Local SAR management strategies to use two‐channel RF shimming for fetal MRI at 3 T
Purpose This study evaluates the imaging performance of two‐channel RF‐shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR) management strategies. Methods Due to the ambiguity of safe local SAR levels for fetal MRI, local SAR limits for RF shimming were determined...
Saved in:
Published in | Magnetic resonance in medicine Vol. 91; no. 3; pp. 1165 - 1178 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
This study evaluates the imaging performance of two‐channel RF‐shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR) management strategies.
Methods
Due to the ambiguity of safe local SAR levels for fetal MRI, local SAR limits for RF shimming were determined based on either each individual's own SAR levels in standard imaging mode (CP mode) or the maximum SAR level observed across seven pregnant body models in CP mode. Local SAR was constrained either indirectly by further constraining the whole‐body SAR (wbSAR) or directly by using subject‐specific local SAR models. Each strategy was evaluated by the improvement of the transmit field efficiency (average |B1+|) and nonuniformity (|B1+| variation) inside the fetus compared with CP mode for the same wbSAR.
Results
Constraining wbSAR when using RF shimming decreases B1+ efficiency inside the fetus compared with CP mode (by 12%–30% on average), making it inefficient for SAR management. Using subject‐specific models with SAR limits based on each individual's own CP mode SAR value, B1+ efficiency and nonuniformity are improved on average by 6% and 13% across seven pregnant models. In contrast, using SAR limits based on maximum CP mode SAR values across seven models, B1+ efficiency and nonuniformity are improved by 13% and 25%, compared with the best achievable improvement without SAR constraints: 15% and 26%.
Conclusion
Two‐channel RF‐shimming can safely and significantly improve the transmit field inside the fetus when subject‐specific models are used with local SAR limits based on maximum CP mode SAR levels in the pregnant population. |
---|---|
AbstractList | This study evaluates the imaging performance of two-channel RF-shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR) management strategies.PURPOSEThis study evaluates the imaging performance of two-channel RF-shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR) management strategies.Due to the ambiguity of safe local SAR levels for fetal MRI, local SAR limits for RF shimming were determined based on either each individual's own SAR levels in standard imaging mode (CP mode) or the maximum SAR level observed across seven pregnant body models in CP mode. Local SAR was constrained either indirectly by further constraining the whole-body SAR (wbSAR) or directly by using subject-specific local SAR models. Each strategy was evaluated by the improvement of the transmit field efficiency (average |B1 + |) and nonuniformity (|B1 + | variation) inside the fetus compared with CP mode for the same wbSAR.METHODSDue to the ambiguity of safe local SAR levels for fetal MRI, local SAR limits for RF shimming were determined based on either each individual's own SAR levels in standard imaging mode (CP mode) or the maximum SAR level observed across seven pregnant body models in CP mode. Local SAR was constrained either indirectly by further constraining the whole-body SAR (wbSAR) or directly by using subject-specific local SAR models. Each strategy was evaluated by the improvement of the transmit field efficiency (average |B1 + |) and nonuniformity (|B1 + | variation) inside the fetus compared with CP mode for the same wbSAR.Constraining wbSAR when using RF shimming decreases B1 + efficiency inside the fetus compared with CP mode (by 12%-30% on average), making it inefficient for SAR management. Using subject-specific models with SAR limits based on each individual's own CP mode SAR value, B1 + efficiency and nonuniformity are improved on average by 6% and 13% across seven pregnant models. In contrast, using SAR limits based on maximum CP mode SAR values across seven models, B1 + efficiency and nonuniformity are improved by 13% and 25%, compared with the best achievable improvement without SAR constraints: 15% and 26%.RESULTSConstraining wbSAR when using RF shimming decreases B1 + efficiency inside the fetus compared with CP mode (by 12%-30% on average), making it inefficient for SAR management. Using subject-specific models with SAR limits based on each individual's own CP mode SAR value, B1 + efficiency and nonuniformity are improved on average by 6% and 13% across seven pregnant models. In contrast, using SAR limits based on maximum CP mode SAR values across seven models, B1 + efficiency and nonuniformity are improved by 13% and 25%, compared with the best achievable improvement without SAR constraints: 15% and 26%.Two-channel RF-shimming can safely and significantly improve the transmit field inside the fetus when subject-specific models are used with local SAR limits based on maximum CP mode SAR levels in the pregnant population.CONCLUSIONTwo-channel RF-shimming can safely and significantly improve the transmit field inside the fetus when subject-specific models are used with local SAR limits based on maximum CP mode SAR levels in the pregnant population. Purpose This study evaluates the imaging performance of two‐channel RF‐shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR) management strategies. Methods Due to the ambiguity of safe local SAR levels for fetal MRI, local SAR limits for RF shimming were determined based on either each individual's own SAR levels in standard imaging mode (CP mode) or the maximum SAR level observed across seven pregnant body models in CP mode. Local SAR was constrained either indirectly by further constraining the whole‐body SAR (wbSAR) or directly by using subject‐specific local SAR models. Each strategy was evaluated by the improvement of the transmit field efficiency (average |B1+|) and nonuniformity (|B1+| variation) inside the fetus compared with CP mode for the same wbSAR. Results Constraining wbSAR when using RF shimming decreases B1+ efficiency inside the fetus compared with CP mode (by 12%–30% on average), making it inefficient for SAR management. Using subject‐specific models with SAR limits based on each individual's own CP mode SAR value, B1+ efficiency and nonuniformity are improved on average by 6% and 13% across seven pregnant models. In contrast, using SAR limits based on maximum CP mode SAR values across seven models, B1+ efficiency and nonuniformity are improved by 13% and 25%, compared with the best achievable improvement without SAR constraints: 15% and 26%. Conclusion Two‐channel RF‐shimming can safely and significantly improve the transmit field inside the fetus when subject‐specific models are used with local SAR limits based on maximum CP mode SAR levels in the pregnant population. This study evaluates the imaging performance of two-channel RF-shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR) management strategies. Due to the ambiguity of safe local SAR levels for fetal MRI, local SAR limits for RF shimming were determined based on either each individual's own SAR levels in standard imaging mode (CP mode) or the maximum SAR level observed across seven pregnant body models in CP mode. Local SAR was constrained either indirectly by further constraining the whole-body SAR (wbSAR) or directly by using subject-specific local SAR models. Each strategy was evaluated by the improvement of the transmit field efficiency (average |B |) and nonuniformity (|B | variation) inside the fetus compared with CP mode for the same wbSAR. Constraining wbSAR when using RF shimming decreases B efficiency inside the fetus compared with CP mode (by 12%-30% on average), making it inefficient for SAR management. Using subject-specific models with SAR limits based on each individual's own CP mode SAR value, B efficiency and nonuniformity are improved on average by 6% and 13% across seven pregnant models. In contrast, using SAR limits based on maximum CP mode SAR values across seven models, B efficiency and nonuniformity are improved by 13% and 25%, compared with the best achievable improvement without SAR constraints: 15% and 26%. Two-channel RF-shimming can safely and significantly improve the transmit field inside the fetus when subject-specific models are used with local SAR limits based on maximum CP mode SAR levels in the pregnant population. |
Author | Grant, Patricia Ellen Yetisir, Filiz Abaci Turk, Esra Wald, Lawrence Leroy Adalsteinsson, Elfar |
Author_xml | – sequence: 1 givenname: Filiz orcidid: 0000-0002-3100-1159 surname: Yetisir fullname: Yetisir, Filiz email: filiz.yetisir@childrens.harvard.edu organization: Boston Children's Hospital – sequence: 2 givenname: Esra orcidid: 0000-0003-0246-8793 surname: Abaci Turk fullname: Abaci Turk, Esra organization: Harvard Medical School – sequence: 3 givenname: Elfar surname: Adalsteinsson fullname: Adalsteinsson, Elfar organization: Massachusetts Institute of Technology – sequence: 4 givenname: Lawrence Leroy orcidid: 0000-0001-8278-6307 surname: Wald fullname: Wald, Lawrence Leroy organization: Harvard Medical School – sequence: 5 givenname: Patricia Ellen surname: Grant fullname: Grant, Patricia Ellen organization: Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37929768$$D View this record in MEDLINE/PubMed |
BookMark | eNp10D9PwkAYx_GLwcgfHXwD5kYdCvePXm8kRJQEYoIYx-Z6fQo1vRZ7bQgbq5uvkVdiFXRzepbP8xu-XdTKixwQuqakTwlhA1vaPlOK8jPUoUPGPDZUooU6RAricapEG3WdeyOEKCXFBWpzqZiSftBBr7PC6Aw_jxbY6lyvwEJeYVeVuoJVCg5XBa4d4GpbHPafZq3zHDK8mGC3Tq1N8xVOihInUDUj88UU6wrzw_5jeYnOE505uDrdHnqZ3C_Hj97s6WE6Hs08wxnhXiQ0jWXMtNBDBZwlLDaJpEIQrrVP_VhSFQcmksC5YYRpyZk2kYhMEAVJIHgP3R53N2XxXoOrQps6A1mmcyhqF7Ig8IdNGuY39OZE68hCHG7K1OpyF_7GaMDdEZiycK6E5I9QEn6HDpvQ4U_oxg6OdptmsPsfhvPF_PjxBenifyc |
Cites_doi | 10.1002/nbm.4450 10.1053/j.semperi.2013.06.005 10.1109/TBME.2022.3222748 10.1002/mrm.20824 10.1016/0360‐3016(84)90379‐1 10.3929/ethz‐a‐005743425 10.1002/pd.5593 10.1002/mrm.28006 10.1080/10407782.2013.869075 10.1088/0031‐9155/55/2/N01 10.1002/mrm.20011 10.1002/mrm.29215 10.1097/00004032-200408000-00008 10.1109/JERM.2023.3236153 10.1007/s00330‐013‐2825‐y 10.1016/j.neuroimage.2018.09.038 10.1152/jappl.1948.1.2.93 10.1002/mrm.26491 10.1088/0031‐9155/56/7/N01 10.1002/jmri.24791 10.1002/mrm.27948 10.1088/0031‐9155/55/4/001 10.1002/mrm.24690 10.1007/174_2010_122 10.1002/mrm.10353 10.1515/jpm‐2014‐0268 10.1002/mrm.28398 10.1002/mrm.26268 10.1109/TMI.2013.2295465 10.1002/mrm.20321 10.1016/j.mri.2022.08.006 10.1002/mrm.28895 10.1088/0031‐9155/59/18/5287 10.1016/j.mric.2007.06.002 10.1002/mrm.26501 10.3109/02656736.2010.534527 10.1016/S0140‐6736(16)31723‐8 10.1002/mrm.25986 10.1155/2019/9618680 10.1002/mrm.27518 10.2214/AJR.14.14205 10.1088/0031‐9155/55/8/018 |
ContentType | Journal Article |
Copyright | 2023 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2023 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/mrm.29913 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1178 |
ExternalDocumentID | 37929768 10_1002_mrm_29913 MRM29913 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health funderid: R01EB006847; R01EB017337; R01HD100009; U01HD087211; R01EB032708 – fundername: NICHD NIH HHS grantid: P50 HD105351 – fundername: NICHD NIH HHS grantid: R01 HD100009 – fundername: NIBIB NIH HHS grantid: R01 EB017337 – fundername: NICHD NIH HHS grantid: U01 HD087211 – fundername: NIBIB NIH HHS grantid: R01 EB032708 – fundername: NIBIB NIH HHS grantid: R01 EB006847 – fundername: NIH HHS grantid: R01EB032708 – fundername: NIH HHS grantid: U01HD087211 – fundername: NIH HHS grantid: R01EB006847 – fundername: NIH HHS grantid: R01EB017337 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3203-b4a1d7d2a4a59e32f2dcf714403aa616d719d8cb7e33c202a732acb4bc8b8f843 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 00:09:47 EDT 2025 Mon Jul 21 05:55:31 EDT 2025 Sun Jul 06 05:06:03 EDT 2025 Wed Aug 20 07:27:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | fetal MRI RF shimming high field MRI parallel RF transmission local SAR 3 T |
Language | English |
License | 2023 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3203-b4a1d7d2a4a59e32f2dcf714403aa616d719d8cb7e33c202a732acb4bc8b8f843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3100-1159 0000-0001-8278-6307 0000-0003-0246-8793 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10843691 |
PMID | 37929768 |
PQID | 2886599126 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2886599126 pubmed_primary_37929768 crossref_primary_10_1002_mrm_29913 wiley_primary_10_1002_mrm_29913_MRM29913 |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 2024-Mar 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2024 |
References | 2004; 87 2010; 55 2019; 2019 2021; 86 2022; 93 2020; 40 2010 2016; 206 2020; 83 2006; 55 2023; 7 2013; 23 2016; 76 2008 2011; 56 2022; 88 2019; 184 2007; 15 2014; 65 2013; 37 2004; 51 2019; 81 2021; 34 2022 2017; 77 2015; 42 1948; 1 1984; 10 2015; 43 2017; 78 2014; 59 2005; 53 2018 2003; 49 2011; 27 2021; 85 2017; 389 2014; 71 2014; 33 2023; 70 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Malik SJ (e_1_2_7_41_1) 2018 Yetisir F (e_1_2_7_24_1) 2022 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 59 start-page: 5287 year: 2014 end-page: 5303 article-title: Development of a new generation of high‐resolution anatomical models for medical device evaluation: the virtual population 3.0 publication-title: Phys Med Biol. – volume: 37 start-page: 301 year: 2013 end-page: 304 article-title: Benefits and risks of MRI in pregnancy publication-title: Semin Perinatol. – volume: 1 start-page: 93 year: 1948 end-page: 122 article-title: Analysis of tissue and arterial blood temperatures in the resting human forearm publication-title: J Appl Physiol. – volume: 23 start-page: 2215 year: 2013 end-page: 2227 article-title: CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? publication-title: Eur Radiol. – volume: 55 start-page: 883 year: 2006 end-page: 893 article-title: Prediction of specific absorption rate in mother and fetus associated with MRI examinations during pregnancy publication-title: Magn Reson Med. – volume: 43 start-page: 209 year: 2015 end-page: 220 article-title: MR imaging of the fetal brain at 1.5T and 3.0T field strengths: comparing specific absorption rate (SAR) and image quality publication-title: J Perinat Med – volume: 88 start-page: 464 year: 2022 end-page: 475 article-title: Personalized local SAR prediction for parallel transmit neuroimaging at 7T from a single T1‐weighted dataset publication-title: Magn Reson Med. – volume: 389 start-page: 538 year: 2017 end-page: 546 article-title: Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a multicentre, prospective cohort study publication-title: Lancet Lond Engl. – volume: 34 year: 2021 article-title: Three‐dimensional static and dynamic parallel transmission of the human heart at 7 T publication-title: NMR Biomed. – volume: 15 start-page: 277 year: 2007 end-page: 290 article-title: A review of MR physics: 3T versus 1.5T publication-title: Magn Reson Imaging Clin N Am. – volume: 93 start-page: 87 year: 2022 end-page: 96 article-title: Parallel transmission 2D RARE imaging at 7T with transmit field inhomogeneity mitigation and local SAR control publication-title: Magn Reson Imaging. – volume: 27 start-page: 320 year: 2011 end-page: 343 article-title: Thresholds for thermal damage to normal tissues: an update publication-title: Int J Hyperth off J Eur Soc Hyperthermic Oncol North Am Hyperth Group. – volume: 51 start-page: 775 year: 2004 end-page: 784 article-title: Parallel excitation with an array of transmit coils publication-title: Magn Reson Med. – volume: 42 start-page: 855 year: 2015 end-page: 869 article-title: Clinical applications of dual‐channel transmit MRI: a review: clinical applications of dual‐channel transmit MRI publication-title: J Magn Reson Imaging. – volume: 65 start-page: 1176 year: 2014 end-page: 1186 article-title: Computation of temperature elevation in a fetus exposed to ambient heat and radio frequency fields publication-title: Numer Heat Transf Part Appl. – volume: 56 start-page: N93 year: 2011 end-page: N98 article-title: Dielectric properties of human placenta, umbilical cord and amniotic fluid publication-title: Phys Med Biol. – volume: 206 start-page: 195 year: 2016 end-page: 201 article-title: Comparison between 1.5‐T and 3‐T MRI for fetal imaging: is there an advantage to imaging with a higher field strength? publication-title: AJR Am J Roentgenol. – volume: 85 start-page: 429 year: 2021 end-page: 443 article-title: Individualized SAR calculations using computer vision‐based MR segmentation and a fast electromagnetic solver publication-title: Magn Reson Med – volume: 7 start-page: 168 year: 2023 end-page: 175 article-title: Evaluation and correction of B ‐based brain subject‐specific SAR maps using electrical properties tomography publication-title: IEEE J Electromagn RF Microw Med Biol. – volume: 40 start-page: 142 year: 2020 end-page: 150 article-title: Prenatal diagnosis of congenital head, face, and neck malformations—is complementary fetal MRI of value? publication-title: Prenat Diagn. – volume: 55 start-page: N23 year: 2010 end-page: N38 article-title: The virtual family—development of surface‐based anatomical models of two adults and two children for dosimetric simulations publication-title: Phys Med Biol. – volume: 83 start-page: 695 year: 2020 end-page: 711 article-title: A deep learning method for image‐based subject‐specific local SAR assessment publication-title: Magn Reson Med. – volume: 33 start-page: 739 year: 2014 end-page: 748 article-title: On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints publication-title: IEEE Trans Med Imaging. – volume: 184 start-page: 396 year: 2019 end-page: 408 article-title: Human connectome project‐style resting‐state functional MRI at 7 tesla using radiofrequency parallel transmission publication-title: Neuroimage. – volume: 70 start-page: 1575 year: 2023 end-page: 1586 article-title: MARIE 2.0: a perturbation matrix based patient‐specific MRI field simulator publication-title: IEEE Trans Biomed Eng. – volume: 87 start-page: 197 year: 2004 end-page: 216 article-title: 2004 medical magnetic resonance (MR) procedures: protection of patients publication-title: Health Phys. – start-page: 1460 year: 2018 – start-page: 2556 year: 2022 – volume: 10 start-page: 787 year: 1984 end-page: 800 article-title: Thermal dose determination in cancer therapy publication-title: Int J Radiat Oncol. – volume: 53 start-page: 434 year: 2005 end-page: 445 article-title: Transmit and receive transmission line arrays for 7 tesla parallel imaging publication-title: Magn Reson Med. – volume: 78 start-page: 1050 year: 2017 end-page: 1058 article-title: High‐resolution gradient‐recalled echo imaging at 9.4T using 16‐channel parallel transmit simultaneous multislice spokes excitations with slice‐by‐slice flip angle homogenization publication-title: Magn Reson Med. – start-page: 49 year: 2010 end-page: 54 – volume: 55 start-page: 2411 year: 2010 end-page: 2426 article-title: Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging publication-title: Phys Med Biol. – year: 2008 – year: 2022 – volume: 81 start-page: 2106 year: 2019 end-page: 2119 article-title: Intersubject specific absorption rate variability analysis through construction of 23 realistic body models for prostate imaging at 7T publication-title: Magn Reson Med. – volume: 49 start-page: 144 year: 2003 end-page: 150 article-title: Transmit SENSE publication-title: Magn Reson Med. – volume: 86 start-page: 2810 year: 2021 end-page: 2821 article-title: Safety and imaging performance of two‐channel RF shimming for fetal MRI at 3T publication-title: Magn Reson Med. – volume: 76 start-page: 986 year: 2016 end-page: 997 article-title: Virtual population‐based assessment of the impact of 3 tesla radiofrequency shimming and thermoregulation on safety and B1+ uniformity publication-title: Magn Reson Med. – volume: 78 start-page: 1009 year: 2017 end-page: 1019 article-title: In vivo demonstration of whole‐brain multislice multispoke parallel transmit radiofrequency pulse design in the small and large flip angle regimes at 7 tesla publication-title: Magn Reson Med. – volume: 71 start-page: 839 year: 2014 end-page: 845 article-title: Whole‐body and local RF absorption in human models as a function of anatomy and position within 1.5T MR body coil publication-title: Magn Reson Med. – volume: 55 start-page: 913 year: 2010 end-page: 930 article-title: Numerical study of RF exposure and the resulting temperature rise in the foetus during a magnetic resonance procedure publication-title: Phys Med Biol. – volume: 77 start-page: 2048 year: 2017 end-page: 2056 article-title: Pregnant women models analyzed for RF exposure and temperature increase in 3T RF shimmed birdcages publication-title: Magn Reson Med. – volume: 83 start-page: 1418 year: 2020 end-page: 1428 article-title: Individual variation in simulated fetal SAR assessed in multiple body models publication-title: Magn Reson Med. – volume: 2019 year: 2019 article-title: Thermal effects associated with RF exposures in diagnostic MRI: overview of existing and emerging concepts of protection publication-title: Concepts Magn Reson Part B Magn Reson Eng. – ident: e_1_2_7_14_1 doi: 10.1002/nbm.4450 – ident: e_1_2_7_3_1 doi: 10.1053/j.semperi.2013.06.005 – ident: e_1_2_7_34_1 doi: 10.1109/TBME.2022.3222748 – ident: e_1_2_7_30_1 doi: 10.1002/mrm.20824 – ident: e_1_2_7_45_1 doi: 10.1016/0360‐3016(84)90379‐1 – ident: e_1_2_7_46_1 doi: 10.3929/ethz‐a‐005743425 – ident: e_1_2_7_2_1 doi: 10.1002/pd.5593 – ident: e_1_2_7_25_1 doi: 10.1002/mrm.28006 – ident: e_1_2_7_47_1 doi: 10.1080/10407782.2013.869075 – ident: e_1_2_7_26_1 doi: 10.1088/0031‐9155/55/2/N01 – ident: e_1_2_7_9_1 doi: 10.1002/mrm.20011 – ident: e_1_2_7_38_1 doi: 10.1002/mrm.29215 – ident: e_1_2_7_40_1 doi: 10.1097/00004032-200408000-00008 – ident: e_1_2_7_37_1 doi: 10.1109/JERM.2023.3236153 – ident: e_1_2_7_43_1 doi: 10.1007/s00330‐013‐2825‐y – ident: e_1_2_7_28_1 – ident: e_1_2_7_16_1 doi: 10.1016/j.neuroimage.2018.09.038 – ident: e_1_2_7_31_1 doi: 10.1152/jappl.1948.1.2.93 – start-page: 1460 volume-title: Proceedings of the 26th Annual Meeting of the International Society of Magnetic Resonance in Medicine year: 2018 ident: e_1_2_7_41_1 – ident: e_1_2_7_19_1 doi: 10.1002/mrm.26491 – ident: e_1_2_7_29_1 doi: 10.1088/0031‐9155/56/7/N01 – ident: e_1_2_7_13_1 doi: 10.1002/jmri.24791 – ident: e_1_2_7_36_1 doi: 10.1002/mrm.27948 – ident: e_1_2_7_33_1 doi: 10.1088/0031‐9155/55/4/001 – ident: e_1_2_7_39_1 – ident: e_1_2_7_21_1 doi: 10.1002/mrm.24690 – ident: e_1_2_7_23_1 doi: 10.1007/174_2010_122 – ident: e_1_2_7_8_1 doi: 10.1002/mrm.10353 – ident: e_1_2_7_5_1 doi: 10.1515/jpm‐2014‐0268 – ident: e_1_2_7_35_1 doi: 10.1002/mrm.28398 – ident: e_1_2_7_12_1 doi: 10.1002/mrm.26268 – ident: e_1_2_7_20_1 doi: 10.1109/TMI.2013.2295465 – ident: e_1_2_7_10_1 doi: 10.1002/mrm.20321 – ident: e_1_2_7_18_1 doi: 10.1016/j.mri.2022.08.006 – ident: e_1_2_7_11_1 doi: 10.1002/mrm.28895 – ident: e_1_2_7_27_1 doi: 10.1088/0031‐9155/59/18/5287 – ident: e_1_2_7_7_1 doi: 10.1016/j.mric.2007.06.002 – ident: e_1_2_7_17_1 doi: 10.1002/mrm.26501 – ident: e_1_2_7_42_1 doi: 10.3109/02656736.2010.534527 – ident: e_1_2_7_4_1 doi: 10.1016/S0140‐6736(16)31723‐8 – ident: e_1_2_7_22_1 doi: 10.1002/mrm.25986 – ident: e_1_2_7_44_1 doi: 10.1155/2019/9618680 – ident: e_1_2_7_15_1 doi: 10.1002/mrm.27518 – ident: e_1_2_7_6_1 doi: 10.2214/AJR.14.14205 – ident: e_1_2_7_32_1 doi: 10.1088/0031‐9155/55/8/018 – start-page: 2556 volume-title: Proceedings of the 30th Annual Meeting of the International Society of Magnetic Resonance in Medicine year: 2022 ident: e_1_2_7_24_1 |
SSID | ssj0009974 |
Score | 2.4562435 |
Snippet | Purpose
This study evaluates the imaging performance of two‐channel RF‐shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR)... This study evaluates the imaging performance of two-channel RF-shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR)... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1165 |
SubjectTerms | 3 T Computer Simulation Female fetal MRI Fetus - diagnostic imaging high field MRI Humans local SAR Magnetic Resonance Imaging - methods parallel RF transmission Phantoms, Imaging Pregnancy Radio Waves RF shimming |
Title | Local SAR management strategies to use two‐channel RF shimming for fetal MRI at 3 T |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29913 https://www.ncbi.nlm.nih.gov/pubmed/37929768 https://www.proquest.com/docview/2886599126 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9CSCAuGwMG5WMyiAOXtIntfIlThVaVaeUQqOhhUuRPgaa0qEk1aSeu3Pgb-Uuw46YVmyah3XJwLNvP771f8n7-GeAUax1x4ksv9LXwqD3bw5VPPM01Y7H0le9YvldRf0i_jcLRCpw3Z2GcPsTih5v1jDpeWwdnvOwsRUOLadE2sbS-sdZytSwgypbSUWnqFJhjauNMShtVIR93Fm--zUV_Acy3eLVOOL2P8KMZquOZ_GzPKt4Wv_9QcfzPuWzChzkQRV23cz7BihpvwfpgXmrfgrWaGyrKbbj9bvMduu5mqFiQZVBZNSITqJqgWalQ9Wvy8vhsTxKb4aCsh8q7-6IwqREZYIy0MjAfDbJLxCpEXh6fbnZg2Pt6c9H35vcxeIJgYz9OWSBjiRllYaoI1lgKHdvqMGEsCiIZB6lMBI8VIQL7mMUEM8EpFwlPdELJZ1gdT8ZqDxAmjAaaYB4pSlOtuBSSiSCUjAQs1aIFJ41l8gcnu5E7gWWcm8XK68VqwXFjs9w4ha10sLGazMocJ0kUmiY4asGuM-aiGxIbRGg-slpwVpvk3_3ng2xQP-y_v-kBbJiZU8dSO4TVajpTRwa2VPxLvT9fAZZg6b8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKlouLdAWlpbiIg5csiS285J6QVVXC91wSBfBBUV-qghlF5GskDhx5cZv5Jdgx5tFUFVC3HJwLHvGnvlsz3wDsI21jjjxpRf6WnjU5vZw5RNPc81YLH3luyjfw6h_RA9OwpM5-NHmwjh-iNmFm90Zjb22G9xeSO8-soaWl2XXGFNbsvaNrejdHKjyR_KoNHUczDG1lialLa-Qj3dnvz71Rv9AzKeItXE5vQ9w2g7WRZqcdyc174rrZzyOr53NEryfYlG05xbPMsyp0Qq8zaav7Suw0ISHiuojHA-sy0N_9nJUzuJlUFW3PBOoHqNJpVB9Nb6_ubPJxGY8KO-h6u9ZWRrviAw2RloZpI-yfB-xGpH7m9vhJzjq_Rr-7HvTkgyeINiokFMWyFhiRlmYKoI1lkLH9oGYMBYFkYyDVCaCx4oQgX3MYoKZ4JSLhCc6oeQzzI_GI7UGCBNGA00wjxSlqVZcCslEEEpGApZq0YGtVjXFhWPeKBzHMi6MsIpGWB343iqtMPvCPnawkRpPqgInSRSaJjjqwKrT5qwbEhtQaM5ZHdhpdPL__ossz5qP9Zc33YR3_WE2KAb7h7-_wKKRAnVBa19hvr6cqA2DYmr-rVmsDy557do |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUBEXaHku0NatOHDJktjOS5xQ6QpaFqEAggNS5KdAKLtokxUSp7321t_IL6kdbxZBhYS45eBYtuf1JTPzGWALax1x4ksv9LXwqO3t4connuaasVj6yndVvsfRwTn9dRleTsFu0wvj-CEmP9ysZdT-2hr4ndQ7T6ShxaBoG19qb6ydoZGfWJXez564o9LUUTDH1DqalDa0Qj7embz6PBj9hzCfA9Y64nQW4KpZqys0uW0PK94WDy9oHN-5mY8wP0aiaM-pzieYUr1FmO2Oc-2L8KEuDhXlElwc2YCHTvcyVEyqZVBZNSwTqOqjYalQdd9_HP21rcRmOSjroPL6pihMbEQGGSOtDM5H3ewQsQqRx9Gfs2U47_w8-3HgjS9k8ATBRoCcskDGEjPKwlQRrLEUOrbpYcJYFEQyDlKZCB4rQgT2MYsJZoJTLhKe6ISSFZju9XtqDRAmjAaaYB4pSlOtuBSSiSCUjAQs1aIF3xvJ5HeOdyN3DMs4N4eV14fVgm-NzHJjFTbVwXqqPyxznCRRaIbgqAWrTpiTaUhsIKH5ymrBdi2S1-fPu1m3flh_-9CvMHuy38mPDo9_b8CcOQTqKtY2YboaDNVnA2Eq_qVW1X-VKOyS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+SAR+management+strategies+to+use+two-channel+RF+shimming+for+fetal+MRI+at+3%E2%80%89T&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Yetisir%2C+Filiz&rft.au=Abaci+Turk%2C+Esra&rft.au=Adalsteinsson%2C+Elfar&rft.au=Wald%2C+Lawrence+Leroy&rft.date=2024-03-01&rft.eissn=1522-2594&rft.volume=91&rft.issue=3&rft.spage=1165&rft_id=info:doi/10.1002%2Fmrm.29913&rft_id=info%3Apmid%2F37929768&rft.externalDocID=37929768 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |