Gamma rays and neutrons attenuation performance of a developed lead borate glass for radiotherapy room
The development of radiation therapy necessitated a continuous R&D for radiotherapy rooms' glass windows to reach the highest levels of protection for the staff of the radiotherapy facility. Therefore, in this article, a novel type of lead borate glass depending on parallel augmenting of le...
Saved in:
Published in | Radiation protection dosimetry Vol. 200; no. 4; pp. 355 - 367 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
20.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of radiation therapy necessitated a continuous R&D for radiotherapy rooms' glass windows to reach the highest levels of protection for the staff of the radiotherapy facility. Therefore, in this article, a novel type of lead borate glass depending on parallel augmenting of lead and boron was produced to be used as gamma-rays and fast and thermal neutrons barriers in radiotherapy rooms. Neutrons and gamma rays’ attenuation parameters, fast neutrons removal cross section ${\varSigma}_R$, thermal neutron total cross section ${\sigma}_T$, mass attenuation coefficient $\sigma$, linear attenuation coefficient μ, half-value layer, mean free path, effective atomic number Zeff, effective electron density Neff, and buildup factor for energy absorption (energy absorption buildup factor) and exposure (exposure buildup factor) were studied extensively. Three tools, Phy-X/PSD, EpiXS and XCOM computer programs and the standard mixture rules were utilized to estimate the attenuation parameters. The improvement caused by the augmentation of lead and boron in both gamma rays and neutrons attenuation was evident from the obtained results. The glass containing the highest lead and boron concentration PbB5, 40Pb-50B, which is the most efficient attenuator for gamma rays and both thermal and fast neutrons was recommended to be a distinguished choice as a shield in a radiotherapy room. |
---|---|
AbstractList | The development of radiation therapy necessitated a continuous R&D for radiotherapy rooms' glass windows to reach the highest levels of protection for the staff of the radiotherapy facility. Therefore, in this article, a novel type of lead borate glass depending on parallel augmenting of lead and boron was produced to be used as gamma-rays and fast and thermal neutrons barriers in radiotherapy rooms. Neutrons and gamma rays’ attenuation parameters, fast neutrons removal cross section ${\varSigma}_R$, thermal neutron total cross section ${\sigma}_T$, mass attenuation coefficient $\sigma$, linear attenuation coefficient μ, half-value layer, mean free path, effective atomic number Zeff, effective electron density Neff, and buildup factor for energy absorption (energy absorption buildup factor) and exposure (exposure buildup factor) were studied extensively. Three tools, Phy-X/PSD, EpiXS and XCOM computer programs and the standard mixture rules were utilized to estimate the attenuation parameters. The improvement caused by the augmentation of lead and boron in both gamma rays and neutrons attenuation was evident from the obtained results. The glass containing the highest lead and boron concentration PbB5, 40Pb-50B, which is the most efficient attenuator for gamma rays and both thermal and fast neutrons was recommended to be a distinguished choice as a shield in a radiotherapy room. The development of radiation therapy necessitated a continuous R&D for radiotherapy rooms' glass windows to reach the highest levels of protection for the staff of the radiotherapy facility. Therefore, in this article, a novel type of lead borate glass depending on parallel augmenting of lead and boron was produced to be used as gamma-rays and fast and thermal neutrons barriers in radiotherapy rooms. Neutrons and gamma rays' attenuation parameters, fast neutrons removal cross section ${\varSigma}_R$, thermal neutron total cross section ${\sigma}_T$, mass attenuation coefficient $\sigma$, linear attenuation coefficient μ, half-value layer, mean free path, effective atomic number Zeff, effective electron density Neff, and buildup factor for energy absorption (energy absorption buildup factor) and exposure (exposure buildup factor) were studied extensively. Three tools, Phy-X/PSD, EpiXS and XCOM computer programs and the standard mixture rules were utilized to estimate the attenuation parameters. The improvement caused by the augmentation of lead and boron in both gamma rays and neutrons attenuation was evident from the obtained results. The glass containing the highest lead and boron concentration PbB5, 40Pb-50B, which is the most efficient attenuator for gamma rays and both thermal and fast neutrons was recommended to be a distinguished choice as a shield in a radiotherapy room.The development of radiation therapy necessitated a continuous R&D for radiotherapy rooms' glass windows to reach the highest levels of protection for the staff of the radiotherapy facility. Therefore, in this article, a novel type of lead borate glass depending on parallel augmenting of lead and boron was produced to be used as gamma-rays and fast and thermal neutrons barriers in radiotherapy rooms. Neutrons and gamma rays' attenuation parameters, fast neutrons removal cross section ${\varSigma}_R$, thermal neutron total cross section ${\sigma}_T$, mass attenuation coefficient $\sigma$, linear attenuation coefficient μ, half-value layer, mean free path, effective atomic number Zeff, effective electron density Neff, and buildup factor for energy absorption (energy absorption buildup factor) and exposure (exposure buildup factor) were studied extensively. Three tools, Phy-X/PSD, EpiXS and XCOM computer programs and the standard mixture rules were utilized to estimate the attenuation parameters. The improvement caused by the augmentation of lead and boron in both gamma rays and neutrons attenuation was evident from the obtained results. The glass containing the highest lead and boron concentration PbB5, 40Pb-50B, which is the most efficient attenuator for gamma rays and both thermal and fast neutrons was recommended to be a distinguished choice as a shield in a radiotherapy room. |
Author | El Shazly, Raed M Elesh, Eman El-Mallah, Hanaa M Zeed, Mona Abo Saeed, Aly |
Author_xml | – sequence: 1 givenname: Mona Abo surname: Zeed fullname: Zeed, Mona Abo email: mona.abozed@gmail.com – sequence: 2 givenname: Raed M surname: El Shazly fullname: El Shazly, Raed M email: r.shazly@gmail.com – sequence: 3 givenname: Eman surname: Elesh fullname: Elesh, Eman email: eman_phs@yahoo.com – sequence: 4 givenname: Hanaa M surname: El-Mallah fullname: El-Mallah, Hanaa M email: hanaaelmallah@hotmail.com – sequence: 5 givenname: Aly orcidid: 0000-0002-7383-9056 surname: Saeed fullname: Saeed, Aly email: aly-saeed@eru.edu.eg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38149329$$D View this record in MEDLINE/PubMed |
BookMark | eNp90E1LHTEUh_FQlHq1XXVfsiqCjOYkmbdlEd9AcKPrcCY5006ZScYkU7jf3qn3upHiKgR-5794jtmBD54Y-wbiHESrLuLsLrxFp0B9YhuotSyUFtUB2wjQumi0FEfsOKU_Qsi6LfVndqQa0K2S7Yb1NzhNyCNuE0fvuKclx-DXT87kF8xD8Hym2Ic4obfEQ8-RO_pLY5jJ8ZHQ8S5EzMR_jZgSX-U654aQf1PEectjCNMXdtjjmOjr_j1hT9dXj5e3xf3Dzd3lz_vCKilyUdbgmqq2znVQUVfaCgT0SnYKdYsgCPvKyVI3EpsO7QrKBkCJUlatE5VTJ-x0tzvH8LxQymYakqVxRE9hSUa2oqpraKBc6fc9XbqJnJnjMGHcmrc2K4AdsDGkFKk3dsivQXLEYTQgzL_-Zu1v9v3Xm7N3N2-z_9c_djos84fwBXqflk8 |
CitedBy_id | crossref_primary_10_1016_j_jnoncrysol_2024_123161 crossref_primary_10_1016_j_susmat_2025_e01257 crossref_primary_10_1038_s41598_024_73977_6 crossref_primary_10_1038_s41598_024_68941_3 crossref_primary_10_1115_1_4067684 crossref_primary_10_1007_s42452_024_06245_x |
Cites_doi | 10.1007/s12633-015-9391-7 10.1016/j.anucene.2012.09.015 10.1016/j.radphyschem.2014.04.032 10.1007/s00411-020-00838-x 10.1016/j.jnoncrysol.2017.12.001 10.1080/10448639208218770 10.1007/s10853-020-04446-4 10.1016/j.rinp.2022.105527 10.1007/s12633-016-9492-y 10.1016/j.net.2021.04.002 10.1007/s11082-015-0274-3 10.1016/j.radphyschem.2022.110566 10.1016/j.jcin.2011.05.027 10.1016/j.net.2020.07.035 10.1186/s13014-020-01551-1 10.1016/j.radphyschem.2022.110094 10.1016/S0168-583X(03)00462-2 10.1016/j.apradiso.2023.111012 10.1016/j.nucengdes.2014.12.033 10.1007/s41365-022-00996-1 10.1016/j.jmrt.2020.10.020 10.1016/j.ijleo.2022.170368 10.2298/NTRP1702120S 10.1186/s13014-021-01968-2 10.1007/s00411-020-00865-8 10.1016/j.pnucene.2022.104155 10.1016/j.radphyschem.2021.109741 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023 The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023 – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/rpd/ncad313 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1742-3406 |
EndPage | 367 |
ExternalDocumentID | 38149329 10_1093_rpd_ncad313 10.1093/rpd/ncad313 |
Genre | Journal Article |
GroupedDBID | --- -E4 .2P .GJ .HR .I3 .ZR 0R~ 123 1TH 29P 4.4 48X 53G 5VS 5WA 5WD 70D 8WZ A6W AABZA AACZT AAIJN AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT ABDFA ABDTM ABEFU ABEJV ABEUO ABGNP ABIME ABIXL ABJNI ABKDP ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABQNK ABSMQ ABVGC ABWST ABXVV ABZBJ ABZEO ACFRR ACGFS ACPQN ACUFI ACUKT ACUTJ ACUTO ACUXJ ACVCV ACYHN ACYTK ACZBC ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADMLS ADMTO ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEJOX AEKKA AEKPW AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFQV AFFZL AFIYH AFOFC AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUTN AHGBF AHMMS AHXPO AIJHB AJBYB AJDVS AJEEA AJEUX AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG ANFBD APIBT APJGH APWMN AQDSO AQKUS ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN BTRTY BVRKM BZKNY C45 CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBD EBS EE~ EIHJH EJD ELUNK EMOBN ENERS F5P F9B FECEO FEDTE FLIZI FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KBUDW KOP KSI KSN M-Z MBLQV MBTAY MHKGH N9A NGC NMDNZ NOMLY NOYVH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OCZFY ODMLO OJQWA OJZSN OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM Q1. Q5Y QBD RD5 RNI RNS ROL ROX ROZ RUSNO RW1 RXO RZO SV3 TCN TEORI TJP TJX TMA X7H YAYTL YKOAZ YXANX ZKX ~91 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c320t-571d867cddb16eb5c6101f32b3a49a10eaf6d25482a8bacb5c5811305269d06d3 |
ISSN | 0144-8420 1742-3406 |
IngestDate | Thu Jul 10 19:29:25 EDT 2025 Mon Jul 21 05:57:11 EDT 2025 Thu Apr 24 22:55:19 EDT 2025 Tue Jul 01 01:29:38 EDT 2025 Mon Jun 30 08:34:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This article contains public sector information licensed under the Open Government Licence v3.0 (http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/). The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-571d867cddb16eb5c6101f32b3a49a10eaf6d25482a8bacb5c5811305269d06d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7383-9056 |
PMID | 38149329 |
PQID | 2906771815 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2906771815 pubmed_primary_38149329 crossref_citationtrail_10_1093_rpd_ncad313 crossref_primary_10_1093_rpd_ncad313 oup_primary_10_1093_rpd_ncad313 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-20 |
PublicationDateYYYYMMDD | 2024-03-20 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Radiation protection dosimetry |
PublicationTitleAlternate | Radiat Prot Dosimetry |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Saeed (2024032016450123700_ref14) 2020; 53 Singh (2024032016450123700_ref17) 2020; 9 Saeed (2024032016450123700_ref10) 2018; 10 Aboalatta (2024032016450123700_ref32) 2021; 53 Manjunatha (2024032016450123700_ref24) 2023; 201 Evangelin, Teresa (2024032016450123700_ref29) 2021; 189 Lakshminarayana (2024032016450123700_ref18) 2020; 55 Kumar (2024032016450123700_ref33) 2018; 481 Zaid (2024032016450123700_ref21) 2020; 59 Sears (2024032016450123700_ref27) 1992; 3 Chen (2024032016450123700_ref4) 2022; 33 Fetterly (2024032016450123700_ref5) 2011; 4 Hu (2024032016450123700_ref6) 2021; 16 Banaee (2024032016450123700_ref8) 2021; 62 Toker (2024032016450123700_ref3) 2020; 59 Mhareba (2024032016450123700_ref19) 2022; 200 Zeed (2024032016450123700_ref20) 2023; 272 Saeed (2024032016450123700_ref12) 2016; 48 Saeed (2024032016450123700_ref9) 2015; 6 Saeed (2024032016450123700_ref13) 2017; 32 Dong (2024032016450123700_ref25) 2022; 146 El-kameesy (2024032016450123700_ref15) 2017; 50 Hil (2024032016450123700_ref26) 2023; 206 Dawidowski (2024032016450123700_ref28) 2013 Afkham (2024032016450123700_ref1) 2020; 15 Sharifi (2024032016450123700_ref30) 2013; 53 Singh (2024032016450123700_ref35) 2003; 207 Saeed (2024032016450123700_ref11) 2018; 10 Adeniji (2024032016450123700_ref7) 2019; 640 Mostaf (2024032016450123700_ref34) 2023; 202 Gaoab (2024032016450123700_ref2) 2022; 189 Lakshminarayana (2024032016450123700_ref22) 2022; 37 Kaur (2024032016450123700_ref31) 2015; 285 Mhareb (2024032016450123700_ref23) 2021; 52 Saeed (2024032016450123700_ref16) 2014; 102 |
References_xml | – volume: 10 start-page: 185 year: 2018 ident: 2024032016450123700_ref10 article-title: Optical spectroscopic analysis of high density lead borosilicate glasses publication-title: SILICON doi: 10.1007/s12633-015-9391-7 – volume: 53 start-page: 529 year: 2013 ident: 2024032016450123700_ref30 article-title: Comparison of shielding properties for ordinary, barite, serpentine and steel–magnetite concretes using MCNP-4C code and available experimental results publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2012.09.015 – volume: 102 start-page: 167 year: 2014 ident: 2024032016450123700_ref16 article-title: Gamma ray attenuation in a developed borate glassy system publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2014.04.032 – volume: 59 start-page: 283 year: 2020 ident: 2024032016450123700_ref3 article-title: Comparison of ITO and ZnO ternary glassy composites in terms of radiation shielding properties by Monte Carlo N-particle transport code and BXCOM publication-title: Radiat. Environ. Biophys. doi: 10.1007/s00411-020-00838-x – volume: 481 start-page: 604 year: 2018 ident: 2024032016450123700_ref33 article-title: Effect of PbO on the shielding behavior of ZnO–P2O5 glass system using Monte Carlo simulation publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2017.12.001 – volume: 3 start-page: 26 year: 1992 ident: 2024032016450123700_ref27 article-title: Neutron scattering lengths and cross sections publication-title: Neutron News doi: 10.1080/10448639208218770 – volume: 55 start-page: 5750 year: 2020 ident: 2024032016450123700_ref18 article-title: Estimation of gamma-rays, and fast and the thermal neutrons attenuation characteristics for bismuth tellurite and bismuth boro-tellurite glass systems publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-04446-4 – volume: 189 year: 2022 ident: 2024032016450123700_ref2 article-title: Calculation of shielding performance of CRT concrete for proton therapy and optimal shielding design of treatment delivery room publication-title: Appl. Radiat. Isot. – volume: 37 year: 2022 ident: 2024032016450123700_ref22 article-title: Comparative assessment of fast and thermal neutrons and gamma radiation protection qualities combined with mechanical factors of different borate-based glass systems publication-title: Results Phys doi: 10.1016/j.rinp.2022.105527 – volume: 10 start-page: 569 year: 2018 ident: 2024032016450123700_ref11 article-title: A novel barium borate glasses for optical applications publication-title: SILICON doi: 10.1007/s12633-016-9492-y – volume: 53 start-page: 3058 year: 2021 ident: 2024032016450123700_ref32 article-title: Experimental investigation of zinc sodium borate glass systems containing barium oxide for gamma radiation shielding applications publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2021.04.002 – volume: 206 year: 2023 ident: 2024032016450123700_ref26 article-title: ENDF/B-VIII.0-based fast neutron removal cross sections database in Z = 1 to 92 generated via multi-layered spherical geometry publication-title: Radiat. Phys. Chem. – volume: 48 start-page: 1 year: 2016 ident: 2024032016450123700_ref12 article-title: Optical properties of high-density barium borate glass for gamma ray shielding applications publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-015-0274-3 – volume: 640 start-page: 1 year: 2019 ident: 2024032016450123700_ref7 article-title: Radiation protection strategies in medical diagnostic centers in Lagos State, Nigeria publication-title: IOP Conf. Series: Materials Science and Engineering – volume: 202 year: 2023 ident: 2024032016450123700_ref34 article-title: Radiation shielding and optical features for a PbO–BaO–B2O3 system publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2022.110566 – volume: 4 start-page: 1133 year: 2011 ident: 2024032016450123700_ref5 article-title: Effective use of radiation shields to minimize operator dose during invasive cardiology procedures publication-title: J. Am. Coll. Cardiol. Intv. doi: 10.1016/j.jcin.2011.05.027 – volume: 52 start-page: 949 year: 2021 ident: 2024032016450123700_ref23 article-title: Investigation of photon, neutron and proton shielding features of H3BO3-ZnO-Na2O-BaO glass system publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2020.07.035 – volume: 15 start-page: 1 year: 2020 ident: 2024032016450123700_ref1 article-title: Design and fabrication of a Nano-based neutron shield for fast neutrons from medical linear accelerators in radiation therapy publication-title: Radiat. Oncol. doi: 10.1186/s13014-020-01551-1 – volume: 200 start-page: 110094 year: 2022 ident: 2024032016450123700_ref19 article-title: Radiation shielding features for a new glass system based on tellurite oxide publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2022.110094 – volume: 207 start-page: 257 year: 2003 ident: 2024032016450123700_ref35 article-title: Hari Singh Sahota, Rohila Nathuram, “ZnO–PbO–B2O3 glasses as gamma-ray shielding materials” publication-title: Nucl. Inst. Methods Phys. Res. B doi: 10.1016/S0168-583X(03)00462-2 – volume: 201 year: 2023 ident: 2024032016450123700_ref24 article-title: Badiger, “An experimental approach to determine the gamma radiation interaction mean free path and exposure buildup factor for biomolecules” publication-title: Appl. Radiat. Isot. doi: 10.1016/j.apradiso.2023.111012 – volume: 53 start-page: 107 year: 2020 ident: 2024032016450123700_ref14 article-title: Glass materials in nuclear technology for gamma ray and neutron radiation shielding: a review publication-title: Nonlinear Opt Quantum Opt – volume: 6 start-page: 1830 year: 2015 ident: 2024032016450123700_ref9 article-title: Study of gamma ray attenuation of high-density bismuth silicate glass for shielding applications publication-title: Res. J. Pharm., Biol. Chem. Sci. – volume: 285 start-page: 31 year: 2015 ident: 2024032016450123700_ref31 article-title: Correlation of gamma ray shielding and structural properties of PbO–BaO–P2O5 glass system publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2014.12.033 – volume: 62 start-page: 947 year: 2021 ident: 2024032016450123700_ref8 article-title: Neutron contamination in radiotherapy processes: a review study publication-title: J. Radiat. Res. – volume: 33 start-page: 12 year: 2022 ident: 2024032016450123700_ref4 article-title: Evaluation of neutron beam characteristics for D-BNCT01 facility publication-title: Nucl. Sci. Tech. doi: 10.1007/s41365-022-00996-1 – volume: 50 start-page: 1 year: 2017 ident: 2024032016450123700_ref15 article-title: A Phenomenological study on the gamma rays attenuation properties of developed steel alloys publication-title: Arab J Nucl Sci Appl – volume: 9 start-page: 14425 year: 2020 ident: 2024032016450123700_ref17 article-title: Analysis of enhancement in gamma ray shielding proficiency by adding WO3 in Al2O3-PbO-B2O3 glasses using Phy-X/PSD publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2020.10.020 – volume: 272 year: 2023 ident: 2024032016450123700_ref20 article-title: Double effect of glass former B2O3 and intermediate Pb3O4 augmentation on the structural, thermal, and optical properties of borate network publication-title: Optik doi: 10.1016/j.ijleo.2022.170368 – start-page: 471 volume-title: Appendix - Neutron Scattering Lengths and Cross Sections. Experimental Methods in the Physical Sciences year: 2013 ident: 2024032016450123700_ref28 – volume: 32 start-page: 120 year: 2017 ident: 2024032016450123700_ref13 article-title: Neutron shielding properties of a borated high-density glass publication-title: Nucl Technol Radiat Prot doi: 10.2298/NTRP1702120S – volume: 16 start-page: 1 year: 2021 ident: 2024032016450123700_ref6 article-title: Evaluation of a treatment planning system developed for clinical boron neutron capture therapy and validation against an independent Monte Carlo dose calculation system publication-title: Radiat. Oncol. doi: 10.1186/s13014-021-01968-2 – volume: 59 start-page: 583 year: 2020 ident: 2024032016450123700_ref21 article-title: Shielding characteristics of nanocomposites for protection against X- and gamma rays in medical applications: effect of particle size, photon energy and nano-particle concentration publication-title: Radiat. Environ. Biophys. doi: 10.1007/s00411-020-00865-8 – volume: 146 year: 2022 ident: 2024032016450123700_ref25 article-title: Study of comprehensive shielding behaviors of chambersite deposit for neutron and gamma ray publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2022.104155 – volume: 189 year: 2021 ident: 2024032016450123700_ref29 article-title: Influence of modifiers on the physical, structural, elastic and radiation shielding competence of Dy3+ ions doped Alkali boro-tellurite glasses publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2021.109741 |
SSID | ssj0027954 |
Score | 2.432671 |
Snippet | The development of radiation therapy necessitated a continuous R&D for radiotherapy rooms' glass windows to reach the highest levels of protection for the... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 355 |
SubjectTerms | Borates Boron Fast Neutrons Gamma Rays Humans Neutrons |
Title | Gamma rays and neutrons attenuation performance of a developed lead borate glass for radiotherapy room |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38149329 https://www.proquest.com/docview/2906771815 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWVkJcEG9KeRipJ1ahSezE2eMKCitEOJRWqrhEEz-kSt2k2s0e2p_Cr-049iZZukKFS5RNPJaz82U848x8JuQAsgykYhAIleiARyUPMlPKAJhQGgzOKdIGivmPdHbKv50lZ6PR70HW0qopP8rrrXUl_6NVvIZ6tVWy_6DZrlO8gOeoXzyihvF4Jx1_hfkcxgu4ckTLlV7ZhW380aAn7Di8LS9xVxnQ1kL6Mil0NC9Qv-MWA3rcetFtzuEC1Lkvy7oaW7966L8eWyoD168jeLCnql6ez3XTJxT_0m4JFQ0GjKdl3SeIWILoa7e59THgEPL-ll62KzxHcxgklAS5Xehvb8ygAvACfpki5jZPKw43Vi4RBtxf0s7aYlweMB6mQ3PsmEvXuOMD48ocoa-fp5nbxuPWFODosRaXVuWVBMVcresm1fYfU2CXmOg-ybMCxQsvfI_sxhiCoA3dnX7Ov__sw_lJ4pjj_YP56k8UP0TxQy--4e9s1FDeCmVal-bkEXnoYxE6dcB6TEa6ekLu5z7b4ikxLb6oxRdFfNE1vugAX3SAL1obCrTDF7X4og5ftMUXxZZ0iC9q8fWMnH45Ovk0C_y-HIFkcdgEiYhUlgqpVBmlukwkuuCRYXHJgE8gCvEdT1WMoXAMWQkSGyRZhL6S3cxehaliz8lOVVf6JaFGGCG0EkmUKh6aEJiRLGUQGiaS1CR75MP63yukJ623e6dcFFs0tUcOusaXjqtle7N3qIa_t3i_VlGB1tZ-QoNK16tlYTdHEOjORTiyF053XUfo-3KMhiav7jaMffKgf09ek51msdJv0MFtyrceaTd4xa1S |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gamma+rays+and+neutrons+attenuation+performance+of+a+developed+lead+borate+glass+for+radiotherapy+room&rft.jtitle=Radiation+protection+dosimetry&rft.au=Zeed%2C+Mona+Abo&rft.au=El+Shazly%2C+Raed+M&rft.au=Elesh%2C+Eman&rft.au=El-Mallah%2C+Hanaa+M&rft.date=2024-03-20&rft.issn=0144-8420&rft.eissn=1742-3406&rft.volume=200&rft.issue=4&rft.spage=355&rft.epage=367&rft_id=info:doi/10.1093%2Frpd%2Fncad313&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_rpd_ncad313 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8420&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8420&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8420&client=summon |