Inelastic two-wave mixing induced high-efficiency transfer of optical vortices

A scheme for high-efficiency transfer of optical vortices is proposed by an inelastic two-wave mixing (ITWM) process in an inverted-Y four-level atomic medium, which is originally prepared in a coherent superposition of two ground states. The orbital angular momentum (OAM) information in the inciden...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 32; no. 10; p. 16611
Main Authors Deng, Xu, Shui, Tao, Yang, Wen-Xing
Format Journal Article
LanguageEnglish
Published United States 06.05.2024
Online AccessGet full text

Cover

Loading…
Abstract A scheme for high-efficiency transfer of optical vortices is proposed by an inelastic two-wave mixing (ITWM) process in an inverted-Y four-level atomic medium, which is originally prepared in a coherent superposition of two ground states. The orbital angular momentum (OAM) information in the incident vortex probe field can be transferred to the generated signal field through the ITWM process. Choosing reasonable experimentally realizable parameters, we find that the presence of the off-resonance control field can greatly improve the conversion efficiency of optical vortices, rather than in the absence of a control field. This is caused by the broken of the destructive interference between two one-photon excitation pathways. Furthermore, we also extend our model to an inelastic multi-wave mixing process and demonstrate that the transfer efficiency between multiple optical vortices strongly depends on the superposition of the ground states. Finally, we explore the composite vortex beam generated by collinear superposition of the incident vortex probe and signal fields. It is obvious that the intensity and phase profiles of the composite vortex can be effectively controlled via adjusting the intensity of the control field. Potential applications of our scheme may exist in OAM-based optical communications and optical information processing.
AbstractList A scheme for high-efficiency transfer of optical vortices is proposed by an inelastic two-wave mixing (ITWM) process in an inverted-Y four-level atomic medium, which is originally prepared in a coherent superposition of two ground states. The orbital angular momentum (OAM) information in the incident vortex probe field can be transferred to the generated signal field through the ITWM process. Choosing reasonable experimentally realizable parameters, we find that the presence of the off-resonance control field can greatly improve the conversion efficiency of optical vortices, rather than in the absence of a control field. This is caused by the broken of the destructive interference between two one-photon excitation pathways. Furthermore, we also extend our model to an inelastic multi-wave mixing process and demonstrate that the transfer efficiency between multiple optical vortices strongly depends on the superposition of the ground states. Finally, we explore the composite vortex beam generated by collinear superposition of the incident vortex probe and signal fields. It is obvious that the intensity and phase profiles of the composite vortex can be effectively controlled via adjusting the intensity of the control field. Potential applications of our scheme may exist in OAM-based optical communications and optical information processing.
A scheme for high-efficiency transfer of optical vortices is proposed by an inelastic two-wave mixing (ITWM) process in an inverted-Y four-level atomic medium, which is originally prepared in a coherent superposition of two ground states. The orbital angular momentum (OAM) information in the incident vortex probe field can be transferred to the generated signal field through the ITWM process. Choosing reasonable experimentally realizable parameters, we find that the presence of the off-resonance control field can greatly improve the conversion efficiency of optical vortices, rather than in the absence of a control field. This is caused by the broken of the destructive interference between two one-photon excitation pathways. Furthermore, we also extend our model to an inelastic multi-wave mixing process and demonstrate that the transfer efficiency between multiple optical vortices strongly depends on the superposition of the ground states. Finally, we explore the composite vortex beam generated by collinear superposition of the incident vortex probe and signal fields. It is obvious that the intensity and phase profiles of the composite vortex can be effectively controlled via adjusting the intensity of the control field. Potential applications of our scheme may exist in OAM-based optical communications and optical information processing.A scheme for high-efficiency transfer of optical vortices is proposed by an inelastic two-wave mixing (ITWM) process in an inverted-Y four-level atomic medium, which is originally prepared in a coherent superposition of two ground states. The orbital angular momentum (OAM) information in the incident vortex probe field can be transferred to the generated signal field through the ITWM process. Choosing reasonable experimentally realizable parameters, we find that the presence of the off-resonance control field can greatly improve the conversion efficiency of optical vortices, rather than in the absence of a control field. This is caused by the broken of the destructive interference between two one-photon excitation pathways. Furthermore, we also extend our model to an inelastic multi-wave mixing process and demonstrate that the transfer efficiency between multiple optical vortices strongly depends on the superposition of the ground states. Finally, we explore the composite vortex beam generated by collinear superposition of the incident vortex probe and signal fields. It is obvious that the intensity and phase profiles of the composite vortex can be effectively controlled via adjusting the intensity of the control field. Potential applications of our scheme may exist in OAM-based optical communications and optical information processing.
Author Deng, Xu
Shui, Tao
Yang, Wen-Xing
Author_xml – sequence: 1
  givenname: Xu
  surname: Deng
  fullname: Deng, Xu
– sequence: 2
  givenname: Tao
  orcidid: 0000-0003-0394-232X
  surname: Shui
  fullname: Shui, Tao
– sequence: 3
  givenname: Wen-Xing
  orcidid: 0000-0001-6050-5578
  surname: Yang
  fullname: Yang, Wen-Xing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38858863$$D View this record in MEDLINE/PubMed
BookMark eNplkL1OwzAYRS1URH9g4AVQRhjS2rHjnxFVBSpVdIHZchy7NUrsEqctfXuC2koIpu8O51zpu0PQ88EbAG4RHCNMyWQ5G-eIYgQvwABBQVICOev9yn0wjPEDQkSYYFegjznPOad4AF7n3lQqtk4n7T6ke7UzSe2-nF8lzpdbbcpk7Vbr1FjrtDNeH5K2UT5a0yTBJmHTmapKdqHpgonX4NKqKpqb0x2B96fZ2_QlXSyf59PHRapxBtsUC5QRTLFFZY6JxhwKjWiecUpYoTlTOc8LxTQmouCsUEQrarXQBptSWITwCNwfezdN-Nya2MraRW2qSnkTtlFiSCnjIs9Yh96d0G1Rm1JuGler5iDPG3TA5AjoJsTYGCu1a1Xrgu8-dZVEUP6sLJczeVy5Mx7-GOfS_-w3AVZ7hQ
CitedBy_id crossref_primary_10_1016_j_photonics_2024_101347
crossref_primary_10_1016_j_diamond_2024_111234
crossref_primary_10_1016_j_diamond_2024_111664
crossref_primary_10_1016_j_tsep_2024_103091
crossref_primary_10_1039_D4DT01751J
crossref_primary_10_1016_j_physe_2024_116123
crossref_primary_10_3390_molecules29184515
crossref_primary_10_1016_j_surfin_2024_105137
crossref_primary_10_1039_D4DT01971G
crossref_primary_10_3390_photonics11080715
crossref_primary_10_1039_D4DT01158A
crossref_primary_10_1016_j_optcom_2025_131609
crossref_primary_10_1016_j_optcom_2024_130937
crossref_primary_10_1016_j_chaos_2024_115672
crossref_primary_10_1142_S0217979225501383
crossref_primary_10_1038_s41598_025_93083_5
crossref_primary_10_1016_j_chaos_2024_115831
crossref_primary_10_1140_epjd_s10053_024_00937_0
crossref_primary_10_3390_coatings14101297
crossref_primary_10_3390_mi15111388
crossref_primary_10_3390_coatings14070799
crossref_primary_10_3390_photonics11090784
Cites_doi 10.1038/nphoton.2012.138
10.1088/0022-3700/15/4/009
10.1364/OL.37.003270
10.1103/PhysRevA.103.063705
10.1103/PhysRevA.101.063811
10.1364/OE.395426
10.1103/PhysRevLett.117.203601
10.1103/PhysRevLett.119.094802
10.1126/science.1239936
10.1364/OE.379245
10.1038/nphys1907
10.1103/PhysRevA.105.043709
10.1103/PhysRevA.99.033812
10.1103/PhysRevB.104.094432
10.1103/PhysRevLett.98.083604
10.1364/PRJ.384925
10.1103/PhysRevA.82.051402
10.1109/JPHOT.2022.3140359
10.1103/PhysRevA.98.013840
10.1364/OL.29.001515
10.1103/PhysRevA.100.013822
10.1016/0030-4018(87)90276-8
10.1364/JOSAB.376330
10.1002/lpor.201700331
10.1103/PhysRevA.107.053712
10.1103/PhysRevLett.120.193904
10.1038/nphoton.2013.355
10.1364/OE.420015
10.1063/1.5121275
10.1088/1464-4266/4/2/362
10.1364/OL.38.000712
10.1103/PhysRevA.102.033516
10.1038/nphoton.2011.81
10.1364/OL.427000
10.1063/5.0050488
10.1126/science.aao5392
10.1103/PhysRevA.101.023821
10.1016/j.physrep.2006.03.005
10.1364/OE.411130
10.1103/PhysRevA.104.053719
10.1364/OL.28.000631
10.1364/JOSAB.449306
10.1038/ncomms6542
10.1103/PhysRevA.105.033709
10.1088/1367-2630/accc6e
10.1103/PhysRevLett.123.183902
10.1103/PhysRevA.45.8185
10.1103/PhysRevLett.108.243601
10.1016/j.optcom.2004.09.005
10.1103/PhysRevLett.114.123603
10.1016/S0079-6638(08)70391-3
10.1103/PhysRevLett.105.053904
10.1126/sciadv.1700422
10.1103/PhysRevA.87.053840
10.1364/OL.37.004826
10.1364/OE.440690
10.1063/1.881806
10.1364/OL.38.000534
10.1016/j.jlumin.2020.117628
10.1103/RevModPhys.89.015006
10.1103/PhysRevA.79.023825
10.1103/PhysRevA.100.023811
10.1002/andp.202100117
10.1515/nanoph-2021-0746
10.1007/s11128-019-2278-6
10.1088/0256-307X/29/2/024202
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.516310
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 38858863
10_1364_OE_516310
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
ROP
7X8
ID FETCH-LOGICAL-c320t-39124363f1d534c3809c16528647bc87a585ba7c349b87ba4ca6fc9ce3ed9f113
ISSN 1094-4087
IngestDate Fri Jul 11 01:38:14 EDT 2025
Wed Feb 19 02:09:52 EST 2025
Tue Jul 01 04:02:00 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-39124363f1d534c3809c16528647bc87a585ba7c349b87ba4ca6fc9ce3ed9f113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0394-232X
0000-0001-6050-5578
OpenAccessLink https://doi.org/10.1364/oe.516310
PMID 38858863
PQID 3066789527
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3066789527
pubmed_primary_38858863
crossref_citationtrail_10_1364_OE_516310
crossref_primary_10_1364_OE_516310
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-06
2024-May-06
20240506
PublicationDateYYYYMMDD 2024-05-06
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2024
References Che (oe-32-10-16611-R36) 2020; 28
Chen (oe-32-10-16611-R16) 2018; 12
Ahmed (oe-32-10-16611-R19) 2022; 11
Wahab (oe-32-10-16611-R41) 2023; 25
Meng (oe-32-10-16611-R48) 2023; 107
Ding (oe-32-10-16611-R56) 2021; 29
Wu (oe-32-10-16611-R60) 2003; 28
Mahdavi (oe-32-10-16611-R53) 2021; 104
oe-32-10-16611-R62
Lerner (oe-32-10-16611-R11) 2012; 37
Ding (oe-32-10-16611-R38) 2012; 37
Qiu (oe-32-10-16611-R34) 2020; 102
Asadpour (oe-32-10-16611-R46) 2021; 103
Ding (oe-32-10-16611-R61) 2012; 29
Wen (oe-32-10-16611-R15) 2018; 120
Allen (oe-32-10-16611-R7) 1999; 39
Harris (oe-32-10-16611-R22) 1997; 50
Jia (oe-32-10-16611-R27) 2020; 28
Padgett (oe-32-10-16611-R3) 2011; 5
Zhao (oe-32-10-16611-R18) 2020; 8
Asadpour (oe-32-10-16611-R42) 2022; 105
Nicolas (oe-32-10-16611-R5) 2014; 8
Chen (oe-32-10-16611-R29) 2021; 29
Ruseckas (oe-32-10-16611-R43) 2013; 87
Radmore (oe-32-10-16611-R63) 1982; 15
Veissier (oe-32-10-16611-R35) 2013; 38
Ostrovsky (oe-32-10-16611-R10) 2013; 38
Wang (oe-32-10-16611-R1) 2012; 6
Hamedi (oe-32-10-16611-R47) 2019; 100
Rahmatullah (oe-32-10-16611-R50) 2020; 101
Hamedi (oe-32-10-16611-R26) 2021; 46
Hamedi (oe-32-10-16611-R28) 2019; 99
Liu (oe-32-10-16611-R67) 2016; 117
Vitanov (oe-32-10-16611-R64) 2017; 89
Deng (oe-32-10-16611-R65) 2004; 242
Qiu (oe-32-10-16611-R23) 2019; 18
Liu (oe-32-10-16611-R17) 2019; 123
Yang (oe-32-10-16611-R12) 2017; 119
Barreiro (oe-32-10-16611-R32) 2004; 29
Wang (oe-32-10-16611-R45) 2019; 100
Radwell (oe-32-10-16611-R44) 2015; 114
Zhang (oe-32-10-16611-R51) 2019; 115
Qiu (oe-32-10-16611-R52) 2020; 28
Zhou (oe-32-10-16611-R59) 2017; 3
Gori (oe-32-10-16611-R9) 1987; 64
Padgett (oe-32-10-16611-R20) 2002; 4
Hickmann (oe-32-10-16611-R14) 2010; 105
Tamburini (oe-32-10-16611-R4) 2011; 7
Walker (oe-32-10-16611-R33) 2012; 108
Hamedi (oe-32-10-16611-R55) 2021; 533
Mahdavi (oe-32-10-16611-R49) 2020; 101
Hamedi (oe-32-10-16611-R39) 2018; 98
Dai (oe-32-10-16611-R25) 2021; 129
Allen (oe-32-10-16611-R8) 1992; 45
Lee (oe-32-10-16611-R66) 2014; 5
Wang (oe-32-10-16611-R54) 2020; 228
Deng (oe-32-10-16611-R58) 2006; 429
Jiang (oe-32-10-16611-R57) 2007; 98
Lembessis (oe-32-10-16611-R30) 2010; 82
Lavery (oe-32-10-16611-R2) 2013; 341
Zeng (oe-32-10-16611-R6) 2021; 104
Shen (oe-32-10-16611-R21) 2022; 14
Moretti (oe-32-10-16611-R31) 2009; 79
Devlin (oe-32-10-16611-R13) 2017; 358
Mousavi (oe-32-10-16611-R40) 2022; 39
Asadpour (oe-32-10-16611-R37) 2022; 105
Wang (oe-32-10-16611-R24) 2020; 37
References_xml – volume: 6
  start-page: 488
  year: 2012
  ident: oe-32-10-16611-R1
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.138
– volume: 15
  start-page: 561
  year: 1982
  ident: oe-32-10-16611-R63
  publication-title: J. Phys. B: At. Mol. Phys.
  doi: 10.1088/0022-3700/15/4/009
– volume: 37
  start-page: 3270
  year: 2012
  ident: oe-32-10-16611-R38
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.003270
– volume: 103
  start-page: 063705
  year: 2021
  ident: oe-32-10-16611-R46
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.063705
– volume: 101
  start-page: 063811
  year: 2020
  ident: oe-32-10-16611-R49
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.063811
– volume: 28
  start-page: 18343
  year: 2020
  ident: oe-32-10-16611-R36
  publication-title: Opt. Express
  doi: 10.1364/OE.395426
– volume: 117
  start-page: 203601
  year: 2016
  ident: oe-32-10-16611-R67
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.203601
– volume: 119
  start-page: 094802
  year: 2017
  ident: oe-32-10-16611-R12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.094802
– volume: 341
  start-page: 537
  year: 2013
  ident: oe-32-10-16611-R2
  publication-title: Science
  doi: 10.1126/science.1239936
– volume: 28
  start-page: 2975
  year: 2020
  ident: oe-32-10-16611-R52
  publication-title: Opt. Express
  doi: 10.1364/OE.379245
– volume: 7
  start-page: 195
  year: 2011
  ident: oe-32-10-16611-R4
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1907
– volume: 105
  start-page: 043709
  year: 2022
  ident: oe-32-10-16611-R42
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.105.043709
– volume: 99
  start-page: 033812
  year: 2019
  ident: oe-32-10-16611-R28
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.033812
– volume: 104
  start-page: 094432
  year: 2021
  ident: oe-32-10-16611-R53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.094432
– volume: 98
  start-page: 083604
  year: 2007
  ident: oe-32-10-16611-R57
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.083604
– volume: 8
  start-page: 745
  year: 2020
  ident: oe-32-10-16611-R18
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.384925
– volume: 82
  start-page: 051402
  year: 2010
  ident: oe-32-10-16611-R30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.051402
– volume: 14
  start-page: 1
  year: 2022
  ident: oe-32-10-16611-R21
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2022.3140359
– volume: 98
  start-page: 013840
  year: 2018
  ident: oe-32-10-16611-R39
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.013840
– volume: 29
  start-page: 1515
  year: 2004
  ident: oe-32-10-16611-R32
  publication-title: Opt. Lett.
  doi: 10.1364/OL.29.001515
– volume: 100
  start-page: 013822
  year: 2019
  ident: oe-32-10-16611-R45
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.013822
– volume: 64
  start-page: 491
  year: 1987
  ident: oe-32-10-16611-R9
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(87)90276-8
– volume: 37
  start-page: 902
  year: 2020
  ident: oe-32-10-16611-R24
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.376330
– volume: 12
  start-page: 1700331
  year: 2018
  ident: oe-32-10-16611-R16
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201700331
– volume: 107
  start-page: 053712
  year: 2023
  ident: oe-32-10-16611-R48
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.107.053712
– volume: 120
  start-page: 193904
  year: 2018
  ident: oe-32-10-16611-R15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.193904
– volume: 8
  start-page: 234
  year: 2014
  ident: oe-32-10-16611-R5
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.355
– volume: 29
  start-page: 10914
  year: 2021
  ident: oe-32-10-16611-R29
  publication-title: Opt. Express
  doi: 10.1364/OE.420015
– volume: 115
  start-page: 171905
  year: 2019
  ident: oe-32-10-16611-R51
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5121275
– volume: 4
  start-page: S17
  year: 2002
  ident: oe-32-10-16611-R20
  publication-title: J. Opt. B: Quantum Semiclassical Opt.
  doi: 10.1088/1464-4266/4/2/362
– volume: 38
  start-page: 712
  year: 2013
  ident: oe-32-10-16611-R35
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.000712
– volume: 102
  start-page: 033516
  year: 2020
  ident: oe-32-10-16611-R34
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.033516
– volume: 5
  start-page: 343
  year: 2011
  ident: oe-32-10-16611-R3
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.81
– volume: 46
  start-page: 4204
  year: 2021
  ident: oe-32-10-16611-R26
  publication-title: Opt. Lett.
  doi: 10.1364/OL.427000
– volume: 129
  start-page: 224303
  year: 2021
  ident: oe-32-10-16611-R25
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0050488
– volume: 358
  start-page: 896
  year: 2017
  ident: oe-32-10-16611-R13
  publication-title: Science
  doi: 10.1126/science.aao5392
– volume: 101
  start-page: 023821
  year: 2020
  ident: oe-32-10-16611-R50
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.023821
– volume: 429
  start-page: 123
  year: 2006
  ident: oe-32-10-16611-R58
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2006.03.005
– volume: 28
  start-page: 36936
  year: 2020
  ident: oe-32-10-16611-R27
  publication-title: Opt. Express
  doi: 10.1364/OE.411130
– ident: oe-32-10-16611-R62
– volume: 104
  start-page: 053719
  year: 2021
  ident: oe-32-10-16611-R6
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.104.053719
– volume: 28
  start-page: 631
  year: 2003
  ident: oe-32-10-16611-R60
  publication-title: Opt. Lett.
  doi: 10.1364/OL.28.000631
– volume: 39
  start-page: 1534
  year: 2022
  ident: oe-32-10-16611-R40
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.449306
– volume: 5
  start-page: 5542
  year: 2014
  ident: oe-32-10-16611-R66
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6542
– volume: 105
  start-page: 033709
  year: 2022
  ident: oe-32-10-16611-R37
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.105.033709
– volume: 25
  start-page: 053003
  year: 2023
  ident: oe-32-10-16611-R41
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/accc6e
– volume: 123
  start-page: 183902
  year: 2019
  ident: oe-32-10-16611-R17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.183902
– volume: 45
  start-page: 8185
  year: 1992
  ident: oe-32-10-16611-R8
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.8185
– volume: 108
  start-page: 243601
  year: 2012
  ident: oe-32-10-16611-R33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.243601
– volume: 242
  start-page: 641
  year: 2004
  ident: oe-32-10-16611-R65
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2004.09.005
– volume: 114
  start-page: 123603
  year: 2015
  ident: oe-32-10-16611-R44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.123603
– volume: 39
  start-page: 291
  year: 1999
  ident: oe-32-10-16611-R7
  publication-title: Prog. Opt.
  doi: 10.1016/S0079-6638(08)70391-3
– volume: 105
  start-page: 053904
  year: 2010
  ident: oe-32-10-16611-R14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.053904
– volume: 3
  start-page: e1700422
  year: 2017
  ident: oe-32-10-16611-R59
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700422
– volume: 87
  start-page: 053840
  year: 2013
  ident: oe-32-10-16611-R43
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.053840
– volume: 37
  start-page: 4826
  year: 2012
  ident: oe-32-10-16611-R11
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.004826
– volume: 29
  start-page: 36840
  year: 2021
  ident: oe-32-10-16611-R56
  publication-title: Opt. Express
  doi: 10.1364/OE.440690
– volume: 50
  start-page: 36
  year: 1997
  ident: oe-32-10-16611-R22
  publication-title: Phys. Today
  doi: 10.1063/1.881806
– volume: 38
  start-page: 534
  year: 2013
  ident: oe-32-10-16611-R10
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.000534
– volume: 228
  start-page: 117628
  year: 2020
  ident: oe-32-10-16611-R54
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2020.117628
– volume: 89
  start-page: 015006
  year: 2017
  ident: oe-32-10-16611-R64
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.015006
– volume: 79
  start-page: 023825
  year: 2009
  ident: oe-32-10-16611-R31
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.79.023825
– volume: 100
  start-page: 023811
  year: 2019
  ident: oe-32-10-16611-R47
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.023811
– volume: 533
  start-page: 2100117
  year: 2021
  ident: oe-32-10-16611-R55
  publication-title: Ann. Phys.
  doi: 10.1002/andp.202100117
– volume: 11
  start-page: 941
  year: 2022
  ident: oe-32-10-16611-R19
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2021-0746
– volume: 18
  start-page: 160
  year: 2019
  ident: oe-32-10-16611-R23
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-019-2278-6
– volume: 29
  start-page: 024202
  year: 2012
  ident: oe-32-10-16611-R61
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/29/2/024202
SSID ssj0014797
Score 2.5447252
Snippet A scheme for high-efficiency transfer of optical vortices is proposed by an inelastic two-wave mixing (ITWM) process in an inverted-Y four-level atomic medium,...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 16611
Title Inelastic two-wave mixing induced high-efficiency transfer of optical vortices
URI https://www.ncbi.nlm.nih.gov/pubmed/38858863
https://www.proquest.com/docview/3066789527
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3La9RAGB-0ovQiPuuqLaN48DJ1k3lljiIrVWj3ssW9hcnsBAWbhDaxpYf-7X7zyKyVLVQvYcljAt8v-83veyP0TgNNXTE7JUxwTRirGammhhJtuAGCIbJaumrkwyNxcMy-LvlyPVHQV5f01b653FhX8j-owjnA1VXJ_gOyaVE4Ab8BXzgCwnC8FcZfGgvk17Vc7c9bcu4GCZ38uAhVKqvBRfZdN2JifZsIX2PZe55qfWig7YIf-1frVo65hJGnzjvfvtledClFw7FdGzTDckiOme-DTwdY6Dbpj-iB_mYbshw3xuhXyJnP4otdqYMuBMsPzMu4H0ZluXZGDikhNai-DHb6bKNSpoKBJOezfQ7kLzzzBzjdiUeHFgUviqjsrnfAHi_dRfdyMAbcnIrDq1mKFTGpZOwZBW_6kN6zjR6MT14nHTdYEp5RLB6hh9EUwB8Dro_RHds8Qfd9Sq45e4qOErp4RBcHdHFEF_-FLh7RxW2NI7p4RPcZOv48W3w6IHH6BTE0n_aEKqBeVNA6W3HKDC2mCv49PC8Ek5UppAZDr9LSUKaqQlaaGS1qo4yldqXqLKPP0VbTNvYFwqJSGTfAtKnJmeZSZSarqaO7YEwCg56g96N4ShNbw7sJJT9LH-8UrJzPyiDUCXqbbu1CP5RNN70ZZVyCtnIhKN3YdjgrqcupLhTP5QTtBOGnZUawXt545RXaXn-pr9FWfzrYXeCEfbXnfSl7_sP4Dc6kYNk
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inelastic+two-wave+mixing+induced+high-efficiency+transfer+of+optical+vortices&rft.jtitle=Optics+express&rft.au=Deng%2C+Xu&rft.au=Shui%2C+Tao&rft.au=Yang%2C+Wen-Xing&rft.date=2024-05-06&rft.eissn=1094-4087&rft.volume=32&rft.issue=10&rft.spage=16611&rft_id=info:doi/10.1364%2FOE.516310&rft_id=info%3Apmid%2F38858863&rft.externalDocID=38858863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon