A 3D Cell Culture Platform for Evaluating Macrophage‐Liposome Conjugates in Combination Chemotherapy

ABSTRACT Macrophage‐based drug delivery systems, such as macrophage‐liposome conjugates (Mϕ‐Lip), leverage the natural tumor‐homing ability of macrophages and offer a potential solution for overcoming biological barriers and delivering chemotherapy drugs to challenging tumor regions. However, reliab...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part A Vol. 113; no. 6; pp. e37939 - n/a
Main Authors Kuo, Chia‐Chen, Liao, Wei‐Yu, Lin, Yu‐Jung, Lee, Chau‐Hwang
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1549-3296
1552-4965
1552-4965
DOI10.1002/jbm.a.37939

Cover

Loading…
Abstract ABSTRACT Macrophage‐based drug delivery systems, such as macrophage‐liposome conjugates (Mϕ‐Lip), leverage the natural tumor‐homing ability of macrophages and offer a potential solution for overcoming biological barriers and delivering chemotherapy drugs to challenging tumor regions. However, reliable platforms to assess the tumor‐targeting efficiency, penetration capabilities, and therapeutic effectiveness of drug‐laden macrophages remain largely unavailable. In this study, we developed a three‐dimensional (3D) cell culture platform that mimics the structural and biological complexity of in vivo tumors, enabling real‐time observation and analysis of Mϕ‐Lip as they migrate, penetrate, and exert anti‐tumor effects. Beyond evaluating the delivery process, this work focuses on the rational design and optimization of dosage regimens for co‐delivering cisplatin (CDDP) and paclitaxel (Taxol) using Mϕ‐Lip. Experimental results demonstrated that the drugs encapsulated within the liposomes influenced the invasive behavior of Mϕ‐Lip, which in turn impacted their tumor‐killing efficiency. Using this 3D cell culture platform, we identified optimal dosage regimens for co‐delivering combination chemotherapy drugs through the Mϕ‐Lip. This newly developed approach provides a reliable and versatile tool not only for evaluating but also for fine‐tuning cell‐based drug delivery strategies. It holds significant promise for advancing targeted chemotherapy strategies and improving therapeutic outcomes for solid tumors.
AbstractList ABSTRACT Macrophage‐based drug delivery systems, such as macrophage‐liposome conjugates (Mϕ‐Lip), leverage the natural tumor‐homing ability of macrophages and offer a potential solution for overcoming biological barriers and delivering chemotherapy drugs to challenging tumor regions. However, reliable platforms to assess the tumor‐targeting efficiency, penetration capabilities, and therapeutic effectiveness of drug‐laden macrophages remain largely unavailable. In this study, we developed a three‐dimensional (3D) cell culture platform that mimics the structural and biological complexity of in vivo tumors, enabling real‐time observation and analysis of Mϕ‐Lip as they migrate, penetrate, and exert anti‐tumor effects. Beyond evaluating the delivery process, this work focuses on the rational design and optimization of dosage regimens for co‐delivering cisplatin (CDDP) and paclitaxel (Taxol) using Mϕ‐Lip. Experimental results demonstrated that the drugs encapsulated within the liposomes influenced the invasive behavior of Mϕ‐Lip, which in turn impacted their tumor‐killing efficiency. Using this 3D cell culture platform, we identified optimal dosage regimens for co‐delivering combination chemotherapy drugs through the Mϕ‐Lip. This newly developed approach provides a reliable and versatile tool not only for evaluating but also for fine‐tuning cell‐based drug delivery strategies. It holds significant promise for advancing targeted chemotherapy strategies and improving therapeutic outcomes for solid tumors.
Macrophage‐based drug delivery systems, such as macrophage‐liposome conjugates (Mϕ‐Lip), leverage the natural tumor‐homing ability of macrophages and offer a potential solution for overcoming biological barriers and delivering chemotherapy drugs to challenging tumor regions. However, reliable platforms to assess the tumor‐targeting efficiency, penetration capabilities, and therapeutic effectiveness of drug‐laden macrophages remain largely unavailable. In this study, we developed a three‐dimensional (3D) cell culture platform that mimics the structural and biological complexity of in vivo tumors, enabling real‐time observation and analysis of Mϕ‐Lip as they migrate, penetrate, and exert anti‐tumor effects. Beyond evaluating the delivery process, this work focuses on the rational design and optimization of dosage regimens for co‐delivering cisplatin (CDDP) and paclitaxel (Taxol) using Mϕ‐Lip. Experimental results demonstrated that the drugs encapsulated within the liposomes influenced the invasive behavior of Mϕ‐Lip, which in turn impacted their tumor‐killing efficiency. Using this 3D cell culture platform, we identified optimal dosage regimens for co‐delivering combination chemotherapy drugs through the Mϕ‐Lip. This newly developed approach provides a reliable and versatile tool not only for evaluating but also for fine‐tuning cell‐based drug delivery strategies. It holds significant promise for advancing targeted chemotherapy strategies and improving therapeutic outcomes for solid tumors.
Macrophage-based drug delivery systems, such as macrophage-liposome conjugates (Mϕ-Lip), leverage the natural tumor-homing ability of macrophages and offer a potential solution for overcoming biological barriers and delivering chemotherapy drugs to challenging tumor regions. However, reliable platforms to assess the tumor-targeting efficiency, penetration capabilities, and therapeutic effectiveness of drug-laden macrophages remain largely unavailable. In this study, we developed a three-dimensional (3D) cell culture platform that mimics the structural and biological complexity of in vivo tumors, enabling real-time observation and analysis of Mϕ-Lip as they migrate, penetrate, and exert anti-tumor effects. Beyond evaluating the delivery process, this work focuses on the rational design and optimization of dosage regimens for co-delivering cisplatin (CDDP) and paclitaxel (Taxol) using Mϕ-Lip. Experimental results demonstrated that the drugs encapsulated within the liposomes influenced the invasive behavior of Mϕ-Lip, which in turn impacted their tumor-killing efficiency. Using this 3D cell culture platform, we identified optimal dosage regimens for co-delivering combination chemotherapy drugs through the Mϕ-Lip. This newly developed approach provides a reliable and versatile tool not only for evaluating but also for fine-tuning cell-based drug delivery strategies. It holds significant promise for advancing targeted chemotherapy strategies and improving therapeutic outcomes for solid tumors.Macrophage-based drug delivery systems, such as macrophage-liposome conjugates (Mϕ-Lip), leverage the natural tumor-homing ability of macrophages and offer a potential solution for overcoming biological barriers and delivering chemotherapy drugs to challenging tumor regions. However, reliable platforms to assess the tumor-targeting efficiency, penetration capabilities, and therapeutic effectiveness of drug-laden macrophages remain largely unavailable. In this study, we developed a three-dimensional (3D) cell culture platform that mimics the structural and biological complexity of in vivo tumors, enabling real-time observation and analysis of Mϕ-Lip as they migrate, penetrate, and exert anti-tumor effects. Beyond evaluating the delivery process, this work focuses on the rational design and optimization of dosage regimens for co-delivering cisplatin (CDDP) and paclitaxel (Taxol) using Mϕ-Lip. Experimental results demonstrated that the drugs encapsulated within the liposomes influenced the invasive behavior of Mϕ-Lip, which in turn impacted their tumor-killing efficiency. Using this 3D cell culture platform, we identified optimal dosage regimens for co-delivering combination chemotherapy drugs through the Mϕ-Lip. This newly developed approach provides a reliable and versatile tool not only for evaluating but also for fine-tuning cell-based drug delivery strategies. It holds significant promise for advancing targeted chemotherapy strategies and improving therapeutic outcomes for solid tumors.
Macrophage‐based drug delivery systems, such as macrophage‐liposome conjugates (Mϕ‐Lip), leverage the natural tumor‐homing ability of macrophages and offer a potential solution for overcoming biological barriers and delivering chemotherapy drugs to challenging tumor regions. However, reliable platforms to assess the tumor‐targeting efficiency, penetration capabilities, and therapeutic effectiveness of drug‐laden macrophages remain largely unavailable. In this study, we developed a three‐dimensional (3D) cell culture platform that mimics the structural and biological complexity of in vivo tumors, enabling real‐time observation and analysis of Mϕ‐Lip as they migrate, penetrate, and exert anti‐tumor effects. Beyond evaluating the delivery process, this work focuses on the rational design and optimization of dosage regimens for co‐delivering cisplatin (CDDP) and paclitaxel (Taxol) using Mϕ‐Lip. Experimental results demonstrated that the drugs encapsulated within the liposomes influenced the invasive behavior of Mϕ‐Lip, which in turn impacted their tumor‐killing efficiency. Using this 3D cell culture platform, we identified optimal dosage regimens for co‐delivering combination chemotherapy drugs through the Mϕ‐Lip. This newly developed approach provides a reliable and versatile tool not only for evaluating but also for fine‐tuning cell‐based drug delivery strategies. It holds significant promise for advancing targeted chemotherapy strategies and improving therapeutic outcomes for solid tumors.
Author Kuo, Chia‐Chen
Lee, Chau‐Hwang
Liao, Wei‐Yu
Lin, Yu‐Jung
Author_xml – sequence: 1
  givenname: Chia‐Chen
  surname: Kuo
  fullname: Kuo, Chia‐Chen
  organization: Academia Sinica
– sequence: 2
  givenname: Wei‐Yu
  surname: Liao
  fullname: Liao, Wei‐Yu
  organization: College of Medicine, National Taiwan University
– sequence: 3
  givenname: Yu‐Jung
  orcidid: 0000-0002-2507-3551
  surname: Lin
  fullname: Lin, Yu‐Jung
  email: linyujung@gate.sinica.edu.tw
  organization: Academia Sinica
– sequence: 4
  givenname: Chau‐Hwang
  orcidid: 0000-0001-5013-7062
  surname: Lee
  fullname: Lee, Chau‐Hwang
  email: clee@gate.sinica.edu.tw
  organization: National Yang Ming Chiao Tung University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40439616$$D View this record in MEDLINE/PubMed
BookMark eNp90c9P2zAUB3BrKqKFceI-WdoFaUrnH7FTH0soDFS0Hbaz5bgvbaokzuwE1Bt_wv5G_hLclXHYgYv9LH1s-b3vCRq1rgWEzimZUkLY123RTM2UZ4qrD2hChWBJqqQY7etUJZwpOUYnIWwjlkSwYzROScqVpHKCyjnmVziHusb5UPeDB_yjNn3pfIPjghcPph5MX7VrfG-sd93GrOH56c-y6lxwDeDctdthbXoIuGrjqSmqNnoX6w00rt-AN93uIzoqTR3g7HU_Rb-uFz_zb8ny-81tPl8mljOiEsuyYkZFyUvJaSZMkYIAqUxpVzKzvGCrQqhylolMrVhshhBpJYAk1qQspZafoovDu513vwcIvW6qYGN3pgU3BM0Z5ZIywmmkn_-jWzf4Nv4uKjZTmZRURPXpVQ1FAyvd-aoxfqf_TTCCLwcQhxOCh_KNUKL3-eiYjzb6bz5Rs4N-rGrYvUf13eX9_HDpBTorkl8
Cites_doi 10.1186/s12929-019-0568-z
10.1016/j.msec.2016.11.073
10.3389/fonc.2021.786913
10.1016/j.addr.2017.03.001
10.1002/smll.201601282
10.1016/j.addr.2022.114394
10.1038/nrc1893
10.1016/j.ymeth.2021.05.004
10.1200/JCO.2005.07.172
10.1016/j.mtsust.2020.100055
10.1039/C5NR07796F
10.1002/adma.201805557
10.1016/j.jconrel.2014.12.018
10.1002/adhm.202201784
10.1016/j.addr.2022.114449
10.1126/sciadv.aas8998
10.1016/j.jconrel.2006.09.007
10.1038/nature01451
10.1080/10717544.2018.1502839
10.1038/s41392-021-00544-0
10.3389/fimmu.2017.00693
10.1016/j.bioactmat.2024.04.004
10.1002/ijc.33127
10.1371/journal.pone.0252197
10.1016/j.tips.2022.03.014
10.1186/s12885-015-1546-9
10.1016/j.actbio.2022.10.009
10.1016/j.biomaterials.2014.10.073
10.1126/science.adg6276
10.1155/2011/629234
10.1021/acsnano.1c11578
10.1016/j.biopha.2024.117161
10.1021/jacs.7b08440
10.1016/j.biomaterials.2012.10.061
10.1016/S0731-7085(97)00233-1
10.1126/science.aaw6985
10.1063/5.0115464
10.3390/cancers14010190
10.1177/1533033820945821
10.1016/j.biomaterials.2021.120670
ContentType Journal Article
Copyright 2025 Wiley Periodicals LLC.
Copyright_xml – notice: 2025 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/jbm.a.37939
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4965
EndPage n/a
ExternalDocumentID 40439616
10_1002_jbm_a_37939
JBMA37939
Genre researchArticle
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  funderid: MOST 109‐2112‐M‐001‐030‐MY3
– fundername: Academia Sinica
  funderid: AS‐IR‐113‐01
– fundername: Academia Sinica
  grantid: AS-IR-113-01
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 109-2112-M-001-030-MY3
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
1ZS
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WIH
WIK
WJL
WQJ
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
1OB
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3209-c27b815f3f63175ab4e5e69afcd67c3b2db59f87579d2260006c6ee60ca4241c3
IEDL.DBID DR2
ISSN 1549-3296
1552-4965
IngestDate Fri Jul 11 17:12:11 EDT 2025
Mon Aug 04 07:40:36 EDT 2025
Mon Jul 21 06:06:20 EDT 2025
Thu Aug 14 00:04:19 EDT 2025
Wed Jun 18 09:20:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 3D cell culture
macrophage
liposome
combination chemotherapy
Language English
License 2025 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3209-c27b815f3f63175ab4e5e69afcd67c3b2db59f87579d2260006c6ee60ca4241c3
Notes This work was supported by the Ministry of Science and Technology, Taiwan (Grant no. MOST 109‐2112‐M‐001‐030‐MY3), and Academia Sinica (Grant no. AS‐IR‐113‐01).
Funding
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5013-7062
0000-0002-2507-3551
PMID 40439616
PQID 3228976615
PQPubID 2034572
PageCount 10
ParticipantIDs proquest_miscellaneous_3213612031
proquest_journals_3228976615
pubmed_primary_40439616
crossref_primary_10_1002_jbm_a_37939
wiley_primary_10_1002_jbm_a_37939_JBMA37939
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Mount Laurel
PublicationTitle Journal of biomedical materials research. Part A
PublicationTitleAlternate J Biomed Mater Res A
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2022; 199
2021; 11–12
2015; 15
2021; 6
2017; 8
2015; 39
2018; 140
2023; 12
2021; 269
2023; 7
2015; 201
2023; 165
2006; 6
2022; 43
2020; 147
2006; 116
2024; 38
2017; 115
2019; 364
2005; 23
2016; 12
2018; 25
2020; 19
2022; 188
2011; 2011
2021; 16
1998; 17
2022; 187
2017; 71
2018; 4
2013; 34
2019; 26
2022; 14
2023; 379
2018; 30
2024; 178
2022; 11
2003; 422
2016; 8
2022; 16
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 71
  start-page: 1327
  year: 2017
  end-page: 1341
  article-title: Liposome‐Based Drug Co‐Delivery Systems in Cancer Cells
  publication-title: Materials Science & Engineering, C: Materials for Biological Applications
– volume: 8
  start-page: 693
  year: 2017
  article-title: Macrophage Polarization Contributes to the Anti‐Tumoral Efficacy of Mesoporous Nanovectors Loaded with Albumin‐Bound Paclitaxel
  publication-title: Frontiers in Immunology
– volume: 23
  start-page: 190
  year: 2005
  end-page: 196
  article-title: Single‐Agent Versus Combination Chemotherapy in Advanced Non–Small‐Cell Lung Cancer: The Cancer and Leukemia Group B (Study 9730)
  publication-title: Journal of Clinical Oncology
– volume: 140
  start-page: 1199
  year: 2018
  end-page: 1202
  article-title: General and Facile Coating of Single Cells Mild Reduction
  publication-title: Journal of the American Chemical Society
– volume: 422
  start-page: 37
  year: 2003
  end-page: 44
  article-title: Regulated Portals of Entry into the Cell
  publication-title: Nature
– volume: 147
  start-page: 2587
  year: 2020
  end-page: 2596
  article-title: Autophagy in Fibroblasts Induced by Cigarette Smoke Extract Promotes Invasion in Lung Cancer Cells
  publication-title: International Journal of Cancer
– volume: 38
  start-page: 55
  year: 2024
  end-page: 72
  article-title: Macrophage Based Drug Delivery: Key Challenges and Strategies
  publication-title: Bioactive Materials
– volume: 199
  start-page: 9
  year: 2022
  end-page: 15
  article-title: Methods for Preparation of Niosomes: A Focus on Thin‐Film Hydration Method
  publication-title: Methods
– volume: 14
  start-page: 190
  year: 2022
  article-title: 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti‐Cancer Drugs
  publication-title: Cancers
– volume: 39
  start-page: 131
  year: 2015
  end-page: 144
  article-title: Mulberry‐Like Dual‐Drug Complicated Nanocarriers Assembled With Apogossypolone Amphiphilic Starch Micelles and Doxorubicin Hyaluronic Acid Nanoparticles for Tumor Combination and Targeted Therapy
  publication-title: Biomaterials
– volume: 30
  year: 2018
  article-title: Nanoparticle‐Laden Macrophages for Tumor‐Tropic Drug Delivery
  publication-title: Advanced Materials
– volume: 16
  year: 2021
  article-title: HAI‐1 Is an Independent Predictor of Lung Cancer Mortality and Is Required for M1 Macrophage Polarization
  publication-title: PLoS One
– volume: 34
  start-page: 1372
  year: 2013
  end-page: 1382
  article-title: Cellular Uptake, Antitumor Response and Tumor Penetration of Cisplatin‐Loaded Milk Protein Nanoparticles
  publication-title: Biomaterials
– volume: 4
  start-page: eaas8998
  year: 2018
  article-title: Hydrogel Microenvironments for Cancer Spheroid Growth and Drug Screening
  publication-title: Science Advances
– volume: 43
  start-page: 569
  year: 2022
  end-page: 581
  article-title: 3D Cell Cultures Toward Quantitative High‐Throughput Drug Screening
  publication-title: Trends in Pharmacological Sciences
– volume: 19
  year: 2020
  article-title: Paclitaxel Promotes Tumor‐Infiltrating Macrophages in Breast Cancer
  publication-title: Technology in Cancer Research & Treatment
– volume: 26
  start-page: 78
  year: 2019
  article-title: Tumor‐Associated Macrophages: An Accomplice in Solid Tumor Progression
  publication-title: Journal of Biomedical Science
– volume: 2011
  year: 2011
  article-title: A Liposomal Formulation Able to Incorporate a High Content of Paclitaxel and Exert Promising Anticancer Effect
  publication-title: Journal of Drug Delivery
– volume: 379
  start-page: 127
  year: 2023
  end-page: 128
  article-title: FDA No Longer Has to Require Animal Testing for New Drugs
  publication-title: Science
– volume: 188
  year: 2022
  article-title: Strategies to Enhance Drug Delivery to Solid Tumors by Harnessing the EPR Effects and Alternative Targeting Mechanisms
  publication-title: Advanced Drug Delivery Reviews
– volume: 11–12
  start-page: 100055
  year: 2021
  article-title: Macrophage‐Mediated Cancer Drug Delivery
  publication-title: Materials Today Sustainability
– volume: 17
  start-page: 1243
  year: 1998
  end-page: 1247
  article-title: A Rapid Reversed Phase High Performance Liquid Chromatographic Method for the Determination of Docetaxel (Taxotere) in Human Plasma Using a Column Switching Technique
  publication-title: Journal of Pharmaceutical and Biomedical Analysis
– volume: 201
  start-page: 78
  year: 2015
  end-page: 89
  article-title: Improving Drug Delivery to Solid Tumors: Priming the Tumor Microenvironment
  publication-title: Journal of Controlled Release
– volume: 8
  start-page: 12544
  year: 2016
  end-page: 12552
  article-title: Enhanced Performance of Macrophage‐Encapsulated Nanoparticle Albumin‐Bound‐Paclitaxel in Hypo‐Perfused Cancer Lesions
  publication-title: Nanoscale
– volume: 7
  year: 2023
  article-title: A 3D Culture System for Evaluating the Combined Effects of Cisplatin and Anti‐Fibrotic Drugs on the Growth and Invasion of Lung Cancer Cells Co‐Cultured With Fibroblasts
  publication-title: APL Bioengineering
– volume: 269
  year: 2021
  article-title: In Situ Poly I:C Released From Living Cell Drug Nanocarriers for Macrophage‐Mediated Antitumor Immunotherapy
  publication-title: Biomaterials
– volume: 25
  start-page: 1922
  year: 2018
  end-page: 1931
  article-title: Primary M1 Macrophages as Multifunctional Carrier Combined With PLGA Nanoparticle Delivering Anticancer Drug for Efficient Glioma Therapy
  publication-title: Drug Delivery
– volume: 165
  start-page: 153
  year: 2023
  end-page: 167
  article-title: 3D Microengineered Vascularized Tumor Spheroids for Drug Delivery and Efficacy Testing
  publication-title: Acta Biomaterialia
– volume: 11
  year: 2022
  article-title: Engineering Macrophages Nanotechnology and Genetic Manipulation for Cancer Therapy
  publication-title: Frontiers in Oncology
– volume: 6
  start-page: 583
  year: 2006
  end-page: 592
  article-title: Drug Penetration in Solid Tumours
  publication-title: Nature Reviews Cancer
– volume: 115
  start-page: 23
  year: 2017
  end-page: 45
  article-title: Combination Antitumor Therapy with Targeted Dual‐Nanomedicines
  publication-title: Advanced Drug Delivery Reviews
– volume: 12
  year: 2023
  article-title: New Strategy for Promoting Vascularization in Tumor Spheroids in a Microfluidic Assay
  publication-title: Advanced Healthcare Materials
– volume: 15
  start-page: 577
  year: 2015
  article-title: M1 and M2 Macrophages Derived From THP‐1 Cells Differentially Modulate the Response of Cancer Cells to Etoposide
  publication-title: BMC Cancer
– volume: 16
  start-page: 6080
  year: 2022
  end-page: 6092
  article-title: Macrophages Actively Transport Nanoparticles in Tumors After Extravasation
  publication-title: ACS Nano
– volume: 6
  start-page: 153
  year: 2021
  article-title: Extracellular Matrix and Its Therapeutic Potential for Cancer Treatment
  publication-title: Signal Transduction and Targeted Therapy
– volume: 178
  start-page: 117161
  year: 2024
  article-title: Potential Applications of Macrophages in Cancer Immunotherapy
  publication-title: Biomedicine & Pharmacotherapy
– volume: 12
  start-page: 5108
  year: 2016
  end-page: 5119
  article-title: Macrophages as Active Nanocarriers for Targeted Early and Adjuvant Cancer Chemotherapy
  publication-title: Small
– volume: 187
  year: 2022
  article-title: Cell‐Based Drug Delivery Systems and Their Fate
  publication-title: Advanced Drug Delivery Reviews
– volume: 364
  start-page: 952
  year: 2019
  end-page: 955
  article-title: Cancer Modeling Meets Human Organoid Technology
  publication-title: Science
– volume: 116
  start-page: 275
  year: 2006
  end-page: 284
  article-title: Simultaneous Delivery of Doxorubicin and GG918 (Elacridar) by New Polymer‐Lipid Hybrid Nanoparticles (PLN) for Enhanced Treatment of Multidrug‐Resistant Breast Cancer
  publication-title: Journal of Controlled Release
– ident: e_1_2_9_7_1
  doi: 10.1186/s12929-019-0568-z
– ident: e_1_2_9_13_1
  doi: 10.1016/j.msec.2016.11.073
– ident: e_1_2_9_27_1
  doi: 10.3389/fonc.2021.786913
– ident: e_1_2_9_4_1
  doi: 10.1016/j.addr.2017.03.001
– ident: e_1_2_9_9_1
  doi: 10.1002/smll.201601282
– ident: e_1_2_9_33_1
  doi: 10.1016/j.addr.2022.114394
– ident: e_1_2_9_37_1
  doi: 10.1038/nrc1893
– ident: e_1_2_9_22_1
  doi: 10.1016/j.ymeth.2021.05.004
– ident: e_1_2_9_15_1
  doi: 10.1200/JCO.2005.07.172
– ident: e_1_2_9_12_1
  doi: 10.1016/j.mtsust.2020.100055
– ident: e_1_2_9_31_1
  doi: 10.1039/C5NR07796F
– ident: e_1_2_9_11_1
  doi: 10.1002/adma.201805557
– ident: e_1_2_9_38_1
  doi: 10.1016/j.jconrel.2014.12.018
– ident: e_1_2_9_41_1
  doi: 10.1002/adhm.202201784
– ident: e_1_2_9_5_1
  doi: 10.1016/j.addr.2022.114449
– ident: e_1_2_9_16_1
  doi: 10.1126/sciadv.aas8998
– ident: e_1_2_9_2_1
  doi: 10.1016/j.jconrel.2006.09.007
– ident: e_1_2_9_36_1
  doi: 10.1038/nature01451
– ident: e_1_2_9_10_1
  doi: 10.1080/10717544.2018.1502839
– ident: e_1_2_9_6_1
  doi: 10.1038/s41392-021-00544-0
– ident: e_1_2_9_30_1
  doi: 10.3389/fimmu.2017.00693
– ident: e_1_2_9_34_1
  doi: 10.1016/j.bioactmat.2024.04.004
– ident: e_1_2_9_39_1
  doi: 10.1002/ijc.33127
– ident: e_1_2_9_23_1
  doi: 10.1371/journal.pone.0252197
– ident: e_1_2_9_19_1
  doi: 10.1016/j.tips.2022.03.014
– ident: e_1_2_9_24_1
  doi: 10.1186/s12885-015-1546-9
– ident: e_1_2_9_40_1
  doi: 10.1016/j.actbio.2022.10.009
– ident: e_1_2_9_3_1
  doi: 10.1016/j.biomaterials.2014.10.073
– ident: e_1_2_9_21_1
  doi: 10.1126/science.adg6276
– ident: e_1_2_9_29_1
  doi: 10.1155/2011/629234
– ident: e_1_2_9_35_1
  doi: 10.1021/acsnano.1c11578
– ident: e_1_2_9_8_1
  doi: 10.1016/j.biopha.2024.117161
– ident: e_1_2_9_28_1
  doi: 10.1021/jacs.7b08440
– ident: e_1_2_9_25_1
  doi: 10.1016/j.biomaterials.2012.10.061
– ident: e_1_2_9_26_1
  doi: 10.1016/S0731-7085(97)00233-1
– ident: e_1_2_9_17_1
  doi: 10.1126/science.aaw6985
– ident: e_1_2_9_20_1
  doi: 10.1063/5.0115464
– ident: e_1_2_9_18_1
  doi: 10.3390/cancers14010190
– ident: e_1_2_9_32_1
  doi: 10.1177/1533033820945821
– ident: e_1_2_9_14_1
  doi: 10.1016/j.biomaterials.2021.120670
SSID ssj0026052
Score 2.4563985
Snippet ABSTRACT Macrophage‐based drug delivery systems, such as macrophage‐liposome conjugates (Mϕ‐Lip), leverage the natural tumor‐homing ability of macrophages and...
Macrophage‐based drug delivery systems, such as macrophage‐liposome conjugates (Mϕ‐Lip), leverage the natural tumor‐homing ability of macrophages and offer a...
Macrophage-based drug delivery systems, such as macrophage-liposome conjugates (Mϕ-Lip), leverage the natural tumor-homing ability of macrophages and offer a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e37939
SubjectTerms 3D cell culture
Animals
Antineoplastic Agents - pharmacology
Antineoplastic Combined Chemotherapy Protocols - pharmacology
Cell culture
Cell Culture Techniques, Three Dimensional - methods
Cell Line, Tumor
Cell migration
Chemotherapy
Cisplatin
Cisplatin - administration & dosage
Cisplatin - pharmacology
combination chemotherapy
Conjugates
Design optimization
Dosage
Drug delivery
Drug Delivery Systems
Drug dosages
Homing behavior
Humans
liposome
Liposomes
Liposomes - chemistry
macrophage
Macrophages
Macrophages - cytology
Macrophages - metabolism
Mice
Paclitaxel
Paclitaxel - administration & dosage
Paclitaxel - pharmacology
Solid tumors
Tumors
Title A 3D Cell Culture Platform for Evaluating Macrophage‐Liposome Conjugates in Combination Chemotherapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.37939
https://www.ncbi.nlm.nih.gov/pubmed/40439616
https://www.proquest.com/docview/3228976615
https://www.proquest.com/docview/3213612031
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA7iSQ_uS92I4E06dpImY47jqIioiCh4K0maus20YmcOevIn-Bv9Jb6X1nEDQS-lJSlt85Z-Sd77HiEbMedOaCVCJzIbxplyIaBwFQrbUkLHxkrrA2RP5MFFfHgpLuvYHMyFqfghhgtuaBneX6OBa1NufZCG3ppeQzc46Bem72G0FkKisyF5FAJ1v9cJM6CQMyXr7Dxo2fp079f_0Q-Q-RWz-p_O_mRVWbX0XIUYa3LXGPRNwz59Y3L89_dMkYkajtJ2pT_TZMTlM2T8E0nhLMnalO_Sjut2acW_6ehpV_cR7FI40L2aLzy_oscaC4Jdg4t6fX45urkvyqLnaKfIbwe4WlfSmxyuejAZ9_pAka2gzgB7nCMX-3vnnYOwrs4QWs4iFVrWMttNkfFMIgbRJnbCSaUzm8qW5YalRqgM-fJVypAGP5JWOicjq2OADZbPk9G8yN0ioYBCeaRSA2CwFWcs0jAnU9qlOuXIohwHZONdRsl9RcKRVHTLLIFhS3Tihy0gK-_yS2pLLBNwWNsAuQC4BWR92Aw2hBsjOnfFAPuA-jQZ-LeALFRyHz4H2YeUbMqAbHrp_fYCyeHOcdufLf2p9zIZY1hW2C_urJDR_sPArQLW6Zs1r9Jv73T5uQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4a2wPwwMZthF0w0t5QujSO3fmxdJvKaCeENmlvlu04bKNNJto-wBM_gd-4X7JznLRsTEKClyiRHcXxufjzsf0dgJ2Mcy-MErEXhYuzQvkYUbiKhesoYTLrpAsbZI9l_zQ7OhNnTcCNzsLU_BCLgBtZRvDXZOAUkN79zRp6acct0-KoYOoBrFBOb8pgsP95QR9FUD2sduIcKOapks35PCzZvfXy3RHpHsy8i1rDsHO4Cnre4Hq3ydfWbGpb7scfXI7__0dr8KRBpKxbq9BTWPLlM3h8i6fwORRdxvdZz49GrKbg9OzTyEwJ7zK8sIOGMrz8woaGcoKdo5e6_vlrcHFVTaqxZ72qvJxRwG7CLkp8GuN8PKgEI8KC5hDY9xdwenhw0uvHTYKG2PE0UbFLO3avLQpeSIIhxmZeeKlM4XLZcdymuRWqIMp8lafEhJ9IJ72XiTMZIgfHX8JyWZX-FTAEojxRuUU82MmKNDE4LVPG5ybnRKScRbAzF5K-qnk4dM24nGrsNm106LYINucC1I0xTjT6rD1EXYjdIni7KEYzorURU_pqRnXaHMEeurgI1mvBL75DBERKtmUE74L4_tYAffR-2A13r_-p9ht42D8ZDvTgw_HHDXiUUpbhEOvZhOXpt5nfQugztdtBv28AgXz90w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHUCQEB96PQAEj9YayzcaPrY_LtqtS2qpCVOrNsh0bWnaTFbt7gBMfgc_IJ2HGSZcWJCS4RInsKIntmfz8-g_AhuA8SKtlHmT0uYg65EjhOpd-oKUVziufFsgeqt1jsXciT7q1ObQXptWHWA24kWUkf00GPqvi5i_R0DM37dkex_alr8I1odBciInerdSjiNTTZCd2gXJeatVtz8OUzQs3X_4h_UGZl6E1_XXGt9vQqvMkVkiLTT71lgvX819_k3L87w-6A7c6HmXDtgHdhSuhvgc3L6gU3oc4ZHybjcJkwloBzsCOJnZBtMvwwHY6wfD6AzuwFBHsI_qoH9--75_OmnkzDWzU1GdLGq6bs9Mar6bYG08NgpFcQbcF7MsDOB7vvB_t5l14htzzstC5Lwduqy8jj4ogxDoRZFDaRl-pgeeurJzUkQTzdVWSDn6hvApBFd4K5AbPH8Ja3dThMTDEUF7oyiENDkQsC4udMm1DZStOMsoig43zOjKzVoXDtHrLpcFiM9akYstg_bz-TGeKc4MeawuZC8ktg5erZDQimhmxdWiWlKfPEfXQwWXwqK331XNIfkirvsrgVaq9v72A2Xt9MExnT_4p9wu4frQ9NvtvDt8-hRslhRhOAz3rsLb4vAzPkHsW7nlq3T8BqOD8iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D+Cell+Culture+Platform+for+Evaluating+Macrophage%E2%80%90Liposome+Conjugates+in+Combination+Chemotherapy&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Kuo%2C+Chia%E2%80%90Chen&rft.au=Liao%2C+Wei%E2%80%90Yu&rft.au=Lin%2C+Yu%E2%80%90Jung&rft.au=Lee%2C+Chau%E2%80%90Hwang&rft.date=2025-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1549-3296&rft.eissn=1552-4965&rft.volume=113&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fjbm.a.37939&rft.externalDBID=10.1002%252Fjbm.a.37939&rft.externalDocID=JBMA37939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon