article-title: Assessment of forecasting techniques for solar power production with no exogenous inputs publication-title: Sol. Energy doi: 10.1016/j.solener.2012.04.004 – ident: ref_22 doi: 10.1145/3209978.3210006 – volume: 65 start-page: 300 year: 2017 ident: ref_12 article-title: Short-term solar power forecasting based on weighted Gaussian process regression publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2714127 – ident: ref_29 doi: 10.3390/electronics9071117 – ident: ref_3 doi: 10.1177/18479790211032920 – volume: 2 start-page: 1237 year: 2011 ident: ref_16 article-title: Flexible, High Performance Convolutional Neural Networks for Image Classification publication-title: Proc. Twenty-Second Int. Jt. Conf. Artif. Intell. – ident: ref_17 doi: 10.3390/en13081879 – volume: 34 start-page: 3593 year: 2020 ident: ref_23 article-title: Towards better forecasting by fusing near and distant future visions publication-title: Proc. AAAI Conf. Artif. Intell. |
SSID | ssj0000331333 |
Score | 2.3723156 |
Snippet | For the advancement of smart grids, solar power generation predictions have become an important research topic. In the case of using traditional modeling... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 3073 |
SubjectTerms | Alternative energy sources Datasets Deep learning Energy management gated recurrent unit Machine learning Neural networks photovoltaics power generation prediction Renewable resources Seasonal variations Solar energy Statistical methods Time series |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfuJ0SkCvZWnTj-QkbmwMD2NMBwMPpXlJvbVzq_v7fWmzTRG8timF95Xf7zX9PUIefalYZJTwNADzQplpL5Mh92JE58CU3WNrtc9JPJ6HL4to4Rpua3esclsT60KtS7A98h7GokS-gPzjafnp2alR9uuqG6FxSNpYgoVokXZ_OJnOdl0WxjmSMN7oknLk9z1T-JaXsYT_2olqwf4_9bjeZEan5MShQ_rcuPOMHJjinBz_0Ay8IO-vlozSqZ1uRhvRaGtbamdsQrauaH0IgNY_1m6QCCOWpIOy2LgQo7ZdpunMttmtMBO1oJNOmsPgl2Q-Gr4Nxp6bkOABD1jlIXrwQYgsDJIgVjL288AINC9on-eZSgASZmLA1NKAQEtxxowEwGWxCiAP-BVpFWVhrgmFBB_FDPfRp6ECmUXowkYgTJjMRB3ysLVWumyEMFIkENam6d6mHdK3htytsOLV9YVy9ZG6XEixJGSJ1pGSIYaFL4Q02kiOb8lZBCrskO7WDanLqHW69__N_7dvyVGAwKM5UtslrWr1Ze4QOFTq3kXHN_pFxIo priority: 102 providerName: ProQuest |
Title | Solar Power Generation Forecast Using Multivariate Convolution Gated Recurrent Unit Network |
URI | https://www.proquest.com/docview/3079026407 https://doaj.org/article/793a7dd5b949431889ede93eaef05cb4 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgLDAgPkWhVJZgjWrH-bBHivohhqoqVKrEENkXZ0wRLf39nO0UihhYWDJEiRO9s33vOc47Qu65Miy1RkYlAIsSpctIq0REGbJzYMblWO_2OcnG8-RpkS52Sn25PWHBHjgA18P-o_OyTI1KsA0upbKlVcJqW7EUjHcCxZy3I6b8HCwEii8R_EgF6vqerbnTYywXPzKQN-r_NQ_75DI8IccNK6QP4W1OyZ6tz8jRjlfgOXl9diKUTl1VMxrMoh2m1NXWBL1aU__xn_ofajcogJFD0sdlvWm6FnXLZCWdueV1Z8hEHdmkk7AJ_ILMh4OXx3HUVEaIQMRsHSFr4CClTuI8zozKeBVbibBCyUWlTQ6QM5sBDqkSkGAZwZhVAHhZZmKoYnFJWvWytleEQo634sjmGMvEgNIphi4Yg0kEOW2Tuy1axVswwChQODhMi29M26TvgPy6wplW-xMYyqIJZfFXKNuksw1D0YykVYGtK9SJqDuv_-MZN-QwRloSNtx2SGv9_mFvkVasTZfsy-GoSw76g8l01vX9CY-jBf8E_sPPxQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB2hcKA9IAqtGgplJcrRYu311x4qBLQhaSBCbSJF6sH1zm64OZSkIP4Uv5EZfyRFSNy4em3Zmn07M289-wbgi6-NjJxJPYsovVDn1st1qLyYsnOUhmNsqfY5iLuj8Mc4Gq_AQ3MWhssqG59YOmo7Rd4jPyQsauILxD-Orv963DWK_642LTQqWPTd_R1RttnX3jea34Mg6Hwfnna9uquAhyqQc48iro9pmodBEsRGx_4kcCl9ElpfTXKTICbSxdy43iIlJ0ZJ6TQi3RabACcsdEAufzVUFMn5ZHrnbLGnI5UiyqcqFVQal4eu8JkFykQ9iXtle4Bn3r8MaZ0NWK9zUXFcgecdrLhiE97-p1C4Bb9_MfUVl9xLTVQS1TyTgjt6Yj6bi7LkQJTHeG-JdlPmKk6nxW0NaMGbc1b85E19loESnOKKQVV6_h5Gr2K5D9AqpoX7CAITepT8iU8ICg3qPCLAVHJkqctd1Ib9xlrZdSW7kRFdYZtmS5u24YQNubiDpbLLC9Obq6xeeRk5oDyxNjI6JBD6aaqddVrRWyYyQhO2YaeZhqxev7Nsibbtl4f3YK07vDjPznuD_id4E1DKUxXz7kBrfvPP7VLKMjefS5wI-PPawHwER_j_5g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS-RAEC5kBNk9iI9ddnw2qMcwnXRefRDxNfhiGFwFwUM2Xd3xllFnVPxr_jqr8tAVwZvXpENC9ddV9XWqvwLY9LWRkTOpZxGlF-rcerkOlRdTdo7ScIyt1D4H8dFleHIVXU3BS3sWhssqW59YOWo7Qt4j7xEWNfEF4h-9oimLGB70d27vPO4gxX9a23YaNURO3fMT0bfx9vEBzfVWEPQPL_aPvKbDgIcqkBOPoq-PaZqHQRLERsd-EbiUPg-tr4rcJIiJdDE3sbdIiYpRUjqNSMNiE2DBogfk_qcTZkUdmN47HAzP33Z4pFJEAFWtiaqUlj1X-swJZaI-RMGqWcCnWFAFuP4czDaZqditoTQPU65cgJ__6RUuwvVfJsJiyJ3VRC1YzfMquL8n5uOJqAoQRHWo95FIOOWxYn9UPjbwFrxVZ8U5b_GzKJTghFcM6kL0X3D5Lbb7DZ1yVLo_IDChR8m7-ISn0KDOI4JPLU6WutxFXdhorZXd1iIcGZEXtmn2btMu7LEh30awcHZ1YXR_kzXrMCN3lCfWRkaHBEk_TbWzTit6SyEjNGEXVtppyJrVPM7esbf09e11mCFQZmfHg9Nl-BFQ_lNX9q5AZ3L_4FYpf5mYtQYoAv59NzZfAS4oBYc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solar+Power+Generation+Forecast+Using+Multivariate+Convolution+Gated+Recurrent+Unit+Network&rft.jtitle=Energies+%28Basel%29&rft.au=Hsu-Yung+Cheng&rft.au=Chih-Chang+Yu&rft.date=2024-07-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=17&rft.issue=13&rft.spage=3073&rft_id=info:doi/10.3390%2Fen17133073&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_793a7dd5b949431889ede93eaef05cb4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |