SADDLE POINT CRITERIA AND THE EXACT MINIMAX PENALTY FUNCTION METHOD IN NONCONVEX PROGRAMMING

A new characterization of the exact minimax penalty function method is presented. The exactness of the penalization for the exact minimax penalty function method is analyzed in the context of saddle point criteria of the Lagrange function in the nonconvex differentiable optimization problem with bot...

Full description

Saved in:
Bibliographic Details
Published inTaiwanese journal of mathematics Vol. 17; no. 2; pp. 559 - 581
Main Author Antczak, Tadeusz
Format Journal Article
LanguageEnglish
Published Mathematical Society of the Republic of China 01.04.2013
Subjects
Online AccessGet full text
ISSN1027-5487
2224-6851
DOI10.11650/tjm.17.2013.1823

Cover

Abstract A new characterization of the exact minimax penalty function method is presented. The exactness of the penalization for the exact minimax penalty function method is analyzed in the context of saddle point criteria of the Lagrange function in the nonconvex differentiable optimization problem with both inequality and equality constraints. Thus, new conditions for the exactness of the exact minimax penalty function method are established under assumption that the functions constituting considered constrained optimization problem are invex with respect to the same functionη(exception with those equality constraints for which the associated Lagrange multipliers are negative - these functions should be assumed to be incave with respect to the same functionη). The threshold of the penalty parameter is given such that, for all penalty parameters exceeding this treshold, the equivalence holds between a saddle point of the Lagrange function in the considered constrained extremum problem and a minimizer in its associated penalized optimization problem with the exact minimax penalty function. 2010Mathematics Subject Classification: 49M30, 90C26, 90C30. Key words and phrases: Exact minimax penalty function method, Minimax penalized optimization problem, Exactness of the exact minimax penalty function, Saddle point, Invex function.
AbstractList A new characterization of the exact minimax penalty function method is presented. The exactness of the penalization for the exact minimax penalty function method is analyzed in the context of saddle point criteria of the Lagrange function in the nonconvex differentiable optimization problem with both inequality and equality constraints. Thus, new conditions for the exactness of the exact minimax penalty function method are established under assumption that the functions constituting considered constrained optimization problem are invex with respect to the same functionη(exception with those equality constraints for which the associated Lagrange multipliers are negative - these functions should be assumed to be incave with respect to the same functionη). The threshold of the penalty parameter is given such that, for all penalty parameters exceeding this treshold, the equivalence holds between a saddle point of the Lagrange function in the considered constrained extremum problem and a minimizer in its associated penalized optimization problem with the exact minimax penalty function. 2010Mathematics Subject Classification: 49M30, 90C26, 90C30. Key words and phrases: Exact minimax penalty function method, Minimax penalized optimization problem, Exactness of the exact minimax penalty function, Saddle point, Invex function.
Author Antczak, Tadeusz
Author_xml – sequence: 1
  givenname: Tadeusz
  surname: Antczak
  fullname: Antczak, Tadeusz
BookMark eNp90EFrgzAUwPEwNljb7QPslttOdkk0Ro9BbRvQWFw6OhiEaJUpbR0qjH372XbssMNODx7v9w7_Kbg-tscSgAeM5hi7FD0NzWGO2ZwgbM-xR-wrMCGEOJbrUXwNJhgRZlHHY7dg2vcNQsRzsTsBb888DOMIrlMhFQwyoaJMcMhlCNUqgtGWBwomQoqEb-E6kjxWr3CxkYESqYRJpFZpCIWEMpVBKl-i8ShLlxlPRrO8AzeV2ffl_c-cgc0iUsHKitOlCHhsFTZBg0Vd3yuMqXzqOJjR3MkdUzHKWE6Yg3yDDCFe5e5I6VbGH_d2gQvfcavCkHxHsT0D7PK36Nq-78pKF_Vghro9Dp2p9xojfY6kx0gaM32KpE-RRon_yI-uPpju61_zeDFNP7TdLxhM_dkczPB-vtaU-vY3T6By1g
CitedBy_id crossref_primary_10_1051_ro_2019019
crossref_primary_10_1007_s40010_018_0485_7
crossref_primary_10_1007_s10957_015_0812_y
crossref_primary_10_1515_math_2024_0073
crossref_primary_10_1007_s40305_016_0120_8
Cites_doi 10.1007/BF01580117
10.1287/mnsc.13.5.344
10.1142/S0217595910002855
10.1007/BF01584647
10.1109/TAC.1970.1099557
10.1137/0323003
10.1017/S0004972700027441
10.1007/BF00933620
10.1515/9781400873173
10.1016/j.ejor.2008.07.031
10.1016/B978-0-12-597050-1.50007-5
10.1007/s10957-006-9069-9
10.1017/S0334270000005142
10.1007/BF01609033
10.1016/0022-247X(81)90123-2
10.1155/2010/324812
10.1080/02522667.2010.10699945
10.1137/0706028
10.1137/0327068
10.1007/BF01588250
10.1016/j.na.2009.01.233
10.1007/BF00941316
10.1137/0710063
10.1016/0041-5553(72)90002-X
10.1007/978-1-4612-1025-2
10.1007/978-0-387-88621-3
10.1017/S0004972700004895
10.1007/BF01580123
ContentType Journal Article
Copyright 2013 Mathematical Society of the Republic of China
Copyright_xml – notice: 2013 Mathematical Society of the Republic of China
DBID AAYXX
CITATION
DOI 10.11650/tjm.17.2013.1823
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2224-6851
EndPage 581
ExternalDocumentID 10_11650_tjm_17_2013_1823
taiwjmath.17.2.559
GroupedDBID -~X
123
29Q
2WC
AAFWJ
AAHSX
ABBHK
ABXSQ
ACHDO
ACIPV
ACMTB
ACTMH
ADULT
AEHFS
AELHJ
AENEX
AEUPB
AFBOV
AFFOW
AFOWJ
AGLNM
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALRMG
E3Z
EBS
ECEWR
EJD
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
OK1
OVT
RBV
RPE
SA0
XSB
AAYXX
CITATION
ID FETCH-LOGICAL-c320t-5698caaf9544175b4b4af7577b27409a0a228f6d2e6fa95773c1c946fca2bd513
ISSN 1027-5487
IngestDate Thu Apr 24 23:03:31 EDT 2025
Tue Jul 01 02:33:53 EDT 2025
Thu Jul 03 21:19:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-5698caaf9544175b4b4af7577b27409a0a228f6d2e6fa95773c1c946fca2bd513
OpenAccessLink https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-17/issue-2/SADDLE-POINT-CRITERIA-AND-THE-EXACT-MINIMAX-PENALTY-FUNCTION-METHOD/10.11650/tjm.17.2013.1823.pdf
PageCount 23
ParticipantIDs crossref_citationtrail_10_11650_tjm_17_2013_1823
crossref_primary_10_11650_tjm_17_2013_1823
jstor_primary_taiwjmath_17_2_559
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Taiwanese journal of mathematics
PublicationYear 2013
Publisher Mathematical Society of the Republic of China
Publisher_xml – name: Mathematical Society of the Republic of China
References 22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 21
  doi: 10.1007/BF01580117
– ident: 32
  doi: 10.1287/mnsc.13.5.344
– ident: 3
  doi: 10.1142/S0217595910002855
– ident: 18
  doi: 10.1007/BF01584647
– ident: 24
  doi: 10.1109/TAC.1970.1099557
– ident: 26
  doi: 10.1137/0323003
– ident: 31
  doi: 10.1017/S0004972700027441
– ident: 9
  doi: 10.1007/BF00933620
– ident: 12
– ident: 30
  doi: 10.1515/9781400873173
– ident: 2
  doi: 10.1016/j.ejor.2008.07.031
– ident: 20
  doi: 10.1016/B978-0-12-597050-1.50007-5
– ident: 1
  doi: 10.1007/s10957-006-9069-9
– ident: 10
  doi: 10.1017/S0334270000005142
– ident: 13
  doi: 10.1007/BF01609033
– ident: 23
  doi: 10.1016/0022-247X(81)90123-2
– ident: 34
  doi: 10.1155/2010/324812
– ident: 4
  doi: 10.1080/02522667.2010.10699945
– ident: 29
  doi: 10.1137/0706028
– ident: 19
  doi: 10.1137/0327068
– ident: 17
– ident: 11
– ident: 22
  doi: 10.1007/BF01588250
– ident: 5
  doi: 10.1016/j.na.2009.01.233
– ident: 27
  doi: 10.1007/BF00941316
– ident: 14
  doi: 10.1137/0710063
– ident: 16
  doi: 10.1016/0041-5553(72)90002-X
– ident: 28
  doi: 10.1007/978-1-4612-1025-2
– ident: 6
– ident: 33
  doi: 10.1007/978-0-387-88621-3
– ident: 8
– ident: 15
  doi: 10.1017/S0004972700004895
– ident: 25
– ident: 7
  doi: 10.1007/BF01580123
SSID ssj0028616
Score 1.9560546
Snippet A new characterization of the exact minimax penalty function method is presented. The exactness of the penalization for the exact minimax penalty function...
SourceID crossref
jstor
SourceType Enrichment Source
Index Database
Publisher
StartPage 559
SubjectTerms Constrained optimization
Lagrange multipliers
Mathematical functions
Minimax
Penalty function
Saddle points
Title SADDLE POINT CRITERIA AND THE EXACT MINIMAX PENALTY FUNCTION METHOD IN NONCONVEX PROGRAMMING
URI https://www.jstor.org/stable/taiwjmath.17.2.559
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMAtGC_wgPgUY4D8wBNRSuMkdvMY2owGLekU0qlISJFjO9ImVibIhNS_nrOTutk0EOMlihznZPl3cu7i8x1Cbz0pPcUa5tKmlm4QRNKdRCpwuQqZ8ijYxEIfFM5yOl8Gn1bhalef0JwuaeuR2Nx4ruR_qEIbcNWnZG9B1gqFBrgHvnAFwnD9J8af49nsKHGOF2leOtMCVqEijU3CKB3Ik6ziaelkaZ5m8co5TvL4qPziHC5zEzfiZEk5X8ycNHfyBXj2-UkCnYrFxyLOsm2aqd5qLfnpL65LVQ4TTZzbhK_WLI_XrdjwLvaaS3X5czP8qaALPNhYlG4dBG_V1c7MlYWSDRSC3Lz-gsEHs9aenY88pgPn_BE4MP7uY7PdYL_2DbKRgcYnASEViKg8VmkRlRZxF90jjJmd-OLDifWpJ9RUt7Xj7TeutYj310dxxfQYRp8aW6J8hB72TgCOO6KP0R21foIeZLsJfYq-dmyxYYu3bDGwxcAWG7a4Z4t7tnjLFndscZpjyxYP2D5Dy8OknM7dvhKGK3wybt2QRhPBeROZinFhHdQBb1jIWE0YOOh8zAmZNFQSRRseQbsvPBEFtBGc1DL0_Odob_19rV4gTEjTNNKXQvkyYJTygIHNrYgKOfXh2T4abyepEn2aeF2t5Fv1RzT76J195aLLkfK3ztjMvO3ZggqfaZU13SrwcF_eRt4Bur9T4Fdor_1xqV6DndjWb4ym_AZoK1e2
linkProvider Project Euclid
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SADDLE+POINT+CRITERIA+AND+THE+EXACT+MINIMAX+PENALTY+FUNCTION+METHOD+IN+NONCONVEX+PROGRAMMING&rft.jtitle=Taiwanese+journal+of+mathematics&rft.au=Antczak%2C+Tadeusz&rft.date=2013-04-01&rft.issn=1027-5487&rft.volume=17&rft.issue=2&rft_id=info:doi/10.11650%2Ftjm.17.2013.1823&rft.externalDBID=n%2Fa&rft.externalDocID=10_11650_tjm_17_2013_1823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-5487&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-5487&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-5487&client=summon