SADDLE POINT CRITERIA AND THE EXACT MINIMAX PENALTY FUNCTION METHOD IN NONCONVEX PROGRAMMING
A new characterization of the exact minimax penalty function method is presented. The exactness of the penalization for the exact minimax penalty function method is analyzed in the context of saddle point criteria of the Lagrange function in the nonconvex differentiable optimization problem with bot...
Saved in:
Published in | Taiwanese journal of mathematics Vol. 17; no. 2; pp. 559 - 581 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Mathematical Society of the Republic of China
01.04.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1027-5487 2224-6851 |
DOI | 10.11650/tjm.17.2013.1823 |
Cover
Abstract | A new characterization of the exact minimax penalty function method is presented. The exactness of the penalization for the exact minimax penalty function method is analyzed in the context of saddle point criteria of the Lagrange function in the nonconvex differentiable optimization problem with both inequality and equality constraints. Thus, new conditions for the exactness of the exact minimax penalty function method are established under assumption that the functions constituting considered constrained optimization problem are invex with respect to the same functionη(exception with those equality constraints for which the associated Lagrange multipliers are negative - these functions should be assumed to be incave with respect to the same functionη). The threshold of the penalty parameter is given such that, for all penalty parameters exceeding this treshold, the equivalence holds between a saddle point of the Lagrange function in the considered constrained extremum problem and a minimizer in its associated penalized optimization problem with the exact minimax penalty function.
2010Mathematics Subject Classification: 49M30, 90C26, 90C30.
Key words and phrases: Exact minimax penalty function method, Minimax penalized optimization problem, Exactness of the exact minimax penalty function, Saddle point, Invex function. |
---|---|
AbstractList | A new characterization of the exact minimax penalty function method is presented. The exactness of the penalization for the exact minimax penalty function method is analyzed in the context of saddle point criteria of the Lagrange function in the nonconvex differentiable optimization problem with both inequality and equality constraints. Thus, new conditions for the exactness of the exact minimax penalty function method are established under assumption that the functions constituting considered constrained optimization problem are invex with respect to the same functionη(exception with those equality constraints for which the associated Lagrange multipliers are negative - these functions should be assumed to be incave with respect to the same functionη). The threshold of the penalty parameter is given such that, for all penalty parameters exceeding this treshold, the equivalence holds between a saddle point of the Lagrange function in the considered constrained extremum problem and a minimizer in its associated penalized optimization problem with the exact minimax penalty function.
2010Mathematics Subject Classification: 49M30, 90C26, 90C30.
Key words and phrases: Exact minimax penalty function method, Minimax penalized optimization problem, Exactness of the exact minimax penalty function, Saddle point, Invex function. |
Author | Antczak, Tadeusz |
Author_xml | – sequence: 1 givenname: Tadeusz surname: Antczak fullname: Antczak, Tadeusz |
BookMark | eNp90EFrgzAUwPEwNljb7QPslttOdkk0Ro9BbRvQWFw6OhiEaJUpbR0qjH372XbssMNODx7v9w7_Kbg-tscSgAeM5hi7FD0NzWGO2ZwgbM-xR-wrMCGEOJbrUXwNJhgRZlHHY7dg2vcNQsRzsTsBb888DOMIrlMhFQwyoaJMcMhlCNUqgtGWBwomQoqEb-E6kjxWr3CxkYESqYRJpFZpCIWEMpVBKl-i8ShLlxlPRrO8AzeV2ffl_c-cgc0iUsHKitOlCHhsFTZBg0Vd3yuMqXzqOJjR3MkdUzHKWE6Yg3yDDCFe5e5I6VbGH_d2gQvfcavCkHxHsT0D7PK36Nq-78pKF_Vghro9Dp2p9xojfY6kx0gaM32KpE-RRon_yI-uPpju61_zeDFNP7TdLxhM_dkczPB-vtaU-vY3T6By1g |
CitedBy_id | crossref_primary_10_1051_ro_2019019 crossref_primary_10_1007_s40010_018_0485_7 crossref_primary_10_1007_s10957_015_0812_y crossref_primary_10_1515_math_2024_0073 crossref_primary_10_1007_s40305_016_0120_8 |
Cites_doi | 10.1007/BF01580117 10.1287/mnsc.13.5.344 10.1142/S0217595910002855 10.1007/BF01584647 10.1109/TAC.1970.1099557 10.1137/0323003 10.1017/S0004972700027441 10.1007/BF00933620 10.1515/9781400873173 10.1016/j.ejor.2008.07.031 10.1016/B978-0-12-597050-1.50007-5 10.1007/s10957-006-9069-9 10.1017/S0334270000005142 10.1007/BF01609033 10.1016/0022-247X(81)90123-2 10.1155/2010/324812 10.1080/02522667.2010.10699945 10.1137/0706028 10.1137/0327068 10.1007/BF01588250 10.1016/j.na.2009.01.233 10.1007/BF00941316 10.1137/0710063 10.1016/0041-5553(72)90002-X 10.1007/978-1-4612-1025-2 10.1007/978-0-387-88621-3 10.1017/S0004972700004895 10.1007/BF01580123 |
ContentType | Journal Article |
Copyright | 2013 Mathematical Society of the Republic of China |
Copyright_xml | – notice: 2013 Mathematical Society of the Republic of China |
DBID | AAYXX CITATION |
DOI | 10.11650/tjm.17.2013.1823 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2224-6851 |
EndPage | 581 |
ExternalDocumentID | 10_11650_tjm_17_2013_1823 taiwjmath.17.2.559 |
GroupedDBID | -~X 123 29Q 2WC AAFWJ AAHSX ABBHK ABXSQ ACHDO ACIPV ACMTB ACTMH ADULT AEHFS AELHJ AENEX AEUPB AFBOV AFFOW AFOWJ AGLNM AIHAF ALMA_UNASSIGNED_HOLDINGS ALRMG E3Z EBS ECEWR EJD IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST OK1 OVT RBV RPE SA0 XSB AAYXX CITATION |
ID | FETCH-LOGICAL-c320t-5698caaf9544175b4b4af7577b27409a0a228f6d2e6fa95773c1c946fca2bd513 |
ISSN | 1027-5487 |
IngestDate | Thu Apr 24 23:03:31 EDT 2025 Tue Jul 01 02:33:53 EDT 2025 Thu Jul 03 21:19:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-5698caaf9544175b4b4af7577b27409a0a228f6d2e6fa95773c1c946fca2bd513 |
OpenAccessLink | https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-17/issue-2/SADDLE-POINT-CRITERIA-AND-THE-EXACT-MINIMAX-PENALTY-FUNCTION-METHOD/10.11650/tjm.17.2013.1823.pdf |
PageCount | 23 |
ParticipantIDs | crossref_citationtrail_10_11650_tjm_17_2013_1823 crossref_primary_10_11650_tjm_17_2013_1823 jstor_primary_taiwjmath_17_2_559 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-01 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Taiwanese journal of mathematics |
PublicationYear | 2013 |
Publisher | Mathematical Society of the Republic of China |
Publisher_xml | – name: Mathematical Society of the Republic of China |
References | 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 21 doi: 10.1007/BF01580117 – ident: 32 doi: 10.1287/mnsc.13.5.344 – ident: 3 doi: 10.1142/S0217595910002855 – ident: 18 doi: 10.1007/BF01584647 – ident: 24 doi: 10.1109/TAC.1970.1099557 – ident: 26 doi: 10.1137/0323003 – ident: 31 doi: 10.1017/S0004972700027441 – ident: 9 doi: 10.1007/BF00933620 – ident: 12 – ident: 30 doi: 10.1515/9781400873173 – ident: 2 doi: 10.1016/j.ejor.2008.07.031 – ident: 20 doi: 10.1016/B978-0-12-597050-1.50007-5 – ident: 1 doi: 10.1007/s10957-006-9069-9 – ident: 10 doi: 10.1017/S0334270000005142 – ident: 13 doi: 10.1007/BF01609033 – ident: 23 doi: 10.1016/0022-247X(81)90123-2 – ident: 34 doi: 10.1155/2010/324812 – ident: 4 doi: 10.1080/02522667.2010.10699945 – ident: 29 doi: 10.1137/0706028 – ident: 19 doi: 10.1137/0327068 – ident: 17 – ident: 11 – ident: 22 doi: 10.1007/BF01588250 – ident: 5 doi: 10.1016/j.na.2009.01.233 – ident: 27 doi: 10.1007/BF00941316 – ident: 14 doi: 10.1137/0710063 – ident: 16 doi: 10.1016/0041-5553(72)90002-X – ident: 28 doi: 10.1007/978-1-4612-1025-2 – ident: 6 – ident: 33 doi: 10.1007/978-0-387-88621-3 – ident: 8 – ident: 15 doi: 10.1017/S0004972700004895 – ident: 25 – ident: 7 doi: 10.1007/BF01580123 |
SSID | ssj0028616 |
Score | 1.9560546 |
Snippet | A new characterization of the exact minimax penalty function method is presented. The exactness of the penalization for the exact minimax penalty function... |
SourceID | crossref jstor |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 559 |
SubjectTerms | Constrained optimization Lagrange multipliers Mathematical functions Minimax Penalty function Saddle points |
Title | SADDLE POINT CRITERIA AND THE EXACT MINIMAX PENALTY FUNCTION METHOD IN NONCONVEX PROGRAMMING |
URI | https://www.jstor.org/stable/taiwjmath.17.2.559 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMAtGC_wgPgUY4D8wBNRSuMkdvMY2owGLekU0qlISJFjO9ImVibIhNS_nrOTutk0EOMlihznZPl3cu7i8x1Cbz0pPcUa5tKmlm4QRNKdRCpwuQqZ8ijYxEIfFM5yOl8Gn1bhalef0JwuaeuR2Nx4ruR_qEIbcNWnZG9B1gqFBrgHvnAFwnD9J8af49nsKHGOF2leOtMCVqEijU3CKB3Ik6ziaelkaZ5m8co5TvL4qPziHC5zEzfiZEk5X8ycNHfyBXj2-UkCnYrFxyLOsm2aqd5qLfnpL65LVQ4TTZzbhK_WLI_XrdjwLvaaS3X5czP8qaALPNhYlG4dBG_V1c7MlYWSDRSC3Lz-gsEHs9aenY88pgPn_BE4MP7uY7PdYL_2DbKRgcYnASEViKg8VmkRlRZxF90jjJmd-OLDifWpJ9RUt7Xj7TeutYj310dxxfQYRp8aW6J8hB72TgCOO6KP0R21foIeZLsJfYq-dmyxYYu3bDGwxcAWG7a4Z4t7tnjLFndscZpjyxYP2D5Dy8OknM7dvhKGK3wybt2QRhPBeROZinFhHdQBb1jIWE0YOOh8zAmZNFQSRRseQbsvPBEFtBGc1DL0_Odob_19rV4gTEjTNNKXQvkyYJTygIHNrYgKOfXh2T4abyepEn2aeF2t5Fv1RzT76J195aLLkfK3ztjMvO3ZggqfaZU13SrwcF_eRt4Bur9T4Fdor_1xqV6DndjWb4ym_AZoK1e2 |
linkProvider | Project Euclid |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SADDLE+POINT+CRITERIA+AND+THE+EXACT+MINIMAX+PENALTY+FUNCTION+METHOD+IN+NONCONVEX+PROGRAMMING&rft.jtitle=Taiwanese+journal+of+mathematics&rft.au=Antczak%2C+Tadeusz&rft.date=2013-04-01&rft.issn=1027-5487&rft.volume=17&rft.issue=2&rft_id=info:doi/10.11650%2Ftjm.17.2013.1823&rft.externalDBID=n%2Fa&rft.externalDocID=10_11650_tjm_17_2013_1823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-5487&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-5487&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-5487&client=summon |