Nonreciprocal sideband responses in a spinning microwave magnomechanical system

Nonreciprocal sideband responses in a spinning microwave magnomechanical system consists of a spinning resonator coupled with a yttrium iron garnet sphere are proposed. We show that the efficiency of sideband generation can be enhanced in one driving direction but restrained in the opposite. This no...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 31; no. 4; p. 5492
Main Authors Wang, Xin, Huang, Kai-Wei, Xiong, Hao
Format Journal Article
LanguageEnglish
Published United States 13.02.2023
Online AccessGet full text

Cover

Loading…
Abstract Nonreciprocal sideband responses in a spinning microwave magnomechanical system consists of a spinning resonator coupled with a yttrium iron garnet sphere are proposed. We show that the efficiency of sideband generation can be enhanced in one driving direction but restrained in the opposite. This nonreciprocity results from Sagnac effect induced by the spinning resonator, leading to asymmetric magnonic responses in two different driving directions. Beyond the conventional linearized description, the properties of nonreciprocal two-color second-order sideband are demonstrated. By adjusting Sagnac-Fizeau shift and the power of control field, the degree of asymmetric magnonic responses can be strengthened, therefore causing stronger nonreciprocity of sideband. Especially, for the case of strong Sagnac-Fizeau shift and the control field, high level of efficiency and isolation ratio of sideband are achieved simultaneously and the operational bandwidth of strong nonreciprocity can be expanded. Our proposal provides an effective avenue for the manipulation of the nonreciprocity of sideband and has potentially practical applications in on-chip microwave isolation devices and magnon-based precision measurement.
AbstractList Nonreciprocal sideband responses in a spinning microwave magnomechanical system consists of a spinning resonator coupled with a yttrium iron garnet sphere are proposed. We show that the efficiency of sideband generation can be enhanced in one driving direction but restrained in the opposite. This nonreciprocity results from Sagnac effect induced by the spinning resonator, leading to asymmetric magnonic responses in two different driving directions. Beyond the conventional linearized description, the properties of nonreciprocal two-color second-order sideband are demonstrated. By adjusting Sagnac-Fizeau shift and the power of control field, the degree of asymmetric magnonic responses can be strengthened, therefore causing stronger nonreciprocity of sideband. Especially, for the case of strong Sagnac-Fizeau shift and the control field, high level of efficiency and isolation ratio of sideband are achieved simultaneously and the operational bandwidth of strong nonreciprocity can be expanded. Our proposal provides an effective avenue for the manipulation of the nonreciprocity of sideband and has potentially practical applications in on-chip microwave isolation devices and magnon-based precision measurement.
Nonreciprocal sideband responses in a spinning microwave magnomechanical system consists of a spinning resonator coupled with a yttrium iron garnet sphere are proposed. We show that the efficiency of sideband generation can be enhanced in one driving direction but restrained in the opposite. This nonreciprocity results from Sagnac effect induced by the spinning resonator, leading to asymmetric magnonic responses in two different driving directions. Beyond the conventional linearized description, the properties of nonreciprocal two-color second-order sideband are demonstrated. By adjusting Sagnac-Fizeau shift and the power of control field, the degree of asymmetric magnonic responses can be strengthened, therefore causing stronger nonreciprocity of sideband. Especially, for the case of strong Sagnac-Fizeau shift and the control field, high level of efficiency and isolation ratio of sideband are achieved simultaneously and the operational bandwidth of strong nonreciprocity can be expanded. Our proposal provides an effective avenue for the manipulation of the nonreciprocity of sideband and has potentially practical applications in on-chip microwave isolation devices and magnon-based precision measurement.Nonreciprocal sideband responses in a spinning microwave magnomechanical system consists of a spinning resonator coupled with a yttrium iron garnet sphere are proposed. We show that the efficiency of sideband generation can be enhanced in one driving direction but restrained in the opposite. This nonreciprocity results from Sagnac effect induced by the spinning resonator, leading to asymmetric magnonic responses in two different driving directions. Beyond the conventional linearized description, the properties of nonreciprocal two-color second-order sideband are demonstrated. By adjusting Sagnac-Fizeau shift and the power of control field, the degree of asymmetric magnonic responses can be strengthened, therefore causing stronger nonreciprocity of sideband. Especially, for the case of strong Sagnac-Fizeau shift and the control field, high level of efficiency and isolation ratio of sideband are achieved simultaneously and the operational bandwidth of strong nonreciprocity can be expanded. Our proposal provides an effective avenue for the manipulation of the nonreciprocity of sideband and has potentially practical applications in on-chip microwave isolation devices and magnon-based precision measurement.
Author Xiong, Hao
Wang, Xin
Huang, Kai-Wei
Author_xml – sequence: 1
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
– sequence: 2
  givenname: Kai-Wei
  surname: Huang
  fullname: Huang, Kai-Wei
– sequence: 3
  givenname: Hao
  surname: Xiong
  fullname: Xiong, Hao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36823828$$D View this record in MEDLINE/PubMed
BookMark eNpt0E1PwzAMBuAIDbEPOPAHUI9w6JakaZMe0TQ-pIle4Fy5qTeC2mQkHWj_nsIGQoiTfXhs2e-YDKyzSMg5o1OWZGJWLKZC0TQVR2TEaC5iQZUc_OqHZBzCC6VMyFyekGGSKZ4orkakeHDWozYb7zQ0UTA1VmDryGPYOBswRMZGEIWNsdbYddQa7d07vGHUwtq6FvUzWPM1ugsdtqfkeAVNwLNDnZCnm8Xj_C5eFrf38-tlrBNOu5hpDqLCpK4A6wTzPEsVZHnKU5pLQSulMa2YZjzTTOU1U3Kle6Ak1lJXwJMJudzv7Q9_3WLoytYEjU0DFt02lFwqSrP-x6ynFwe6rVqsy403Lfhd-R1CD672oH8tBI-rH8Jo-RlwWSzKfcC9nf2x2nTQGWc7D6b5Z-IDyHJ9IA
CitedBy_id crossref_primary_10_1103_PhysRevA_108_063715
crossref_primary_10_1103_PhysRevA_110_023507
crossref_primary_10_1016_j_chaos_2023_114137
crossref_primary_10_1063_5_0166869
crossref_primary_10_1088_1402_4896_ad0d8d
crossref_primary_10_1002_qute_202400681
crossref_primary_10_1007_s11433_024_2606_4
crossref_primary_10_1063_5_0150194
crossref_primary_10_3390_photonics10080886
crossref_primary_10_1140_epjqt_s40507_024_00218_0
crossref_primary_10_3788_gzxb20245302_0227001
crossref_primary_10_1103_PhysRevA_110_033702
crossref_primary_10_1016_j_optcom_2024_131212
crossref_primary_10_1364_OE_539468
crossref_primary_10_1063_5_0190162
crossref_primary_10_1103_PhysRevA_109_023520
crossref_primary_10_1088_0256_307X_40_10_104201
crossref_primary_10_1088_1367_2630_ad327c
crossref_primary_10_1103_PhysRevA_110_043704
crossref_primary_10_1142_S0217979225501218
crossref_primary_10_1007_s11128_025_04658_0
crossref_primary_10_1016_j_rinp_2024_108018
crossref_primary_10_1364_OE_546225
Cites_doi 10.1103/PhysRevB.104.224434
10.1364/OE.26.020248
10.1103/PhysRevA.102.033526
10.1364/OL.440608
10.1088/2058-9565/abd982
10.1364/OE.440697
10.1103/PhysRevA.104.033708
10.1103/PhysRevLett.120.057202
10.1364/OL.43.003698
10.1088/1367-2630/aab5c6
10.1038/nature07127
10.1364/PRJ.446226
10.1103/PhysRevB.100.134421
10.1103/PhysRevA.99.043803
10.1038/nature21037
10.1103/PhysRevLett.113.083603
10.1088/2058-9565/ac4425
10.1103/PhysRevA.99.063810
10.1103/PhysRevA.99.033843
10.1016/j.physrep.2022.03.002
10.1103/PhysRevLett.127.037202
10.1038/s41534-022-00619-y
10.1364/OE.468400
10.1364/OE.394488
10.1103/PhysRevLett.121.203602
10.1103/PhysRevA.102.023707
10.1103/RevModPhys.86.1391
10.1103/PhysRevLett.123.127202
10.1038/npjqi.2015.14
10.1364/OE.430619
10.1103/PhysRevA.97.013843
10.1364/PRJ.467595
10.1038/s41586-018-0245-5
10.1038/nphys4009
10.1103/PhysRevLett.124.213604
10.1103/PhysRevX.11.031053
10.1103/PhysRevA.103.053501
10.1007/s11433-021-1880-7
10.1103/PhysRevApplied.13.064001
10.1103/PhysRevApplied.18.044074
10.1002/andp.202000196
10.1364/OL.459917
10.1103/PhysRevLett.100.013904
10.1364/OE.446238
10.1103/PhysRevLett.117.123605
10.1364/PRJ.405246
10.1103/PhysRevLett.128.183603
10.1103/PhysRevA.103.063708
10.1007/s11467-022-1203-0
10.1103/PhysRevA.92.033823
10.1364/OE.418033
10.1126/science.1214383
10.1103/PhysRevApplied.10.047001
10.1007/s11467-022-1165-2
10.1364/OL.414975
10.1126/sciadv.1501286
10.1038/s41586-019-1777-z
10.1103/PhysRevApplied.15.024056
10.1103/PhysRevLett.121.153601
10.1103/PhysRevLett.128.013602
10.1103/PhysRevLett.129.123601
10.7567/1882-0786/ab248d
10.1364/OL.43.000009
10.1126/science.aaa3693
10.1103/PhysRevA.86.013815
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.480554
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 36823828
10_1364_OE_480554
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
7X8
ID FETCH-LOGICAL-c320t-1c2a4be3dbaed3e99658a6952509740b8ce5b1c126c189d187fc8a687ed7cba23
ISSN 1094-4087
IngestDate Fri Jul 11 03:22:15 EDT 2025
Mon Jul 21 05:54:51 EDT 2025
Tue Jul 01 04:01:37 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-1c2a4be3dbaed3e99658a6952509740b8ce5b1c126c189d187fc8a687ed7cba23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1364/oe.480554
PMID 36823828
PQID 2780063826
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2780063826
pubmed_primary_36823828
crossref_primary_10_1364_OE_480554
crossref_citationtrail_10_1364_OE_480554
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-13
PublicationDateYYYYMMDD 2023-02-13
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2023
References Liu (oe-31-4-5492-R50) 2018; 43
Caloz (oe-31-4-5492-R2) 2018; 10
Huai (oe-31-4-5492-R57) 2019; 99
Kong (oe-31-4-5492-R34) 2022; 30
Xiong (oe-31-4-5492-R48) 2012; 86
Shui (oe-31-4-5492-R12) 2022; 30
Kimble (oe-31-4-5492-R1) 2008; 453
Wang (oe-31-4-5492-R27) 2018; 120
Kong (oe-31-4-5492-R40) 2023; 18
Zhao (oe-31-4-5492-R59) 2022; 18
Lai (oe-31-4-5492-R7) 2019; 576
Wang (oe-31-4-5492-R66) 2021; 104
Suzuki (oe-31-4-5492-R49) 2015; 92
Guan (oe-31-4-5492-R46) 2022; 8
Fan (oe-31-4-5492-R10) 2012; 335
Lachance-Quirion (oe-31-4-5492-R14) 2019; 12
Zhang (oe-31-4-5492-R21) 2016; 2
Ren (oe-31-4-5492-R38) 2021; 29
Haldane (oe-31-4-5492-R3) 2008; 100
Tabuchi (oe-31-4-5492-R20) 2015; 349
Chen (oe-31-4-5492-R53) 2019; 99
Liu (oe-31-4-5492-R61) 2022; 10
Yang (oe-31-4-5492-R41) 2020; 532
Lu (oe-31-4-5492-R25) 2021; 103
Kani (oe-31-4-5492-R36) 2022; 128
Miri (oe-31-4-5492-R47) 2018; 20
Zhou (oe-31-4-5492-R9) 2021; 9
Wang (oe-31-4-5492-R60) 2021; 127
Xu (oe-31-4-5492-R43) 2021; 46
Liu (oe-31-4-5492-R56) 2018; 43
Liu (oe-31-4-5492-R29) 2019; 100
Wang (oe-31-4-5492-R13) 2022; 7
Shen (oe-31-4-5492-R23) 2022; 129
Zhao (oe-31-4-5492-R26) 2021; 15
Fang (oe-31-4-5492-R4) 2017; 13
Wang (oe-31-4-5492-R28) 2018; 26
Huang (oe-31-4-5492-R44) 2022; 47
Kong (oe-31-4-5492-R39) 2021; 29
Lai (oe-31-4-5492-R51) 2020; 102
Luo (oe-31-4-5492-R33) 2021; 46
Xu (oe-31-4-5492-R58) 2020; 28
Potts (oe-31-4-5492-R63) 2020; 13
Liu (oe-31-4-5492-R52) 2021; 29
Lodahl (oe-31-4-5492-R8) 2017; 541
Chai (oe-31-4-5492-R35) 2022; 10
Yuan (oe-31-4-5492-R16) 2022; 965
Yu (oe-31-4-5492-R31) 2020; 124
Xu (oe-31-4-5492-R42) 2021; 103
Wang (oe-31-4-5492-R45) 2022; 65
Li (oe-31-4-5492-R30) 2021; 104
Wang (oe-31-4-5492-R15) 2022; 17
Wang (oe-31-4-5492-R37) 2019; 123
Jiao (oe-31-4-5492-R54) 2018; 97
Huang (oe-31-4-5492-R6) 2018; 121
He (oe-31-4-5492-R55) 2019; 99
Tabuchi (oe-31-4-5492-R17) 2014; 113
Zhang (oe-31-4-5492-R18) 2015; 1
Aspelmeyer (oe-31-4-5492-R24) 2014; 86
Li (oe-31-4-5492-R65) 2020; 102
Potts (oe-31-4-5492-R22) 2021; 11
Li (oe-31-4-5492-R32) 2021; 6
Xia (oe-31-4-5492-R11) 2018; 121
Zhang (oe-31-4-5492-R19) 2016; 117
Maayani (oe-31-4-5492-R5) 2018; 558
V. Bittencourt (oe-31-4-5492-R64) 2022; 128
References_xml – volume: 104
  start-page: 224434
  year: 2021
  ident: oe-31-4-5492-R30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.224434
– volume: 26
  start-page: 20248
  year: 2018
  ident: oe-31-4-5492-R28
  publication-title: Opt. Express
  doi: 10.1364/OE.26.020248
– volume: 102
  start-page: 033526
  year: 2020
  ident: oe-31-4-5492-R65
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.033526
– volume: 46
  start-page: 5276
  year: 2021
  ident: oe-31-4-5492-R43
  publication-title: Opt. Lett.
  doi: 10.1364/OL.440608
– volume: 6
  start-page: 024005
  year: 2021
  ident: oe-31-4-5492-R32
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/abd982
– volume: 29
  start-page: 41399
  year: 2021
  ident: oe-31-4-5492-R38
  publication-title: Opt. Express
  doi: 10.1364/OE.440697
– volume: 104
  start-page: 033708
  year: 2021
  ident: oe-31-4-5492-R66
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.104.033708
– volume: 120
  start-page: 057202
  year: 2018
  ident: oe-31-4-5492-R27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.057202
– volume: 43
  start-page: 3698
  year: 2018
  ident: oe-31-4-5492-R56
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.003698
– volume: 20
  start-page: 043013
  year: 2018
  ident: oe-31-4-5492-R47
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aab5c6
– volume: 453
  start-page: 1023
  year: 2008
  ident: oe-31-4-5492-R1
  publication-title: Nature
  doi: 10.1038/nature07127
– volume: 10
  start-page: 820
  year: 2022
  ident: oe-31-4-5492-R35
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.446226
– volume: 100
  start-page: 134421
  year: 2019
  ident: oe-31-4-5492-R29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.134421
– volume: 99
  start-page: 043803
  year: 2019
  ident: oe-31-4-5492-R57
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.043803
– volume: 541
  start-page: 473
  year: 2017
  ident: oe-31-4-5492-R8
  publication-title: Nature
  doi: 10.1038/nature21037
– volume: 113
  start-page: 083603
  year: 2014
  ident: oe-31-4-5492-R17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.083603
– volume: 7
  start-page: 015025
  year: 2022
  ident: oe-31-4-5492-R13
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ac4425
– volume: 99
  start-page: 063810
  year: 2019
  ident: oe-31-4-5492-R53
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.063810
– volume: 99
  start-page: 033843
  year: 2019
  ident: oe-31-4-5492-R55
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.033843
– volume: 965
  start-page: 1
  year: 2022
  ident: oe-31-4-5492-R16
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2022.03.002
– volume: 127
  start-page: 037202
  year: 2021
  ident: oe-31-4-5492-R60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.037202
– volume: 8
  start-page: 102
  year: 2022
  ident: oe-31-4-5492-R46
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-022-00619-y
– volume: 30
  start-page: 34998
  year: 2022
  ident: oe-31-4-5492-R34
  publication-title: Opt. Express
  doi: 10.1364/OE.468400
– volume: 28
  start-page: 22334
  year: 2020
  ident: oe-31-4-5492-R58
  publication-title: Opt. Express
  doi: 10.1364/OE.394488
– volume: 121
  start-page: 203602
  year: 2018
  ident: oe-31-4-5492-R11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.203602
– volume: 102
  start-page: 023707
  year: 2020
  ident: oe-31-4-5492-R51
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.023707
– volume: 86
  start-page: 1391
  year: 2014
  ident: oe-31-4-5492-R24
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.1391
– volume: 123
  start-page: 127202
  year: 2019
  ident: oe-31-4-5492-R37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.127202
– volume: 1
  start-page: 15014
  year: 2015
  ident: oe-31-4-5492-R18
  publication-title: npj Quantum Inf.
  doi: 10.1038/npjqi.2015.14
– volume: 29
  start-page: 25477
  year: 2021
  ident: oe-31-4-5492-R39
  publication-title: Opt. Express
  doi: 10.1364/OE.430619
– volume: 97
  start-page: 013843
  year: 2018
  ident: oe-31-4-5492-R54
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.013843
– volume: 10
  start-page: 2786
  year: 2022
  ident: oe-31-4-5492-R61
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.467595
– volume: 558
  start-page: 569
  year: 2018
  ident: oe-31-4-5492-R5
  publication-title: Nature
  doi: 10.1038/s41586-018-0245-5
– volume: 13
  start-page: 465
  year: 2017
  ident: oe-31-4-5492-R4
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4009
– volume: 124
  start-page: 213604
  year: 2020
  ident: oe-31-4-5492-R31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.213604
– volume: 11
  start-page: 031053
  year: 2021
  ident: oe-31-4-5492-R22
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.11.031053
– volume: 103
  start-page: 053501
  year: 2021
  ident: oe-31-4-5492-R42
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.053501
– volume: 65
  start-page: 260314
  year: 2022
  ident: oe-31-4-5492-R45
  publication-title: Sci. China Phys. Mech. Astron.
  doi: 10.1007/s11433-021-1880-7
– volume: 13
  start-page: 064001
  year: 2020
  ident: oe-31-4-5492-R63
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.064001
– volume: 18
  start-page: 044074
  year: 2022
  ident: oe-31-4-5492-R59
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.18.044074
– volume: 532
  start-page: 2000196
  year: 2020
  ident: oe-31-4-5492-R41
  publication-title: Ann. Phys.
  doi: 10.1002/andp.202000196
– volume: 47
  start-page: 3311
  year: 2022
  ident: oe-31-4-5492-R44
  publication-title: Opt. Lett.
  doi: 10.1364/OL.459917
– volume: 100
  start-page: 013904
  year: 2008
  ident: oe-31-4-5492-R3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.013904
– volume: 30
  start-page: 6284
  year: 2022
  ident: oe-31-4-5492-R12
  publication-title: Opt. Express
  doi: 10.1364/OE.446238
– volume: 117
  start-page: 123605
  year: 2016
  ident: oe-31-4-5492-R19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.123605
– volume: 9
  start-page: 405
  year: 2021
  ident: oe-31-4-5492-R9
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.405246
– volume: 128
  start-page: 183603
  year: 2022
  ident: oe-31-4-5492-R64
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.183603
– volume: 103
  start-page: 063708
  year: 2021
  ident: oe-31-4-5492-R25
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.063708
– volume: 18
  start-page: 12501
  year: 2023
  ident: oe-31-4-5492-R40
  publication-title: Front. Phys.
  doi: 10.1007/s11467-022-1203-0
– volume: 92
  start-page: 033823
  year: 2015
  ident: oe-31-4-5492-R49
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.033823
– volume: 29
  start-page: 12266
  year: 2021
  ident: oe-31-4-5492-R52
  publication-title: Opt. Express
  doi: 10.1364/OE.418033
– volume: 335
  start-page: 447
  year: 2012
  ident: oe-31-4-5492-R10
  publication-title: Science
  doi: 10.1126/science.1214383
– volume: 10
  start-page: 047001
  year: 2018
  ident: oe-31-4-5492-R2
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.10.047001
– volume: 17
  start-page: 42201
  year: 2022
  ident: oe-31-4-5492-R15
  publication-title: Front. Phys.
  doi: 10.1007/s11467-022-1165-2
– volume: 46
  start-page: 1073
  year: 2021
  ident: oe-31-4-5492-R33
  publication-title: Opt. Lett.
  doi: 10.1364/OL.414975
– volume: 2
  start-page: e1501286
  year: 2016
  ident: oe-31-4-5492-R21
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501286
– volume: 576
  start-page: 65
  year: 2019
  ident: oe-31-4-5492-R7
  publication-title: Nature
  doi: 10.1038/s41586-019-1777-z
– volume: 15
  start-page: 024056
  year: 2021
  ident: oe-31-4-5492-R26
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.15.024056
– volume: 121
  start-page: 153601
  year: 2018
  ident: oe-31-4-5492-R6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.153601
– volume: 128
  start-page: 013602
  year: 2022
  ident: oe-31-4-5492-R36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.013602
– volume: 129
  start-page: 123601
  year: 2022
  ident: oe-31-4-5492-R23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.123601
– volume: 12
  start-page: 070101
  year: 2019
  ident: oe-31-4-5492-R14
  publication-title: Appl. Phys. Express
  doi: 10.7567/1882-0786/ab248d
– volume: 43
  start-page: 9
  year: 2018
  ident: oe-31-4-5492-R50
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.000009
– volume: 349
  start-page: 405
  year: 2015
  ident: oe-31-4-5492-R20
  publication-title: Science
  doi: 10.1126/science.aaa3693
– volume: 86
  start-page: 013815
  year: 2012
  ident: oe-31-4-5492-R48
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.013815
SSID ssj0014797
Score 2.5274093
Snippet Nonreciprocal sideband responses in a spinning microwave magnomechanical system consists of a spinning resonator coupled with a yttrium iron garnet sphere are...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 5492
Title Nonreciprocal sideband responses in a spinning microwave magnomechanical system
URI https://www.ncbi.nlm.nih.gov/pubmed/36823828
https://www.proquest.com/docview/2780063826
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA66Ivgi3q2XJYoPQpl1JjPNZB5FKkXZ7csu9m1IMqcwYKfFdtnFB3-75ySZbLtWWH0ZyiFzIV_65ZycG2PvcpHKBpU2ZL_UJEWFWFSQQ6KMESNjdJkqSnA-PpGTs-LLbDTrW8KH7JKNObI_9-aV_A-qKENcKUv2H5CND0UB_kZ88YoI4_VGGJ8sOypOQZsQpX20DRgXLu7jXl2o1VAP16vW9SUaLij47oLaDS0ovm4BlPXr0yJdPedtRXW6cvWb4XIVYzTcsbunhlnbXa2HIPuq2-QbtL181oZg34lebh8tCHLoJj4zNLAh2n5oYIYdEfbIAoUGIm-3zwccH1L9t71EncsCZ3c6PipUOvJlpHeLYV_bpGLooPPAyaKejmt_6212R6CJQBx3_GscPUhF6Rvr9J8bqkrhrR_iW3d1kb8YGE7ROH3A7gcLgX_0cD9kt6B7xO66SF27fsymO6DzHnQeQedtxzXvQecRdH4NdO5Bf8LOPo9PP02S0BUjsfjH2iSZFbowkDdGQ5NDRdV7tKzIPY22YWqUhZHJbCakzVTVZKqcWxygSmhKa7TIn7KDbtnBc8bnTaU0qoTaIivPdVHNpQBl81IYUvvTAXvfz09tQ8l46lzyvf4DhQF7G4eufJ2UfYPe9JNcI4uRa0p3sDxf16JUTnkWcsCe-dmPj8mlQr1SqBc3ecVLdu9qJb9iB5sf5_Aa1caNOXTHLYdulfwGt7xucw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonreciprocal+sideband+responses+in+a+spinning+microwave+magnomechanical+system&rft.jtitle=Optics+express&rft.au=Wang%2C+Xin&rft.au=Huang%2C+Kai-Wei&rft.au=Xiong%2C+Hao&rft.date=2023-02-13&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=31&rft.issue=4&rft.spage=5492&rft_id=info:doi/10.1364%2FOE.480554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_480554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon