Using general triangle inequalities within quadratic convex reformulation method
We consider the exact solution of Problem (P) which consists in minimizing a quadratic function subject to quadratic constraints. We start with an explicit description of new general triangle inequalities that are derived from the ranges of the variables of (P). We show that they extend the triangle...
Saved in:
Published in | Optimization methods & software Vol. 38; no. 3; pp. 626 - 653 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
04.05.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1055-6788 1029-4937 |
DOI | 10.1080/10556788.2022.2157002 |
Cover
Loading…
Abstract | We consider the exact solution of Problem (P) which consists in minimizing a quadratic function subject to quadratic constraints. We start with an explicit description of new general triangle inequalities that are derived from the ranges of the variables of (P). We show that they extend the triangle inequalities, introduced for the binary case, to variables that belong to a generic interval. We also prove that these inequalities cut feasible solutions of McCormick envelopes, and we relate them to the literature. We then introduce (SDP), a strong semidefinite relaxation of (P), that we call 'Shor's plus RLT plus Triangle', which includes both the McCormick envelopes and the general triangle inequalities. We further show how to compute a convex relaxation
whose optimal value reaches the value of (SDP). In order to handle these inequalities in the solution of (SDP), we solve it by a heuristic that also serves as a separation algorithm. We then solve (P) to global optimality with a branch-and-bound based on
. Finally, we show that our method outperforms the compared solvers. |
---|---|
AbstractList | We consider the exact solution of Problem $\QP$ which consists in minimizing a quadratic function subject to quadratic constraints. We start with an explicit description of new general triangle inequalities that are derived from the ranges of the variables of $\QP$. We show that they extend the triangle inequalities, introduced for the binary case, to variables that belong to a generic interval. We also prove that these inequalities cut feasible solutions of McCormick envelopes, and we relate them to the literature. We then introduce $(SDP)$, a strong semidefinite relaxation of $\QP$, that we call ``Shor's plus RLT plus Triangle'', which includes both the McCormick envelopes and the general triangle inequalities. We further show how to compute a convex relaxation $(P^*)$ whose optimal value reaches the value of $(SDP)$. In order to handle these inequalities in the solution of $(SDP)$, we solve it by a heuristic that also serves as a separation algorithm. We then solve $\QP$ to global optimality with a \bb~based on $(P^*)$. Finally, we show that our method outperforms the compared solvers. We consider the exact solution of Problem (P) which consists in minimizing a quadratic function subject to quadratic constraints. We start with an explicit description of new general triangle inequalities that are derived from the ranges of the variables of (P). We show that they extend the triangle inequalities, introduced for the binary case, to variables that belong to a generic interval. We also prove that these inequalities cut feasible solutions of McCormick envelopes, and we relate them to the literature. We then introduce (SDP), a strong semidefinite relaxation of (P), that we call 'Shor's plus RLT plus Triangle', which includes both the McCormick envelopes and the general triangle inequalities. We further show how to compute a convex relaxation whose optimal value reaches the value of (SDP). In order to handle these inequalities in the solution of (SDP), we solve it by a heuristic that also serves as a separation algorithm. We then solve (P) to global optimality with a branch-and-bound based on . Finally, we show that our method outperforms the compared solvers. We consider the exact solution of Problem (P) which consists in minimizing a quadratic function subject to quadratic constraints. We start with an explicit description of new general triangle inequalities that are derived from the ranges of the variables of (P). We show that they extend the triangle inequalities, introduced for the binary case, to variables that belong to a generic interval. We also prove that these inequalities cut feasible solutions of McCormick envelopes, and we relate them to the literature. We then introduce (SDP), a strong semidefinite relaxation of (P), that we call ‘Shor's plus RLT plus Triangle’, which includes both the McCormick envelopes and the general triangle inequalities. We further show how to compute a convex relaxation whose optimal value reaches the value of (SDP). In order to handle these inequalities in the solution of (SDP), we solve it by a heuristic that also serves as a separation algorithm. We then solve (P) to global optimality with a branch-and-bound based on . Finally, we show that our method outperforms the compared solvers. |
Author | Lambert, Amélie |
Author_xml | – sequence: 1 givenname: Amélie orcidid: 0000-0001-8305-2145 surname: Lambert fullname: Lambert, Amélie email: amelie.lambert@cnam.fr organization: Cnam-CEDRIC |
BackLink | https://hal.science/hal-03016403$$DView record in HAL |
BookMark | eNp9kE1LAzEQhoNUUKs_QQh48rB1Jh_7cbMUtUJBD3oOMZttU7aJTbZq_727VD16mvDyzMvkOSMjH7wl5BJhglDCDYKUeVGWEwaMTRjKAoAdkVMEVmWi4sVoeEuZDdAJOUtpDQACRX5Knl-T80u6tN5G3dIuOu2XraXO2-1Ot65zNtFP162cp31QR905Q03wH_aLRtuEuNm1fRY83dhuFepzctzoNtmLnzkmr_d3L7N5tnh6eJxNF5nhDLoMUYucaeRYIBecN1XNm9IwKZpcMN7gmyx0jlUljRSVlJIZbRpAKyuUtTV8TK4PvSvdqvfoNjruVdBOzacLNWTAAXMB_AN79urAvsew3dnUqXXYRd-fp1jJMS-hrMqekgfKxJBS_7e_WgQ1iFa_otUgWv2I7vduD3vODzr0Z4htrTq9b0NsovbGJcX_r_gGjzaFSw |
Cites_doi | 10.1007/s10107-015-0921-2 10.1007/BF01589101 10.1016/j.compchemeng.2007.05.003 10.1023/A:1008293029350 10.1007/s10589-007-9137-6 10.1080/10556780902883184 10.1007/s12532-011-0033-9 10.1007/s10898-008-9372-0 10.1080/10556788.2017.1350675 10.1080/10556789908805765 10.1137/080729529 10.1007/s10898-012-9874-7 10.1016/S0166-218X(01)00359-6 10.1007/BF01580665 10.1007/s10107-005-0661-9 10.1023/A:1016083231326 10.1007/BF01917102 10.1287/ijoc.2016.0731 10.1007/s10107-006-0080-6 10.1007/s10107-008-0215-z 10.1007/s10107-004-0559-y 10.1007/s10107-012-0555-6 10.1007/s10107-010-0381-7 10.1007/978-3-642-33718-5_47 10.1016/S0377-2217(96)00025-2 10.1007/s12532-018-0133-x 10.1080/10556788.2014.916287 10.1007/s10107-004-0549-0 10.1021/ie980666q 10.1007/s101070100263 10.1080/03052159508941259 |
ContentType | Journal Article |
Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC |
DOI | 10.1080/10556788.2022.2157002 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1029-4937 |
EndPage | 653 |
ExternalDocumentID | oai_HAL_hal_03016403v1 10_1080_10556788_2022_2157002 2157002 |
Genre | Research Article |
GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 8FD JQ2 L7M L~C L~D TASJS 1XC |
ID | FETCH-LOGICAL-c320t-11a462a131713433f9d3f8c254f6423f1b57a61995c5495552cacf01e5915dec3 |
ISSN | 1055-6788 |
IngestDate | Thu Jul 10 08:58:43 EDT 2025 Wed Aug 13 07:55:07 EDT 2025 Tue Jul 01 01:19:36 EDT 2025 Wed Dec 25 09:06:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Lagrangian duality Global optimization Semi-Definite programming Quadratic Programming Quadratic Convex Relaxation Valid inequalities Global optimization Semi-Definite programming Lagrangian duality sub-gradient algorithm Quadratic Programming Quadratic Convex Relaxation Valid inequalities sub-gradient algorithm |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-11a462a131713433f9d3f8c254f6423f1b57a61995c5495552cacf01e5915dec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8305-2145 |
PQID | 2831680898 |
PQPubID | 186278 |
PageCount | 28 |
ParticipantIDs | hal_primary_oai_HAL_hal_03016403v1 crossref_primary_10_1080_10556788_2022_2157002 informaworld_taylorfrancis_310_1080_10556788_2022_2157002 proquest_journals_2831680898 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-04 |
PublicationDateYYYYMMDD | 2023-05-04 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Optimization methods & software |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 Garey M (CIT0019) 1979 CIT0014 CIT0036 CIT0013 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0017 CIT0039 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Vandenbussche D. (CIT0035) 2005; 102 CIT0003 CIT0025 CIT0002 CIT0024 Sherali H. (CIT0033) 2013; 31 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0007 doi: 10.1007/s10107-015-0921-2 – ident: CIT0031 doi: 10.1007/BF01589101 – ident: CIT0038 doi: 10.1016/j.compchemeng.2007.05.003 – ident: CIT0039 doi: 10.1023/A:1008293029350 – ident: CIT0013 doi: 10.1007/s10589-007-9137-6 – ident: CIT0004 doi: 10.1080/10556780902883184 – ident: CIT0014 doi: 10.1007/s12532-011-0033-9 – ident: CIT0021 – ident: CIT0003 doi: 10.1007/s10898-008-9372-0 – ident: CIT0017 doi: 10.1080/10556788.2017.1350675 – ident: CIT0010 doi: 10.1080/10556789908805765 – ident: CIT0011 doi: 10.1137/080729529 – ident: CIT0028 doi: 10.1007/s10898-012-9874-7 – ident: CIT0025 doi: 10.1016/S0166-218X(01)00359-6 – ident: CIT0026 doi: 10.1007/BF01580665 – ident: CIT0018 doi: 10.1007/s10107-005-0661-9 – ident: CIT0034 doi: 10.1023/A:1016083231326 – ident: CIT0023 – ident: CIT0022 doi: 10.1007/BF01917102 – ident: CIT0008 doi: 10.1287/ijoc.2016.0731 – ident: CIT0012 doi: 10.1007/s10107-006-0080-6 – ident: CIT0005 doi: 10.1007/s10107-008-0215-z – ident: CIT0037 doi: 10.1007/s10107-004-0559-y – ident: CIT0020 – ident: CIT0027 doi: 10.1007/s10107-012-0555-6 – ident: CIT0006 doi: 10.1007/s10107-010-0381-7 – ident: CIT0002 doi: 10.1007/978-3-642-33718-5_47 – ident: CIT0024 doi: 10.1016/S0377-2217(96)00025-2 – ident: CIT0009 doi: 10.1007/s12532-018-0133-x – ident: CIT0029 doi: 10.1080/10556788.2014.916287 – ident: CIT0036 doi: 10.1007/s10107-004-0549-0 – ident: CIT0001 doi: 10.1021/ie980666q – ident: CIT0015 doi: 10.1007/s101070100263 – ident: CIT0032 – ident: CIT0030 – volume: 102 start-page: 259 issue: 3 year: 2005 ident: CIT0035 publication-title: Math. Program. – volume-title: Computers and Intractability: A Guide to the Theory of NP-Completness year: 1979 ident: CIT0019 – ident: CIT0016 doi: 10.1080/03052159508941259 – volume: 31 volume-title: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems year: 2013 ident: CIT0033 |
SSID | ssj0004146 |
Score | 2.3313918 |
Snippet | We consider the exact solution of Problem (P) which consists in minimizing a quadratic function subject to quadratic constraints. We start with an explicit... We consider the exact solution of Problem $\QP$ which consists in minimizing a quadratic function subject to quadratic constraints. We start with an explicit... |
SourceID | hal proquest crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 626 |
SubjectTerms | Algorithms Envelopes Exact solutions global optimization Inequalities lagrangian duality Mathematics Optimization Optimization and Control Quadratic convex relaxation Quadratic equations quadratic programming semi-definite programming sub-gradient algorithm valid inequalities |
Title | Using general triangle inequalities within quadratic convex reformulation method |
URI | https://www.tandfonline.com/doi/abs/10.1080/10556788.2022.2157002 https://www.proquest.com/docview/2831680898 https://hal.science/hal-03016403 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEBab5KV9KD3ptmkRpW_BW0uyHPmtSw-Wkh4PGxr6ImQdSSBxS9Y96K_v6PBaYQO9XswiL5aZ-TSakWe-Qehpo4SxVtnC0ZIVFewBhTKNhhVfadG0zhjjA8W37-rFYfXmiB9NJs_z6pK-nemfV9aV_ItWYQz06qtk_0Kz64fCAPwG_cIVNAzXP9Jx_N5_HJmj93wDju74zLOA2FgrCVFwOGg97XzxpLkI7Kwhz_zHHuyM4K6m5l2pkXTuqb4HW3KeijTT7VXAyQoM93c15sweKN9TJLIXnMfv7menNj9NoDF3bzxNXG409shsY8l9nULswjezaYz6JnWRt2UwqExkwGGZdaxpnW20dWQJ3rDhMekxNO6EySCEp3QGjsl-WdJx01qnEqY7W2iHQqAApnlnvnj56eNYG5sqzIaXH6q4RPnsyiku-SdbJyE7Nuew3dizgyOyvIlupAgCzyMcbqGJ7W6j6xmv5B30IQADJ2DgARg4BwaOwMBrYOAIDHwJGDhq_i46fP1q-WJRpNYZhWa07AtCVFVTRcA7JKxizDWGOaEprxwEnMyRlu-r2pfnaw4hMudUK-1KYnlDuLGa3UPb3efO3keYtKJl1BO5CV6pirWlU5pTrohoDCFmimaDwOSXyJAiSSKeHSQsvYRlkvAUPQGxrv_r-c0X8wPpx3x8Xlcl-0amqMmlLvsATBcxKdlvJtgdVCTTal1JcKOJbzPTiAf_8eiH6Nq4anbRdn_x1T4Cr7RvHyfg_QLWw4bR |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUKHAoHSguIhW1roV6zxLGdjY8IFW3bZdUDSNwsxx-AQAFBFiF-PTNOUhYqxGGvluNo7BnPPGvmDSE_lCmc98YnIUt5IsAHJMYpCxYvbKHK4JxDoHg0yUcn4vepPJ2phcG0SsTQoSGKiHc1Gjc-RncpcXuxqSNgN4B3WTYApzWMfJJLUuVDNE6eTp5rI9sKI_gkwW-6Kp63lnnhnxbOY3bkLIfpf3d2dESHn4jtRGjyTy4H07oc2MdX7I7zybhGVts4le43ivWZfPDVF7Iyw164Tv7GdAN61hBXU-z_UZ1deQozmlJNAOEU33kvKgoDDnXN0pjm_kBBcBC27R1Gmz7WG-Tk8OfxwShpGzQklmdpnTBmRJ4ZBjEI44LzoBwPhQXMGQDW8MBKOTQ5FoFbgKFSyswaG1LmpWLSecs3yWJ1XfktQllZlDxDurBCCiN4mQZjZSYNK5RjzPXIoDsWfdPwcGjW0pt2W6Vxq3S7VT2yC4f3by6yaI_2xxrHEAXmIuX3rEfU7NnqOr6ShKaliebv_KDfKYJu7f5OQ7DGsJmJKrbnWPo7-Tg6Phrr8a_Jnx2yjB3uY46l6JPF-nbqv0IcVJffoqI_AWdK-O4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-0wEA4-4KIL9frA4zOI2x6bJqntUtTD8XEPLhTuLqR5HEWpolXEX-9M2upRERduQ5IyySQzXzrzDSHbuc6sc9pFPol5JMAGRNrmBk68MFleeGstAsV_g7R_IY7_yzaa8KEJq0QM7WuiiHBX4-G-s76NiNsJNR0BugG6S5Iu2KzdQCc5meJPPsziiAfvqZFNghEMiXBMm8Tz3TQfzNP4ZQiOHKUw_XJlBzvUmyVFK0EdfnLdfayKrnn5RO74KxHnyEzjpdK9Wq3-kjFXzpPpEe7CBXIWgg3osKatplj9oxzeOAo96kRNgOAUX3mvSgoNFjXN0BDk_kxBbpC1qRxG6yrWi-Sid3i-34-a8gyR4UlcRYxpkSaagQfCuODc55b7zADi9ABquGeF3NUppoAbAKFSysRo42PmZM6kdYYvkYnytnTLhLIiK3iCZGGZFFrwIvbayERqluWWMdsh3XZX1F3NwqFYQ27aLpXCpVLNUnXIFuzdW1_k0O7vnSpsQwyYipg_sQ7JR7dWVeGNxNcFTRT_4QNrrR6o5tQ_KHDVGJYyybOVX0y9Sf6cHfTU6dHgZJVMYXn7EGAp1shEdf_o1sEJqoqNoOavUbD3kg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+general+triangle+inequalities+within+quadratic+convex+reformulation+method&rft.jtitle=Optimization+methods+%26+software&rft.au=Lambert%2C+Am%C3%A9lie&rft.date=2023-05-04&rft.pub=Taylor+%26+Francis&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=38&rft.issue=3&rft.spage=626&rft.epage=653&rft_id=info:doi/10.1080%2F10556788.2022.2157002&rft.externalDocID=2157002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon |