Efficient quantum key distribution against collective noise using polarization and transverse spatial mode of photons
Channel noise is the main issue which reduces the efficiency of quantum communication. Here we present an efficient scheme for quantum key distribution against collective-rotation channel noise using polarization and transverse spatial mode of photons. Exploiting the two single-photon Bell states an...
Saved in:
Published in | Optics express Vol. 28; no. 4; p. 4611 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
17.02.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | Channel noise is the main issue which reduces the efficiency of quantum communication. Here we present an efficient scheme for quantum key distribution against collective-rotation channel noise using polarization and transverse spatial mode of photons. Exploiting the two single-photon Bell states and two-photon hyperentangled Bell states in the polarization and the transverse spatial mode degrees of freedom (DOFs), the mutually unbiased bases can be encoded for logical qubits against the collective-rotation noise. Our scheme shows noiseless subspaces can be made up of two DOFs of two photons instead of multiple photons, which will reduce the resources required for noiseless subspaces and depress the photonic loss sensitivity. Moreover, the two single-photon Bell states and two-photon hyperentangled Bell states are symmetrical to the two photons, which means the relative order of the two photons is not required in our scheme, so the receiver only needs to measure the state of each photon, which makes our protocol easy to execute in experiment than the previous works. |
---|---|
AbstractList | Channel noise is the main issue which reduces the efficiency of quantum communication. Here we present an efficient scheme for quantum key distribution against collective-rotation channel noise using polarization and transverse spatial mode of photons. Exploiting the two single-photon Bell states and two-photon hyperentangled Bell states in the polarization and the transverse spatial mode degrees of freedom (DOFs), the mutually unbiased bases can be encoded for logical qubits against the collective-rotation noise. Our scheme shows noiseless subspaces can be made up of two DOFs of two photons instead of multiple photons, which will reduce the resources required for noiseless subspaces and depress the photonic loss sensitivity. Moreover, the two single-photon Bell states and two-photon hyperentangled Bell states are symmetrical to the two photons, which means the relative order of the two photons is not required in our scheme, so the receiver only needs to measure the state of each photon, which makes our protocol easy to execute in experiment than the previous works. Channel noise is the main issue which reduces the efficiency of quantum communication. Here we present an efficient scheme for quantum key distribution against collective-rotation channel noise using polarization and transverse spatial mode of photons. Exploiting the two single-photon Bell states and two-photon hyperentangled Bell states in the polarization and the transverse spatial mode degrees of freedom (DOFs), the mutually unbiased bases can be encoded for logical qubits against the collective-rotation noise. Our scheme shows noiseless subspaces can be made up of two DOFs of two photons instead of multiple photons, which will reduce the resources required for noiseless subspaces and depress the photonic loss sensitivity. Moreover, the two single-photon Bell states and two-photon hyperentangled Bell states are symmetrical to the two photons, which means the relative order of the two photons is not required in our scheme, so the receiver only needs to measure the state of each photon, which makes our protocol easy to execute in experiment than the previous works.Channel noise is the main issue which reduces the efficiency of quantum communication. Here we present an efficient scheme for quantum key distribution against collective-rotation channel noise using polarization and transverse spatial mode of photons. Exploiting the two single-photon Bell states and two-photon hyperentangled Bell states in the polarization and the transverse spatial mode degrees of freedom (DOFs), the mutually unbiased bases can be encoded for logical qubits against the collective-rotation noise. Our scheme shows noiseless subspaces can be made up of two DOFs of two photons instead of multiple photons, which will reduce the resources required for noiseless subspaces and depress the photonic loss sensitivity. Moreover, the two single-photon Bell states and two-photon hyperentangled Bell states are symmetrical to the two photons, which means the relative order of the two photons is not required in our scheme, so the receiver only needs to measure the state of each photon, which makes our protocol easy to execute in experiment than the previous works. |
Author | He, Wan-Ting He, Yi Li, Chun-Yan Guo, Peng-Liang Deng, Fu-Guo Jing, Feng Ren, Bao-Cang Dong, Chen |
Author_xml | – sequence: 1 givenname: Peng-Liang surname: Guo fullname: Guo, Peng-Liang – sequence: 2 givenname: Chen surname: Dong fullname: Dong, Chen – sequence: 3 givenname: Yi surname: He fullname: He, Yi – sequence: 4 givenname: Feng surname: Jing fullname: Jing, Feng – sequence: 5 givenname: Wan-Ting surname: He fullname: He, Wan-Ting – sequence: 6 givenname: Bao-Cang orcidid: 0000-0002-7679-3612 surname: Ren fullname: Ren, Bao-Cang – sequence: 7 givenname: Chun-Yan surname: Li fullname: Li, Chun-Yan – sequence: 8 givenname: Fu-Guo orcidid: 0000-0002-5209-2432 surname: Deng fullname: Deng, Fu-Guo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32121695$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0VtLwzAYBuAgE3fQC_-A5FIvtuXQNu2ljHqAwW70umQ5zGibdEk6mL_e6qaIePWFjyeBvO8YDKyzCoBLjGaYZsl8Vc4oS0hBTsAIoyKZJihng1_nIRiH8IoQTljBzsCQEkxwVqQj0JVaG2GUjXDbcRu7Br6pPZQmRG_WXTTOQr7hxoYIhatrJaLZKWidCQp2wdgNbF3NvXnnB2sljJ7bsFO-F6Ht17yGjZMKOg3bFxedDefgVPM6qIvjnIDnu_Jp8TBdru4fF7fLqaAExSnhqUIJ1VhqTXSeCs3Wa5znSKeEJTjLGSKy_wangpOcJ0JgLrikjCKUyULSCbg-vNt6t-1UiFVjglB1za1yXagIZSilhGV5T6-OtFs3SlatNw33--o7qh7cHIDwLgSv9A_BqPqsoVqV1aGG3s7_WGHiV0B9Nqb-58YHDKeLfw |
CitedBy_id | crossref_primary_10_1364_JOSAB_397973 crossref_primary_10_1140_epjp_s13360_024_05702_1 crossref_primary_10_1007_s10773_021_04786_0 crossref_primary_10_1142_S0217732322501176 crossref_primary_10_1103_PhysRevA_102_033708 crossref_primary_10_3390_sym14122481 crossref_primary_10_1016_j_optlastec_2025_112566 crossref_primary_10_1007_s10773_022_04976_4 crossref_primary_10_1088_1402_4896_ad1801 crossref_primary_10_1007_s11128_023_03855_z crossref_primary_10_1002_que2_81 crossref_primary_10_1016_j_physleta_2022_128291 crossref_primary_10_1002_que2_76 crossref_primary_10_1007_s11128_024_04583_8 crossref_primary_10_1364_JOSAB_505732 crossref_primary_10_3390_e26100857 crossref_primary_10_1002_spe_3039 crossref_primary_10_7498_aps_71_20210907 |
Cites_doi | 10.1103/PhysRevLett.93.070502 10.1016/0030-4018(93)90535-D 10.1103/PhysRevLett.113.060503 10.1016/S0030-4018(97)00403-3 10.1103/PhysRevA.88.032305 10.1063/1.2794433 10.1103/PhysRevLett.93.220501 10.1364/OPTICA.4.001006 10.1038/srep28813 10.1103/PhysRevA.82.032318 10.1016/j.physleta.2005.06.034 10.1007/s11433-010-4050-x 10.1007/BF00191318 10.1103/PhysRevA.63.040301 10.1103/PhysRevA.53.2046 10.1364/OL.41.005797 10.1103/PhysRevA.98.052343 10.1103/PhysRevLett.118.220501 10.1007/s11434-010-4208-y 10.1103/PhysRevLett.95.040503 10.1364/OE.19.025433 10.1103/PhysRevA.59.1829 10.1103/PhysRevA.77.032345 10.1103/PhysRevLett.76.722 10.1103/PhysRevLett.70.1895 10.1103/PhysRevLett.98.100501 10.1103/PhysRevA.68.012323 10.1103/PhysRevLett.79.3306 10.1103/PhysRevA.68.042317 10.1103/PhysRevA.78.022321 10.1016/j.physleta.2004.10.025 10.1103/PhysRevLett.92.017901 10.1049/el:19930424 10.1038/35074041 10.1103/PhysRevA.72.012304 10.1103/PhysRevLett.89.257901 10.1016/S0030-4018(03)01619-5 10.1063/1.2207993 10.1016/j.physleta.2003.12.012 10.1209/0295-5075/123/60002 10.1088/1367-2630/17/3/033033 10.1103/PhysRevLett.67.661 10.1016/j.physleta.2005.09.012 10.1103/PhysRevA.82.033833 10.1038/lsa.2016.144 10.1088/1367-2630/9/6/191 10.1038/299802a0 10.1103/PhysRevA.65.032302 10.1103/PhysRevA.64.012304 10.1103/PhysRevA.64.014301 10.1016/0030-4018(89)90436-7 10.1103/PhysRevA.72.012326 10.1364/OE.19.004085 10.1063/1.118224 10.1103/PhysRevLett.85.441 10.1103/PhysRevLett.91.087901 10.1126/science.290.5491.498 10.1364/OE.22.001551 10.1038/ncomms1951 10.1103/PhysRevA.51.1863 10.1103/PhysRevA.69.052319 10.1038/srep38233 10.1007/s11433-018-9224-5 10.1103/PhysRevA.85.012307 10.1038/nature14246 10.1016/j.optcom.2009.07.012 10.1134/S1063776111130140 10.1119/1.18283 10.1103/PhysRevLett.95.260501 10.1103/PhysRevA.97.022321 10.1103/PhysRevA.71.044305 10.1103/RevModPhys.74.145 10.1088/1367-2630/4/1/341 10.1103/PhysRevLett.68.3121 10.1126/science.283.5410.2050 10.1142/S021974990500116X 10.1364/OL.42.001966 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1364/OE.374292 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 32121695 10_1364_OE_374292 |
Genre | Journal Article |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM ROP 7X8 |
ID | FETCH-LOGICAL-c320t-2a5e043f1dff2f85cf7bb1880f5274168702d695a3ca28a4cc1acad373006d9d3 |
ISSN | 1094-4087 |
IngestDate | Fri Jul 11 09:04:10 EDT 2025 Wed Feb 19 02:31:46 EST 2025 Tue Jul 01 04:04:50 EDT 2025 Thu Apr 24 22:55:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-2a5e043f1dff2f85cf7bb1880f5274168702d695a3ca28a4cc1acad373006d9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7679-3612 0000-0002-5209-2432 |
OpenAccessLink | https://doi.org/10.1364/oe.374292 |
PMID | 32121695 |
PQID | 2370532768 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2370532768 pubmed_primary_32121695 crossref_primary_10_1364_OE_374292 crossref_citationtrail_10_1364_OE_374292 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-17 2020-Feb-17 20200217 |
PublicationDateYYYYMMDD | 2020-02-17 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Optics express |
PublicationTitleAlternate | Opt Express |
PublicationYear | 2020 |
References | Xiu (oe-28-4-4611-R42) 2009; 282 Bennett (oe-28-4-4611-R2) 1993; 70 Bennett (oe-28-4-4611-R53) 1996; 53 Ekert (oe-28-4-4611-R17) 1991; 67 Wei (oe-28-4-4611-R73) 2003; 223 Shor (oe-28-4-4611-R75) 2000; 85 Fiorentino (oe-28-4-4611-R63) 2004; 93 Lo (oe-28-4-4611-R74) 1999; 283 Lidar (oe-28-4-4611-R28) 2013 Kalamidas (oe-28-4-4611-R33) 2005; 343 Sit (oe-28-4-4611-R25) 2017; 4 Zhang (oe-28-4-4611-R21) 2004; 333 Beijersbergen (oe-28-4-4611-R68) 1993; 96 Bennett (oe-28-4-4611-R27) 1992; 5 Souza (oe-28-4-4611-R64) 2008; 77 Wang (oe-28-4-4611-R47) 2016; 6 Wang (oe-28-4-4611-R62) 2018; 123 Zhou (oe-28-4-4611-R52) 2016; 6 Simon (oe-28-4-4611-R50) 2002; 89 Deng (oe-28-4-4611-R8) 2004; 69 Yamamoto (oe-28-4-4611-R31) 2005; 95 Chen (oe-28-4-4611-R11) 2018; 61 Gisin (oe-28-4-4611-R1) 2002; 74 Zhang (oe-28-4-4611-R12) 2017; 118 Barreiro (oe-28-4-4611-R65) 2005; 95 Mirhosseini (oe-28-4-4611-R24) 2015; 17 Yamamoto (oe-28-4-4611-R32) 2007; 9 Kwiat (oe-28-4-4611-R38) 2000; 290 Zhao (oe-28-4-4611-R55) 2001; 64 Wootters (oe-28-4-4611-R15) 1982; 299 Padgett (oe-28-4-4611-R69) 1996; 64 Wang (oe-28-4-4611-R51) 2014; 22 Li (oe-28-4-4611-R34) 2007; 91 Bennett (oe-28-4-4611-R16) 1992; 68 Wang (oe-28-4-4611-R61) 2015; 518 Pan (oe-28-4-4611-R49) 2001; 410 Li (oe-28-4-4611-R41) 2008; 78 Ma (oe-28-4-4611-R76) 2005; 72 Dong (oe-28-4-4611-R43) 2011; 113 Wang (oe-28-4-4611-R9) 2005; 71 Wang (oe-28-4-4611-R45) 2011; 19 Yan (oe-28-4-4611-R44) 2011; 56 Marrucci (oe-28-4-4611-R71) 2006; 88 Zhang (oe-28-4-4611-R22) 2005; 03 Sasada (oe-28-4-4611-R67) 2003; 68 Hu (oe-28-4-4611-R10) 2016; 5 Yamamoto (oe-28-4-4611-R54) 2001; 64 Zanardi (oe-28-4-4611-R57) 1997; 79 Petrov (oe-28-4-4611-R70) 1997; 143 Slussarenko (oe-28-4-4611-R81) 2011; 19 Mafu (oe-28-4-4611-R26) 2013; 88 Yamamoto (oe-28-4-4611-R40) 2005; 95 Townsend (oe-28-4-4611-R59) 1993; 29 Vallone (oe-28-4-4611-R72) 2014; 113 Balthazar (oe-28-4-4611-R78) 2016; 41 Gao (oe-28-4-4611-R23) 2006; 349 Martinelli (oe-28-4-4611-R58) 1989; 72 Huttner (oe-28-4-4611-R18) 1995; 51 Bennett (oe-28-4-4611-R48) 1996; 76 Aolita (oe-28-4-4611-R37) 2007; 98 Borges (oe-28-4-4611-R77) 2010; 82 Boileau (oe-28-4-4611-R36) 2004; 92 Kalamidas (oe-28-4-4611-R30) 2004; 321 Sheng (oe-28-4-4611-R14) 2018; 98 Walton (oe-28-4-4611-R35) 2003; 91 Rafayelyan (oe-28-4-4611-R80) 2017; 42 Sheng (oe-28-4-4611-R60) 2010; 82 Passos (oe-28-4-4611-R79) 2018; 97 Muller (oe-28-4-4611-R19) 1997; 70 D’ambrosio (oe-28-4-4611-R46) 2012; 3 Long (oe-28-4-4611-R6) 2002; 65 Hillery (oe-28-4-4611-R4) 1999; 59 Bouwmeester (oe-28-4-4611-R29) 2001; 63 Deng (oe-28-4-4611-R7) 2003; 68 Yin (oe-28-4-4611-R3) 2010; 53 Boileau (oe-28-4-4611-R39) 2004; 93 Yan (oe-28-4-4611-R5) 2005; 72 Stucki (oe-28-4-4611-R20) 2002; 4 Sheng (oe-28-4-4611-R56) 2012; 85 |
References_xml | – volume: 93 start-page: 070502 year: 2004 ident: oe-28-4-4611-R63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.070502 – volume: 96 start-page: 123 year: 1993 ident: oe-28-4-4611-R68 publication-title: Opt. Commun. doi: 10.1016/0030-4018(93)90535-D – volume: 113 start-page: 060503 year: 2014 ident: oe-28-4-4611-R72 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.060503 – volume: 143 start-page: 265 year: 1997 ident: oe-28-4-4611-R70 publication-title: Opt. Commun. doi: 10.1016/S0030-4018(97)00403-3 – volume: 88 start-page: 032305 year: 2013 ident: oe-28-4-4611-R26 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.032305 – volume: 91 start-page: 144101 year: 2007 ident: oe-28-4-4611-R34 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2794433 – volume: 93 start-page: 220501 year: 2004 ident: oe-28-4-4611-R39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.220501 – volume: 4 start-page: 1006 year: 2017 ident: oe-28-4-4611-R25 publication-title: Optica doi: 10.1364/OPTICA.4.001006 – volume: 6 start-page: 28813 year: 2016 ident: oe-28-4-4611-R52 publication-title: Sci. Rep. doi: 10.1038/srep28813 – volume: 82 start-page: 032318 year: 2010 ident: oe-28-4-4611-R60 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.032318 – volume: 343 start-page: 331 year: 2005 ident: oe-28-4-4611-R33 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2005.06.034 – volume: 53 start-page: 2059 year: 2010 ident: oe-28-4-4611-R3 publication-title: Sci. China: Phys., Mech. Astron. doi: 10.1007/s11433-010-4050-x – volume: 5 start-page: 3 year: 1992 ident: oe-28-4-4611-R27 publication-title: J. Cryptol. doi: 10.1007/BF00191318 – volume: 63 start-page: 040301 year: 2001 ident: oe-28-4-4611-R29 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.63.040301 – volume: 53 start-page: 2046 year: 1996 ident: oe-28-4-4611-R53 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.53.2046 – volume: 41 start-page: 5797 year: 2016 ident: oe-28-4-4611-R78 publication-title: Opt. Lett. doi: 10.1364/OL.41.005797 – volume: 98 start-page: 052343 year: 2018 ident: oe-28-4-4611-R14 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.052343 – volume: 118 start-page: 220501 year: 2017 ident: oe-28-4-4611-R12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.220501 – volume: 56 start-page: 24 year: 2011 ident: oe-28-4-4611-R44 publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-010-4208-y – volume: 95 start-page: 040503 year: 2005 ident: oe-28-4-4611-R31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.040503 – volume: 19 start-page: 25433 year: 2011 ident: oe-28-4-4611-R45 publication-title: Opt. Express doi: 10.1364/OE.19.025433 – volume: 59 start-page: 1829 year: 1999 ident: oe-28-4-4611-R4 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.59.1829 – volume: 77 start-page: 032345 year: 2008 ident: oe-28-4-4611-R64 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.032345 – volume: 76 start-page: 722 year: 1996 ident: oe-28-4-4611-R48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.722 – volume: 70 start-page: 1895 year: 1993 ident: oe-28-4-4611-R2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.1895 – volume: 98 start-page: 100501 year: 2007 ident: oe-28-4-4611-R37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.100501 – volume: 68 start-page: 012323 year: 2003 ident: oe-28-4-4611-R67 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.68.012323 – volume: 79 start-page: 3306 year: 1997 ident: oe-28-4-4611-R57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.3306 – volume: 68 start-page: 042317 year: 2003 ident: oe-28-4-4611-R7 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.68.042317 – volume: 78 start-page: 022321 year: 2008 ident: oe-28-4-4611-R41 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.78.022321 – volume: 333 start-page: 46 year: 2004 ident: oe-28-4-4611-R21 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2004.10.025 – volume: 92 start-page: 017901 year: 2004 ident: oe-28-4-4611-R36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.017901 – volume: 29 start-page: 634 year: 1993 ident: oe-28-4-4611-R59 publication-title: Electron. Lett. doi: 10.1049/el:19930424 – volume: 410 start-page: 1067 year: 2001 ident: oe-28-4-4611-R49 publication-title: Nature doi: 10.1038/35074041 – volume: 72 start-page: 012304 year: 2005 ident: oe-28-4-4611-R5 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.72.012304 – volume: 89 start-page: 257901 year: 2002 ident: oe-28-4-4611-R50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.257901 – volume: 223 start-page: 117 year: 2003 ident: oe-28-4-4611-R73 publication-title: Opt. Commun. doi: 10.1016/S0030-4018(03)01619-5 – volume: 88 start-page: 221102 year: 2006 ident: oe-28-4-4611-R71 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2207993 – volume: 321 start-page: 87 year: 2004 ident: oe-28-4-4611-R30 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2003.12.012 – volume: 123 start-page: 60002 year: 2018 ident: oe-28-4-4611-R62 publication-title: EPL doi: 10.1209/0295-5075/123/60002 – volume: 17 start-page: 033033 year: 2015 ident: oe-28-4-4611-R24 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/3/033033 – volume: 95 start-page: 040503 year: 2005 ident: oe-28-4-4611-R40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.040503 – volume: 67 start-page: 661 year: 1991 ident: oe-28-4-4611-R17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.661 – volume: 349 start-page: 53 year: 2006 ident: oe-28-4-4611-R23 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2005.09.012 – volume: 82 start-page: 033833 year: 2010 ident: oe-28-4-4611-R77 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.033833 – volume: 5 start-page: e16144 year: 2016 ident: oe-28-4-4611-R10 publication-title: Light: Sci. Appl. doi: 10.1038/lsa.2016.144 – volume: 9 start-page: 191 year: 2007 ident: oe-28-4-4611-R32 publication-title: New J. Phys. doi: 10.1088/1367-2630/9/6/191 – volume: 299 start-page: 802 year: 1982 ident: oe-28-4-4611-R15 publication-title: Nature doi: 10.1038/299802a0 – volume: 65 start-page: 032302 year: 2002 ident: oe-28-4-4611-R6 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.65.032302 – volume: 64 start-page: 012304 year: 2001 ident: oe-28-4-4611-R54 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.012304 – volume: 64 start-page: 014301 year: 2001 ident: oe-28-4-4611-R55 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.014301 – volume: 72 start-page: 341 year: 1989 ident: oe-28-4-4611-R58 publication-title: Opt. Commun. doi: 10.1016/0030-4018(89)90436-7 – volume: 72 start-page: 012326 year: 2005 ident: oe-28-4-4611-R76 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.72.012326 – volume: 19 start-page: 4085 year: 2011 ident: oe-28-4-4611-R81 publication-title: Opt. Express doi: 10.1364/OE.19.004085 – volume: 70 start-page: 793 year: 1997 ident: oe-28-4-4611-R19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.118224 – volume: 85 start-page: 441 year: 2000 ident: oe-28-4-4611-R75 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.441 – volume: 91 start-page: 087901 year: 2003 ident: oe-28-4-4611-R35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.087901 – volume: 290 start-page: 498 year: 2000 ident: oe-28-4-4611-R38 publication-title: Science doi: 10.1126/science.290.5491.498 – volume: 22 start-page: 1551 year: 2014 ident: oe-28-4-4611-R51 publication-title: Opt. Express doi: 10.1364/OE.22.001551 – volume: 3 start-page: 961 year: 2012 ident: oe-28-4-4611-R46 publication-title: Nat. Commun. doi: 10.1038/ncomms1951 – volume: 51 start-page: 1863 year: 1995 ident: oe-28-4-4611-R18 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.51.1863 – volume: 69 start-page: 052319 year: 2004 ident: oe-28-4-4611-R8 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.69.052319 – volume: 6 start-page: 38233 year: 2016 ident: oe-28-4-4611-R47 publication-title: Sci. Rep. doi: 10.1038/srep38233 – volume: 61 start-page: 90312 year: 2018 ident: oe-28-4-4611-R11 publication-title: Sci. China: Phys., Mech. Astron. doi: 10.1007/s11433-018-9224-5 – year: 2013 ident: oe-28-4-4611-R28 – volume: 85 start-page: 012307 year: 2012 ident: oe-28-4-4611-R56 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.85.012307 – volume: 518 start-page: 516 year: 2015 ident: oe-28-4-4611-R61 publication-title: Nature doi: 10.1038/nature14246 – volume: 282 start-page: 4171 year: 2009 ident: oe-28-4-4611-R42 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2009.07.012 – volume: 113 start-page: 583 year: 2011 ident: oe-28-4-4611-R43 publication-title: J. Exp. Theor. Phys. doi: 10.1134/S1063776111130140 – volume: 64 start-page: 77 year: 1996 ident: oe-28-4-4611-R69 publication-title: Am. J. Phys. doi: 10.1119/1.18283 – volume: 95 start-page: 260501 year: 2005 ident: oe-28-4-4611-R65 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.260501 – volume: 97 start-page: 022321 year: 2018 ident: oe-28-4-4611-R79 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.022321 – volume: 71 start-page: 044305 year: 2005 ident: oe-28-4-4611-R9 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.71.044305 – volume: 74 start-page: 145 year: 2002 ident: oe-28-4-4611-R1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.74.145 – volume: 4 start-page: 34141 year: 2002 ident: oe-28-4-4611-R20 publication-title: New J. Phys. doi: 10.1088/1367-2630/4/1/341 – volume: 68 start-page: 3121 year: 1992 ident: oe-28-4-4611-R16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.3121 – volume: 283 start-page: 2050 year: 1999 ident: oe-28-4-4611-R74 publication-title: Science doi: 10.1126/science.283.5410.2050 – volume: 03 start-page: 555 year: 2005 ident: oe-28-4-4611-R22 publication-title: Int. J. Quantum Inf. doi: 10.1142/S021974990500116X – volume: 42 start-page: 1966 year: 2017 ident: oe-28-4-4611-R80 publication-title: Opt. Lett. doi: 10.1364/OL.42.001966 |
SSID | ssj0014797 |
Score | 2.4170027 |
Snippet | Channel noise is the main issue which reduces the efficiency of quantum communication. Here we present an efficient scheme for quantum key distribution against... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 4611 |
Title | Efficient quantum key distribution against collective noise using polarization and transverse spatial mode of photons |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32121695 https://www.proquest.com/docview/2370532768 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA86UfYifnv9GFF8EEpnb5N-3EcZlYs478sG86mkaXo3cG21LYw9-Ld7TpKmVTdQX0pp0xby-_XknJPzQcibsIhgGeCJv1JB6nNWpn6a8sKPKxahepyKApOTDz_H62P-8SQ6mUJ5dXZJX-zLyyvzSv4HVbgGuGKW7D8g614KF-Ac8IUjIAzHv8I40_UfcDf_2wAzNJx78EvinotrY-WJLZj-Xe8h3ka2eXVz1ilv0E6CFi1bm4ppgilx7cJQDeV1GGyNySVNqR0L7WnTj849q85uWl3lWV20LpIDY3mGxoT-1lv_E9Bv67RlG_97cDoloK21R_XLmQvlsU1WYKK3c5cE2J_YIMUsm8qIUTAawTK1S6mVs2E64xOfCU0eG3n7hzRnMQcINtk-S7Cr1nwMANGea1gZLL7L2HTq_K109njrJrkVghWBYvDwR-Y2mXiySmyxKfjSO_edXXJnfPJXbeUaE0SrIkf3yF1rQ9D3hhD3yQ1VPyC3dSyv7B6SwdGCWlpQoAWd04JaWtCJFlTTgmpa0DktKNCCTrSglhYUaUGbilpaPCLHH7Kjg7Vvu2v4koVB74ciUgFn1bKsqrBKI1klRYHV-aoISxrFIMjDEqZAMCnCVHApl0KKkmGDg7hclewx2ambWj0llEmViLIKmYwCLgohVgHnheKlRPcDEwvydpzFXNrS89gB5Wuu91Njnm-y3Mz9grx2Q1tTb-WqQa9GKHKQhrjFJWrVDF0esgRbnYANvSBPDEbuNSOmz66985zsTnR-QXb674N6CTpnX-xpX82e5s9PZHuHeQ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+quantum+key+distribution+against+collective+noise+using+polarization+and+transverse+spatial+mode+of+photons&rft.jtitle=Optics+express&rft.au=Guo%2C+Peng-Liang&rft.au=Dong%2C+Chen&rft.au=He%2C+Yi&rft.au=Jing%2C+Feng&rft.date=2020-02-17&rft.eissn=1094-4087&rft.volume=28&rft.issue=4&rft.spage=4611&rft_id=info:doi/10.1364%2FOE.374292&rft_id=info%3Apmid%2F32121695&rft.externalDocID=32121695 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |