A 3D Cell Culture Platform for Evaluating Macrophage‐Liposome Conjugates in Combination Chemotherapy
ABSTRACT Macrophage‐based drug delivery systems, such as macrophage‐liposome conjugates (Mϕ‐Lip), leverage the natural tumor‐homing ability of macrophages and offer a potential solution for overcoming biological barriers and delivering chemotherapy drugs to challenging tumor regions. However, reliab...
Saved in:
Published in | Journal of biomedical materials research. Part A Vol. 113; no. 6; pp. e37939 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1549-3296 1552-4965 1552-4965 |
DOI | 10.1002/jbm.a.37939 |
Cover
Loading…
Abstract | ABSTRACT
Macrophage‐based drug delivery systems, such as macrophage‐liposome conjugates (Mϕ‐Lip), leverage the natural tumor‐homing ability of macrophages and offer a potential solution for overcoming biological barriers and delivering chemotherapy drugs to challenging tumor regions. However, reliable platforms to assess the tumor‐targeting efficiency, penetration capabilities, and therapeutic effectiveness of drug‐laden macrophages remain largely unavailable. In this study, we developed a three‐dimensional (3D) cell culture platform that mimics the structural and biological complexity of in vivo tumors, enabling real‐time observation and analysis of Mϕ‐Lip as they migrate, penetrate, and exert anti‐tumor effects. Beyond evaluating the delivery process, this work focuses on the rational design and optimization of dosage regimens for co‐delivering cisplatin (CDDP) and paclitaxel (Taxol) using Mϕ‐Lip. Experimental results demonstrated that the drugs encapsulated within the liposomes influenced the invasive behavior of Mϕ‐Lip, which in turn impacted their tumor‐killing efficiency. Using this 3D cell culture platform, we identified optimal dosage regimens for co‐delivering combination chemotherapy drugs through the Mϕ‐Lip. This newly developed approach provides a reliable and versatile tool not only for evaluating but also for fine‐tuning cell‐based drug delivery strategies. It holds significant promise for advancing targeted chemotherapy strategies and improving therapeutic outcomes for solid tumors. |
---|---|
AbstractList | ABSTRACT
Macrophage‐based drug delivery systems, such as macrophage‐liposome conjugates (Mϕ‐Lip), leverage the natural tumor‐homing ability of macrophages and offer a potential solution for overcoming biological barriers and delivering chemotherapy drugs to challenging tumor regions. However, reliable platforms to assess the tumor‐targeting efficiency, penetration capabilities, and therapeutic effectiveness of drug‐laden macrophages remain largely unavailable. In this study, we developed a three‐dimensional (3D) cell culture platform that mimics the structural and biological complexity of in vivo tumors, enabling real‐time observation and analysis of Mϕ‐Lip as they migrate, penetrate, and exert anti‐tumor effects. Beyond evaluating the delivery process, this work focuses on the rational design and optimization of dosage regimens for co‐delivering cisplatin (CDDP) and paclitaxel (Taxol) using Mϕ‐Lip. Experimental results demonstrated that the drugs encapsulated within the liposomes influenced the invasive behavior of Mϕ‐Lip, which in turn impacted their tumor‐killing efficiency. Using this 3D cell culture platform, we identified optimal dosage regimens for co‐delivering combination chemotherapy drugs through the Mϕ‐Lip. This newly developed approach provides a reliable and versatile tool not only for evaluating but also for fine‐tuning cell‐based drug delivery strategies. It holds significant promise for advancing targeted chemotherapy strategies and improving therapeutic outcomes for solid tumors. Macrophage‐based drug delivery systems, such as macrophage‐liposome conjugates (Mϕ‐Lip), leverage the natural tumor‐homing ability of macrophages and offer a potential solution for overcoming biological barriers and delivering chemotherapy drugs to challenging tumor regions. However, reliable platforms to assess the tumor‐targeting efficiency, penetration capabilities, and therapeutic effectiveness of drug‐laden macrophages remain largely unavailable. In this study, we developed a three‐dimensional (3D) cell culture platform that mimics the structural and biological complexity of in vivo tumors, enabling real‐time observation and analysis of Mϕ‐Lip as they migrate, penetrate, and exert anti‐tumor effects. Beyond evaluating the delivery process, this work focuses on the rational design and optimization of dosage regimens for co‐delivering cisplatin (CDDP) and paclitaxel (Taxol) using Mϕ‐Lip. Experimental results demonstrated that the drugs encapsulated within the liposomes influenced the invasive behavior of Mϕ‐Lip, which in turn impacted their tumor‐killing efficiency. Using this 3D cell culture platform, we identified optimal dosage regimens for co‐delivering combination chemotherapy drugs through the Mϕ‐Lip. This newly developed approach provides a reliable and versatile tool not only for evaluating but also for fine‐tuning cell‐based drug delivery strategies. It holds significant promise for advancing targeted chemotherapy strategies and improving therapeutic outcomes for solid tumors. Macrophage-based drug delivery systems, such as macrophage-liposome conjugates (Mϕ-Lip), leverage the natural tumor-homing ability of macrophages and offer a potential solution for overcoming biological barriers and delivering chemotherapy drugs to challenging tumor regions. However, reliable platforms to assess the tumor-targeting efficiency, penetration capabilities, and therapeutic effectiveness of drug-laden macrophages remain largely unavailable. In this study, we developed a three-dimensional (3D) cell culture platform that mimics the structural and biological complexity of in vivo tumors, enabling real-time observation and analysis of Mϕ-Lip as they migrate, penetrate, and exert anti-tumor effects. Beyond evaluating the delivery process, this work focuses on the rational design and optimization of dosage regimens for co-delivering cisplatin (CDDP) and paclitaxel (Taxol) using Mϕ-Lip. Experimental results demonstrated that the drugs encapsulated within the liposomes influenced the invasive behavior of Mϕ-Lip, which in turn impacted their tumor-killing efficiency. Using this 3D cell culture platform, we identified optimal dosage regimens for co-delivering combination chemotherapy drugs through the Mϕ-Lip. This newly developed approach provides a reliable and versatile tool not only for evaluating but also for fine-tuning cell-based drug delivery strategies. It holds significant promise for advancing targeted chemotherapy strategies and improving therapeutic outcomes for solid tumors.Macrophage-based drug delivery systems, such as macrophage-liposome conjugates (Mϕ-Lip), leverage the natural tumor-homing ability of macrophages and offer a potential solution for overcoming biological barriers and delivering chemotherapy drugs to challenging tumor regions. However, reliable platforms to assess the tumor-targeting efficiency, penetration capabilities, and therapeutic effectiveness of drug-laden macrophages remain largely unavailable. In this study, we developed a three-dimensional (3D) cell culture platform that mimics the structural and biological complexity of in vivo tumors, enabling real-time observation and analysis of Mϕ-Lip as they migrate, penetrate, and exert anti-tumor effects. Beyond evaluating the delivery process, this work focuses on the rational design and optimization of dosage regimens for co-delivering cisplatin (CDDP) and paclitaxel (Taxol) using Mϕ-Lip. Experimental results demonstrated that the drugs encapsulated within the liposomes influenced the invasive behavior of Mϕ-Lip, which in turn impacted their tumor-killing efficiency. Using this 3D cell culture platform, we identified optimal dosage regimens for co-delivering combination chemotherapy drugs through the Mϕ-Lip. This newly developed approach provides a reliable and versatile tool not only for evaluating but also for fine-tuning cell-based drug delivery strategies. It holds significant promise for advancing targeted chemotherapy strategies and improving therapeutic outcomes for solid tumors. Macrophage‐based drug delivery systems, such as macrophage‐liposome conjugates (Mϕ‐Lip), leverage the natural tumor‐homing ability of macrophages and offer a potential solution for overcoming biological barriers and delivering chemotherapy drugs to challenging tumor regions. However, reliable platforms to assess the tumor‐targeting efficiency, penetration capabilities, and therapeutic effectiveness of drug‐laden macrophages remain largely unavailable. In this study, we developed a three‐dimensional (3D) cell culture platform that mimics the structural and biological complexity of in vivo tumors, enabling real‐time observation and analysis of Mϕ‐Lip as they migrate, penetrate, and exert anti‐tumor effects. Beyond evaluating the delivery process, this work focuses on the rational design and optimization of dosage regimens for co‐delivering cisplatin (CDDP) and paclitaxel (Taxol) using Mϕ‐Lip. Experimental results demonstrated that the drugs encapsulated within the liposomes influenced the invasive behavior of Mϕ‐Lip, which in turn impacted their tumor‐killing efficiency. Using this 3D cell culture platform, we identified optimal dosage regimens for co‐delivering combination chemotherapy drugs through the Mϕ‐Lip. This newly developed approach provides a reliable and versatile tool not only for evaluating but also for fine‐tuning cell‐based drug delivery strategies. It holds significant promise for advancing targeted chemotherapy strategies and improving therapeutic outcomes for solid tumors. |
Author | Kuo, Chia‐Chen Lee, Chau‐Hwang Liao, Wei‐Yu Lin, Yu‐Jung |
Author_xml | – sequence: 1 givenname: Chia‐Chen surname: Kuo fullname: Kuo, Chia‐Chen organization: Academia Sinica – sequence: 2 givenname: Wei‐Yu surname: Liao fullname: Liao, Wei‐Yu organization: College of Medicine, National Taiwan University – sequence: 3 givenname: Yu‐Jung orcidid: 0000-0002-2507-3551 surname: Lin fullname: Lin, Yu‐Jung email: linyujung@gate.sinica.edu.tw organization: Academia Sinica – sequence: 4 givenname: Chau‐Hwang orcidid: 0000-0001-5013-7062 surname: Lee fullname: Lee, Chau‐Hwang email: clee@gate.sinica.edu.tw organization: National Yang Ming Chiao Tung University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40439616$$D View this record in MEDLINE/PubMed |
BookMark | eNp90c9P2zAUB3BrKqKFceI-WdoFaUrnH7FTH0soDFS0Hbaz5bgvbaokzuwE1Bt_wv5G_hLclXHYgYv9LH1s-b3vCRq1rgWEzimZUkLY123RTM2UZ4qrD2hChWBJqqQY7etUJZwpOUYnIWwjlkSwYzROScqVpHKCyjnmVziHusb5UPeDB_yjNn3pfIPjghcPph5MX7VrfG-sd93GrOH56c-y6lxwDeDctdthbXoIuGrjqSmqNnoX6w00rt-AN93uIzoqTR3g7HU_Rb-uFz_zb8ny-81tPl8mljOiEsuyYkZFyUvJaSZMkYIAqUxpVzKzvGCrQqhylolMrVhshhBpJYAk1qQspZafoovDu513vwcIvW6qYGN3pgU3BM0Z5ZIywmmkn_-jWzf4Nv4uKjZTmZRURPXpVQ1FAyvd-aoxfqf_TTCCLwcQhxOCh_KNUKL3-eiYjzb6bz5Rs4N-rGrYvUf13eX9_HDpBTorkl8 |
Cites_doi | 10.1186/s12929-019-0568-z 10.1016/j.msec.2016.11.073 10.3389/fonc.2021.786913 10.1016/j.addr.2017.03.001 10.1002/smll.201601282 10.1016/j.addr.2022.114394 10.1038/nrc1893 10.1016/j.ymeth.2021.05.004 10.1200/JCO.2005.07.172 10.1016/j.mtsust.2020.100055 10.1039/C5NR07796F 10.1002/adma.201805557 10.1016/j.jconrel.2014.12.018 10.1002/adhm.202201784 10.1016/j.addr.2022.114449 10.1126/sciadv.aas8998 10.1016/j.jconrel.2006.09.007 10.1038/nature01451 10.1080/10717544.2018.1502839 10.1038/s41392-021-00544-0 10.3389/fimmu.2017.00693 10.1016/j.bioactmat.2024.04.004 10.1002/ijc.33127 10.1371/journal.pone.0252197 10.1016/j.tips.2022.03.014 10.1186/s12885-015-1546-9 10.1016/j.actbio.2022.10.009 10.1016/j.biomaterials.2014.10.073 10.1126/science.adg6276 10.1155/2011/629234 10.1021/acsnano.1c11578 10.1016/j.biopha.2024.117161 10.1021/jacs.7b08440 10.1016/j.biomaterials.2012.10.061 10.1016/S0731-7085(97)00233-1 10.1126/science.aaw6985 10.1063/5.0115464 10.3390/cancers14010190 10.1177/1533033820945821 10.1016/j.biomaterials.2021.120670 |
ContentType | Journal Article |
Copyright | 2025 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2025 Wiley Periodicals LLC. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/jbm.a.37939 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4965 |
EndPage | n/a |
ExternalDocumentID | 40439616 10_1002_jbm_a_37939 JBMA37939 |
Genre | researchArticle Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan funderid: MOST 109‐2112‐M‐001‐030‐MY3 – fundername: Academia Sinica funderid: AS‐IR‐113‐01 – fundername: Academia Sinica grantid: AS-IR-113-01 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 109-2112-M-001-030-MY3 |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 1ZS 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL RYL SUPJJ SV3 UB1 V2E W8V W99 WIH WIK WJL WQJ WXSBR XG1 XV2 ZZTAW ~IA ~WT 1OB AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c3209-c27b815f3f63175ab4e5e69afcd67c3b2db59f87579d2260006c6ee60ca4241c3 |
IEDL.DBID | DR2 |
ISSN | 1549-3296 1552-4965 |
IngestDate | Fri Jul 11 17:12:11 EDT 2025 Mon Aug 04 07:40:36 EDT 2025 Mon Jul 21 06:06:20 EDT 2025 Thu Aug 14 00:04:19 EDT 2025 Wed Jun 18 09:20:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | 3D cell culture macrophage liposome combination chemotherapy |
Language | English |
License | 2025 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3209-c27b815f3f63175ab4e5e69afcd67c3b2db59f87579d2260006c6ee60ca4241c3 |
Notes | This work was supported by the Ministry of Science and Technology, Taiwan (Grant no. MOST 109‐2112‐M‐001‐030‐MY3), and Academia Sinica (Grant no. AS‐IR‐113‐01). Funding ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5013-7062 0000-0002-2507-3551 |
PMID | 40439616 |
PQID | 3228976615 |
PQPubID | 2034572 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3213612031 proquest_journals_3228976615 pubmed_primary_40439616 crossref_primary_10_1002_jbm_a_37939 wiley_primary_10_1002_jbm_a_37939_JBMA37939 |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 20250601 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Mount Laurel |
PublicationTitle | Journal of biomedical materials research. Part A |
PublicationTitleAlternate | J Biomed Mater Res A |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2022; 199 2021; 11–12 2015; 15 2021; 6 2017; 8 2015; 39 2018; 140 2023; 12 2021; 269 2023; 7 2015; 201 2023; 165 2006; 6 2022; 43 2020; 147 2006; 116 2024; 38 2017; 115 2019; 364 2005; 23 2016; 12 2018; 25 2020; 19 2022; 188 2011; 2011 2021; 16 1998; 17 2022; 187 2017; 71 2018; 4 2013; 34 2019; 26 2022; 14 2023; 379 2018; 30 2024; 178 2022; 11 2003; 422 2016; 8 2022; 16 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 71 start-page: 1327 year: 2017 end-page: 1341 article-title: Liposome‐Based Drug Co‐Delivery Systems in Cancer Cells publication-title: Materials Science & Engineering, C: Materials for Biological Applications – volume: 8 start-page: 693 year: 2017 article-title: Macrophage Polarization Contributes to the Anti‐Tumoral Efficacy of Mesoporous Nanovectors Loaded with Albumin‐Bound Paclitaxel publication-title: Frontiers in Immunology – volume: 23 start-page: 190 year: 2005 end-page: 196 article-title: Single‐Agent Versus Combination Chemotherapy in Advanced Non–Small‐Cell Lung Cancer: The Cancer and Leukemia Group B (Study 9730) publication-title: Journal of Clinical Oncology – volume: 140 start-page: 1199 year: 2018 end-page: 1202 article-title: General and Facile Coating of Single Cells Mild Reduction publication-title: Journal of the American Chemical Society – volume: 422 start-page: 37 year: 2003 end-page: 44 article-title: Regulated Portals of Entry into the Cell publication-title: Nature – volume: 147 start-page: 2587 year: 2020 end-page: 2596 article-title: Autophagy in Fibroblasts Induced by Cigarette Smoke Extract Promotes Invasion in Lung Cancer Cells publication-title: International Journal of Cancer – volume: 38 start-page: 55 year: 2024 end-page: 72 article-title: Macrophage Based Drug Delivery: Key Challenges and Strategies publication-title: Bioactive Materials – volume: 199 start-page: 9 year: 2022 end-page: 15 article-title: Methods for Preparation of Niosomes: A Focus on Thin‐Film Hydration Method publication-title: Methods – volume: 14 start-page: 190 year: 2022 article-title: 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti‐Cancer Drugs publication-title: Cancers – volume: 39 start-page: 131 year: 2015 end-page: 144 article-title: Mulberry‐Like Dual‐Drug Complicated Nanocarriers Assembled With Apogossypolone Amphiphilic Starch Micelles and Doxorubicin Hyaluronic Acid Nanoparticles for Tumor Combination and Targeted Therapy publication-title: Biomaterials – volume: 30 year: 2018 article-title: Nanoparticle‐Laden Macrophages for Tumor‐Tropic Drug Delivery publication-title: Advanced Materials – volume: 16 year: 2021 article-title: HAI‐1 Is an Independent Predictor of Lung Cancer Mortality and Is Required for M1 Macrophage Polarization publication-title: PLoS One – volume: 34 start-page: 1372 year: 2013 end-page: 1382 article-title: Cellular Uptake, Antitumor Response and Tumor Penetration of Cisplatin‐Loaded Milk Protein Nanoparticles publication-title: Biomaterials – volume: 4 start-page: eaas8998 year: 2018 article-title: Hydrogel Microenvironments for Cancer Spheroid Growth and Drug Screening publication-title: Science Advances – volume: 43 start-page: 569 year: 2022 end-page: 581 article-title: 3D Cell Cultures Toward Quantitative High‐Throughput Drug Screening publication-title: Trends in Pharmacological Sciences – volume: 19 year: 2020 article-title: Paclitaxel Promotes Tumor‐Infiltrating Macrophages in Breast Cancer publication-title: Technology in Cancer Research & Treatment – volume: 26 start-page: 78 year: 2019 article-title: Tumor‐Associated Macrophages: An Accomplice in Solid Tumor Progression publication-title: Journal of Biomedical Science – volume: 2011 year: 2011 article-title: A Liposomal Formulation Able to Incorporate a High Content of Paclitaxel and Exert Promising Anticancer Effect publication-title: Journal of Drug Delivery – volume: 379 start-page: 127 year: 2023 end-page: 128 article-title: FDA No Longer Has to Require Animal Testing for New Drugs publication-title: Science – volume: 188 year: 2022 article-title: Strategies to Enhance Drug Delivery to Solid Tumors by Harnessing the EPR Effects and Alternative Targeting Mechanisms publication-title: Advanced Drug Delivery Reviews – volume: 11–12 start-page: 100055 year: 2021 article-title: Macrophage‐Mediated Cancer Drug Delivery publication-title: Materials Today Sustainability – volume: 17 start-page: 1243 year: 1998 end-page: 1247 article-title: A Rapid Reversed Phase High Performance Liquid Chromatographic Method for the Determination of Docetaxel (Taxotere) in Human Plasma Using a Column Switching Technique publication-title: Journal of Pharmaceutical and Biomedical Analysis – volume: 201 start-page: 78 year: 2015 end-page: 89 article-title: Improving Drug Delivery to Solid Tumors: Priming the Tumor Microenvironment publication-title: Journal of Controlled Release – volume: 8 start-page: 12544 year: 2016 end-page: 12552 article-title: Enhanced Performance of Macrophage‐Encapsulated Nanoparticle Albumin‐Bound‐Paclitaxel in Hypo‐Perfused Cancer Lesions publication-title: Nanoscale – volume: 7 year: 2023 article-title: A 3D Culture System for Evaluating the Combined Effects of Cisplatin and Anti‐Fibrotic Drugs on the Growth and Invasion of Lung Cancer Cells Co‐Cultured With Fibroblasts publication-title: APL Bioengineering – volume: 269 year: 2021 article-title: In Situ Poly I:C Released From Living Cell Drug Nanocarriers for Macrophage‐Mediated Antitumor Immunotherapy publication-title: Biomaterials – volume: 25 start-page: 1922 year: 2018 end-page: 1931 article-title: Primary M1 Macrophages as Multifunctional Carrier Combined With PLGA Nanoparticle Delivering Anticancer Drug for Efficient Glioma Therapy publication-title: Drug Delivery – volume: 165 start-page: 153 year: 2023 end-page: 167 article-title: 3D Microengineered Vascularized Tumor Spheroids for Drug Delivery and Efficacy Testing publication-title: Acta Biomaterialia – volume: 11 year: 2022 article-title: Engineering Macrophages Nanotechnology and Genetic Manipulation for Cancer Therapy publication-title: Frontiers in Oncology – volume: 6 start-page: 583 year: 2006 end-page: 592 article-title: Drug Penetration in Solid Tumours publication-title: Nature Reviews Cancer – volume: 115 start-page: 23 year: 2017 end-page: 45 article-title: Combination Antitumor Therapy with Targeted Dual‐Nanomedicines publication-title: Advanced Drug Delivery Reviews – volume: 12 year: 2023 article-title: New Strategy for Promoting Vascularization in Tumor Spheroids in a Microfluidic Assay publication-title: Advanced Healthcare Materials – volume: 15 start-page: 577 year: 2015 article-title: M1 and M2 Macrophages Derived From THP‐1 Cells Differentially Modulate the Response of Cancer Cells to Etoposide publication-title: BMC Cancer – volume: 16 start-page: 6080 year: 2022 end-page: 6092 article-title: Macrophages Actively Transport Nanoparticles in Tumors After Extravasation publication-title: ACS Nano – volume: 6 start-page: 153 year: 2021 article-title: Extracellular Matrix and Its Therapeutic Potential for Cancer Treatment publication-title: Signal Transduction and Targeted Therapy – volume: 178 start-page: 117161 year: 2024 article-title: Potential Applications of Macrophages in Cancer Immunotherapy publication-title: Biomedicine & Pharmacotherapy – volume: 12 start-page: 5108 year: 2016 end-page: 5119 article-title: Macrophages as Active Nanocarriers for Targeted Early and Adjuvant Cancer Chemotherapy publication-title: Small – volume: 187 year: 2022 article-title: Cell‐Based Drug Delivery Systems and Their Fate publication-title: Advanced Drug Delivery Reviews – volume: 364 start-page: 952 year: 2019 end-page: 955 article-title: Cancer Modeling Meets Human Organoid Technology publication-title: Science – volume: 116 start-page: 275 year: 2006 end-page: 284 article-title: Simultaneous Delivery of Doxorubicin and GG918 (Elacridar) by New Polymer‐Lipid Hybrid Nanoparticles (PLN) for Enhanced Treatment of Multidrug‐Resistant Breast Cancer publication-title: Journal of Controlled Release – ident: e_1_2_9_7_1 doi: 10.1186/s12929-019-0568-z – ident: e_1_2_9_13_1 doi: 10.1016/j.msec.2016.11.073 – ident: e_1_2_9_27_1 doi: 10.3389/fonc.2021.786913 – ident: e_1_2_9_4_1 doi: 10.1016/j.addr.2017.03.001 – ident: e_1_2_9_9_1 doi: 10.1002/smll.201601282 – ident: e_1_2_9_33_1 doi: 10.1016/j.addr.2022.114394 – ident: e_1_2_9_37_1 doi: 10.1038/nrc1893 – ident: e_1_2_9_22_1 doi: 10.1016/j.ymeth.2021.05.004 – ident: e_1_2_9_15_1 doi: 10.1200/JCO.2005.07.172 – ident: e_1_2_9_12_1 doi: 10.1016/j.mtsust.2020.100055 – ident: e_1_2_9_31_1 doi: 10.1039/C5NR07796F – ident: e_1_2_9_11_1 doi: 10.1002/adma.201805557 – ident: e_1_2_9_38_1 doi: 10.1016/j.jconrel.2014.12.018 – ident: e_1_2_9_41_1 doi: 10.1002/adhm.202201784 – ident: e_1_2_9_5_1 doi: 10.1016/j.addr.2022.114449 – ident: e_1_2_9_16_1 doi: 10.1126/sciadv.aas8998 – ident: e_1_2_9_2_1 doi: 10.1016/j.jconrel.2006.09.007 – ident: e_1_2_9_36_1 doi: 10.1038/nature01451 – ident: e_1_2_9_10_1 doi: 10.1080/10717544.2018.1502839 – ident: e_1_2_9_6_1 doi: 10.1038/s41392-021-00544-0 – ident: e_1_2_9_30_1 doi: 10.3389/fimmu.2017.00693 – ident: e_1_2_9_34_1 doi: 10.1016/j.bioactmat.2024.04.004 – ident: e_1_2_9_39_1 doi: 10.1002/ijc.33127 – ident: e_1_2_9_23_1 doi: 10.1371/journal.pone.0252197 – ident: e_1_2_9_19_1 doi: 10.1016/j.tips.2022.03.014 – ident: e_1_2_9_24_1 doi: 10.1186/s12885-015-1546-9 – ident: e_1_2_9_40_1 doi: 10.1016/j.actbio.2022.10.009 – ident: e_1_2_9_3_1 doi: 10.1016/j.biomaterials.2014.10.073 – ident: e_1_2_9_21_1 doi: 10.1126/science.adg6276 – ident: e_1_2_9_29_1 doi: 10.1155/2011/629234 – ident: e_1_2_9_35_1 doi: 10.1021/acsnano.1c11578 – ident: e_1_2_9_8_1 doi: 10.1016/j.biopha.2024.117161 – ident: e_1_2_9_28_1 doi: 10.1021/jacs.7b08440 – ident: e_1_2_9_25_1 doi: 10.1016/j.biomaterials.2012.10.061 – ident: e_1_2_9_26_1 doi: 10.1016/S0731-7085(97)00233-1 – ident: e_1_2_9_17_1 doi: 10.1126/science.aaw6985 – ident: e_1_2_9_20_1 doi: 10.1063/5.0115464 – ident: e_1_2_9_18_1 doi: 10.3390/cancers14010190 – ident: e_1_2_9_32_1 doi: 10.1177/1533033820945821 – ident: e_1_2_9_14_1 doi: 10.1016/j.biomaterials.2021.120670 |
SSID | ssj0026052 |
Score | 2.4563985 |
Snippet | ABSTRACT
Macrophage‐based drug delivery systems, such as macrophage‐liposome conjugates (Mϕ‐Lip), leverage the natural tumor‐homing ability of macrophages and... Macrophage‐based drug delivery systems, such as macrophage‐liposome conjugates (Mϕ‐Lip), leverage the natural tumor‐homing ability of macrophages and offer a... Macrophage-based drug delivery systems, such as macrophage-liposome conjugates (Mϕ-Lip), leverage the natural tumor-homing ability of macrophages and offer a... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e37939 |
SubjectTerms | 3D cell culture Animals Antineoplastic Agents - pharmacology Antineoplastic Combined Chemotherapy Protocols - pharmacology Cell culture Cell Culture Techniques, Three Dimensional - methods Cell Line, Tumor Cell migration Chemotherapy Cisplatin Cisplatin - administration & dosage Cisplatin - pharmacology combination chemotherapy Conjugates Design optimization Dosage Drug delivery Drug Delivery Systems Drug dosages Homing behavior Humans liposome Liposomes Liposomes - chemistry macrophage Macrophages Macrophages - cytology Macrophages - metabolism Mice Paclitaxel Paclitaxel - administration & dosage Paclitaxel - pharmacology Solid tumors Tumors |
Title | A 3D Cell Culture Platform for Evaluating Macrophage‐Liposome Conjugates in Combination Chemotherapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.37939 https://www.ncbi.nlm.nih.gov/pubmed/40439616 https://www.proquest.com/docview/3228976615 https://www.proquest.com/docview/3213612031 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA7iSQ_uS92I4E06dpImY47jqIioiCh4K0maus20YmcOevIn-Bv9Jb6X1nEDQS-lJSlt85Z-Sd77HiEbMedOaCVCJzIbxplyIaBwFQrbUkLHxkrrA2RP5MFFfHgpLuvYHMyFqfghhgtuaBneX6OBa1NufZCG3ppeQzc46Bem72G0FkKisyF5FAJ1v9cJM6CQMyXr7Dxo2fp079f_0Q-Q-RWz-p_O_mRVWbX0XIUYa3LXGPRNwz59Y3L89_dMkYkajtJ2pT_TZMTlM2T8E0nhLMnalO_Sjut2acW_6ehpV_cR7FI40L2aLzy_oscaC4Jdg4t6fX45urkvyqLnaKfIbwe4WlfSmxyuejAZ9_pAka2gzgB7nCMX-3vnnYOwrs4QWs4iFVrWMttNkfFMIgbRJnbCSaUzm8qW5YalRqgM-fJVypAGP5JWOicjq2OADZbPk9G8yN0ioYBCeaRSA2CwFWcs0jAnU9qlOuXIohwHZONdRsl9RcKRVHTLLIFhS3Tihy0gK-_yS2pLLBNwWNsAuQC4BWR92Aw2hBsjOnfFAPuA-jQZ-LeALFRyHz4H2YeUbMqAbHrp_fYCyeHOcdufLf2p9zIZY1hW2C_urJDR_sPArQLW6Zs1r9Jv73T5uQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4a2wPwwMZthF0w0t5QujSO3fmxdJvKaCeENmlvlu04bKNNJto-wBM_gd-4X7JznLRsTEKClyiRHcXxufjzsf0dgJ2Mcy-MErEXhYuzQvkYUbiKhesoYTLrpAsbZI9l_zQ7OhNnTcCNzsLU_BCLgBtZRvDXZOAUkN79zRp6acct0-KoYOoBrFBOb8pgsP95QR9FUD2sduIcKOapks35PCzZvfXy3RHpHsy8i1rDsHO4Cnre4Hq3ydfWbGpb7scfXI7__0dr8KRBpKxbq9BTWPLlM3h8i6fwORRdxvdZz49GrKbg9OzTyEwJ7zK8sIOGMrz8woaGcoKdo5e6_vlrcHFVTaqxZ72qvJxRwG7CLkp8GuN8PKgEI8KC5hDY9xdwenhw0uvHTYKG2PE0UbFLO3avLQpeSIIhxmZeeKlM4XLZcdymuRWqIMp8lafEhJ9IJ72XiTMZIgfHX8JyWZX-FTAEojxRuUU82MmKNDE4LVPG5ybnRKScRbAzF5K-qnk4dM24nGrsNm106LYINucC1I0xTjT6rD1EXYjdIni7KEYzorURU_pqRnXaHMEeurgI1mvBL75DBERKtmUE74L4_tYAffR-2A13r_-p9ht42D8ZDvTgw_HHDXiUUpbhEOvZhOXpt5nfQugztdtBv28AgXz90w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHUCQEB96PQAEj9YayzcaPrY_LtqtS2qpCVOrNsh0bWnaTFbt7gBMfgc_IJ2HGSZcWJCS4RInsKIntmfz8-g_AhuA8SKtlHmT0uYg65EjhOpd-oKUVziufFsgeqt1jsXciT7q1ObQXptWHWA24kWUkf00GPqvi5i_R0DM37dkex_alr8I1odBciInerdSjiNTTZCd2gXJeatVtz8OUzQs3X_4h_UGZl6E1_XXGt9vQqvMkVkiLTT71lgvX819_k3L87w-6A7c6HmXDtgHdhSuhvgc3L6gU3oc4ZHybjcJkwloBzsCOJnZBtMvwwHY6wfD6AzuwFBHsI_qoH9--75_OmnkzDWzU1GdLGq6bs9Mar6bYG08NgpFcQbcF7MsDOB7vvB_t5l14htzzstC5Lwduqy8jj4ogxDoRZFDaRl-pgeeurJzUkQTzdVWSDn6hvApBFd4K5AbPH8Ja3dThMTDEUF7oyiENDkQsC4udMm1DZStOMsoig43zOjKzVoXDtHrLpcFiM9akYstg_bz-TGeKc4MeawuZC8ktg5erZDQimhmxdWiWlKfPEfXQwWXwqK331XNIfkirvsrgVaq9v72A2Xt9MExnT_4p9wu4frQ9NvtvDt8-hRslhRhOAz3rsLb4vAzPkHsW7nlq3T8BqOD8iw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D+Cell+Culture+Platform+for+Evaluating+Macrophage%E2%80%90Liposome+Conjugates+in+Combination+Chemotherapy&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Kuo%2C+Chia%E2%80%90Chen&rft.au=Liao%2C+Wei%E2%80%90Yu&rft.au=Lin%2C+Yu%E2%80%90Jung&rft.au=Lee%2C+Chau%E2%80%90Hwang&rft.date=2025-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1549-3296&rft.eissn=1552-4965&rft.volume=113&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fjbm.a.37939&rft.externalDBID=10.1002%252Fjbm.a.37939&rft.externalDocID=JBMA37939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |