Nonreciprocal sideband responses in a spinning microwave magnomechanical system
Nonreciprocal sideband responses in a spinning microwave magnomechanical system consists of a spinning resonator coupled with a yttrium iron garnet sphere are proposed. We show that the efficiency of sideband generation can be enhanced in one driving direction but restrained in the opposite. This no...
Saved in:
Published in | Optics express Vol. 31; no. 4; p. 5492 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
13.02.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Nonreciprocal sideband responses in a spinning microwave magnomechanical system consists of a spinning resonator coupled with a yttrium iron garnet sphere are proposed. We show that the efficiency of sideband generation can be enhanced in one driving direction but restrained in the opposite. This nonreciprocity results from Sagnac effect induced by the spinning resonator, leading to asymmetric magnonic responses in two different driving directions. Beyond the conventional linearized description, the properties of nonreciprocal two-color second-order sideband are demonstrated. By adjusting Sagnac-Fizeau shift and the power of control field, the degree of asymmetric magnonic responses can be strengthened, therefore causing stronger nonreciprocity of sideband. Especially, for the case of strong Sagnac-Fizeau shift and the control field, high level of efficiency and isolation ratio of sideband are achieved simultaneously and the operational bandwidth of strong nonreciprocity can be expanded. Our proposal provides an effective avenue for the manipulation of the nonreciprocity of sideband and has potentially practical applications in on-chip microwave isolation devices and magnon-based precision measurement. |
---|---|
AbstractList | Nonreciprocal sideband responses in a spinning microwave magnomechanical system consists of a spinning resonator coupled with a yttrium iron garnet sphere are proposed. We show that the efficiency of sideband generation can be enhanced in one driving direction but restrained in the opposite. This nonreciprocity results from Sagnac effect induced by the spinning resonator, leading to asymmetric magnonic responses in two different driving directions. Beyond the conventional linearized description, the properties of nonreciprocal two-color second-order sideband are demonstrated. By adjusting Sagnac-Fizeau shift and the power of control field, the degree of asymmetric magnonic responses can be strengthened, therefore causing stronger nonreciprocity of sideband. Especially, for the case of strong Sagnac-Fizeau shift and the control field, high level of efficiency and isolation ratio of sideband are achieved simultaneously and the operational bandwidth of strong nonreciprocity can be expanded. Our proposal provides an effective avenue for the manipulation of the nonreciprocity of sideband and has potentially practical applications in on-chip microwave isolation devices and magnon-based precision measurement. Nonreciprocal sideband responses in a spinning microwave magnomechanical system consists of a spinning resonator coupled with a yttrium iron garnet sphere are proposed. We show that the efficiency of sideband generation can be enhanced in one driving direction but restrained in the opposite. This nonreciprocity results from Sagnac effect induced by the spinning resonator, leading to asymmetric magnonic responses in two different driving directions. Beyond the conventional linearized description, the properties of nonreciprocal two-color second-order sideband are demonstrated. By adjusting Sagnac-Fizeau shift and the power of control field, the degree of asymmetric magnonic responses can be strengthened, therefore causing stronger nonreciprocity of sideband. Especially, for the case of strong Sagnac-Fizeau shift and the control field, high level of efficiency and isolation ratio of sideband are achieved simultaneously and the operational bandwidth of strong nonreciprocity can be expanded. Our proposal provides an effective avenue for the manipulation of the nonreciprocity of sideband and has potentially practical applications in on-chip microwave isolation devices and magnon-based precision measurement.Nonreciprocal sideband responses in a spinning microwave magnomechanical system consists of a spinning resonator coupled with a yttrium iron garnet sphere are proposed. We show that the efficiency of sideband generation can be enhanced in one driving direction but restrained in the opposite. This nonreciprocity results from Sagnac effect induced by the spinning resonator, leading to asymmetric magnonic responses in two different driving directions. Beyond the conventional linearized description, the properties of nonreciprocal two-color second-order sideband are demonstrated. By adjusting Sagnac-Fizeau shift and the power of control field, the degree of asymmetric magnonic responses can be strengthened, therefore causing stronger nonreciprocity of sideband. Especially, for the case of strong Sagnac-Fizeau shift and the control field, high level of efficiency and isolation ratio of sideband are achieved simultaneously and the operational bandwidth of strong nonreciprocity can be expanded. Our proposal provides an effective avenue for the manipulation of the nonreciprocity of sideband and has potentially practical applications in on-chip microwave isolation devices and magnon-based precision measurement. |
Author | Xiong, Hao Wang, Xin Huang, Kai-Wei |
Author_xml | – sequence: 1 givenname: Xin surname: Wang fullname: Wang, Xin – sequence: 2 givenname: Kai-Wei surname: Huang fullname: Huang, Kai-Wei – sequence: 3 givenname: Hao surname: Xiong fullname: Xiong, Hao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36823828$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0E1PwzAMBuAIDbEPOPAHUI9w6JakaZMe0TQ-pIle4Fy5qTeC2mQkHWj_nsIGQoiTfXhs2e-YDKyzSMg5o1OWZGJWLKZC0TQVR2TEaC5iQZUc_OqHZBzCC6VMyFyekGGSKZ4orkakeHDWozYb7zQ0UTA1VmDryGPYOBswRMZGEIWNsdbYddQa7d07vGHUwtq6FvUzWPM1ugsdtqfkeAVNwLNDnZCnm8Xj_C5eFrf38-tlrBNOu5hpDqLCpK4A6wTzPEsVZHnKU5pLQSulMa2YZjzTTOU1U3Kle6Ak1lJXwJMJudzv7Q9_3WLoytYEjU0DFt02lFwqSrP-x6ynFwe6rVqsy403Lfhd-R1CD672oH8tBI-rH8Jo-RlwWSzKfcC9nf2x2nTQGWc7D6b5Z-IDyHJ9IA |
CitedBy_id | crossref_primary_10_1103_PhysRevA_108_063715 crossref_primary_10_1103_PhysRevA_110_023507 crossref_primary_10_1016_j_chaos_2023_114137 crossref_primary_10_1063_5_0166869 crossref_primary_10_1088_1402_4896_ad0d8d crossref_primary_10_1002_qute_202400681 crossref_primary_10_1007_s11433_024_2606_4 crossref_primary_10_1063_5_0150194 crossref_primary_10_3390_photonics10080886 crossref_primary_10_1140_epjqt_s40507_024_00218_0 crossref_primary_10_3788_gzxb20245302_0227001 crossref_primary_10_1103_PhysRevA_110_033702 crossref_primary_10_1016_j_optcom_2024_131212 crossref_primary_10_1364_OE_539468 crossref_primary_10_1063_5_0190162 crossref_primary_10_1103_PhysRevA_109_023520 crossref_primary_10_1088_0256_307X_40_10_104201 crossref_primary_10_1088_1367_2630_ad327c crossref_primary_10_1103_PhysRevA_110_043704 crossref_primary_10_1142_S0217979225501218 crossref_primary_10_1007_s11128_025_04658_0 crossref_primary_10_1016_j_rinp_2024_108018 crossref_primary_10_1364_OE_546225 |
Cites_doi | 10.1103/PhysRevB.104.224434 10.1364/OE.26.020248 10.1103/PhysRevA.102.033526 10.1364/OL.440608 10.1088/2058-9565/abd982 10.1364/OE.440697 10.1103/PhysRevA.104.033708 10.1103/PhysRevLett.120.057202 10.1364/OL.43.003698 10.1088/1367-2630/aab5c6 10.1038/nature07127 10.1364/PRJ.446226 10.1103/PhysRevB.100.134421 10.1103/PhysRevA.99.043803 10.1038/nature21037 10.1103/PhysRevLett.113.083603 10.1088/2058-9565/ac4425 10.1103/PhysRevA.99.063810 10.1103/PhysRevA.99.033843 10.1016/j.physrep.2022.03.002 10.1103/PhysRevLett.127.037202 10.1038/s41534-022-00619-y 10.1364/OE.468400 10.1364/OE.394488 10.1103/PhysRevLett.121.203602 10.1103/PhysRevA.102.023707 10.1103/RevModPhys.86.1391 10.1103/PhysRevLett.123.127202 10.1038/npjqi.2015.14 10.1364/OE.430619 10.1103/PhysRevA.97.013843 10.1364/PRJ.467595 10.1038/s41586-018-0245-5 10.1038/nphys4009 10.1103/PhysRevLett.124.213604 10.1103/PhysRevX.11.031053 10.1103/PhysRevA.103.053501 10.1007/s11433-021-1880-7 10.1103/PhysRevApplied.13.064001 10.1103/PhysRevApplied.18.044074 10.1002/andp.202000196 10.1364/OL.459917 10.1103/PhysRevLett.100.013904 10.1364/OE.446238 10.1103/PhysRevLett.117.123605 10.1364/PRJ.405246 10.1103/PhysRevLett.128.183603 10.1103/PhysRevA.103.063708 10.1007/s11467-022-1203-0 10.1103/PhysRevA.92.033823 10.1364/OE.418033 10.1126/science.1214383 10.1103/PhysRevApplied.10.047001 10.1007/s11467-022-1165-2 10.1364/OL.414975 10.1126/sciadv.1501286 10.1038/s41586-019-1777-z 10.1103/PhysRevApplied.15.024056 10.1103/PhysRevLett.121.153601 10.1103/PhysRevLett.128.013602 10.1103/PhysRevLett.129.123601 10.7567/1882-0786/ab248d 10.1364/OL.43.000009 10.1126/science.aaa3693 10.1103/PhysRevA.86.013815 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1364/OE.480554 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 36823828 10_1364_OE_480554 |
Genre | Journal Article |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM 7X8 |
ID | FETCH-LOGICAL-c320t-1c2a4be3dbaed3e99658a6952509740b8ce5b1c126c189d187fc8a687ed7cba23 |
ISSN | 1094-4087 |
IngestDate | Fri Jul 11 03:22:15 EDT 2025 Mon Jul 21 05:54:51 EDT 2025 Tue Jul 01 04:01:37 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-1c2a4be3dbaed3e99658a6952509740b8ce5b1c126c189d187fc8a687ed7cba23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1364/oe.480554 |
PMID | 36823828 |
PQID | 2780063826 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2780063826 pubmed_primary_36823828 crossref_primary_10_1364_OE_480554 crossref_citationtrail_10_1364_OE_480554 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-13 |
PublicationDateYYYYMMDD | 2023-02-13 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Optics express |
PublicationTitleAlternate | Opt Express |
PublicationYear | 2023 |
References | Liu (oe-31-4-5492-R50) 2018; 43 Caloz (oe-31-4-5492-R2) 2018; 10 Huai (oe-31-4-5492-R57) 2019; 99 Kong (oe-31-4-5492-R34) 2022; 30 Xiong (oe-31-4-5492-R48) 2012; 86 Shui (oe-31-4-5492-R12) 2022; 30 Kimble (oe-31-4-5492-R1) 2008; 453 Wang (oe-31-4-5492-R27) 2018; 120 Kong (oe-31-4-5492-R40) 2023; 18 Zhao (oe-31-4-5492-R59) 2022; 18 Lai (oe-31-4-5492-R7) 2019; 576 Wang (oe-31-4-5492-R66) 2021; 104 Suzuki (oe-31-4-5492-R49) 2015; 92 Guan (oe-31-4-5492-R46) 2022; 8 Fan (oe-31-4-5492-R10) 2012; 335 Lachance-Quirion (oe-31-4-5492-R14) 2019; 12 Zhang (oe-31-4-5492-R21) 2016; 2 Ren (oe-31-4-5492-R38) 2021; 29 Haldane (oe-31-4-5492-R3) 2008; 100 Tabuchi (oe-31-4-5492-R20) 2015; 349 Chen (oe-31-4-5492-R53) 2019; 99 Liu (oe-31-4-5492-R61) 2022; 10 Yang (oe-31-4-5492-R41) 2020; 532 Lu (oe-31-4-5492-R25) 2021; 103 Kani (oe-31-4-5492-R36) 2022; 128 Miri (oe-31-4-5492-R47) 2018; 20 Zhou (oe-31-4-5492-R9) 2021; 9 Wang (oe-31-4-5492-R60) 2021; 127 Xu (oe-31-4-5492-R43) 2021; 46 Liu (oe-31-4-5492-R56) 2018; 43 Liu (oe-31-4-5492-R29) 2019; 100 Wang (oe-31-4-5492-R13) 2022; 7 Shen (oe-31-4-5492-R23) 2022; 129 Zhao (oe-31-4-5492-R26) 2021; 15 Fang (oe-31-4-5492-R4) 2017; 13 Wang (oe-31-4-5492-R28) 2018; 26 Huang (oe-31-4-5492-R44) 2022; 47 Kong (oe-31-4-5492-R39) 2021; 29 Lai (oe-31-4-5492-R51) 2020; 102 Luo (oe-31-4-5492-R33) 2021; 46 Xu (oe-31-4-5492-R58) 2020; 28 Potts (oe-31-4-5492-R63) 2020; 13 Liu (oe-31-4-5492-R52) 2021; 29 Lodahl (oe-31-4-5492-R8) 2017; 541 Chai (oe-31-4-5492-R35) 2022; 10 Yuan (oe-31-4-5492-R16) 2022; 965 Yu (oe-31-4-5492-R31) 2020; 124 Xu (oe-31-4-5492-R42) 2021; 103 Wang (oe-31-4-5492-R45) 2022; 65 Li (oe-31-4-5492-R30) 2021; 104 Wang (oe-31-4-5492-R15) 2022; 17 Wang (oe-31-4-5492-R37) 2019; 123 Jiao (oe-31-4-5492-R54) 2018; 97 Huang (oe-31-4-5492-R6) 2018; 121 He (oe-31-4-5492-R55) 2019; 99 Tabuchi (oe-31-4-5492-R17) 2014; 113 Zhang (oe-31-4-5492-R18) 2015; 1 Aspelmeyer (oe-31-4-5492-R24) 2014; 86 Li (oe-31-4-5492-R65) 2020; 102 Potts (oe-31-4-5492-R22) 2021; 11 Li (oe-31-4-5492-R32) 2021; 6 Xia (oe-31-4-5492-R11) 2018; 121 Zhang (oe-31-4-5492-R19) 2016; 117 Maayani (oe-31-4-5492-R5) 2018; 558 V. Bittencourt (oe-31-4-5492-R64) 2022; 128 |
References_xml | – volume: 104 start-page: 224434 year: 2021 ident: oe-31-4-5492-R30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.224434 – volume: 26 start-page: 20248 year: 2018 ident: oe-31-4-5492-R28 publication-title: Opt. Express doi: 10.1364/OE.26.020248 – volume: 102 start-page: 033526 year: 2020 ident: oe-31-4-5492-R65 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.033526 – volume: 46 start-page: 5276 year: 2021 ident: oe-31-4-5492-R43 publication-title: Opt. Lett. doi: 10.1364/OL.440608 – volume: 6 start-page: 024005 year: 2021 ident: oe-31-4-5492-R32 publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/abd982 – volume: 29 start-page: 41399 year: 2021 ident: oe-31-4-5492-R38 publication-title: Opt. Express doi: 10.1364/OE.440697 – volume: 104 start-page: 033708 year: 2021 ident: oe-31-4-5492-R66 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.104.033708 – volume: 120 start-page: 057202 year: 2018 ident: oe-31-4-5492-R27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.057202 – volume: 43 start-page: 3698 year: 2018 ident: oe-31-4-5492-R56 publication-title: Opt. Lett. doi: 10.1364/OL.43.003698 – volume: 20 start-page: 043013 year: 2018 ident: oe-31-4-5492-R47 publication-title: New J. Phys. doi: 10.1088/1367-2630/aab5c6 – volume: 453 start-page: 1023 year: 2008 ident: oe-31-4-5492-R1 publication-title: Nature doi: 10.1038/nature07127 – volume: 10 start-page: 820 year: 2022 ident: oe-31-4-5492-R35 publication-title: Photonics Res. doi: 10.1364/PRJ.446226 – volume: 100 start-page: 134421 year: 2019 ident: oe-31-4-5492-R29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.134421 – volume: 99 start-page: 043803 year: 2019 ident: oe-31-4-5492-R57 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.043803 – volume: 541 start-page: 473 year: 2017 ident: oe-31-4-5492-R8 publication-title: Nature doi: 10.1038/nature21037 – volume: 113 start-page: 083603 year: 2014 ident: oe-31-4-5492-R17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.083603 – volume: 7 start-page: 015025 year: 2022 ident: oe-31-4-5492-R13 publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/ac4425 – volume: 99 start-page: 063810 year: 2019 ident: oe-31-4-5492-R53 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.063810 – volume: 99 start-page: 033843 year: 2019 ident: oe-31-4-5492-R55 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.033843 – volume: 965 start-page: 1 year: 2022 ident: oe-31-4-5492-R16 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2022.03.002 – volume: 127 start-page: 037202 year: 2021 ident: oe-31-4-5492-R60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.037202 – volume: 8 start-page: 102 year: 2022 ident: oe-31-4-5492-R46 publication-title: npj Quantum Inf. doi: 10.1038/s41534-022-00619-y – volume: 30 start-page: 34998 year: 2022 ident: oe-31-4-5492-R34 publication-title: Opt. Express doi: 10.1364/OE.468400 – volume: 28 start-page: 22334 year: 2020 ident: oe-31-4-5492-R58 publication-title: Opt. Express doi: 10.1364/OE.394488 – volume: 121 start-page: 203602 year: 2018 ident: oe-31-4-5492-R11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.203602 – volume: 102 start-page: 023707 year: 2020 ident: oe-31-4-5492-R51 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.023707 – volume: 86 start-page: 1391 year: 2014 ident: oe-31-4-5492-R24 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.1391 – volume: 123 start-page: 127202 year: 2019 ident: oe-31-4-5492-R37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.127202 – volume: 1 start-page: 15014 year: 2015 ident: oe-31-4-5492-R18 publication-title: npj Quantum Inf. doi: 10.1038/npjqi.2015.14 – volume: 29 start-page: 25477 year: 2021 ident: oe-31-4-5492-R39 publication-title: Opt. Express doi: 10.1364/OE.430619 – volume: 97 start-page: 013843 year: 2018 ident: oe-31-4-5492-R54 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.013843 – volume: 10 start-page: 2786 year: 2022 ident: oe-31-4-5492-R61 publication-title: Photonics Res. doi: 10.1364/PRJ.467595 – volume: 558 start-page: 569 year: 2018 ident: oe-31-4-5492-R5 publication-title: Nature doi: 10.1038/s41586-018-0245-5 – volume: 13 start-page: 465 year: 2017 ident: oe-31-4-5492-R4 publication-title: Nat. Phys. doi: 10.1038/nphys4009 – volume: 124 start-page: 213604 year: 2020 ident: oe-31-4-5492-R31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.213604 – volume: 11 start-page: 031053 year: 2021 ident: oe-31-4-5492-R22 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.11.031053 – volume: 103 start-page: 053501 year: 2021 ident: oe-31-4-5492-R42 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.053501 – volume: 65 start-page: 260314 year: 2022 ident: oe-31-4-5492-R45 publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-021-1880-7 – volume: 13 start-page: 064001 year: 2020 ident: oe-31-4-5492-R63 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.064001 – volume: 18 start-page: 044074 year: 2022 ident: oe-31-4-5492-R59 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.18.044074 – volume: 532 start-page: 2000196 year: 2020 ident: oe-31-4-5492-R41 publication-title: Ann. Phys. doi: 10.1002/andp.202000196 – volume: 47 start-page: 3311 year: 2022 ident: oe-31-4-5492-R44 publication-title: Opt. Lett. doi: 10.1364/OL.459917 – volume: 100 start-page: 013904 year: 2008 ident: oe-31-4-5492-R3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.013904 – volume: 30 start-page: 6284 year: 2022 ident: oe-31-4-5492-R12 publication-title: Opt. Express doi: 10.1364/OE.446238 – volume: 117 start-page: 123605 year: 2016 ident: oe-31-4-5492-R19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.123605 – volume: 9 start-page: 405 year: 2021 ident: oe-31-4-5492-R9 publication-title: Photonics Res. doi: 10.1364/PRJ.405246 – volume: 128 start-page: 183603 year: 2022 ident: oe-31-4-5492-R64 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.183603 – volume: 103 start-page: 063708 year: 2021 ident: oe-31-4-5492-R25 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.063708 – volume: 18 start-page: 12501 year: 2023 ident: oe-31-4-5492-R40 publication-title: Front. Phys. doi: 10.1007/s11467-022-1203-0 – volume: 92 start-page: 033823 year: 2015 ident: oe-31-4-5492-R49 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.92.033823 – volume: 29 start-page: 12266 year: 2021 ident: oe-31-4-5492-R52 publication-title: Opt. Express doi: 10.1364/OE.418033 – volume: 335 start-page: 447 year: 2012 ident: oe-31-4-5492-R10 publication-title: Science doi: 10.1126/science.1214383 – volume: 10 start-page: 047001 year: 2018 ident: oe-31-4-5492-R2 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.10.047001 – volume: 17 start-page: 42201 year: 2022 ident: oe-31-4-5492-R15 publication-title: Front. Phys. doi: 10.1007/s11467-022-1165-2 – volume: 46 start-page: 1073 year: 2021 ident: oe-31-4-5492-R33 publication-title: Opt. Lett. doi: 10.1364/OL.414975 – volume: 2 start-page: e1501286 year: 2016 ident: oe-31-4-5492-R21 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501286 – volume: 576 start-page: 65 year: 2019 ident: oe-31-4-5492-R7 publication-title: Nature doi: 10.1038/s41586-019-1777-z – volume: 15 start-page: 024056 year: 2021 ident: oe-31-4-5492-R26 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.15.024056 – volume: 121 start-page: 153601 year: 2018 ident: oe-31-4-5492-R6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.153601 – volume: 128 start-page: 013602 year: 2022 ident: oe-31-4-5492-R36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.013602 – volume: 129 start-page: 123601 year: 2022 ident: oe-31-4-5492-R23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.123601 – volume: 12 start-page: 070101 year: 2019 ident: oe-31-4-5492-R14 publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/ab248d – volume: 43 start-page: 9 year: 2018 ident: oe-31-4-5492-R50 publication-title: Opt. Lett. doi: 10.1364/OL.43.000009 – volume: 349 start-page: 405 year: 2015 ident: oe-31-4-5492-R20 publication-title: Science doi: 10.1126/science.aaa3693 – volume: 86 start-page: 013815 year: 2012 ident: oe-31-4-5492-R48 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.013815 |
SSID | ssj0014797 |
Score | 2.5274093 |
Snippet | Nonreciprocal sideband responses in a spinning microwave magnomechanical system consists of a spinning resonator coupled with a yttrium iron garnet sphere are... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 5492 |
Title | Nonreciprocal sideband responses in a spinning microwave magnomechanical system |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36823828 https://www.proquest.com/docview/2780063826 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA66Ivgi3q2XJYoPQpl1JjPNZB5FKkXZ7csu9m1IMqcwYKfFdtnFB3-75ySZbLtWWH0ZyiFzIV_65ZycG2PvcpHKBpU2ZL_UJEWFWFSQQ6KMESNjdJkqSnA-PpGTs-LLbDTrW8KH7JKNObI_9-aV_A-qKENcKUv2H5CND0UB_kZ88YoI4_VGGJ8sOypOQZsQpX20DRgXLu7jXl2o1VAP16vW9SUaLij47oLaDS0ovm4BlPXr0yJdPedtRXW6cvWb4XIVYzTcsbunhlnbXa2HIPuq2-QbtL181oZg34lebh8tCHLoJj4zNLAh2n5oYIYdEfbIAoUGIm-3zwccH1L9t71EncsCZ3c6PipUOvJlpHeLYV_bpGLooPPAyaKejmt_6212R6CJQBx3_GscPUhF6Rvr9J8bqkrhrR_iW3d1kb8YGE7ROH3A7gcLgX_0cD9kt6B7xO66SF27fsymO6DzHnQeQedtxzXvQecRdH4NdO5Bf8LOPo9PP02S0BUjsfjH2iSZFbowkDdGQ5NDRdV7tKzIPY22YWqUhZHJbCakzVTVZKqcWxygSmhKa7TIn7KDbtnBc8bnTaU0qoTaIivPdVHNpQBl81IYUvvTAXvfz09tQ8l46lzyvf4DhQF7G4eufJ2UfYPe9JNcI4uRa0p3sDxf16JUTnkWcsCe-dmPj8mlQr1SqBc3ecVLdu9qJb9iB5sf5_Aa1caNOXTHLYdulfwGt7xucw |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonreciprocal+sideband+responses+in+a+spinning+microwave+magnomechanical+system&rft.jtitle=Optics+express&rft.au=Wang%2C+Xin&rft.au=Huang%2C+Kai-Wei&rft.au=Xiong%2C+Hao&rft.date=2023-02-13&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=31&rft.issue=4&rft.spage=5492&rft_id=info:doi/10.1364%2FOE.480554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_480554 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |