Using general triangle inequalities within quadratic convex reformulation method

We consider the exact solution of Problem (P) which consists in minimizing a quadratic function subject to quadratic constraints. We start with an explicit description of new general triangle inequalities that are derived from the ranges of the variables of (P). We show that they extend the triangle...

Full description

Saved in:
Bibliographic Details
Published inOptimization methods & software Vol. 38; no. 3; pp. 626 - 653
Main Author Lambert, Amélie
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 04.05.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1055-6788
1029-4937
DOI10.1080/10556788.2022.2157002

Cover

Loading…
Abstract We consider the exact solution of Problem (P) which consists in minimizing a quadratic function subject to quadratic constraints. We start with an explicit description of new general triangle inequalities that are derived from the ranges of the variables of (P). We show that they extend the triangle inequalities, introduced for the binary case, to variables that belong to a generic interval. We also prove that these inequalities cut feasible solutions of McCormick envelopes, and we relate them to the literature. We then introduce (SDP), a strong semidefinite relaxation of (P), that we call 'Shor's plus RLT plus Triangle', which includes both the McCormick envelopes and the general triangle inequalities. We further show how to compute a convex relaxation whose optimal value reaches the value of (SDP). In order to handle these inequalities in the solution of (SDP), we solve it by a heuristic that also serves as a separation algorithm. We then solve (P) to global optimality with a branch-and-bound based on . Finally, we show that our method outperforms the compared solvers.
AbstractList We consider the exact solution of Problem $\QP$ which consists in minimizing a quadratic function subject to quadratic constraints. We start with an explicit description of new general triangle inequalities that are derived from the ranges of the variables of $\QP$. We show that they extend the triangle inequalities, introduced for the binary case, to variables that belong to a generic interval. We also prove that these inequalities cut feasible solutions of McCormick envelopes, and we relate them to the literature. We then introduce $(SDP)$, a strong semidefinite relaxation of $\QP$, that we call ``Shor's plus RLT plus Triangle'', which includes both the McCormick envelopes and the general triangle inequalities. We further show how to compute a convex relaxation $(P^*)$ whose optimal value reaches the value of $(SDP)$. In order to handle these inequalities in the solution of $(SDP)$, we solve it by a heuristic that also serves as a separation algorithm. We then solve $\QP$ to global optimality with a \bb~based on $(P^*)$. Finally, we show that our method outperforms the compared solvers.
We consider the exact solution of Problem (P) which consists in minimizing a quadratic function subject to quadratic constraints. We start with an explicit description of new general triangle inequalities that are derived from the ranges of the variables of (P). We show that they extend the triangle inequalities, introduced for the binary case, to variables that belong to a generic interval. We also prove that these inequalities cut feasible solutions of McCormick envelopes, and we relate them to the literature. We then introduce (SDP), a strong semidefinite relaxation of (P), that we call 'Shor's plus RLT plus Triangle', which includes both the McCormick envelopes and the general triangle inequalities. We further show how to compute a convex relaxation whose optimal value reaches the value of (SDP). In order to handle these inequalities in the solution of (SDP), we solve it by a heuristic that also serves as a separation algorithm. We then solve (P) to global optimality with a branch-and-bound based on . Finally, we show that our method outperforms the compared solvers.
We consider the exact solution of Problem (P) which consists in minimizing a quadratic function subject to quadratic constraints. We start with an explicit description of new general triangle inequalities that are derived from the ranges of the variables of (P). We show that they extend the triangle inequalities, introduced for the binary case, to variables that belong to a generic interval. We also prove that these inequalities cut feasible solutions of McCormick envelopes, and we relate them to the literature. We then introduce (SDP), a strong semidefinite relaxation of (P), that we call ‘Shor's plus RLT plus Triangle’, which includes both the McCormick envelopes and the general triangle inequalities. We further show how to compute a convex relaxation whose optimal value reaches the value of (SDP). In order to handle these inequalities in the solution of (SDP), we solve it by a heuristic that also serves as a separation algorithm. We then solve (P) to global optimality with a branch-and-bound based on . Finally, we show that our method outperforms the compared solvers.
Author Lambert, Amélie
Author_xml – sequence: 1
  givenname: Amélie
  orcidid: 0000-0001-8305-2145
  surname: Lambert
  fullname: Lambert, Amélie
  email: amelie.lambert@cnam.fr
  organization: Cnam-CEDRIC
BackLink https://hal.science/hal-03016403$$DView record in HAL
BookMark eNp9kE1LAzEQhoNUUKs_QQh48rB1Jh_7cbMUtUJBD3oOMZttU7aJTbZq_727VD16mvDyzMvkOSMjH7wl5BJhglDCDYKUeVGWEwaMTRjKAoAdkVMEVmWi4sVoeEuZDdAJOUtpDQACRX5Knl-T80u6tN5G3dIuOu2XraXO2-1Ot65zNtFP162cp31QR905Q03wH_aLRtuEuNm1fRY83dhuFepzctzoNtmLnzkmr_d3L7N5tnh6eJxNF5nhDLoMUYucaeRYIBecN1XNm9IwKZpcMN7gmyx0jlUljRSVlJIZbRpAKyuUtTV8TK4PvSvdqvfoNjruVdBOzacLNWTAAXMB_AN79urAvsew3dnUqXXYRd-fp1jJMS-hrMqekgfKxJBS_7e_WgQ1iFa_otUgWv2I7vduD3vODzr0Z4htrTq9b0NsovbGJcX_r_gGjzaFSw
Cites_doi 10.1007/s10107-015-0921-2
10.1007/BF01589101
10.1016/j.compchemeng.2007.05.003
10.1023/A:1008293029350
10.1007/s10589-007-9137-6
10.1080/10556780902883184
10.1007/s12532-011-0033-9
10.1007/s10898-008-9372-0
10.1080/10556788.2017.1350675
10.1080/10556789908805765
10.1137/080729529
10.1007/s10898-012-9874-7
10.1016/S0166-218X(01)00359-6
10.1007/BF01580665
10.1007/s10107-005-0661-9
10.1023/A:1016083231326
10.1007/BF01917102
10.1287/ijoc.2016.0731
10.1007/s10107-006-0080-6
10.1007/s10107-008-0215-z
10.1007/s10107-004-0559-y
10.1007/s10107-012-0555-6
10.1007/s10107-010-0381-7
10.1007/978-3-642-33718-5_47
10.1016/S0377-2217(96)00025-2
10.1007/s12532-018-0133-x
10.1080/10556788.2014.916287
10.1007/s10107-004-0549-0
10.1021/ie980666q
10.1007/s101070100263
10.1080/03052159508941259
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1080/10556788.2022.2157002
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1029-4937
EndPage 653
ExternalDocumentID oai_HAL_hal_03016403v1
10_1080_10556788_2022_2157002
2157002
Genre Research Article
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
1XC
ID FETCH-LOGICAL-c320t-11a462a131713433f9d3f8c254f6423f1b57a61995c5495552cacf01e5915dec3
ISSN 1055-6788
IngestDate Thu Jul 10 08:58:43 EDT 2025
Wed Aug 13 07:55:07 EDT 2025
Tue Jul 01 01:19:36 EDT 2025
Wed Dec 25 09:06:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Lagrangian duality
Global optimization
Semi-Definite programming
Quadratic Programming
Quadratic Convex Relaxation Valid inequalities Global optimization Semi-Definite programming Lagrangian duality sub-gradient algorithm Quadratic Programming
Quadratic Convex Relaxation
Valid inequalities
sub-gradient algorithm
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-11a462a131713433f9d3f8c254f6423f1b57a61995c5495552cacf01e5915dec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8305-2145
PQID 2831680898
PQPubID 186278
PageCount 28
ParticipantIDs hal_primary_oai_HAL_hal_03016403v1
crossref_primary_10_1080_10556788_2022_2157002
informaworld_taylorfrancis_310_1080_10556788_2022_2157002
proquest_journals_2831680898
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-04
PublicationDateYYYYMMDD 2023-05-04
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-04
  day: 04
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Optimization methods & software
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
Garey M (CIT0019) 1979
CIT0014
CIT0036
CIT0013
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
CIT0039
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Vandenbussche D. (CIT0035) 2005; 102
CIT0003
CIT0025
CIT0002
CIT0024
Sherali H. (CIT0033) 2013; 31
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0007
  doi: 10.1007/s10107-015-0921-2
– ident: CIT0031
  doi: 10.1007/BF01589101
– ident: CIT0038
  doi: 10.1016/j.compchemeng.2007.05.003
– ident: CIT0039
  doi: 10.1023/A:1008293029350
– ident: CIT0013
  doi: 10.1007/s10589-007-9137-6
– ident: CIT0004
  doi: 10.1080/10556780902883184
– ident: CIT0014
  doi: 10.1007/s12532-011-0033-9
– ident: CIT0021
– ident: CIT0003
  doi: 10.1007/s10898-008-9372-0
– ident: CIT0017
  doi: 10.1080/10556788.2017.1350675
– ident: CIT0010
  doi: 10.1080/10556789908805765
– ident: CIT0011
  doi: 10.1137/080729529
– ident: CIT0028
  doi: 10.1007/s10898-012-9874-7
– ident: CIT0025
  doi: 10.1016/S0166-218X(01)00359-6
– ident: CIT0026
  doi: 10.1007/BF01580665
– ident: CIT0018
  doi: 10.1007/s10107-005-0661-9
– ident: CIT0034
  doi: 10.1023/A:1016083231326
– ident: CIT0023
– ident: CIT0022
  doi: 10.1007/BF01917102
– ident: CIT0008
  doi: 10.1287/ijoc.2016.0731
– ident: CIT0012
  doi: 10.1007/s10107-006-0080-6
– ident: CIT0005
  doi: 10.1007/s10107-008-0215-z
– ident: CIT0037
  doi: 10.1007/s10107-004-0559-y
– ident: CIT0020
– ident: CIT0027
  doi: 10.1007/s10107-012-0555-6
– ident: CIT0006
  doi: 10.1007/s10107-010-0381-7
– ident: CIT0002
  doi: 10.1007/978-3-642-33718-5_47
– ident: CIT0024
  doi: 10.1016/S0377-2217(96)00025-2
– ident: CIT0009
  doi: 10.1007/s12532-018-0133-x
– ident: CIT0029
  doi: 10.1080/10556788.2014.916287
– ident: CIT0036
  doi: 10.1007/s10107-004-0549-0
– ident: CIT0001
  doi: 10.1021/ie980666q
– ident: CIT0015
  doi: 10.1007/s101070100263
– ident: CIT0032
– ident: CIT0030
– volume: 102
  start-page: 259
  issue: 3
  year: 2005
  ident: CIT0035
  publication-title: Math. Program.
– volume-title: Computers and Intractability: A Guide to the Theory of NP-Completness
  year: 1979
  ident: CIT0019
– ident: CIT0016
  doi: 10.1080/03052159508941259
– volume: 31
  volume-title: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems
  year: 2013
  ident: CIT0033
SSID ssj0004146
Score 2.3313918
Snippet We consider the exact solution of Problem (P) which consists in minimizing a quadratic function subject to quadratic constraints. We start with an explicit...
We consider the exact solution of Problem $\QP$ which consists in minimizing a quadratic function subject to quadratic constraints. We start with an explicit...
SourceID hal
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 626
SubjectTerms Algorithms
Envelopes
Exact solutions
global optimization
Inequalities
lagrangian duality
Mathematics
Optimization
Optimization and Control
Quadratic convex relaxation
Quadratic equations
quadratic programming
semi-definite programming
sub-gradient algorithm
valid inequalities
Title Using general triangle inequalities within quadratic convex reformulation method
URI https://www.tandfonline.com/doi/abs/10.1080/10556788.2022.2157002
https://www.proquest.com/docview/2831680898
https://hal.science/hal-03016403
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEBab5KV9KD3ptmkRpW_BW0uyHPmtSw-Wkh4PGxr6ImQdSSBxS9Y96K_v6PBaYQO9XswiL5aZ-TSakWe-Qehpo4SxVtnC0ZIVFewBhTKNhhVfadG0zhjjA8W37-rFYfXmiB9NJs_z6pK-nemfV9aV_ItWYQz06qtk_0Kz64fCAPwG_cIVNAzXP9Jx_N5_HJmj93wDju74zLOA2FgrCVFwOGg97XzxpLkI7Kwhz_zHHuyM4K6m5l2pkXTuqb4HW3KeijTT7VXAyQoM93c15sweKN9TJLIXnMfv7menNj9NoDF3bzxNXG409shsY8l9nULswjezaYz6JnWRt2UwqExkwGGZdaxpnW20dWQJ3rDhMekxNO6EySCEp3QGjsl-WdJx01qnEqY7W2iHQqAApnlnvnj56eNYG5sqzIaXH6q4RPnsyiku-SdbJyE7Nuew3dizgyOyvIlupAgCzyMcbqGJ7W6j6xmv5B30IQADJ2DgARg4BwaOwMBrYOAIDHwJGDhq_i46fP1q-WJRpNYZhWa07AtCVFVTRcA7JKxizDWGOaEprxwEnMyRlu-r2pfnaw4hMudUK-1KYnlDuLGa3UPb3efO3keYtKJl1BO5CV6pirWlU5pTrohoDCFmimaDwOSXyJAiSSKeHSQsvYRlkvAUPQGxrv_r-c0X8wPpx3x8Xlcl-0amqMmlLvsATBcxKdlvJtgdVCTTal1JcKOJbzPTiAf_8eiH6Nq4anbRdn_x1T4Cr7RvHyfg_QLWw4bR
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUKHAoHSguIhW1roV6zxLGdjY8IFW3bZdUDSNwsxx-AQAFBFiF-PTNOUhYqxGGvluNo7BnPPGvmDSE_lCmc98YnIUt5IsAHJMYpCxYvbKHK4JxDoHg0yUcn4vepPJ2phcG0SsTQoSGKiHc1Gjc-RncpcXuxqSNgN4B3WTYApzWMfJJLUuVDNE6eTp5rI9sKI_gkwW-6Kp63lnnhnxbOY3bkLIfpf3d2dESHn4jtRGjyTy4H07oc2MdX7I7zybhGVts4le43ivWZfPDVF7Iyw164Tv7GdAN61hBXU-z_UZ1deQozmlJNAOEU33kvKgoDDnXN0pjm_kBBcBC27R1Gmz7WG-Tk8OfxwShpGzQklmdpnTBmRJ4ZBjEI44LzoBwPhQXMGQDW8MBKOTQ5FoFbgKFSyswaG1LmpWLSecs3yWJ1XfktQllZlDxDurBCCiN4mQZjZSYNK5RjzPXIoDsWfdPwcGjW0pt2W6Vxq3S7VT2yC4f3by6yaI_2xxrHEAXmIuX3rEfU7NnqOr6ShKaliebv_KDfKYJu7f5OQ7DGsJmJKrbnWPo7-Tg6Phrr8a_Jnx2yjB3uY46l6JPF-nbqv0IcVJffoqI_AWdK-O4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-0wEA4-4KIL9frA4zOI2x6bJqntUtTD8XEPLhTuLqR5HEWpolXEX-9M2upRERduQ5IyySQzXzrzDSHbuc6sc9pFPol5JMAGRNrmBk68MFleeGstAsV_g7R_IY7_yzaa8KEJq0QM7WuiiHBX4-G-s76NiNsJNR0BugG6S5Iu2KzdQCc5meJPPsziiAfvqZFNghEMiXBMm8Tz3TQfzNP4ZQiOHKUw_XJlBzvUmyVFK0EdfnLdfayKrnn5RO74KxHnyEzjpdK9Wq3-kjFXzpPpEe7CBXIWgg3osKatplj9oxzeOAo96kRNgOAUX3mvSgoNFjXN0BDk_kxBbpC1qRxG6yrWi-Sid3i-34-a8gyR4UlcRYxpkSaagQfCuODc55b7zADi9ABquGeF3NUppoAbAKFSysRo42PmZM6kdYYvkYnytnTLhLIiK3iCZGGZFFrwIvbayERqluWWMdsh3XZX1F3NwqFYQ27aLpXCpVLNUnXIFuzdW1_k0O7vnSpsQwyYipg_sQ7JR7dWVeGNxNcFTRT_4QNrrR6o5tQ_KHDVGJYyybOVX0y9Sf6cHfTU6dHgZJVMYXn7EGAp1shEdf_o1sEJqoqNoOavUbD3kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+general+triangle+inequalities+within+quadratic+convex+reformulation+method&rft.jtitle=Optimization+methods+%26+software&rft.au=Lambert%2C+Am%C3%A9lie&rft.date=2023-05-04&rft.pub=Taylor+%26+Francis&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=38&rft.issue=3&rft.spage=626&rft.epage=653&rft_id=info:doi/10.1080%2F10556788.2022.2157002&rft.externalDocID=2157002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon