Inelastic two-wave mixing induced high-efficiency transfer of optical vortices
A scheme for high-efficiency transfer of optical vortices is proposed by an inelastic two-wave mixing (ITWM) process in an inverted-Y four-level atomic medium, which is originally prepared in a coherent superposition of two ground states. The orbital angular momentum (OAM) information in the inciden...
Saved in:
Published in | Optics express Vol. 32; no. 10; p. 16611 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
06.05.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | A scheme for high-efficiency transfer of optical vortices is proposed by an inelastic two-wave mixing (ITWM) process in an inverted-Y four-level atomic medium, which is originally prepared in a coherent superposition of two ground states. The orbital angular momentum (OAM) information in the incident vortex probe field can be transferred to the generated signal field through the ITWM process. Choosing reasonable experimentally realizable parameters, we find that the presence of the off-resonance control field can greatly improve the conversion efficiency of optical vortices, rather than in the absence of a control field. This is caused by the broken of the destructive interference between two one-photon excitation pathways. Furthermore, we also extend our model to an inelastic multi-wave mixing process and demonstrate that the transfer efficiency between multiple optical vortices strongly depends on the superposition of the ground states. Finally, we explore the composite vortex beam generated by collinear superposition of the incident vortex probe and signal fields. It is obvious that the intensity and phase profiles of the composite vortex can be effectively controlled via adjusting the intensity of the control field. Potential applications of our scheme may exist in OAM-based optical communications and optical information processing. |
---|---|
AbstractList | A scheme for high-efficiency transfer of optical vortices is proposed by an inelastic two-wave mixing (ITWM) process in an inverted-Y four-level atomic medium, which is originally prepared in a coherent superposition of two ground states. The orbital angular momentum (OAM) information in the incident vortex probe field can be transferred to the generated signal field through the ITWM process. Choosing reasonable experimentally realizable parameters, we find that the presence of the off-resonance control field can greatly improve the conversion efficiency of optical vortices, rather than in the absence of a control field. This is caused by the broken of the destructive interference between two one-photon excitation pathways. Furthermore, we also extend our model to an inelastic multi-wave mixing process and demonstrate that the transfer efficiency between multiple optical vortices strongly depends on the superposition of the ground states. Finally, we explore the composite vortex beam generated by collinear superposition of the incident vortex probe and signal fields. It is obvious that the intensity and phase profiles of the composite vortex can be effectively controlled via adjusting the intensity of the control field. Potential applications of our scheme may exist in OAM-based optical communications and optical information processing. A scheme for high-efficiency transfer of optical vortices is proposed by an inelastic two-wave mixing (ITWM) process in an inverted-Y four-level atomic medium, which is originally prepared in a coherent superposition of two ground states. The orbital angular momentum (OAM) information in the incident vortex probe field can be transferred to the generated signal field through the ITWM process. Choosing reasonable experimentally realizable parameters, we find that the presence of the off-resonance control field can greatly improve the conversion efficiency of optical vortices, rather than in the absence of a control field. This is caused by the broken of the destructive interference between two one-photon excitation pathways. Furthermore, we also extend our model to an inelastic multi-wave mixing process and demonstrate that the transfer efficiency between multiple optical vortices strongly depends on the superposition of the ground states. Finally, we explore the composite vortex beam generated by collinear superposition of the incident vortex probe and signal fields. It is obvious that the intensity and phase profiles of the composite vortex can be effectively controlled via adjusting the intensity of the control field. Potential applications of our scheme may exist in OAM-based optical communications and optical information processing.A scheme for high-efficiency transfer of optical vortices is proposed by an inelastic two-wave mixing (ITWM) process in an inverted-Y four-level atomic medium, which is originally prepared in a coherent superposition of two ground states. The orbital angular momentum (OAM) information in the incident vortex probe field can be transferred to the generated signal field through the ITWM process. Choosing reasonable experimentally realizable parameters, we find that the presence of the off-resonance control field can greatly improve the conversion efficiency of optical vortices, rather than in the absence of a control field. This is caused by the broken of the destructive interference between two one-photon excitation pathways. Furthermore, we also extend our model to an inelastic multi-wave mixing process and demonstrate that the transfer efficiency between multiple optical vortices strongly depends on the superposition of the ground states. Finally, we explore the composite vortex beam generated by collinear superposition of the incident vortex probe and signal fields. It is obvious that the intensity and phase profiles of the composite vortex can be effectively controlled via adjusting the intensity of the control field. Potential applications of our scheme may exist in OAM-based optical communications and optical information processing. |
Author | Deng, Xu Shui, Tao Yang, Wen-Xing |
Author_xml | – sequence: 1 givenname: Xu surname: Deng fullname: Deng, Xu – sequence: 2 givenname: Tao orcidid: 0000-0003-0394-232X surname: Shui fullname: Shui, Tao – sequence: 3 givenname: Wen-Xing orcidid: 0000-0001-6050-5578 surname: Yang fullname: Yang, Wen-Xing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38858863$$D View this record in MEDLINE/PubMed |
BookMark | eNplkL1OwzAYRS1URH9g4AVQRhjS2rHjnxFVBSpVdIHZchy7NUrsEqctfXuC2koIpu8O51zpu0PQ88EbAG4RHCNMyWQ5G-eIYgQvwABBQVICOev9yn0wjPEDQkSYYFegjznPOad4AF7n3lQqtk4n7T6ke7UzSe2-nF8lzpdbbcpk7Vbr1FjrtDNeH5K2UT5a0yTBJmHTmapKdqHpgonX4NKqKpqb0x2B96fZ2_QlXSyf59PHRapxBtsUC5QRTLFFZY6JxhwKjWiecUpYoTlTOc8LxTQmouCsUEQrarXQBptSWITwCNwfezdN-Nya2MraRW2qSnkTtlFiSCnjIs9Yh96d0G1Rm1JuGler5iDPG3TA5AjoJsTYGCu1a1Xrgu8-dZVEUP6sLJczeVy5Mx7-GOfS_-w3AVZ7hQ |
CitedBy_id | crossref_primary_10_1016_j_photonics_2024_101347 crossref_primary_10_1016_j_diamond_2024_111234 crossref_primary_10_1016_j_diamond_2024_111664 crossref_primary_10_1016_j_tsep_2024_103091 crossref_primary_10_1039_D4DT01751J crossref_primary_10_1016_j_physe_2024_116123 crossref_primary_10_3390_molecules29184515 crossref_primary_10_1016_j_surfin_2024_105137 crossref_primary_10_1039_D4DT01971G crossref_primary_10_3390_photonics11080715 crossref_primary_10_1039_D4DT01158A crossref_primary_10_1016_j_optcom_2025_131609 crossref_primary_10_1016_j_optcom_2024_130937 crossref_primary_10_1016_j_chaos_2024_115672 crossref_primary_10_1142_S0217979225501383 crossref_primary_10_1038_s41598_025_93083_5 crossref_primary_10_1016_j_chaos_2024_115831 crossref_primary_10_1140_epjd_s10053_024_00937_0 crossref_primary_10_3390_coatings14101297 crossref_primary_10_3390_mi15111388 crossref_primary_10_3390_coatings14070799 crossref_primary_10_3390_photonics11090784 |
Cites_doi | 10.1038/nphoton.2012.138 10.1088/0022-3700/15/4/009 10.1364/OL.37.003270 10.1103/PhysRevA.103.063705 10.1103/PhysRevA.101.063811 10.1364/OE.395426 10.1103/PhysRevLett.117.203601 10.1103/PhysRevLett.119.094802 10.1126/science.1239936 10.1364/OE.379245 10.1038/nphys1907 10.1103/PhysRevA.105.043709 10.1103/PhysRevA.99.033812 10.1103/PhysRevB.104.094432 10.1103/PhysRevLett.98.083604 10.1364/PRJ.384925 10.1103/PhysRevA.82.051402 10.1109/JPHOT.2022.3140359 10.1103/PhysRevA.98.013840 10.1364/OL.29.001515 10.1103/PhysRevA.100.013822 10.1016/0030-4018(87)90276-8 10.1364/JOSAB.376330 10.1002/lpor.201700331 10.1103/PhysRevA.107.053712 10.1103/PhysRevLett.120.193904 10.1038/nphoton.2013.355 10.1364/OE.420015 10.1063/1.5121275 10.1088/1464-4266/4/2/362 10.1364/OL.38.000712 10.1103/PhysRevA.102.033516 10.1038/nphoton.2011.81 10.1364/OL.427000 10.1063/5.0050488 10.1126/science.aao5392 10.1103/PhysRevA.101.023821 10.1016/j.physrep.2006.03.005 10.1364/OE.411130 10.1103/PhysRevA.104.053719 10.1364/OL.28.000631 10.1364/JOSAB.449306 10.1038/ncomms6542 10.1103/PhysRevA.105.033709 10.1088/1367-2630/accc6e 10.1103/PhysRevLett.123.183902 10.1103/PhysRevA.45.8185 10.1103/PhysRevLett.108.243601 10.1016/j.optcom.2004.09.005 10.1103/PhysRevLett.114.123603 10.1016/S0079-6638(08)70391-3 10.1103/PhysRevLett.105.053904 10.1126/sciadv.1700422 10.1103/PhysRevA.87.053840 10.1364/OL.37.004826 10.1364/OE.440690 10.1063/1.881806 10.1364/OL.38.000534 10.1016/j.jlumin.2020.117628 10.1103/RevModPhys.89.015006 10.1103/PhysRevA.79.023825 10.1103/PhysRevA.100.023811 10.1002/andp.202100117 10.1515/nanoph-2021-0746 10.1007/s11128-019-2278-6 10.1088/0256-307X/29/2/024202 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1364/OE.516310 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 38858863 10_1364_OE_516310 |
Genre | Journal Article |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM ROP 7X8 |
ID | FETCH-LOGICAL-c320t-39124363f1d534c3809c16528647bc87a585ba7c349b87ba4ca6fc9ce3ed9f113 |
ISSN | 1094-4087 |
IngestDate | Fri Jul 11 01:38:14 EDT 2025 Wed Feb 19 02:09:52 EST 2025 Tue Jul 01 04:02:00 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-39124363f1d534c3809c16528647bc87a585ba7c349b87ba4ca6fc9ce3ed9f113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0394-232X 0000-0001-6050-5578 |
OpenAccessLink | https://doi.org/10.1364/oe.516310 |
PMID | 38858863 |
PQID | 3066789527 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3066789527 pubmed_primary_38858863 crossref_citationtrail_10_1364_OE_516310 crossref_primary_10_1364_OE_516310 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-06 2024-May-06 20240506 |
PublicationDateYYYYMMDD | 2024-05-06 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Optics express |
PublicationTitleAlternate | Opt Express |
PublicationYear | 2024 |
References | Che (oe-32-10-16611-R36) 2020; 28 Chen (oe-32-10-16611-R16) 2018; 12 Ahmed (oe-32-10-16611-R19) 2022; 11 Wahab (oe-32-10-16611-R41) 2023; 25 Meng (oe-32-10-16611-R48) 2023; 107 Ding (oe-32-10-16611-R56) 2021; 29 Wu (oe-32-10-16611-R60) 2003; 28 Mahdavi (oe-32-10-16611-R53) 2021; 104 oe-32-10-16611-R62 Lerner (oe-32-10-16611-R11) 2012; 37 Ding (oe-32-10-16611-R38) 2012; 37 Qiu (oe-32-10-16611-R34) 2020; 102 Asadpour (oe-32-10-16611-R46) 2021; 103 Ding (oe-32-10-16611-R61) 2012; 29 Wen (oe-32-10-16611-R15) 2018; 120 Allen (oe-32-10-16611-R7) 1999; 39 Harris (oe-32-10-16611-R22) 1997; 50 Jia (oe-32-10-16611-R27) 2020; 28 Padgett (oe-32-10-16611-R3) 2011; 5 Zhao (oe-32-10-16611-R18) 2020; 8 Asadpour (oe-32-10-16611-R42) 2022; 105 Nicolas (oe-32-10-16611-R5) 2014; 8 Chen (oe-32-10-16611-R29) 2021; 29 Ruseckas (oe-32-10-16611-R43) 2013; 87 Radmore (oe-32-10-16611-R63) 1982; 15 Veissier (oe-32-10-16611-R35) 2013; 38 Ostrovsky (oe-32-10-16611-R10) 2013; 38 Wang (oe-32-10-16611-R1) 2012; 6 Hamedi (oe-32-10-16611-R47) 2019; 100 Rahmatullah (oe-32-10-16611-R50) 2020; 101 Hamedi (oe-32-10-16611-R26) 2021; 46 Hamedi (oe-32-10-16611-R28) 2019; 99 Liu (oe-32-10-16611-R67) 2016; 117 Vitanov (oe-32-10-16611-R64) 2017; 89 Deng (oe-32-10-16611-R65) 2004; 242 Qiu (oe-32-10-16611-R23) 2019; 18 Liu (oe-32-10-16611-R17) 2019; 123 Yang (oe-32-10-16611-R12) 2017; 119 Barreiro (oe-32-10-16611-R32) 2004; 29 Wang (oe-32-10-16611-R45) 2019; 100 Radwell (oe-32-10-16611-R44) 2015; 114 Zhang (oe-32-10-16611-R51) 2019; 115 Qiu (oe-32-10-16611-R52) 2020; 28 Zhou (oe-32-10-16611-R59) 2017; 3 Gori (oe-32-10-16611-R9) 1987; 64 Padgett (oe-32-10-16611-R20) 2002; 4 Hickmann (oe-32-10-16611-R14) 2010; 105 Tamburini (oe-32-10-16611-R4) 2011; 7 Walker (oe-32-10-16611-R33) 2012; 108 Hamedi (oe-32-10-16611-R55) 2021; 533 Mahdavi (oe-32-10-16611-R49) 2020; 101 Hamedi (oe-32-10-16611-R39) 2018; 98 Dai (oe-32-10-16611-R25) 2021; 129 Allen (oe-32-10-16611-R8) 1992; 45 Lee (oe-32-10-16611-R66) 2014; 5 Wang (oe-32-10-16611-R54) 2020; 228 Deng (oe-32-10-16611-R58) 2006; 429 Jiang (oe-32-10-16611-R57) 2007; 98 Lembessis (oe-32-10-16611-R30) 2010; 82 Lavery (oe-32-10-16611-R2) 2013; 341 Zeng (oe-32-10-16611-R6) 2021; 104 Shen (oe-32-10-16611-R21) 2022; 14 Moretti (oe-32-10-16611-R31) 2009; 79 Devlin (oe-32-10-16611-R13) 2017; 358 Mousavi (oe-32-10-16611-R40) 2022; 39 Asadpour (oe-32-10-16611-R37) 2022; 105 Wang (oe-32-10-16611-R24) 2020; 37 |
References_xml | – volume: 6 start-page: 488 year: 2012 ident: oe-32-10-16611-R1 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.138 – volume: 15 start-page: 561 year: 1982 ident: oe-32-10-16611-R63 publication-title: J. Phys. B: At. Mol. Phys. doi: 10.1088/0022-3700/15/4/009 – volume: 37 start-page: 3270 year: 2012 ident: oe-32-10-16611-R38 publication-title: Opt. Lett. doi: 10.1364/OL.37.003270 – volume: 103 start-page: 063705 year: 2021 ident: oe-32-10-16611-R46 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.063705 – volume: 101 start-page: 063811 year: 2020 ident: oe-32-10-16611-R49 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.101.063811 – volume: 28 start-page: 18343 year: 2020 ident: oe-32-10-16611-R36 publication-title: Opt. Express doi: 10.1364/OE.395426 – volume: 117 start-page: 203601 year: 2016 ident: oe-32-10-16611-R67 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.203601 – volume: 119 start-page: 094802 year: 2017 ident: oe-32-10-16611-R12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.094802 – volume: 341 start-page: 537 year: 2013 ident: oe-32-10-16611-R2 publication-title: Science doi: 10.1126/science.1239936 – volume: 28 start-page: 2975 year: 2020 ident: oe-32-10-16611-R52 publication-title: Opt. Express doi: 10.1364/OE.379245 – volume: 7 start-page: 195 year: 2011 ident: oe-32-10-16611-R4 publication-title: Nat. Phys. doi: 10.1038/nphys1907 – volume: 105 start-page: 043709 year: 2022 ident: oe-32-10-16611-R42 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.105.043709 – volume: 99 start-page: 033812 year: 2019 ident: oe-32-10-16611-R28 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.033812 – volume: 104 start-page: 094432 year: 2021 ident: oe-32-10-16611-R53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.094432 – volume: 98 start-page: 083604 year: 2007 ident: oe-32-10-16611-R57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.083604 – volume: 8 start-page: 745 year: 2020 ident: oe-32-10-16611-R18 publication-title: Photonics Res. doi: 10.1364/PRJ.384925 – volume: 82 start-page: 051402 year: 2010 ident: oe-32-10-16611-R30 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.051402 – volume: 14 start-page: 1 year: 2022 ident: oe-32-10-16611-R21 publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2022.3140359 – volume: 98 start-page: 013840 year: 2018 ident: oe-32-10-16611-R39 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.013840 – volume: 29 start-page: 1515 year: 2004 ident: oe-32-10-16611-R32 publication-title: Opt. Lett. doi: 10.1364/OL.29.001515 – volume: 100 start-page: 013822 year: 2019 ident: oe-32-10-16611-R45 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.100.013822 – volume: 64 start-page: 491 year: 1987 ident: oe-32-10-16611-R9 publication-title: Opt. Commun. doi: 10.1016/0030-4018(87)90276-8 – volume: 37 start-page: 902 year: 2020 ident: oe-32-10-16611-R24 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.376330 – volume: 12 start-page: 1700331 year: 2018 ident: oe-32-10-16611-R16 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201700331 – volume: 107 start-page: 053712 year: 2023 ident: oe-32-10-16611-R48 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.107.053712 – volume: 120 start-page: 193904 year: 2018 ident: oe-32-10-16611-R15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.193904 – volume: 8 start-page: 234 year: 2014 ident: oe-32-10-16611-R5 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.355 – volume: 29 start-page: 10914 year: 2021 ident: oe-32-10-16611-R29 publication-title: Opt. Express doi: 10.1364/OE.420015 – volume: 115 start-page: 171905 year: 2019 ident: oe-32-10-16611-R51 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5121275 – volume: 4 start-page: S17 year: 2002 ident: oe-32-10-16611-R20 publication-title: J. Opt. B: Quantum Semiclassical Opt. doi: 10.1088/1464-4266/4/2/362 – volume: 38 start-page: 712 year: 2013 ident: oe-32-10-16611-R35 publication-title: Opt. Lett. doi: 10.1364/OL.38.000712 – volume: 102 start-page: 033516 year: 2020 ident: oe-32-10-16611-R34 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.033516 – volume: 5 start-page: 343 year: 2011 ident: oe-32-10-16611-R3 publication-title: Nat. Photonics doi: 10.1038/nphoton.2011.81 – volume: 46 start-page: 4204 year: 2021 ident: oe-32-10-16611-R26 publication-title: Opt. Lett. doi: 10.1364/OL.427000 – volume: 129 start-page: 224303 year: 2021 ident: oe-32-10-16611-R25 publication-title: J. Appl. Phys. doi: 10.1063/5.0050488 – volume: 358 start-page: 896 year: 2017 ident: oe-32-10-16611-R13 publication-title: Science doi: 10.1126/science.aao5392 – volume: 101 start-page: 023821 year: 2020 ident: oe-32-10-16611-R50 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.101.023821 – volume: 429 start-page: 123 year: 2006 ident: oe-32-10-16611-R58 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2006.03.005 – volume: 28 start-page: 36936 year: 2020 ident: oe-32-10-16611-R27 publication-title: Opt. Express doi: 10.1364/OE.411130 – ident: oe-32-10-16611-R62 – volume: 104 start-page: 053719 year: 2021 ident: oe-32-10-16611-R6 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.104.053719 – volume: 28 start-page: 631 year: 2003 ident: oe-32-10-16611-R60 publication-title: Opt. Lett. doi: 10.1364/OL.28.000631 – volume: 39 start-page: 1534 year: 2022 ident: oe-32-10-16611-R40 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.449306 – volume: 5 start-page: 5542 year: 2014 ident: oe-32-10-16611-R66 publication-title: Nat. Commun. doi: 10.1038/ncomms6542 – volume: 105 start-page: 033709 year: 2022 ident: oe-32-10-16611-R37 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.105.033709 – volume: 25 start-page: 053003 year: 2023 ident: oe-32-10-16611-R41 publication-title: New J. Phys. doi: 10.1088/1367-2630/accc6e – volume: 123 start-page: 183902 year: 2019 ident: oe-32-10-16611-R17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.183902 – volume: 45 start-page: 8185 year: 1992 ident: oe-32-10-16611-R8 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.45.8185 – volume: 108 start-page: 243601 year: 2012 ident: oe-32-10-16611-R33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.243601 – volume: 242 start-page: 641 year: 2004 ident: oe-32-10-16611-R65 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2004.09.005 – volume: 114 start-page: 123603 year: 2015 ident: oe-32-10-16611-R44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.123603 – volume: 39 start-page: 291 year: 1999 ident: oe-32-10-16611-R7 publication-title: Prog. Opt. doi: 10.1016/S0079-6638(08)70391-3 – volume: 105 start-page: 053904 year: 2010 ident: oe-32-10-16611-R14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.053904 – volume: 3 start-page: e1700422 year: 2017 ident: oe-32-10-16611-R59 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700422 – volume: 87 start-page: 053840 year: 2013 ident: oe-32-10-16611-R43 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.053840 – volume: 37 start-page: 4826 year: 2012 ident: oe-32-10-16611-R11 publication-title: Opt. Lett. doi: 10.1364/OL.37.004826 – volume: 29 start-page: 36840 year: 2021 ident: oe-32-10-16611-R56 publication-title: Opt. Express doi: 10.1364/OE.440690 – volume: 50 start-page: 36 year: 1997 ident: oe-32-10-16611-R22 publication-title: Phys. Today doi: 10.1063/1.881806 – volume: 38 start-page: 534 year: 2013 ident: oe-32-10-16611-R10 publication-title: Opt. Lett. doi: 10.1364/OL.38.000534 – volume: 228 start-page: 117628 year: 2020 ident: oe-32-10-16611-R54 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2020.117628 – volume: 89 start-page: 015006 year: 2017 ident: oe-32-10-16611-R64 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.89.015006 – volume: 79 start-page: 023825 year: 2009 ident: oe-32-10-16611-R31 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.79.023825 – volume: 100 start-page: 023811 year: 2019 ident: oe-32-10-16611-R47 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.100.023811 – volume: 533 start-page: 2100117 year: 2021 ident: oe-32-10-16611-R55 publication-title: Ann. Phys. doi: 10.1002/andp.202100117 – volume: 11 start-page: 941 year: 2022 ident: oe-32-10-16611-R19 publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0746 – volume: 18 start-page: 160 year: 2019 ident: oe-32-10-16611-R23 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-019-2278-6 – volume: 29 start-page: 024202 year: 2012 ident: oe-32-10-16611-R61 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/29/2/024202 |
SSID | ssj0014797 |
Score | 2.5447252 |
Snippet | A scheme for high-efficiency transfer of optical vortices is proposed by an inelastic two-wave mixing (ITWM) process in an inverted-Y four-level atomic medium,... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 16611 |
Title | Inelastic two-wave mixing induced high-efficiency transfer of optical vortices |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38858863 https://www.proquest.com/docview/3066789527 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3La9RAGB-0ovQiPuuqLaN48DJ1k3lljiIrVWj3ssW9hcnsBAWbhDaxpYf-7X7zyKyVLVQvYcljAt8v-83veyP0TgNNXTE7JUxwTRirGammhhJtuAGCIbJaumrkwyNxcMy-LvlyPVHQV5f01b653FhX8j-owjnA1VXJ_gOyaVE4Ab8BXzgCwnC8FcZfGgvk17Vc7c9bcu4GCZ38uAhVKqvBRfZdN2JifZsIX2PZe55qfWig7YIf-1frVo65hJGnzjvfvtledClFw7FdGzTDckiOme-DTwdY6Dbpj-iB_mYbshw3xuhXyJnP4otdqYMuBMsPzMu4H0ZluXZGDikhNai-DHb6bKNSpoKBJOezfQ7kLzzzBzjdiUeHFgUviqjsrnfAHi_dRfdyMAbcnIrDq1mKFTGpZOwZBW_6kN6zjR6MT14nHTdYEp5RLB6hh9EUwB8Dro_RHds8Qfd9Sq45e4qOErp4RBcHdHFEF_-FLh7RxW2NI7p4RPcZOv48W3w6IHH6BTE0n_aEKqBeVNA6W3HKDC2mCv49PC8Ek5UppAZDr9LSUKaqQlaaGS1qo4yldqXqLKPP0VbTNvYFwqJSGTfAtKnJmeZSZSarqaO7YEwCg56g96N4ShNbw7sJJT9LH-8UrJzPyiDUCXqbbu1CP5RNN70ZZVyCtnIhKN3YdjgrqcupLhTP5QTtBOGnZUawXt545RXaXn-pr9FWfzrYXeCEfbXnfSl7_sP4Dc6kYNk |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inelastic+two-wave+mixing+induced+high-efficiency+transfer+of+optical+vortices&rft.jtitle=Optics+express&rft.au=Deng%2C+Xu&rft.au=Shui%2C+Tao&rft.au=Yang%2C+Wen-Xing&rft.date=2024-05-06&rft.eissn=1094-4087&rft.volume=32&rft.issue=10&rft.spage=16611&rft_id=info:doi/10.1364%2FOE.516310&rft_id=info%3Apmid%2F38858863&rft.externalDocID=38858863 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |