Trafficking, lateral mobility and segregation of the plant K+ channel KAT1

Functioning of ion channels depends not only on the control of their activity but also on their density and lateral organisation in the membrane. The two latter aspects have recently attracted increasing attention. Here, we summarize studies on trafficking and plasma membrane distribution of the pla...

Full description

Saved in:
Bibliographic Details
Published inPlant biology (Stuttgart, Germany) Vol. 12; no. s1; pp. 99 - 104
Main Authors Reuff, M., Mikosch, M., Homann, U.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functioning of ion channels depends not only on the control of their activity but also on their density and lateral organisation in the membrane. The two latter aspects have recently attracted increasing attention. Here, we summarize studies on trafficking and plasma membrane distribution of the plant K+ channel KAT1 from Arabidopsis thaliana. In guard cells, KAT1 was found to be subject to constitutive and pressure‐driven turnover and ABA‐stimulated endocytosis. These results point to a role of exo‐ and endocytosis in regulating KAT1 density and thus ion transport during guard cell functioning. Recent studies indicate that KAT1 density can also be adjusted at the site of ER export. Efficient ER export of KAT1 was shown to depend on an acidic motif that interacts with Sec24, a component of ER‐derived vesicles. Surface expression of ER export mutants of KAT1 can be rescued through heterotetrameric assembly with wild‐type KAT1, implying that not all subunits of the channel tetramer need to carry an ER export motif. Analysis of the distribution of KAT1 in the plasma membrane revealed segregation of the channel into microdomains, and low lateral mobility in both plant and mammalian cells. In plant cells, SNAREs have been shown to be involved in anchoring KAT1 in the plasma membrane. Studies on guard cells imply a role for the cell wall in organisation of KAT1 microdomains. Together, these findings underline the importance of investigating mechanisms of KAT1 trafficking and lateral organisation in order to fully understand channel functioning.
AbstractList Functioning of ion channels depends not only on the control of their activity but also on their density and lateral organisation in the membrane. The two latter aspects have recently attracted increasing attention. Here, we summarize studies on trafficking and plasma membrane distribution of the plant K + channel KAT1 from Arabidopsis thaliana . In guard cells, KAT1 was found to be subject to constitutive and pressure‐driven turnover and ABA‐stimulated endocytosis. These results point to a role of exo‐ and endocytosis in regulating KAT1 density and thus ion transport during guard cell functioning. Recent studies indicate that KAT1 density can also be adjusted at the site of ER export. Efficient ER export of KAT1 was shown to depend on an acidic motif that interacts with Sec24, a component of ER‐derived vesicles. Surface expression of ER export mutants of KAT1 can be rescued through heterotetrameric assembly with wild‐type KAT1, implying that not all subunits of the channel tetramer need to carry an ER export motif. Analysis of the distribution of KAT1 in the plasma membrane revealed segregation of the channel into microdomains, and low lateral mobility in both plant and mammalian cells. In plant cells, SNAREs have been shown to be involved in anchoring KAT1 in the plasma membrane. Studies on guard cells imply a role for the cell wall in organisation of KAT1 microdomains. Together, these findings underline the importance of investigating mechanisms of KAT1 trafficking and lateral organisation in order to fully understand channel functioning.
Functioning of ion channels depends not only on the control of their activity but also on their density and lateral organisation in the membrane. The two latter aspects have recently attracted increasing attention. Here, we summarize studies on trafficking and plasma membrane distribution of the plant K+ channel KAT1 from Arabidopsis thaliana. In guard cells, KAT1 was found to be subject to constitutive and pressure‐driven turnover and ABA‐stimulated endocytosis. These results point to a role of exo‐ and endocytosis in regulating KAT1 density and thus ion transport during guard cell functioning. Recent studies indicate that KAT1 density can also be adjusted at the site of ER export. Efficient ER export of KAT1 was shown to depend on an acidic motif that interacts with Sec24, a component of ER‐derived vesicles. Surface expression of ER export mutants of KAT1 can be rescued through heterotetrameric assembly with wild‐type KAT1, implying that not all subunits of the channel tetramer need to carry an ER export motif. Analysis of the distribution of KAT1 in the plasma membrane revealed segregation of the channel into microdomains, and low lateral mobility in both plant and mammalian cells. In plant cells, SNAREs have been shown to be involved in anchoring KAT1 in the plasma membrane. Studies on guard cells imply a role for the cell wall in organisation of KAT1 microdomains. Together, these findings underline the importance of investigating mechanisms of KAT1 trafficking and lateral organisation in order to fully understand channel functioning.
Functioning of ion channels depends not only on the control of their activity but also on their density and lateral organisation in the membrane. The two latter aspects have recently attracted increasing attention. Here, we summarize studies on trafficking and plasma membrane distribution of the plant K(+) channel KAT1 from Arabidopsis thaliana. In guard cells, KAT1 was found to be subject to constitutive and pressure-driven turnover and ABA-stimulated endocytosis. These results point to a role of exo- and endocytosis in regulating KAT1 density and thus ion transport during guard cell functioning. Recent studies indicate that KAT1 density can also be adjusted at the site of ER export. Efficient ER export of KAT1 was shown to depend on an acidic motif that interacts with Sec24, a component of ER-derived vesicles. Surface expression of ER export mutants of KAT1 can be rescued through heterotetrameric assembly with wild-type KAT1, implying that not all subunits of the channel tetramer need to carry an ER export motif. Analysis of the distribution of KAT1 in the plasma membrane revealed segregation of the channel into microdomains, and low lateral mobility in both plant and mammalian cells. In plant cells, SNAREs have been shown to be involved in anchoring KAT1 in the plasma membrane. Studies on guard cells imply a role for the cell wall in organisation of KAT1 microdomains. Together, these findings underline the importance of investigating mechanisms of KAT1 trafficking and lateral organisation in order to fully understand channel functioning.Functioning of ion channels depends not only on the control of their activity but also on their density and lateral organisation in the membrane. The two latter aspects have recently attracted increasing attention. Here, we summarize studies on trafficking and plasma membrane distribution of the plant K(+) channel KAT1 from Arabidopsis thaliana. In guard cells, KAT1 was found to be subject to constitutive and pressure-driven turnover and ABA-stimulated endocytosis. These results point to a role of exo- and endocytosis in regulating KAT1 density and thus ion transport during guard cell functioning. Recent studies indicate that KAT1 density can also be adjusted at the site of ER export. Efficient ER export of KAT1 was shown to depend on an acidic motif that interacts with Sec24, a component of ER-derived vesicles. Surface expression of ER export mutants of KAT1 can be rescued through heterotetrameric assembly with wild-type KAT1, implying that not all subunits of the channel tetramer need to carry an ER export motif. Analysis of the distribution of KAT1 in the plasma membrane revealed segregation of the channel into microdomains, and low lateral mobility in both plant and mammalian cells. In plant cells, SNAREs have been shown to be involved in anchoring KAT1 in the plasma membrane. Studies on guard cells imply a role for the cell wall in organisation of KAT1 microdomains. Together, these findings underline the importance of investigating mechanisms of KAT1 trafficking and lateral organisation in order to fully understand channel functioning.
Author Homann, U.
Reuff, M.
Mikosch, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Reuff
  fullname: Reuff, M.
  organization:  Institut für Botanik, Technische Universität Darmstadt, Darmstadt, Germany
– sequence: 2
  givenname: M.
  surname: Mikosch
  fullname: Mikosch, M.
  organization:  Institut für Botanik, Technische Universität Darmstadt, Darmstadt, Germany
– sequence: 3
  givenname: U.
  surname: Homann
  fullname: Homann, U.
  organization:  Institut für Botanik, Technische Universität Darmstadt, Darmstadt, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20712625$$D View this record in MEDLINE/PubMed
BookMark eNqNkEtvEzEUhS1U1Bf9C8g7FpDUj7FnLCGkEkFSGkoXQSyvPB47derMpPZEJP8eJ2m7YFVvfGWf79x7zxk6arvWIoQpGdJ8LhdDWvBqUMmyHDKSXwnhQgw3b9Dpy8fRvha5JvwEnaW0IIQWitBjdMJISZlk4hT9mEXtnDcPvp1_wkH3NuqAl13tg--3WLcNTnYe7Vz3vmtx53B_b_Eq6LbHNx-xuddtawO-uZrRd-it0yHZi6f7HP3-_m02mgymv8bXo6vpwHBG8jyaSieFYbWRjOhaM6lLI1UjC8VdbYQTzNSGWqVsU0hVEucq23BlNKe1UfwcfTj4rmL3uLaph6VPxoY8k-3WCcqiUkooSrLy_ZNyXS9tA6volzpu4Xn9LPhyEJjYpRStA-P7_aZ91D4AJbDLGxawixV2scIub9jnDZtsUP1n8NzjFejnA_rXB7t9NQd306-5yPjggPvU280LruMDyJKXAv7cjuHu52Q0uSVjGPF_JaylUA
CitedBy_id crossref_primary_10_1111_tra_12817
crossref_primary_10_1093_jxb_erv054
crossref_primary_10_1016_j_molp_2018_09_008
crossref_primary_10_1016_j_biochi_2013_07_028
crossref_primary_10_1111_j_1438_8677_2010_00390_x
crossref_primary_10_1016_j_stress_2025_100740
crossref_primary_10_1093_plphys_kiab312
crossref_primary_10_1105_tpc_114_124446
Cites_doi 10.1111/j.1365-313X.2004.02119.x
10.1016/j.ejcb.2007.05.003
10.1016/j.cub.2007.07.020
10.1016/S0076-6879(03)75025-3
10.1124/mol.65.3.503
10.1016/S0959-4388(02)00319-7
10.1007/s002320010040
10.1104/pp.106.087064
10.1073/pnas.152324399
10.1126/science.282.5391.1141
10.1046/j.1365-313X.2003.01972.x
10.1152/physrev.1997.77.3.759
10.1016/j.neuron.2006.12.005
10.1016/S0896-6273(02)00614-1
10.1111/j.1438-8677.2007.00028.x
10.1105/tpc.105.038950
10.1242/jcs.03196
10.1111/j.1365-313X.2008.03658.x
10.1146/annurev.arplant.56.032604.144150
10.1016/j.tips.2003.11.007
10.1111/j.1600-0854.2009.00962.x
10.1161/01.RES.0000127621.54132.AE
10.1016/j.pbi.2009.09.020
10.1016/j.pbi.2009.09.002
ContentType Journal Article
Copyright 2010 German Botanical Society and The Royal Botanical Society of the Netherlands
Copyright_xml – notice: 2010 German Botanical Society and The Royal Botanical Society of the Netherlands
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.1438-8677.2010.00355.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1438-8677
EndPage 104
ExternalDocumentID 20712625
10_1111_j_1438_8677_2010_00355_x
PLB355
ark_67375_WNG_PMHCHN0G_C
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
H13
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
RJQFR
ROL
RTC
RX1
SUPJJ
SV3
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
BIYOS
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3205-8a16f65c2bc620aba26a7c69d6493fbc5f52cbc1e99ed46970ff8ed39ca31bc93
IEDL.DBID DR2
ISSN 1435-8603
1438-8677
IngestDate Fri Jul 11 05:52:41 EDT 2025
Mon Jul 21 06:01:58 EDT 2025
Tue Jul 01 02:52:50 EDT 2025
Thu Apr 24 23:09:54 EDT 2025
Wed Jan 22 16:45:18 EST 2025
Wed Oct 30 09:57:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue s1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3205-8a16f65c2bc620aba26a7c69d6493fbc5f52cbc1e99ed46970ff8ed39ca31bc93
Notes istex:DFB893759214E6A0CC09F6E80674545D0E4008A7
ark:/67375/WNG-PMHCHN0G-C
ArticleID:PLB355
Editor 
N. Sauer
N. Sauer
Editor
This article was published online on 25 May 2010. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected on 13 July 2010.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20712625
PQID 748995910
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_748995910
pubmed_primary_20712625
crossref_citationtrail_10_1111_j_1438_8677_2010_00355_x
crossref_primary_10_1111_j_1438_8677_2010_00355_x
wiley_primary_10_1111_j_1438_8677_2010_00355_x_PLB355
istex_primary_ark_67375_WNG_PMHCHN0G_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09
September 2010
2010-09-00
2010-Sep
20100901
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Plant biology (Stuttgart, Germany)
PublicationTitleAlternate Plant Biol (Stuttg)
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Meckel T., Hurst A.C., Thiel G., Homann U. (2004) Endocytosis against high turgor: intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K-channel KAT1. The Plant Journal, 39, 182-193.
Ma D., Jan L.Y. (2002) ER transport signals and trafficking of potassium channels and receptors. Current Opinion in Neurobiology, 12, 287-292.
Mikosch M., Käberich K., Homann U. (2009) ER export of KAT1 is correlated to the number of acidic residues within a triacidic motif. Traffic, 10, 1481-1487.
Mikosch M., Hurst A.C., Hertel B., Homann U. (2006) Diacidic motif is required for efficient transport of the K+ channel KAT1 to the plasma membrane. Plant Physiology, 142, 923-930.
Ma D., Zerangue N., Raab-Graham K., Fried S.R., Jan Y.N., Jan L.Y. (2002) Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart. Neuron, 33, 715-729.
Mukherjee S., Ghosh R.N., Maxfield F.R. (1997) Endocytosis. Physiological Reviews, 77, 759-803.
Sutter J.-U., Campanoni P., Tyrrell M., Blatt M.R. (2006) Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. The Plant Cell, 18, 935-954.
Sottocornola B., Gazzarrini S., Olivari C., Romani G., Valbuzzi P., Thiel G., Moroni A. (2008) 14-3-3 proteins regulate the potassium channel KAT1 by dual modes. Plant Biology, 10, 231-236.
Martens J.R., O'Connell K., Tamkun M. (2004) Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts. Trends in Pharmacological Sciences, 25, 16-21.
Homann U., Thiel G. (2002) The number of K(+) channels in the plasma membrane of guard cell protoplasts changes in parallel with the surface area. Proceedings of the National Academy of Sciences USA, 99, 10215-10220.
Mikosch M., Homann U. (2009) How do ER export motifs work on ion channel trafficking? Current Opinion in Plant Biology, 12, 685-689.
Sutter J.-U., Sieben C., Hartel A., Eisenach C., Thiel G., Blatt M.R. (2007) Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Current Biology, 17, 1396-1402.
Heusser K., Yuan H., Neagoe I., Tarasov A.I., Ashcroft F.M., Schwappach B. (2006) Scavenging of 14-3-3 proteins reveals their involvement in the cell-surface transport of ATP-sensitive K+ channels. Journal of Cell Science, 119, 4353-4363.
Sieben C., Mikosch M., Brandizzi F., Homann U. (2008) Interaction of the K(+)-channel KAT1 with the coat protein complex II coat component Sec24 depends on a di-acidic endoplasmic reticulum export motif. The Plant Journal, 56, 997-1006.
Zolles G., Klöcker N., Wenzel D., Weisser-Thomas J., Fleischmann B.K., Roeper J., Fakler B. (2006) Pacemaking by HCN channels requires interaction with phosphoinositides. Neuron, 52, 1027-1036.
Homann U., Meckel T., Hewing J., Hütt M.-T., Hurst A.C. (2007) Distinct fluorescent pattern of KAT1::GFP in the plasma membrane of Vicia faba guard cells. European Journal of Cell Biology, 86, 489-500.
Morris C.E., Homann U. (2001) Cell surface area regulation and membrane tension. Journal of Membrane Biology, 179, 79-102.
Murphy A.S., Bandyopadhyay A., Holstein S.E., Peer W.A. (2005) Endocytotic cycling of PM proteins. Annual Review of Plant Biology, 56, 221-251.
Brady J.D., Rich T.C., Le X., Stafford K., Fowler C.J., Lynch L., Karpen J.W., Brown R.L., Martens J.R. (2004) Functional role of lipid raft microdomains in cyclic nucleotide-gated channel activation. Molecular Pharmacology, 65, 503-511.
Maurel C., Santoni V., Luu D.T., Wudick M.M., Verdoucq L. (2009) The cellular dynamics of plant aquaporin expression and functions. Current Opinion in Plant Biology, 12, 690-698.
Barbuti A., Gravante B., Riolfo M., Milanesi R., Terragni B., DiFrancesco D. (2004) Localization of pacemaker channels in lipid rafts regulates channel kinetics. Circulation Research, 94, 1325-1331.
Phair R.D., Gorski S.A., Misteli T. (2004) Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Methods in Enzymology, 375, 393-414.
Baukrowitz T., Schulte U., Oliver D., Herlitze S., Krauter T., Tucker S.J., Ruppersberg J.P., Fakler B. (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science, 282, 1141-1144.
Hurst A.C., Meckel T., Tayefeh S., Thiel G., Homann U. (2004) Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba. The Plant Journal, 37, 391-397.
2004; 65
2009; 12
2007; 17
2004; 375
2001; 179
2004; 94
2006; 52
2006; 119
2009; 10
1997; 77
2004; 39
2002; 12
2004; 25
2004; 37
2002; 99
2002; 33
2008; 56
2006; 18
2006; 142
2005
2008; 10
2007; 86
1998; 282
2005; 56
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
Homann U. (e_1_2_7_6_1) 2005
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – reference: Homann U., Meckel T., Hewing J., Hütt M.-T., Hurst A.C. (2007) Distinct fluorescent pattern of KAT1::GFP in the plasma membrane of Vicia faba guard cells. European Journal of Cell Biology, 86, 489-500.
– reference: Baukrowitz T., Schulte U., Oliver D., Herlitze S., Krauter T., Tucker S.J., Ruppersberg J.P., Fakler B. (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science, 282, 1141-1144.
– reference: Homann U., Thiel G. (2002) The number of K(+) channels in the plasma membrane of guard cell protoplasts changes in parallel with the surface area. Proceedings of the National Academy of Sciences USA, 99, 10215-10220.
– reference: Heusser K., Yuan H., Neagoe I., Tarasov A.I., Ashcroft F.M., Schwappach B. (2006) Scavenging of 14-3-3 proteins reveals their involvement in the cell-surface transport of ATP-sensitive K+ channels. Journal of Cell Science, 119, 4353-4363.
– reference: Mikosch M., Hurst A.C., Hertel B., Homann U. (2006) Diacidic motif is required for efficient transport of the K+ channel KAT1 to the plasma membrane. Plant Physiology, 142, 923-930.
– reference: Sutter J.-U., Campanoni P., Tyrrell M., Blatt M.R. (2006) Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. The Plant Cell, 18, 935-954.
– reference: Morris C.E., Homann U. (2001) Cell surface area regulation and membrane tension. Journal of Membrane Biology, 179, 79-102.
– reference: Meckel T., Hurst A.C., Thiel G., Homann U. (2004) Endocytosis against high turgor: intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K-channel KAT1. The Plant Journal, 39, 182-193.
– reference: Brady J.D., Rich T.C., Le X., Stafford K., Fowler C.J., Lynch L., Karpen J.W., Brown R.L., Martens J.R. (2004) Functional role of lipid raft microdomains in cyclic nucleotide-gated channel activation. Molecular Pharmacology, 65, 503-511.
– reference: Ma D., Jan L.Y. (2002) ER transport signals and trafficking of potassium channels and receptors. Current Opinion in Neurobiology, 12, 287-292.
– reference: Murphy A.S., Bandyopadhyay A., Holstein S.E., Peer W.A. (2005) Endocytotic cycling of PM proteins. Annual Review of Plant Biology, 56, 221-251.
– reference: Phair R.D., Gorski S.A., Misteli T. (2004) Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Methods in Enzymology, 375, 393-414.
– reference: Barbuti A., Gravante B., Riolfo M., Milanesi R., Terragni B., DiFrancesco D. (2004) Localization of pacemaker channels in lipid rafts regulates channel kinetics. Circulation Research, 94, 1325-1331.
– reference: Maurel C., Santoni V., Luu D.T., Wudick M.M., Verdoucq L. (2009) The cellular dynamics of plant aquaporin expression and functions. Current Opinion in Plant Biology, 12, 690-698.
– reference: Mikosch M., Homann U. (2009) How do ER export motifs work on ion channel trafficking? Current Opinion in Plant Biology, 12, 685-689.
– reference: Sieben C., Mikosch M., Brandizzi F., Homann U. (2008) Interaction of the K(+)-channel KAT1 with the coat protein complex II coat component Sec24 depends on a di-acidic endoplasmic reticulum export motif. The Plant Journal, 56, 997-1006.
– reference: Sottocornola B., Gazzarrini S., Olivari C., Romani G., Valbuzzi P., Thiel G., Moroni A. (2008) 14-3-3 proteins regulate the potassium channel KAT1 by dual modes. Plant Biology, 10, 231-236.
– reference: Zolles G., Klöcker N., Wenzel D., Weisser-Thomas J., Fleischmann B.K., Roeper J., Fakler B. (2006) Pacemaking by HCN channels requires interaction with phosphoinositides. Neuron, 52, 1027-1036.
– reference: Hurst A.C., Meckel T., Tayefeh S., Thiel G., Homann U. (2004) Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba. The Plant Journal, 37, 391-397.
– reference: Martens J.R., O'Connell K., Tamkun M. (2004) Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts. Trends in Pharmacological Sciences, 25, 16-21.
– reference: Mukherjee S., Ghosh R.N., Maxfield F.R. (1997) Endocytosis. Physiological Reviews, 77, 759-803.
– reference: Ma D., Zerangue N., Raab-Graham K., Fried S.R., Jan Y.N., Jan L.Y. (2002) Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart. Neuron, 33, 715-729.
– reference: Mikosch M., Käberich K., Homann U. (2009) ER export of KAT1 is correlated to the number of acidic residues within a triacidic motif. Traffic, 10, 1481-1487.
– reference: Sutter J.-U., Sieben C., Hartel A., Eisenach C., Thiel G., Blatt M.R. (2007) Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Current Biology, 17, 1396-1402.
– volume: 142
  start-page: 923
  year: 2006
  end-page: 930
  article-title: Diacidic motif is required for efficient transport of the K+ channel KAT1 to the plasma membrane
  publication-title: Plant Physiology
– volume: 10
  start-page: 231
  year: 2008
  end-page: 236
  article-title: 14‐3‐3 proteins regulate the potassium channel KAT1 by dual modes
  publication-title: Plant Biology
– volume: 94
  start-page: 1325
  year: 2004
  end-page: 1331
  article-title: Localization of pacemaker channels in lipid rafts regulates channel kinetics
  publication-title: Circulation Research
– volume: 17
  start-page: 1396
  year: 2007
  end-page: 1402
  article-title: Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K channel and its recycling to the plasma membrane
  publication-title: Current Biology
– volume: 65
  start-page: 503
  year: 2004
  end-page: 511
  article-title: Functional role of lipid raft microdomains in cyclic nucleotide‐gated channel activation
  publication-title: Molecular Pharmacology
– volume: 77
  start-page: 759
  year: 1997
  end-page: 803
  article-title: Endocytosis
  publication-title: Physiological Reviews
– volume: 12
  start-page: 685
  year: 2009
  end-page: 689
  article-title: How do ER export motifs work on ion channel trafficking?
  publication-title: Current Opinion in Plant Biology
– volume: 18
  start-page: 935
  year: 2006
  end-page: 954
  article-title: Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane
  publication-title: The Plant Cell
– volume: 37
  start-page: 391
  year: 2004
  end-page: 397
  article-title: Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of
  publication-title: The Plant Journal
– volume: 86
  start-page: 489
  year: 2007
  end-page: 500
  article-title: Distinct fluorescent pattern of KAT1::GFP in the plasma membrane of guard cells
  publication-title: European Journal of Cell Biology
– volume: 12
  start-page: 287
  year: 2002
  end-page: 292
  article-title: ER transport signals and trafficking of potassium channels and receptors
  publication-title: Current Opinion in Neurobiology
– volume: 25
  start-page: 16
  year: 2004
  end-page: 21
  article-title: Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts
  publication-title: Trends in Pharmacological Sciences
– volume: 56
  start-page: 221
  year: 2005
  end-page: 251
  article-title: Endocytotic cycling of PM proteins
  publication-title: Annual Review of Plant Biology
– volume: 375
  start-page: 393
  year: 2004
  end-page: 414
  article-title: Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy
  publication-title: Methods in Enzymology
– volume: 99
  start-page: 10215
  year: 2002
  end-page: 10220
  article-title: The number of K(+) channels in the plasma membrane of guard cell protoplasts changes in parallel with the surface area
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 10
  start-page: 1481
  year: 2009
  end-page: 1487
  article-title: ER export of KAT1 is correlated to the number of acidic residues within a triacidic motif
  publication-title: Traffic
– volume: 119
  start-page: 4353
  year: 2006
  end-page: 4363
  article-title: Scavenging of 14‐3‐3 proteins reveals their involvement in the cell‐surface transport of ATP‐sensitive K channels
  publication-title: Journal of Cell Science
– volume: 33
  start-page: 715
  year: 2002
  end-page: 729
  article-title: Diverse trafficking patterns due to multiple traffic motifs in G protein‐activated inwardly rectifying potassium channels from brain and heart
  publication-title: Neuron
– volume: 282
  start-page: 1141
  year: 1998
  end-page: 1144
  article-title: PIP2 and PIP as determinants for ATP inhibition of KATP channels
  publication-title: Science
– start-page: 267
  year: 2005
  end-page: 276
– volume: 52
  start-page: 1027
  year: 2006
  end-page: 1036
  article-title: Pacemaking by HCN channels requires interaction with phosphoinositides
  publication-title: Neuron
– volume: 12
  start-page: 690
  year: 2009
  end-page: 698
  article-title: The cellular dynamics of plant aquaporin expression and functions
  publication-title: Current Opinion in Plant Biology
– volume: 179
  start-page: 79
  year: 2001
  end-page: 102
  article-title: Cell surface area regulation and membrane tension
  publication-title: Journal of Membrane Biology
– volume: 39
  start-page: 182
  year: 2004
  end-page: 193
  article-title: Endocytosis against high turgor: intact guard cells of constitutively endocytose fluorescently labelled plasma membrane and GFP‐tagged K‐channel KAT1
  publication-title: The Plant Journal
– volume: 56
  start-page: 997
  year: 2008
  end-page: 1006
  article-title: Interaction of the K(+)‐channel KAT1 with the coat protein complex II coat component Sec24 depends on a di‐acidic endoplasmic reticulum export motif
  publication-title: The Plant Journal
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1365-313X.2004.02119.x
– ident: e_1_2_7_8_1
  doi: 10.1016/j.ejcb.2007.05.003
– ident: e_1_2_7_25_1
  doi: 10.1016/j.cub.2007.07.020
– ident: e_1_2_7_21_1
  doi: 10.1016/S0076-6879(03)75025-3
– ident: e_1_2_7_4_1
  doi: 10.1124/mol.65.3.503
– ident: e_1_2_7_10_1
  doi: 10.1016/S0959-4388(02)00319-7
– ident: e_1_2_7_18_1
  doi: 10.1007/s002320010040
– ident: e_1_2_7_16_1
  doi: 10.1104/pp.106.087064
– ident: e_1_2_7_7_1
  doi: 10.1073/pnas.152324399
– ident: e_1_2_7_3_1
  doi: 10.1126/science.282.5391.1141
– ident: e_1_2_7_9_1
  doi: 10.1046/j.1365-313X.2003.01972.x
– ident: e_1_2_7_19_1
  doi: 10.1152/physrev.1997.77.3.759
– ident: e_1_2_7_26_1
  doi: 10.1016/j.neuron.2006.12.005
– ident: e_1_2_7_11_1
  doi: 10.1016/S0896-6273(02)00614-1
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1438-8677.2007.00028.x
– ident: e_1_2_7_24_1
  doi: 10.1105/tpc.105.038950
– ident: e_1_2_7_5_1
  doi: 10.1242/jcs.03196
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1365-313X.2008.03658.x
– start-page: 267
  volume-title: Progress in botany
  year: 2005
  ident: e_1_2_7_6_1
– ident: e_1_2_7_20_1
  doi: 10.1146/annurev.arplant.56.032604.144150
– ident: e_1_2_7_12_1
  doi: 10.1016/j.tips.2003.11.007
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1600-0854.2009.00962.x
– ident: e_1_2_7_2_1
  doi: 10.1161/01.RES.0000127621.54132.AE
– ident: e_1_2_7_15_1
  doi: 10.1016/j.pbi.2009.09.020
– ident: e_1_2_7_13_1
  doi: 10.1016/j.pbi.2009.09.002
SSID ssj0014901
Score 1.9524735
Snippet Functioning of ion channels depends not only on the control of their activity but also on their density and lateral organisation in the membrane. The two...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 99
SubjectTerms Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Cell Line
Channel trafficking
Endocytosis
Endoplasmic Reticulum - metabolism
endoplasmic reticulum export
Exocytosis
Fluorescence Recovery After Photobleaching
Humans
KAT1
lateral diffusion
membrane domains
Membrane Microdomains - metabolism
Microscopy, Confocal
Mutagenesis, Site-Directed
Point Mutation
Potassium Channels, Inwardly Rectifying - genetics
Potassium Channels, Inwardly Rectifying - metabolism
Protein Transport
tetramerisation
Title Trafficking, lateral mobility and segregation of the plant K+ channel KAT1
URI https://api.istex.fr/ark:/67375/WNG-PMHCHN0G-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1438-8677.2010.00355.x
https://www.ncbi.nlm.nih.gov/pubmed/20712625
https://www.proquest.com/docview/748995910
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5K2kMvfT_cFzqUXlovtmxZ1jFZmixJs4SS0NyEJEs97NYO2V1I-us7I--absghlN6MYYQ0D8838qcRwEePaQHrHpeGYOu05N6lSgqZilq6RjWYcBs6nHw8rSZn5eG5OF_zn-gsTN8fYthwo8iI32sKcGMXN4Icg5X6sW0YWpg7R4QnibpF-Oj70EkK64B4EzKhAxTJim1Sz60DbWWq-6T0q9tg6DaqjWlp_zHMNgvq2Siz0WppR-73jV6P_2fFT-DRGr2y3d7dnsI93z6DB3sdIszr53CIiY86UtDu-xc2N3S4ec5-dZF_e81M27CFx_r-Z_QG1gWG6JNdzNG47OgzozPIOEV2tHuav4Cz_a-n40m6vqshdQXPUKcmr0IlHLeu4pmxhldGugqtXaoiWCeC4M663CvlGyzJZRZC7ZtCOVPk1qniJey0XetfAysFvheNcD7CC1WXwWEZ6GRTcilDlYDc2EW7dSNzuk9jrv8uaIpak6I0KUpHRemrBPJB8qJv5nEHmU_R9IOAuZwRGU4K_WN6oE-OJ-PJNDvQ4wTYxjc0hij9dzGt71YLTQ1-lEBclsCr3meGwTgiPI4laAIiWv7O09In3_bw4c0_yr2Fhz0Ngshy72Bnebny7xFdLe2HGDd_AOSEEfw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqqNReCn3R0NL6UPXSZpU4cRwfYQWk7EOoWlRuluPYPZAmCHYl6K_vjLMbdREHhHqLIo1lzyPzjTMPQj5bcAsQ95jQuTIPU2ZNKAUXIc-FqWQFDrfC4uTJNCvO0pNzfr4cB4S1MF1_iP7CDS3Df6_RwPFC-o6Vg7ViQ7ZVihY4zwEAyk0c8O3jqx99LymIBPwsZMQHQBMl62k996605qs2ke039wHRdVzrHdPRFqlXR-ryUS4Gi3k5MH_udHv8T2feJi-WAJbudxr3kjyxzSvy9KAFkHn7mpyA78OmFHgB_43WGuuba_q79Sm4t1Q3Fb22EOL_8gpBW0cBgNLLGuRLR18pliHDHulofxa_IWdHh7NhES7HNYQmYREwVceZy7hhpclYpEvNMi1MBgJPZeJKwx1npjSxldJWEJWLyLncVok0OolLI5O3ZKNpG_uO0JTDe15xYz3CkHnqDESCRlQpE8JlARErwSiz7GWOIzVq9W9Mk-QKGaWQUcozSt0EJO4pL7t-Hg-g-eJl3xPoqwvMhxNc_Zweq9NJMSym0bEaBoSulEOBleKvF93YdnGtsMeP5ADNArLTKU2_GAOQxyAKDQj3on_wttTp-AAedh9J94k8K2aTsRp_n47ek-ddVgTmzn0gG_Orhd0DsDUvP3oj-gsZdBYX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQhhAXxufI-PIBcYFUiRPH8XHr6Mq6VRXaxG6W4w8OLUm1tdLGX897ThvRaYcJcYsiPct-H3m_5_z8TMhHB2kB6h4Te1-Vcc6ciaXgIualMFZaSLgWDyefjovheX58wS9W_Cc8C9P2h-g23DAywvcaA3xu_a0gh2DFfmxrhhbkzh7gye28SEr08MPvXSspKATCVcgID0AmyTZZPXeOtJGqtlHr13fh0E1YG_LSYIdM1ytq6SjT3nJR9czvW80e_8-Sn5InK_hK91t_e0YeuPo5eXjQAMS8eUGOIfNhSwrcfv9CZxpPN8_oryYQcG-ori29clDg_wzuQBtPAX7S-QysS0efKR5ChinS0f5Z-pKcD76e9Yfx6rKG2GQsAZ3qtPAFN6wyBUt0pVmhhSnA3LnMfGW458xUJnVSOgs1uUi8L53NpNFZWhmZvSJbdVO714TmHN5zy40L-EKWuTdQBxphcyaELyIi1nZRZtXJHC_UmKm_K5qsVKgohYpSQVHqOiJpJzlvu3ncQ-ZTMH0noC-nyIYTXP0YH6nJ6bA_HCdHqh8RuvYNBTGKP1507ZrllcIOP5IDMIvIbusz3WAMIB6DGjQiPFj-3tNSk5MDeNj7R7kP5NHkcKBOvo1Hb8jjlhKBxLm3ZGtxuXTvAGktqvchhP4AyI4Uzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trafficking%2C+lateral+mobility+and+segregation+of+the+plant+K%2B+channel+KAT1&rft.jtitle=Plant+biology+%28Stuttgart%2C+Germany%29&rft.au=Reuff%2C+M.&rft.au=Mikosch%2C+M.&rft.au=Homann%2C+U.&rft.date=2010-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1435-8603&rft.eissn=1438-8677&rft.volume=12&rft.spage=99&rft.epage=104&rft_id=info:doi/10.1111%2Fj.1438-8677.2010.00355.x&rft.externalDBID=10.1111%252Fj.1438-8677.2010.00355.x&rft.externalDocID=PLB355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1435-8603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1435-8603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1435-8603&client=summon