Trafficking, lateral mobility and segregation of the plant K+ channel KAT1
Functioning of ion channels depends not only on the control of their activity but also on their density and lateral organisation in the membrane. The two latter aspects have recently attracted increasing attention. Here, we summarize studies on trafficking and plasma membrane distribution of the pla...
Saved in:
Published in | Plant biology (Stuttgart, Germany) Vol. 12; no. s1; pp. 99 - 104 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.09.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functioning of ion channels depends not only on the control of their activity but also on their density and lateral organisation in the membrane. The two latter aspects have recently attracted increasing attention. Here, we summarize studies on trafficking and plasma membrane distribution of the plant K+ channel KAT1 from Arabidopsis thaliana. In guard cells, KAT1 was found to be subject to constitutive and pressure‐driven turnover and ABA‐stimulated endocytosis. These results point to a role of exo‐ and endocytosis in regulating KAT1 density and thus ion transport during guard cell functioning. Recent studies indicate that KAT1 density can also be adjusted at the site of ER export. Efficient ER export of KAT1 was shown to depend on an acidic motif that interacts with Sec24, a component of ER‐derived vesicles. Surface expression of ER export mutants of KAT1 can be rescued through heterotetrameric assembly with wild‐type KAT1, implying that not all subunits of the channel tetramer need to carry an ER export motif. Analysis of the distribution of KAT1 in the plasma membrane revealed segregation of the channel into microdomains, and low lateral mobility in both plant and mammalian cells. In plant cells, SNAREs have been shown to be involved in anchoring KAT1 in the plasma membrane. Studies on guard cells imply a role for the cell wall in organisation of KAT1 microdomains. Together, these findings underline the importance of investigating mechanisms of KAT1 trafficking and lateral organisation in order to fully understand channel functioning. |
---|---|
AbstractList | Functioning of ion channels depends not only on the control of their activity but also on their density and lateral organisation in the membrane. The two latter aspects have recently attracted increasing attention. Here, we summarize studies on trafficking and plasma membrane distribution of the plant K
+
channel KAT1 from
Arabidopsis thaliana
. In guard cells, KAT1 was found to be subject to constitutive and pressure‐driven turnover and ABA‐stimulated endocytosis. These results point to a role of exo‐ and endocytosis in regulating KAT1 density and thus ion transport during guard cell functioning. Recent studies indicate that KAT1 density can also be adjusted at the site of ER export. Efficient ER export of KAT1 was shown to depend on an acidic motif that interacts with Sec24, a component of ER‐derived vesicles. Surface expression of ER export mutants of KAT1 can be rescued through heterotetrameric assembly with wild‐type KAT1, implying that not all subunits of the channel tetramer need to carry an ER export motif. Analysis of the distribution of KAT1 in the plasma membrane revealed segregation of the channel into microdomains, and low lateral mobility in both plant and mammalian cells. In plant cells, SNAREs have been shown to be involved in anchoring KAT1 in the plasma membrane. Studies on guard cells imply a role for the cell wall in organisation of KAT1 microdomains. Together, these findings underline the importance of investigating mechanisms of KAT1 trafficking and lateral organisation in order to fully understand channel functioning. Functioning of ion channels depends not only on the control of their activity but also on their density and lateral organisation in the membrane. The two latter aspects have recently attracted increasing attention. Here, we summarize studies on trafficking and plasma membrane distribution of the plant K+ channel KAT1 from Arabidopsis thaliana. In guard cells, KAT1 was found to be subject to constitutive and pressure‐driven turnover and ABA‐stimulated endocytosis. These results point to a role of exo‐ and endocytosis in regulating KAT1 density and thus ion transport during guard cell functioning. Recent studies indicate that KAT1 density can also be adjusted at the site of ER export. Efficient ER export of KAT1 was shown to depend on an acidic motif that interacts with Sec24, a component of ER‐derived vesicles. Surface expression of ER export mutants of KAT1 can be rescued through heterotetrameric assembly with wild‐type KAT1, implying that not all subunits of the channel tetramer need to carry an ER export motif. Analysis of the distribution of KAT1 in the plasma membrane revealed segregation of the channel into microdomains, and low lateral mobility in both plant and mammalian cells. In plant cells, SNAREs have been shown to be involved in anchoring KAT1 in the plasma membrane. Studies on guard cells imply a role for the cell wall in organisation of KAT1 microdomains. Together, these findings underline the importance of investigating mechanisms of KAT1 trafficking and lateral organisation in order to fully understand channel functioning. Functioning of ion channels depends not only on the control of their activity but also on their density and lateral organisation in the membrane. The two latter aspects have recently attracted increasing attention. Here, we summarize studies on trafficking and plasma membrane distribution of the plant K(+) channel KAT1 from Arabidopsis thaliana. In guard cells, KAT1 was found to be subject to constitutive and pressure-driven turnover and ABA-stimulated endocytosis. These results point to a role of exo- and endocytosis in regulating KAT1 density and thus ion transport during guard cell functioning. Recent studies indicate that KAT1 density can also be adjusted at the site of ER export. Efficient ER export of KAT1 was shown to depend on an acidic motif that interacts with Sec24, a component of ER-derived vesicles. Surface expression of ER export mutants of KAT1 can be rescued through heterotetrameric assembly with wild-type KAT1, implying that not all subunits of the channel tetramer need to carry an ER export motif. Analysis of the distribution of KAT1 in the plasma membrane revealed segregation of the channel into microdomains, and low lateral mobility in both plant and mammalian cells. In plant cells, SNAREs have been shown to be involved in anchoring KAT1 in the plasma membrane. Studies on guard cells imply a role for the cell wall in organisation of KAT1 microdomains. Together, these findings underline the importance of investigating mechanisms of KAT1 trafficking and lateral organisation in order to fully understand channel functioning.Functioning of ion channels depends not only on the control of their activity but also on their density and lateral organisation in the membrane. The two latter aspects have recently attracted increasing attention. Here, we summarize studies on trafficking and plasma membrane distribution of the plant K(+) channel KAT1 from Arabidopsis thaliana. In guard cells, KAT1 was found to be subject to constitutive and pressure-driven turnover and ABA-stimulated endocytosis. These results point to a role of exo- and endocytosis in regulating KAT1 density and thus ion transport during guard cell functioning. Recent studies indicate that KAT1 density can also be adjusted at the site of ER export. Efficient ER export of KAT1 was shown to depend on an acidic motif that interacts with Sec24, a component of ER-derived vesicles. Surface expression of ER export mutants of KAT1 can be rescued through heterotetrameric assembly with wild-type KAT1, implying that not all subunits of the channel tetramer need to carry an ER export motif. Analysis of the distribution of KAT1 in the plasma membrane revealed segregation of the channel into microdomains, and low lateral mobility in both plant and mammalian cells. In plant cells, SNAREs have been shown to be involved in anchoring KAT1 in the plasma membrane. Studies on guard cells imply a role for the cell wall in organisation of KAT1 microdomains. Together, these findings underline the importance of investigating mechanisms of KAT1 trafficking and lateral organisation in order to fully understand channel functioning. |
Author | Homann, U. Reuff, M. Mikosch, M. |
Author_xml | – sequence: 1 givenname: M. surname: Reuff fullname: Reuff, M. organization: Institut für Botanik, Technische Universität Darmstadt, Darmstadt, Germany – sequence: 2 givenname: M. surname: Mikosch fullname: Mikosch, M. organization: Institut für Botanik, Technische Universität Darmstadt, Darmstadt, Germany – sequence: 3 givenname: U. surname: Homann fullname: Homann, U. organization: Institut für Botanik, Technische Universität Darmstadt, Darmstadt, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20712625$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkEtvEzEUhS1U1Bf9C8g7FpDUj7FnLCGkEkFSGkoXQSyvPB47derMpPZEJP8eJ2m7YFVvfGWf79x7zxk6arvWIoQpGdJ8LhdDWvBqUMmyHDKSXwnhQgw3b9Dpy8fRvha5JvwEnaW0IIQWitBjdMJISZlk4hT9mEXtnDcPvp1_wkH3NuqAl13tg--3WLcNTnYe7Vz3vmtx53B_b_Eq6LbHNx-xuddtawO-uZrRd-it0yHZi6f7HP3-_m02mgymv8bXo6vpwHBG8jyaSieFYbWRjOhaM6lLI1UjC8VdbYQTzNSGWqVsU0hVEucq23BlNKe1UfwcfTj4rmL3uLaph6VPxoY8k-3WCcqiUkooSrLy_ZNyXS9tA6volzpu4Xn9LPhyEJjYpRStA-P7_aZ91D4AJbDLGxawixV2scIub9jnDZtsUP1n8NzjFejnA_rXB7t9NQd306-5yPjggPvU280LruMDyJKXAv7cjuHu52Q0uSVjGPF_JaylUA |
CitedBy_id | crossref_primary_10_1111_tra_12817 crossref_primary_10_1093_jxb_erv054 crossref_primary_10_1016_j_molp_2018_09_008 crossref_primary_10_1016_j_biochi_2013_07_028 crossref_primary_10_1111_j_1438_8677_2010_00390_x crossref_primary_10_1016_j_stress_2025_100740 crossref_primary_10_1093_plphys_kiab312 crossref_primary_10_1105_tpc_114_124446 |
Cites_doi | 10.1111/j.1365-313X.2004.02119.x 10.1016/j.ejcb.2007.05.003 10.1016/j.cub.2007.07.020 10.1016/S0076-6879(03)75025-3 10.1124/mol.65.3.503 10.1016/S0959-4388(02)00319-7 10.1007/s002320010040 10.1104/pp.106.087064 10.1073/pnas.152324399 10.1126/science.282.5391.1141 10.1046/j.1365-313X.2003.01972.x 10.1152/physrev.1997.77.3.759 10.1016/j.neuron.2006.12.005 10.1016/S0896-6273(02)00614-1 10.1111/j.1438-8677.2007.00028.x 10.1105/tpc.105.038950 10.1242/jcs.03196 10.1111/j.1365-313X.2008.03658.x 10.1146/annurev.arplant.56.032604.144150 10.1016/j.tips.2003.11.007 10.1111/j.1600-0854.2009.00962.x 10.1161/01.RES.0000127621.54132.AE 10.1016/j.pbi.2009.09.020 10.1016/j.pbi.2009.09.002 |
ContentType | Journal Article |
Copyright | 2010 German Botanical Society and The Royal Botanical Society of the Netherlands |
Copyright_xml | – notice: 2010 German Botanical Society and The Royal Botanical Society of the Netherlands |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1111/j.1438-8677.2010.00355.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1438-8677 |
EndPage | 104 |
ExternalDocumentID | 20712625 10_1111_j_1438_8677_2010_00355_x PLB355 ark_67375_WNG_PMHCHN0G_C |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 29O 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X H13 HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 R.K RIG RJQFR ROL RTC RX1 SUPJJ SV3 UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG BIYOS CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3205-8a16f65c2bc620aba26a7c69d6493fbc5f52cbc1e99ed46970ff8ed39ca31bc93 |
IEDL.DBID | DR2 |
ISSN | 1435-8603 1438-8677 |
IngestDate | Fri Jul 11 05:52:41 EDT 2025 Mon Jul 21 06:01:58 EDT 2025 Tue Jul 01 02:52:50 EDT 2025 Thu Apr 24 23:09:54 EDT 2025 Wed Jan 22 16:45:18 EST 2025 Wed Oct 30 09:57:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | s1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3205-8a16f65c2bc620aba26a7c69d6493fbc5f52cbc1e99ed46970ff8ed39ca31bc93 |
Notes | istex:DFB893759214E6A0CC09F6E80674545D0E4008A7 ark:/67375/WNG-PMHCHN0G-C ArticleID:PLB355 Editor N. Sauer N. Sauer Editor This article was published online on 25 May 2010. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected on 13 July 2010. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20712625 |
PQID | 748995910 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_748995910 pubmed_primary_20712625 crossref_citationtrail_10_1111_j_1438_8677_2010_00355_x crossref_primary_10_1111_j_1438_8677_2010_00355_x wiley_primary_10_1111_j_1438_8677_2010_00355_x_PLB355 istex_primary_ark_67375_WNG_PMHCHN0G_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09 September 2010 2010-09-00 2010-Sep 20100901 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Plant biology (Stuttgart, Germany) |
PublicationTitleAlternate | Plant Biol (Stuttg) |
PublicationYear | 2010 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Meckel T., Hurst A.C., Thiel G., Homann U. (2004) Endocytosis against high turgor: intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K-channel KAT1. The Plant Journal, 39, 182-193. Ma D., Jan L.Y. (2002) ER transport signals and trafficking of potassium channels and receptors. Current Opinion in Neurobiology, 12, 287-292. Mikosch M., Käberich K., Homann U. (2009) ER export of KAT1 is correlated to the number of acidic residues within a triacidic motif. Traffic, 10, 1481-1487. Mikosch M., Hurst A.C., Hertel B., Homann U. (2006) Diacidic motif is required for efficient transport of the K+ channel KAT1 to the plasma membrane. Plant Physiology, 142, 923-930. Ma D., Zerangue N., Raab-Graham K., Fried S.R., Jan Y.N., Jan L.Y. (2002) Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart. Neuron, 33, 715-729. Mukherjee S., Ghosh R.N., Maxfield F.R. (1997) Endocytosis. Physiological Reviews, 77, 759-803. Sutter J.-U., Campanoni P., Tyrrell M., Blatt M.R. (2006) Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. The Plant Cell, 18, 935-954. Sottocornola B., Gazzarrini S., Olivari C., Romani G., Valbuzzi P., Thiel G., Moroni A. (2008) 14-3-3 proteins regulate the potassium channel KAT1 by dual modes. Plant Biology, 10, 231-236. Martens J.R., O'Connell K., Tamkun M. (2004) Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts. Trends in Pharmacological Sciences, 25, 16-21. Homann U., Thiel G. (2002) The number of K(+) channels in the plasma membrane of guard cell protoplasts changes in parallel with the surface area. Proceedings of the National Academy of Sciences USA, 99, 10215-10220. Mikosch M., Homann U. (2009) How do ER export motifs work on ion channel trafficking? Current Opinion in Plant Biology, 12, 685-689. Sutter J.-U., Sieben C., Hartel A., Eisenach C., Thiel G., Blatt M.R. (2007) Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Current Biology, 17, 1396-1402. Heusser K., Yuan H., Neagoe I., Tarasov A.I., Ashcroft F.M., Schwappach B. (2006) Scavenging of 14-3-3 proteins reveals their involvement in the cell-surface transport of ATP-sensitive K+ channels. Journal of Cell Science, 119, 4353-4363. Sieben C., Mikosch M., Brandizzi F., Homann U. (2008) Interaction of the K(+)-channel KAT1 with the coat protein complex II coat component Sec24 depends on a di-acidic endoplasmic reticulum export motif. The Plant Journal, 56, 997-1006. Zolles G., Klöcker N., Wenzel D., Weisser-Thomas J., Fleischmann B.K., Roeper J., Fakler B. (2006) Pacemaking by HCN channels requires interaction with phosphoinositides. Neuron, 52, 1027-1036. Homann U., Meckel T., Hewing J., Hütt M.-T., Hurst A.C. (2007) Distinct fluorescent pattern of KAT1::GFP in the plasma membrane of Vicia faba guard cells. European Journal of Cell Biology, 86, 489-500. Morris C.E., Homann U. (2001) Cell surface area regulation and membrane tension. Journal of Membrane Biology, 179, 79-102. Murphy A.S., Bandyopadhyay A., Holstein S.E., Peer W.A. (2005) Endocytotic cycling of PM proteins. Annual Review of Plant Biology, 56, 221-251. Brady J.D., Rich T.C., Le X., Stafford K., Fowler C.J., Lynch L., Karpen J.W., Brown R.L., Martens J.R. (2004) Functional role of lipid raft microdomains in cyclic nucleotide-gated channel activation. Molecular Pharmacology, 65, 503-511. Maurel C., Santoni V., Luu D.T., Wudick M.M., Verdoucq L. (2009) The cellular dynamics of plant aquaporin expression and functions. Current Opinion in Plant Biology, 12, 690-698. Barbuti A., Gravante B., Riolfo M., Milanesi R., Terragni B., DiFrancesco D. (2004) Localization of pacemaker channels in lipid rafts regulates channel kinetics. Circulation Research, 94, 1325-1331. Phair R.D., Gorski S.A., Misteli T. (2004) Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Methods in Enzymology, 375, 393-414. Baukrowitz T., Schulte U., Oliver D., Herlitze S., Krauter T., Tucker S.J., Ruppersberg J.P., Fakler B. (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science, 282, 1141-1144. Hurst A.C., Meckel T., Tayefeh S., Thiel G., Homann U. (2004) Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba. The Plant Journal, 37, 391-397. 2004; 65 2009; 12 2007; 17 2004; 375 2001; 179 2004; 94 2006; 52 2006; 119 2009; 10 1997; 77 2004; 39 2002; 12 2004; 25 2004; 37 2002; 99 2002; 33 2008; 56 2006; 18 2006; 142 2005 2008; 10 2007; 86 1998; 282 2005; 56 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 Homann U. (e_1_2_7_6_1) 2005 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – reference: Homann U., Meckel T., Hewing J., Hütt M.-T., Hurst A.C. (2007) Distinct fluorescent pattern of KAT1::GFP in the plasma membrane of Vicia faba guard cells. European Journal of Cell Biology, 86, 489-500. – reference: Baukrowitz T., Schulte U., Oliver D., Herlitze S., Krauter T., Tucker S.J., Ruppersberg J.P., Fakler B. (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science, 282, 1141-1144. – reference: Homann U., Thiel G. (2002) The number of K(+) channels in the plasma membrane of guard cell protoplasts changes in parallel with the surface area. Proceedings of the National Academy of Sciences USA, 99, 10215-10220. – reference: Heusser K., Yuan H., Neagoe I., Tarasov A.I., Ashcroft F.M., Schwappach B. (2006) Scavenging of 14-3-3 proteins reveals their involvement in the cell-surface transport of ATP-sensitive K+ channels. Journal of Cell Science, 119, 4353-4363. – reference: Mikosch M., Hurst A.C., Hertel B., Homann U. (2006) Diacidic motif is required for efficient transport of the K+ channel KAT1 to the plasma membrane. Plant Physiology, 142, 923-930. – reference: Sutter J.-U., Campanoni P., Tyrrell M., Blatt M.R. (2006) Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. The Plant Cell, 18, 935-954. – reference: Morris C.E., Homann U. (2001) Cell surface area regulation and membrane tension. Journal of Membrane Biology, 179, 79-102. – reference: Meckel T., Hurst A.C., Thiel G., Homann U. (2004) Endocytosis against high turgor: intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K-channel KAT1. The Plant Journal, 39, 182-193. – reference: Brady J.D., Rich T.C., Le X., Stafford K., Fowler C.J., Lynch L., Karpen J.W., Brown R.L., Martens J.R. (2004) Functional role of lipid raft microdomains in cyclic nucleotide-gated channel activation. Molecular Pharmacology, 65, 503-511. – reference: Ma D., Jan L.Y. (2002) ER transport signals and trafficking of potassium channels and receptors. Current Opinion in Neurobiology, 12, 287-292. – reference: Murphy A.S., Bandyopadhyay A., Holstein S.E., Peer W.A. (2005) Endocytotic cycling of PM proteins. Annual Review of Plant Biology, 56, 221-251. – reference: Phair R.D., Gorski S.A., Misteli T. (2004) Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Methods in Enzymology, 375, 393-414. – reference: Barbuti A., Gravante B., Riolfo M., Milanesi R., Terragni B., DiFrancesco D. (2004) Localization of pacemaker channels in lipid rafts regulates channel kinetics. Circulation Research, 94, 1325-1331. – reference: Maurel C., Santoni V., Luu D.T., Wudick M.M., Verdoucq L. (2009) The cellular dynamics of plant aquaporin expression and functions. Current Opinion in Plant Biology, 12, 690-698. – reference: Mikosch M., Homann U. (2009) How do ER export motifs work on ion channel trafficking? Current Opinion in Plant Biology, 12, 685-689. – reference: Sieben C., Mikosch M., Brandizzi F., Homann U. (2008) Interaction of the K(+)-channel KAT1 with the coat protein complex II coat component Sec24 depends on a di-acidic endoplasmic reticulum export motif. The Plant Journal, 56, 997-1006. – reference: Sottocornola B., Gazzarrini S., Olivari C., Romani G., Valbuzzi P., Thiel G., Moroni A. (2008) 14-3-3 proteins regulate the potassium channel KAT1 by dual modes. Plant Biology, 10, 231-236. – reference: Zolles G., Klöcker N., Wenzel D., Weisser-Thomas J., Fleischmann B.K., Roeper J., Fakler B. (2006) Pacemaking by HCN channels requires interaction with phosphoinositides. Neuron, 52, 1027-1036. – reference: Hurst A.C., Meckel T., Tayefeh S., Thiel G., Homann U. (2004) Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba. The Plant Journal, 37, 391-397. – reference: Martens J.R., O'Connell K., Tamkun M. (2004) Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts. Trends in Pharmacological Sciences, 25, 16-21. – reference: Mukherjee S., Ghosh R.N., Maxfield F.R. (1997) Endocytosis. Physiological Reviews, 77, 759-803. – reference: Ma D., Zerangue N., Raab-Graham K., Fried S.R., Jan Y.N., Jan L.Y. (2002) Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart. Neuron, 33, 715-729. – reference: Mikosch M., Käberich K., Homann U. (2009) ER export of KAT1 is correlated to the number of acidic residues within a triacidic motif. Traffic, 10, 1481-1487. – reference: Sutter J.-U., Sieben C., Hartel A., Eisenach C., Thiel G., Blatt M.R. (2007) Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Current Biology, 17, 1396-1402. – volume: 142 start-page: 923 year: 2006 end-page: 930 article-title: Diacidic motif is required for efficient transport of the K+ channel KAT1 to the plasma membrane publication-title: Plant Physiology – volume: 10 start-page: 231 year: 2008 end-page: 236 article-title: 14‐3‐3 proteins regulate the potassium channel KAT1 by dual modes publication-title: Plant Biology – volume: 94 start-page: 1325 year: 2004 end-page: 1331 article-title: Localization of pacemaker channels in lipid rafts regulates channel kinetics publication-title: Circulation Research – volume: 17 start-page: 1396 year: 2007 end-page: 1402 article-title: Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K channel and its recycling to the plasma membrane publication-title: Current Biology – volume: 65 start-page: 503 year: 2004 end-page: 511 article-title: Functional role of lipid raft microdomains in cyclic nucleotide‐gated channel activation publication-title: Molecular Pharmacology – volume: 77 start-page: 759 year: 1997 end-page: 803 article-title: Endocytosis publication-title: Physiological Reviews – volume: 12 start-page: 685 year: 2009 end-page: 689 article-title: How do ER export motifs work on ion channel trafficking? publication-title: Current Opinion in Plant Biology – volume: 18 start-page: 935 year: 2006 end-page: 954 article-title: Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane publication-title: The Plant Cell – volume: 37 start-page: 391 year: 2004 end-page: 397 article-title: Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of publication-title: The Plant Journal – volume: 86 start-page: 489 year: 2007 end-page: 500 article-title: Distinct fluorescent pattern of KAT1::GFP in the plasma membrane of guard cells publication-title: European Journal of Cell Biology – volume: 12 start-page: 287 year: 2002 end-page: 292 article-title: ER transport signals and trafficking of potassium channels and receptors publication-title: Current Opinion in Neurobiology – volume: 25 start-page: 16 year: 2004 end-page: 21 article-title: Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts publication-title: Trends in Pharmacological Sciences – volume: 56 start-page: 221 year: 2005 end-page: 251 article-title: Endocytotic cycling of PM proteins publication-title: Annual Review of Plant Biology – volume: 375 start-page: 393 year: 2004 end-page: 414 article-title: Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy publication-title: Methods in Enzymology – volume: 99 start-page: 10215 year: 2002 end-page: 10220 article-title: The number of K(+) channels in the plasma membrane of guard cell protoplasts changes in parallel with the surface area publication-title: Proceedings of the National Academy of Sciences USA – volume: 10 start-page: 1481 year: 2009 end-page: 1487 article-title: ER export of KAT1 is correlated to the number of acidic residues within a triacidic motif publication-title: Traffic – volume: 119 start-page: 4353 year: 2006 end-page: 4363 article-title: Scavenging of 14‐3‐3 proteins reveals their involvement in the cell‐surface transport of ATP‐sensitive K channels publication-title: Journal of Cell Science – volume: 33 start-page: 715 year: 2002 end-page: 729 article-title: Diverse trafficking patterns due to multiple traffic motifs in G protein‐activated inwardly rectifying potassium channels from brain and heart publication-title: Neuron – volume: 282 start-page: 1141 year: 1998 end-page: 1144 article-title: PIP2 and PIP as determinants for ATP inhibition of KATP channels publication-title: Science – start-page: 267 year: 2005 end-page: 276 – volume: 52 start-page: 1027 year: 2006 end-page: 1036 article-title: Pacemaking by HCN channels requires interaction with phosphoinositides publication-title: Neuron – volume: 12 start-page: 690 year: 2009 end-page: 698 article-title: The cellular dynamics of plant aquaporin expression and functions publication-title: Current Opinion in Plant Biology – volume: 179 start-page: 79 year: 2001 end-page: 102 article-title: Cell surface area regulation and membrane tension publication-title: Journal of Membrane Biology – volume: 39 start-page: 182 year: 2004 end-page: 193 article-title: Endocytosis against high turgor: intact guard cells of constitutively endocytose fluorescently labelled plasma membrane and GFP‐tagged K‐channel KAT1 publication-title: The Plant Journal – volume: 56 start-page: 997 year: 2008 end-page: 1006 article-title: Interaction of the K(+)‐channel KAT1 with the coat protein complex II coat component Sec24 depends on a di‐acidic endoplasmic reticulum export motif publication-title: The Plant Journal – ident: e_1_2_7_14_1 doi: 10.1111/j.1365-313X.2004.02119.x – ident: e_1_2_7_8_1 doi: 10.1016/j.ejcb.2007.05.003 – ident: e_1_2_7_25_1 doi: 10.1016/j.cub.2007.07.020 – ident: e_1_2_7_21_1 doi: 10.1016/S0076-6879(03)75025-3 – ident: e_1_2_7_4_1 doi: 10.1124/mol.65.3.503 – ident: e_1_2_7_10_1 doi: 10.1016/S0959-4388(02)00319-7 – ident: e_1_2_7_18_1 doi: 10.1007/s002320010040 – ident: e_1_2_7_16_1 doi: 10.1104/pp.106.087064 – ident: e_1_2_7_7_1 doi: 10.1073/pnas.152324399 – ident: e_1_2_7_3_1 doi: 10.1126/science.282.5391.1141 – ident: e_1_2_7_9_1 doi: 10.1046/j.1365-313X.2003.01972.x – ident: e_1_2_7_19_1 doi: 10.1152/physrev.1997.77.3.759 – ident: e_1_2_7_26_1 doi: 10.1016/j.neuron.2006.12.005 – ident: e_1_2_7_11_1 doi: 10.1016/S0896-6273(02)00614-1 – ident: e_1_2_7_23_1 doi: 10.1111/j.1438-8677.2007.00028.x – ident: e_1_2_7_24_1 doi: 10.1105/tpc.105.038950 – ident: e_1_2_7_5_1 doi: 10.1242/jcs.03196 – ident: e_1_2_7_22_1 doi: 10.1111/j.1365-313X.2008.03658.x – start-page: 267 volume-title: Progress in botany year: 2005 ident: e_1_2_7_6_1 – ident: e_1_2_7_20_1 doi: 10.1146/annurev.arplant.56.032604.144150 – ident: e_1_2_7_12_1 doi: 10.1016/j.tips.2003.11.007 – ident: e_1_2_7_17_1 doi: 10.1111/j.1600-0854.2009.00962.x – ident: e_1_2_7_2_1 doi: 10.1161/01.RES.0000127621.54132.AE – ident: e_1_2_7_15_1 doi: 10.1016/j.pbi.2009.09.020 – ident: e_1_2_7_13_1 doi: 10.1016/j.pbi.2009.09.002 |
SSID | ssj0014901 |
Score | 1.9524735 |
Snippet | Functioning of ion channels depends not only on the control of their activity but also on their density and lateral organisation in the membrane. The two... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 99 |
SubjectTerms | Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Cell Line Channel trafficking Endocytosis Endoplasmic Reticulum - metabolism endoplasmic reticulum export Exocytosis Fluorescence Recovery After Photobleaching Humans KAT1 lateral diffusion membrane domains Membrane Microdomains - metabolism Microscopy, Confocal Mutagenesis, Site-Directed Point Mutation Potassium Channels, Inwardly Rectifying - genetics Potassium Channels, Inwardly Rectifying - metabolism Protein Transport tetramerisation |
Title | Trafficking, lateral mobility and segregation of the plant K+ channel KAT1 |
URI | https://api.istex.fr/ark:/67375/WNG-PMHCHN0G-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1438-8677.2010.00355.x https://www.ncbi.nlm.nih.gov/pubmed/20712625 https://www.proquest.com/docview/748995910 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5K2kMvfT_cFzqUXlovtmxZ1jFZmixJs4SS0NyEJEs97NYO2V1I-us7I--absghlN6MYYQ0D8838qcRwEePaQHrHpeGYOu05N6lSgqZilq6RjWYcBs6nHw8rSZn5eG5OF_zn-gsTN8fYthwo8iI32sKcGMXN4Icg5X6sW0YWpg7R4QnibpF-Oj70EkK64B4EzKhAxTJim1Sz60DbWWq-6T0q9tg6DaqjWlp_zHMNgvq2Siz0WppR-73jV6P_2fFT-DRGr2y3d7dnsI93z6DB3sdIszr53CIiY86UtDu-xc2N3S4ec5-dZF_e81M27CFx_r-Z_QG1gWG6JNdzNG47OgzozPIOEV2tHuav4Cz_a-n40m6vqshdQXPUKcmr0IlHLeu4pmxhldGugqtXaoiWCeC4M663CvlGyzJZRZC7ZtCOVPk1qniJey0XetfAysFvheNcD7CC1WXwWEZ6GRTcilDlYDc2EW7dSNzuk9jrv8uaIpak6I0KUpHRemrBPJB8qJv5nEHmU_R9IOAuZwRGU4K_WN6oE-OJ-PJNDvQ4wTYxjc0hij9dzGt71YLTQ1-lEBclsCr3meGwTgiPI4laAIiWv7O09In3_bw4c0_yr2Fhz0Ngshy72Bnebny7xFdLe2HGDd_AOSEEfw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqqNReCn3R0NL6UPXSZpU4cRwfYQWk7EOoWlRuluPYPZAmCHYl6K_vjLMbdREHhHqLIo1lzyPzjTMPQj5bcAsQ95jQuTIPU2ZNKAUXIc-FqWQFDrfC4uTJNCvO0pNzfr4cB4S1MF1_iP7CDS3Df6_RwPFC-o6Vg7ViQ7ZVihY4zwEAyk0c8O3jqx99LymIBPwsZMQHQBMl62k996605qs2ke039wHRdVzrHdPRFqlXR-ryUS4Gi3k5MH_udHv8T2feJi-WAJbudxr3kjyxzSvy9KAFkHn7mpyA78OmFHgB_43WGuuba_q79Sm4t1Q3Fb22EOL_8gpBW0cBgNLLGuRLR18pliHDHulofxa_IWdHh7NhES7HNYQmYREwVceZy7hhpclYpEvNMi1MBgJPZeJKwx1npjSxldJWEJWLyLncVok0OolLI5O3ZKNpG_uO0JTDe15xYz3CkHnqDESCRlQpE8JlARErwSiz7GWOIzVq9W9Mk-QKGaWQUcozSt0EJO4pL7t-Hg-g-eJl3xPoqwvMhxNc_Zweq9NJMSym0bEaBoSulEOBleKvF93YdnGtsMeP5ADNArLTKU2_GAOQxyAKDQj3on_wttTp-AAedh9J94k8K2aTsRp_n47ek-ddVgTmzn0gG_Orhd0DsDUvP3oj-gsZdBYX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQhhAXxufI-PIBcYFUiRPH8XHr6Mq6VRXaxG6W4w8OLUm1tdLGX897ThvRaYcJcYsiPct-H3m_5_z8TMhHB2kB6h4Te1-Vcc6ciaXgIualMFZaSLgWDyefjovheX58wS9W_Cc8C9P2h-g23DAywvcaA3xu_a0gh2DFfmxrhhbkzh7gye28SEr08MPvXSspKATCVcgID0AmyTZZPXeOtJGqtlHr13fh0E1YG_LSYIdM1ytq6SjT3nJR9czvW80e_8-Sn5InK_hK91t_e0YeuPo5eXjQAMS8eUGOIfNhSwrcfv9CZxpPN8_oryYQcG-ori29clDg_wzuQBtPAX7S-QysS0efKR5ChinS0f5Z-pKcD76e9Yfx6rKG2GQsAZ3qtPAFN6wyBUt0pVmhhSnA3LnMfGW458xUJnVSOgs1uUi8L53NpNFZWhmZvSJbdVO714TmHN5zy40L-EKWuTdQBxphcyaELyIi1nZRZtXJHC_UmKm_K5qsVKgohYpSQVHqOiJpJzlvu3ncQ-ZTMH0noC-nyIYTXP0YH6nJ6bA_HCdHqh8RuvYNBTGKP1507ZrllcIOP5IDMIvIbusz3WAMIB6DGjQiPFj-3tNSk5MDeNj7R7kP5NHkcKBOvo1Hb8jjlhKBxLm3ZGtxuXTvAGktqvchhP4AyI4Uzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trafficking%2C+lateral+mobility+and+segregation+of+the+plant+K%2B+channel+KAT1&rft.jtitle=Plant+biology+%28Stuttgart%2C+Germany%29&rft.au=Reuff%2C+M.&rft.au=Mikosch%2C+M.&rft.au=Homann%2C+U.&rft.date=2010-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1435-8603&rft.eissn=1438-8677&rft.volume=12&rft.spage=99&rft.epage=104&rft_id=info:doi/10.1111%2Fj.1438-8677.2010.00355.x&rft.externalDBID=10.1111%252Fj.1438-8677.2010.00355.x&rft.externalDocID=PLB355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1435-8603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1435-8603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1435-8603&client=summon |