Efficient quantum key distribution against collective noise using polarization and transverse spatial mode of photons

Channel noise is the main issue which reduces the efficiency of quantum communication. Here we present an efficient scheme for quantum key distribution against collective-rotation channel noise using polarization and transverse spatial mode of photons. Exploiting the two single-photon Bell states an...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 28; no. 4; p. 4611
Main Authors Guo, Peng-Liang, Dong, Chen, He, Yi, Jing, Feng, He, Wan-Ting, Ren, Bao-Cang, Li, Chun-Yan, Deng, Fu-Guo
Format Journal Article
LanguageEnglish
Published United States 17.02.2020
Online AccessGet full text

Cover

Loading…
Abstract Channel noise is the main issue which reduces the efficiency of quantum communication. Here we present an efficient scheme for quantum key distribution against collective-rotation channel noise using polarization and transverse spatial mode of photons. Exploiting the two single-photon Bell states and two-photon hyperentangled Bell states in the polarization and the transverse spatial mode degrees of freedom (DOFs), the mutually unbiased bases can be encoded for logical qubits against the collective-rotation noise. Our scheme shows noiseless subspaces can be made up of two DOFs of two photons instead of multiple photons, which will reduce the resources required for noiseless subspaces and depress the photonic loss sensitivity. Moreover, the two single-photon Bell states and two-photon hyperentangled Bell states are symmetrical to the two photons, which means the relative order of the two photons is not required in our scheme, so the receiver only needs to measure the state of each photon, which makes our protocol easy to execute in experiment than the previous works.
AbstractList Channel noise is the main issue which reduces the efficiency of quantum communication. Here we present an efficient scheme for quantum key distribution against collective-rotation channel noise using polarization and transverse spatial mode of photons. Exploiting the two single-photon Bell states and two-photon hyperentangled Bell states in the polarization and the transverse spatial mode degrees of freedom (DOFs), the mutually unbiased bases can be encoded for logical qubits against the collective-rotation noise. Our scheme shows noiseless subspaces can be made up of two DOFs of two photons instead of multiple photons, which will reduce the resources required for noiseless subspaces and depress the photonic loss sensitivity. Moreover, the two single-photon Bell states and two-photon hyperentangled Bell states are symmetrical to the two photons, which means the relative order of the two photons is not required in our scheme, so the receiver only needs to measure the state of each photon, which makes our protocol easy to execute in experiment than the previous works.
Channel noise is the main issue which reduces the efficiency of quantum communication. Here we present an efficient scheme for quantum key distribution against collective-rotation channel noise using polarization and transverse spatial mode of photons. Exploiting the two single-photon Bell states and two-photon hyperentangled Bell states in the polarization and the transverse spatial mode degrees of freedom (DOFs), the mutually unbiased bases can be encoded for logical qubits against the collective-rotation noise. Our scheme shows noiseless subspaces can be made up of two DOFs of two photons instead of multiple photons, which will reduce the resources required for noiseless subspaces and depress the photonic loss sensitivity. Moreover, the two single-photon Bell states and two-photon hyperentangled Bell states are symmetrical to the two photons, which means the relative order of the two photons is not required in our scheme, so the receiver only needs to measure the state of each photon, which makes our protocol easy to execute in experiment than the previous works.Channel noise is the main issue which reduces the efficiency of quantum communication. Here we present an efficient scheme for quantum key distribution against collective-rotation channel noise using polarization and transverse spatial mode of photons. Exploiting the two single-photon Bell states and two-photon hyperentangled Bell states in the polarization and the transverse spatial mode degrees of freedom (DOFs), the mutually unbiased bases can be encoded for logical qubits against the collective-rotation noise. Our scheme shows noiseless subspaces can be made up of two DOFs of two photons instead of multiple photons, which will reduce the resources required for noiseless subspaces and depress the photonic loss sensitivity. Moreover, the two single-photon Bell states and two-photon hyperentangled Bell states are symmetrical to the two photons, which means the relative order of the two photons is not required in our scheme, so the receiver only needs to measure the state of each photon, which makes our protocol easy to execute in experiment than the previous works.
Author He, Wan-Ting
He, Yi
Li, Chun-Yan
Guo, Peng-Liang
Deng, Fu-Guo
Jing, Feng
Ren, Bao-Cang
Dong, Chen
Author_xml – sequence: 1
  givenname: Peng-Liang
  surname: Guo
  fullname: Guo, Peng-Liang
– sequence: 2
  givenname: Chen
  surname: Dong
  fullname: Dong, Chen
– sequence: 3
  givenname: Yi
  surname: He
  fullname: He, Yi
– sequence: 4
  givenname: Feng
  surname: Jing
  fullname: Jing, Feng
– sequence: 5
  givenname: Wan-Ting
  surname: He
  fullname: He, Wan-Ting
– sequence: 6
  givenname: Bao-Cang
  orcidid: 0000-0002-7679-3612
  surname: Ren
  fullname: Ren, Bao-Cang
– sequence: 7
  givenname: Chun-Yan
  surname: Li
  fullname: Li, Chun-Yan
– sequence: 8
  givenname: Fu-Guo
  orcidid: 0000-0002-5209-2432
  surname: Deng
  fullname: Deng, Fu-Guo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32121695$$D View this record in MEDLINE/PubMed
BookMark eNpt0VtLwzAYBuAgE3fQC_-A5FIvtuXQNu2ljHqAwW70umQ5zGibdEk6mL_e6qaIePWFjyeBvO8YDKyzCoBLjGaYZsl8Vc4oS0hBTsAIoyKZJihng1_nIRiH8IoQTljBzsCQEkxwVqQj0JVaG2GUjXDbcRu7Br6pPZQmRG_WXTTOQr7hxoYIhatrJaLZKWidCQp2wdgNbF3NvXnnB2sljJ7bsFO-F6Ht17yGjZMKOg3bFxedDefgVPM6qIvjnIDnu_Jp8TBdru4fF7fLqaAExSnhqUIJ1VhqTXSeCs3Wa5znSKeEJTjLGSKy_wangpOcJ0JgLrikjCKUyULSCbg-vNt6t-1UiFVjglB1za1yXagIZSilhGV5T6-OtFs3SlatNw33--o7qh7cHIDwLgSv9A_BqPqsoVqV1aGG3s7_WGHiV0B9Nqb-58YHDKeLfw
CitedBy_id crossref_primary_10_1364_JOSAB_397973
crossref_primary_10_1140_epjp_s13360_024_05702_1
crossref_primary_10_1007_s10773_021_04786_0
crossref_primary_10_1142_S0217732322501176
crossref_primary_10_1103_PhysRevA_102_033708
crossref_primary_10_3390_sym14122481
crossref_primary_10_1016_j_optlastec_2025_112566
crossref_primary_10_1007_s10773_022_04976_4
crossref_primary_10_1088_1402_4896_ad1801
crossref_primary_10_1007_s11128_023_03855_z
crossref_primary_10_1002_que2_81
crossref_primary_10_1016_j_physleta_2022_128291
crossref_primary_10_1002_que2_76
crossref_primary_10_1007_s11128_024_04583_8
crossref_primary_10_1364_JOSAB_505732
crossref_primary_10_3390_e26100857
crossref_primary_10_1002_spe_3039
crossref_primary_10_7498_aps_71_20210907
Cites_doi 10.1103/PhysRevLett.93.070502
10.1016/0030-4018(93)90535-D
10.1103/PhysRevLett.113.060503
10.1016/S0030-4018(97)00403-3
10.1103/PhysRevA.88.032305
10.1063/1.2794433
10.1103/PhysRevLett.93.220501
10.1364/OPTICA.4.001006
10.1038/srep28813
10.1103/PhysRevA.82.032318
10.1016/j.physleta.2005.06.034
10.1007/s11433-010-4050-x
10.1007/BF00191318
10.1103/PhysRevA.63.040301
10.1103/PhysRevA.53.2046
10.1364/OL.41.005797
10.1103/PhysRevA.98.052343
10.1103/PhysRevLett.118.220501
10.1007/s11434-010-4208-y
10.1103/PhysRevLett.95.040503
10.1364/OE.19.025433
10.1103/PhysRevA.59.1829
10.1103/PhysRevA.77.032345
10.1103/PhysRevLett.76.722
10.1103/PhysRevLett.70.1895
10.1103/PhysRevLett.98.100501
10.1103/PhysRevA.68.012323
10.1103/PhysRevLett.79.3306
10.1103/PhysRevA.68.042317
10.1103/PhysRevA.78.022321
10.1016/j.physleta.2004.10.025
10.1103/PhysRevLett.92.017901
10.1049/el:19930424
10.1038/35074041
10.1103/PhysRevA.72.012304
10.1103/PhysRevLett.89.257901
10.1016/S0030-4018(03)01619-5
10.1063/1.2207993
10.1016/j.physleta.2003.12.012
10.1209/0295-5075/123/60002
10.1088/1367-2630/17/3/033033
10.1103/PhysRevLett.67.661
10.1016/j.physleta.2005.09.012
10.1103/PhysRevA.82.033833
10.1038/lsa.2016.144
10.1088/1367-2630/9/6/191
10.1038/299802a0
10.1103/PhysRevA.65.032302
10.1103/PhysRevA.64.012304
10.1103/PhysRevA.64.014301
10.1016/0030-4018(89)90436-7
10.1103/PhysRevA.72.012326
10.1364/OE.19.004085
10.1063/1.118224
10.1103/PhysRevLett.85.441
10.1103/PhysRevLett.91.087901
10.1126/science.290.5491.498
10.1364/OE.22.001551
10.1038/ncomms1951
10.1103/PhysRevA.51.1863
10.1103/PhysRevA.69.052319
10.1038/srep38233
10.1007/s11433-018-9224-5
10.1103/PhysRevA.85.012307
10.1038/nature14246
10.1016/j.optcom.2009.07.012
10.1134/S1063776111130140
10.1119/1.18283
10.1103/PhysRevLett.95.260501
10.1103/PhysRevA.97.022321
10.1103/PhysRevA.71.044305
10.1103/RevModPhys.74.145
10.1088/1367-2630/4/1/341
10.1103/PhysRevLett.68.3121
10.1126/science.283.5410.2050
10.1142/S021974990500116X
10.1364/OL.42.001966
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.374292
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 32121695
10_1364_OE_374292
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
ROP
7X8
ID FETCH-LOGICAL-c320t-2a5e043f1dff2f85cf7bb1880f5274168702d695a3ca28a4cc1acad373006d9d3
ISSN 1094-4087
IngestDate Fri Jul 11 09:04:10 EDT 2025
Wed Feb 19 02:31:46 EST 2025
Tue Jul 01 04:04:50 EDT 2025
Thu Apr 24 22:55:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-2a5e043f1dff2f85cf7bb1880f5274168702d695a3ca28a4cc1acad373006d9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7679-3612
0000-0002-5209-2432
OpenAccessLink https://doi.org/10.1364/oe.374292
PMID 32121695
PQID 2370532768
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2370532768
pubmed_primary_32121695
crossref_primary_10_1364_OE_374292
crossref_citationtrail_10_1364_OE_374292
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-17
2020-Feb-17
20200217
PublicationDateYYYYMMDD 2020-02-17
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2020
References Xiu (oe-28-4-4611-R42) 2009; 282
Bennett (oe-28-4-4611-R2) 1993; 70
Bennett (oe-28-4-4611-R53) 1996; 53
Ekert (oe-28-4-4611-R17) 1991; 67
Wei (oe-28-4-4611-R73) 2003; 223
Shor (oe-28-4-4611-R75) 2000; 85
Fiorentino (oe-28-4-4611-R63) 2004; 93
Lo (oe-28-4-4611-R74) 1999; 283
Lidar (oe-28-4-4611-R28) 2013
Kalamidas (oe-28-4-4611-R33) 2005; 343
Sit (oe-28-4-4611-R25) 2017; 4
Zhang (oe-28-4-4611-R21) 2004; 333
Beijersbergen (oe-28-4-4611-R68) 1993; 96
Bennett (oe-28-4-4611-R27) 1992; 5
Souza (oe-28-4-4611-R64) 2008; 77
Wang (oe-28-4-4611-R47) 2016; 6
Wang (oe-28-4-4611-R62) 2018; 123
Zhou (oe-28-4-4611-R52) 2016; 6
Simon (oe-28-4-4611-R50) 2002; 89
Deng (oe-28-4-4611-R8) 2004; 69
Yamamoto (oe-28-4-4611-R31) 2005; 95
Chen (oe-28-4-4611-R11) 2018; 61
Gisin (oe-28-4-4611-R1) 2002; 74
Zhang (oe-28-4-4611-R12) 2017; 118
Barreiro (oe-28-4-4611-R65) 2005; 95
Mirhosseini (oe-28-4-4611-R24) 2015; 17
Yamamoto (oe-28-4-4611-R32) 2007; 9
Kwiat (oe-28-4-4611-R38) 2000; 290
Zhao (oe-28-4-4611-R55) 2001; 64
Wootters (oe-28-4-4611-R15) 1982; 299
Padgett (oe-28-4-4611-R69) 1996; 64
Wang (oe-28-4-4611-R51) 2014; 22
Li (oe-28-4-4611-R34) 2007; 91
Bennett (oe-28-4-4611-R16) 1992; 68
Wang (oe-28-4-4611-R61) 2015; 518
Pan (oe-28-4-4611-R49) 2001; 410
Li (oe-28-4-4611-R41) 2008; 78
Ma (oe-28-4-4611-R76) 2005; 72
Dong (oe-28-4-4611-R43) 2011; 113
Wang (oe-28-4-4611-R9) 2005; 71
Wang (oe-28-4-4611-R45) 2011; 19
Yan (oe-28-4-4611-R44) 2011; 56
Marrucci (oe-28-4-4611-R71) 2006; 88
Zhang (oe-28-4-4611-R22) 2005; 03
Sasada (oe-28-4-4611-R67) 2003; 68
Hu (oe-28-4-4611-R10) 2016; 5
Yamamoto (oe-28-4-4611-R54) 2001; 64
Zanardi (oe-28-4-4611-R57) 1997; 79
Petrov (oe-28-4-4611-R70) 1997; 143
Slussarenko (oe-28-4-4611-R81) 2011; 19
Mafu (oe-28-4-4611-R26) 2013; 88
Yamamoto (oe-28-4-4611-R40) 2005; 95
Townsend (oe-28-4-4611-R59) 1993; 29
Vallone (oe-28-4-4611-R72) 2014; 113
Balthazar (oe-28-4-4611-R78) 2016; 41
Gao (oe-28-4-4611-R23) 2006; 349
Martinelli (oe-28-4-4611-R58) 1989; 72
Huttner (oe-28-4-4611-R18) 1995; 51
Bennett (oe-28-4-4611-R48) 1996; 76
Aolita (oe-28-4-4611-R37) 2007; 98
Borges (oe-28-4-4611-R77) 2010; 82
Boileau (oe-28-4-4611-R36) 2004; 92
Kalamidas (oe-28-4-4611-R30) 2004; 321
Sheng (oe-28-4-4611-R14) 2018; 98
Walton (oe-28-4-4611-R35) 2003; 91
Rafayelyan (oe-28-4-4611-R80) 2017; 42
Sheng (oe-28-4-4611-R60) 2010; 82
Passos (oe-28-4-4611-R79) 2018; 97
Muller (oe-28-4-4611-R19) 1997; 70
D’ambrosio (oe-28-4-4611-R46) 2012; 3
Long (oe-28-4-4611-R6) 2002; 65
Hillery (oe-28-4-4611-R4) 1999; 59
Bouwmeester (oe-28-4-4611-R29) 2001; 63
Deng (oe-28-4-4611-R7) 2003; 68
Yin (oe-28-4-4611-R3) 2010; 53
Boileau (oe-28-4-4611-R39) 2004; 93
Yan (oe-28-4-4611-R5) 2005; 72
Stucki (oe-28-4-4611-R20) 2002; 4
Sheng (oe-28-4-4611-R56) 2012; 85
References_xml – volume: 93
  start-page: 070502
  year: 2004
  ident: oe-28-4-4611-R63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.070502
– volume: 96
  start-page: 123
  year: 1993
  ident: oe-28-4-4611-R68
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(93)90535-D
– volume: 113
  start-page: 060503
  year: 2014
  ident: oe-28-4-4611-R72
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.060503
– volume: 143
  start-page: 265
  year: 1997
  ident: oe-28-4-4611-R70
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(97)00403-3
– volume: 88
  start-page: 032305
  year: 2013
  ident: oe-28-4-4611-R26
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.032305
– volume: 91
  start-page: 144101
  year: 2007
  ident: oe-28-4-4611-R34
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2794433
– volume: 93
  start-page: 220501
  year: 2004
  ident: oe-28-4-4611-R39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.220501
– volume: 4
  start-page: 1006
  year: 2017
  ident: oe-28-4-4611-R25
  publication-title: Optica
  doi: 10.1364/OPTICA.4.001006
– volume: 6
  start-page: 28813
  year: 2016
  ident: oe-28-4-4611-R52
  publication-title: Sci. Rep.
  doi: 10.1038/srep28813
– volume: 82
  start-page: 032318
  year: 2010
  ident: oe-28-4-4611-R60
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.032318
– volume: 343
  start-page: 331
  year: 2005
  ident: oe-28-4-4611-R33
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2005.06.034
– volume: 53
  start-page: 2059
  year: 2010
  ident: oe-28-4-4611-R3
  publication-title: Sci. China: Phys., Mech. Astron.
  doi: 10.1007/s11433-010-4050-x
– volume: 5
  start-page: 3
  year: 1992
  ident: oe-28-4-4611-R27
  publication-title: J. Cryptol.
  doi: 10.1007/BF00191318
– volume: 63
  start-page: 040301
  year: 2001
  ident: oe-28-4-4611-R29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.63.040301
– volume: 53
  start-page: 2046
  year: 1996
  ident: oe-28-4-4611-R53
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.53.2046
– volume: 41
  start-page: 5797
  year: 2016
  ident: oe-28-4-4611-R78
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.005797
– volume: 98
  start-page: 052343
  year: 2018
  ident: oe-28-4-4611-R14
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.052343
– volume: 118
  start-page: 220501
  year: 2017
  ident: oe-28-4-4611-R12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.220501
– volume: 56
  start-page: 24
  year: 2011
  ident: oe-28-4-4611-R44
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-010-4208-y
– volume: 95
  start-page: 040503
  year: 2005
  ident: oe-28-4-4611-R31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.040503
– volume: 19
  start-page: 25433
  year: 2011
  ident: oe-28-4-4611-R45
  publication-title: Opt. Express
  doi: 10.1364/OE.19.025433
– volume: 59
  start-page: 1829
  year: 1999
  ident: oe-28-4-4611-R4
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.59.1829
– volume: 77
  start-page: 032345
  year: 2008
  ident: oe-28-4-4611-R64
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.032345
– volume: 76
  start-page: 722
  year: 1996
  ident: oe-28-4-4611-R48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.722
– volume: 70
  start-page: 1895
  year: 1993
  ident: oe-28-4-4611-R2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.1895
– volume: 98
  start-page: 100501
  year: 2007
  ident: oe-28-4-4611-R37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.100501
– volume: 68
  start-page: 012323
  year: 2003
  ident: oe-28-4-4611-R67
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.68.012323
– volume: 79
  start-page: 3306
  year: 1997
  ident: oe-28-4-4611-R57
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.3306
– volume: 68
  start-page: 042317
  year: 2003
  ident: oe-28-4-4611-R7
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.68.042317
– volume: 78
  start-page: 022321
  year: 2008
  ident: oe-28-4-4611-R41
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.78.022321
– volume: 333
  start-page: 46
  year: 2004
  ident: oe-28-4-4611-R21
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2004.10.025
– volume: 92
  start-page: 017901
  year: 2004
  ident: oe-28-4-4611-R36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.017901
– volume: 29
  start-page: 634
  year: 1993
  ident: oe-28-4-4611-R59
  publication-title: Electron. Lett.
  doi: 10.1049/el:19930424
– volume: 410
  start-page: 1067
  year: 2001
  ident: oe-28-4-4611-R49
  publication-title: Nature
  doi: 10.1038/35074041
– volume: 72
  start-page: 012304
  year: 2005
  ident: oe-28-4-4611-R5
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.72.012304
– volume: 89
  start-page: 257901
  year: 2002
  ident: oe-28-4-4611-R50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.257901
– volume: 223
  start-page: 117
  year: 2003
  ident: oe-28-4-4611-R73
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(03)01619-5
– volume: 88
  start-page: 221102
  year: 2006
  ident: oe-28-4-4611-R71
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2207993
– volume: 321
  start-page: 87
  year: 2004
  ident: oe-28-4-4611-R30
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2003.12.012
– volume: 123
  start-page: 60002
  year: 2018
  ident: oe-28-4-4611-R62
  publication-title: EPL
  doi: 10.1209/0295-5075/123/60002
– volume: 17
  start-page: 033033
  year: 2015
  ident: oe-28-4-4611-R24
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/3/033033
– volume: 95
  start-page: 040503
  year: 2005
  ident: oe-28-4-4611-R40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.040503
– volume: 67
  start-page: 661
  year: 1991
  ident: oe-28-4-4611-R17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.661
– volume: 349
  start-page: 53
  year: 2006
  ident: oe-28-4-4611-R23
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2005.09.012
– volume: 82
  start-page: 033833
  year: 2010
  ident: oe-28-4-4611-R77
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.033833
– volume: 5
  start-page: e16144
  year: 2016
  ident: oe-28-4-4611-R10
  publication-title: Light: Sci. Appl.
  doi: 10.1038/lsa.2016.144
– volume: 9
  start-page: 191
  year: 2007
  ident: oe-28-4-4611-R32
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/9/6/191
– volume: 299
  start-page: 802
  year: 1982
  ident: oe-28-4-4611-R15
  publication-title: Nature
  doi: 10.1038/299802a0
– volume: 65
  start-page: 032302
  year: 2002
  ident: oe-28-4-4611-R6
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.65.032302
– volume: 64
  start-page: 012304
  year: 2001
  ident: oe-28-4-4611-R54
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.012304
– volume: 64
  start-page: 014301
  year: 2001
  ident: oe-28-4-4611-R55
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.014301
– volume: 72
  start-page: 341
  year: 1989
  ident: oe-28-4-4611-R58
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(89)90436-7
– volume: 72
  start-page: 012326
  year: 2005
  ident: oe-28-4-4611-R76
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.72.012326
– volume: 19
  start-page: 4085
  year: 2011
  ident: oe-28-4-4611-R81
  publication-title: Opt. Express
  doi: 10.1364/OE.19.004085
– volume: 70
  start-page: 793
  year: 1997
  ident: oe-28-4-4611-R19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.118224
– volume: 85
  start-page: 441
  year: 2000
  ident: oe-28-4-4611-R75
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.441
– volume: 91
  start-page: 087901
  year: 2003
  ident: oe-28-4-4611-R35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.087901
– volume: 290
  start-page: 498
  year: 2000
  ident: oe-28-4-4611-R38
  publication-title: Science
  doi: 10.1126/science.290.5491.498
– volume: 22
  start-page: 1551
  year: 2014
  ident: oe-28-4-4611-R51
  publication-title: Opt. Express
  doi: 10.1364/OE.22.001551
– volume: 3
  start-page: 961
  year: 2012
  ident: oe-28-4-4611-R46
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1951
– volume: 51
  start-page: 1863
  year: 1995
  ident: oe-28-4-4611-R18
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.51.1863
– volume: 69
  start-page: 052319
  year: 2004
  ident: oe-28-4-4611-R8
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.69.052319
– volume: 6
  start-page: 38233
  year: 2016
  ident: oe-28-4-4611-R47
  publication-title: Sci. Rep.
  doi: 10.1038/srep38233
– volume: 61
  start-page: 90312
  year: 2018
  ident: oe-28-4-4611-R11
  publication-title: Sci. China: Phys., Mech. Astron.
  doi: 10.1007/s11433-018-9224-5
– year: 2013
  ident: oe-28-4-4611-R28
– volume: 85
  start-page: 012307
  year: 2012
  ident: oe-28-4-4611-R56
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.012307
– volume: 518
  start-page: 516
  year: 2015
  ident: oe-28-4-4611-R61
  publication-title: Nature
  doi: 10.1038/nature14246
– volume: 282
  start-page: 4171
  year: 2009
  ident: oe-28-4-4611-R42
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2009.07.012
– volume: 113
  start-page: 583
  year: 2011
  ident: oe-28-4-4611-R43
  publication-title: J. Exp. Theor. Phys.
  doi: 10.1134/S1063776111130140
– volume: 64
  start-page: 77
  year: 1996
  ident: oe-28-4-4611-R69
  publication-title: Am. J. Phys.
  doi: 10.1119/1.18283
– volume: 95
  start-page: 260501
  year: 2005
  ident: oe-28-4-4611-R65
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.260501
– volume: 97
  start-page: 022321
  year: 2018
  ident: oe-28-4-4611-R79
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.022321
– volume: 71
  start-page: 044305
  year: 2005
  ident: oe-28-4-4611-R9
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.044305
– volume: 74
  start-page: 145
  year: 2002
  ident: oe-28-4-4611-R1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.74.145
– volume: 4
  start-page: 34141
  year: 2002
  ident: oe-28-4-4611-R20
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/4/1/341
– volume: 68
  start-page: 3121
  year: 1992
  ident: oe-28-4-4611-R16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.3121
– volume: 283
  start-page: 2050
  year: 1999
  ident: oe-28-4-4611-R74
  publication-title: Science
  doi: 10.1126/science.283.5410.2050
– volume: 03
  start-page: 555
  year: 2005
  ident: oe-28-4-4611-R22
  publication-title: Int. J. Quantum Inf.
  doi: 10.1142/S021974990500116X
– volume: 42
  start-page: 1966
  year: 2017
  ident: oe-28-4-4611-R80
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.001966
SSID ssj0014797
Score 2.4170027
Snippet Channel noise is the main issue which reduces the efficiency of quantum communication. Here we present an efficient scheme for quantum key distribution against...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 4611
Title Efficient quantum key distribution against collective noise using polarization and transverse spatial mode of photons
URI https://www.ncbi.nlm.nih.gov/pubmed/32121695
https://www.proquest.com/docview/2370532768
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA86UfYifnv9GFF8EEpnb5N-3EcZlYs478sG86mkaXo3cG21LYw9-Ld7TpKmVTdQX0pp0xby-_XknJPzQcibsIhgGeCJv1JB6nNWpn6a8sKPKxahepyKApOTDz_H62P-8SQ6mUJ5dXZJX-zLyyvzSv4HVbgGuGKW7D8g614KF-Ac8IUjIAzHv8I40_UfcDf_2wAzNJx78EvinotrY-WJLZj-Xe8h3ka2eXVz1ilv0E6CFi1bm4ppgilx7cJQDeV1GGyNySVNqR0L7WnTj849q85uWl3lWV20LpIDY3mGxoT-1lv_E9Bv67RlG_97cDoloK21R_XLmQvlsU1WYKK3c5cE2J_YIMUsm8qIUTAawTK1S6mVs2E64xOfCU0eG3n7hzRnMQcINtk-S7Cr1nwMANGea1gZLL7L2HTq_K109njrJrkVghWBYvDwR-Y2mXiySmyxKfjSO_edXXJnfPJXbeUaE0SrIkf3yF1rQ9D3hhD3yQ1VPyC3dSyv7B6SwdGCWlpQoAWd04JaWtCJFlTTgmpa0DktKNCCTrSglhYUaUGbilpaPCLHH7Kjg7Vvu2v4koVB74ciUgFn1bKsqrBKI1klRYHV-aoISxrFIMjDEqZAMCnCVHApl0KKkmGDg7hclewx2ambWj0llEmViLIKmYwCLgohVgHnheKlRPcDEwvydpzFXNrS89gB5Wuu91Njnm-y3Mz9grx2Q1tTb-WqQa9GKHKQhrjFJWrVDF0esgRbnYANvSBPDEbuNSOmz66985zsTnR-QXb674N6CTpnX-xpX82e5s9PZHuHeQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+quantum+key+distribution+against+collective+noise+using+polarization+and+transverse+spatial+mode+of+photons&rft.jtitle=Optics+express&rft.au=Guo%2C+Peng-Liang&rft.au=Dong%2C+Chen&rft.au=He%2C+Yi&rft.au=Jing%2C+Feng&rft.date=2020-02-17&rft.eissn=1094-4087&rft.volume=28&rft.issue=4&rft.spage=4611&rft_id=info:doi/10.1364%2FOE.374292&rft_id=info%3Apmid%2F32121695&rft.externalDocID=32121695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon