Local SAR management strategies to use two‐channel RF shimming for fetal MRI at 3 T

Purpose This study evaluates the imaging performance of two‐channel RF‐shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR) management strategies. Methods Due to the ambiguity of safe local SAR levels for fetal MRI, local SAR limits for RF shimming were determined...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 91; no. 3; pp. 1165 - 1178
Main Authors Yetisir, Filiz, Abaci Turk, Esra, Adalsteinsson, Elfar, Wald, Lawrence Leroy, Grant, Patricia Ellen
Format Journal Article
LanguageEnglish
Published United States 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose This study evaluates the imaging performance of two‐channel RF‐shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR) management strategies. Methods Due to the ambiguity of safe local SAR levels for fetal MRI, local SAR limits for RF shimming were determined based on either each individual's own SAR levels in standard imaging mode (CP mode) or the maximum SAR level observed across seven pregnant body models in CP mode. Local SAR was constrained either indirectly by further constraining the whole‐body SAR (wbSAR) or directly by using subject‐specific local SAR models. Each strategy was evaluated by the improvement of the transmit field efficiency (average |B1+|) and nonuniformity (|B1+| variation) inside the fetus compared with CP mode for the same wbSAR. Results Constraining wbSAR when using RF shimming decreases B1+ efficiency inside the fetus compared with CP mode (by 12%–30% on average), making it inefficient for SAR management. Using subject‐specific models with SAR limits based on each individual's own CP mode SAR value, B1+ efficiency and nonuniformity are improved on average by 6% and 13% across seven pregnant models. In contrast, using SAR limits based on maximum CP mode SAR values across seven models, B1+ efficiency and nonuniformity are improved by 13% and 25%, compared with the best achievable improvement without SAR constraints: 15% and 26%. Conclusion Two‐channel RF‐shimming can safely and significantly improve the transmit field inside the fetus when subject‐specific models are used with local SAR limits based on maximum CP mode SAR levels in the pregnant population.
AbstractList This study evaluates the imaging performance of two-channel RF-shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR) management strategies.PURPOSEThis study evaluates the imaging performance of two-channel RF-shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR) management strategies.Due to the ambiguity of safe local SAR levels for fetal MRI, local SAR limits for RF shimming were determined based on either each individual's own SAR levels in standard imaging mode (CP mode) or the maximum SAR level observed across seven pregnant body models in CP mode. Local SAR was constrained either indirectly by further constraining the whole-body SAR (wbSAR) or directly by using subject-specific local SAR models. Each strategy was evaluated by the improvement of the transmit field efficiency (average |B1 + |) and nonuniformity (|B1 + | variation) inside the fetus compared with CP mode for the same wbSAR.METHODSDue to the ambiguity of safe local SAR levels for fetal MRI, local SAR limits for RF shimming were determined based on either each individual's own SAR levels in standard imaging mode (CP mode) or the maximum SAR level observed across seven pregnant body models in CP mode. Local SAR was constrained either indirectly by further constraining the whole-body SAR (wbSAR) or directly by using subject-specific local SAR models. Each strategy was evaluated by the improvement of the transmit field efficiency (average |B1 + |) and nonuniformity (|B1 + | variation) inside the fetus compared with CP mode for the same wbSAR.Constraining wbSAR when using RF shimming decreases B1 + efficiency inside the fetus compared with CP mode (by 12%-30% on average), making it inefficient for SAR management. Using subject-specific models with SAR limits based on each individual's own CP mode SAR value, B1 + efficiency and nonuniformity are improved on average by 6% and 13% across seven pregnant models. In contrast, using SAR limits based on maximum CP mode SAR values across seven models, B1 + efficiency and nonuniformity are improved by 13% and 25%, compared with the best achievable improvement without SAR constraints: 15% and 26%.RESULTSConstraining wbSAR when using RF shimming decreases B1 + efficiency inside the fetus compared with CP mode (by 12%-30% on average), making it inefficient for SAR management. Using subject-specific models with SAR limits based on each individual's own CP mode SAR value, B1 + efficiency and nonuniformity are improved on average by 6% and 13% across seven pregnant models. In contrast, using SAR limits based on maximum CP mode SAR values across seven models, B1 + efficiency and nonuniformity are improved by 13% and 25%, compared with the best achievable improvement without SAR constraints: 15% and 26%.Two-channel RF-shimming can safely and significantly improve the transmit field inside the fetus when subject-specific models are used with local SAR limits based on maximum CP mode SAR levels in the pregnant population.CONCLUSIONTwo-channel RF-shimming can safely and significantly improve the transmit field inside the fetus when subject-specific models are used with local SAR limits based on maximum CP mode SAR levels in the pregnant population.
Purpose This study evaluates the imaging performance of two‐channel RF‐shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR) management strategies. Methods Due to the ambiguity of safe local SAR levels for fetal MRI, local SAR limits for RF shimming were determined based on either each individual's own SAR levels in standard imaging mode (CP mode) or the maximum SAR level observed across seven pregnant body models in CP mode. Local SAR was constrained either indirectly by further constraining the whole‐body SAR (wbSAR) or directly by using subject‐specific local SAR models. Each strategy was evaluated by the improvement of the transmit field efficiency (average |B1+|) and nonuniformity (|B1+| variation) inside the fetus compared with CP mode for the same wbSAR. Results Constraining wbSAR when using RF shimming decreases B1+ efficiency inside the fetus compared with CP mode (by 12%–30% on average), making it inefficient for SAR management. Using subject‐specific models with SAR limits based on each individual's own CP mode SAR value, B1+ efficiency and nonuniformity are improved on average by 6% and 13% across seven pregnant models. In contrast, using SAR limits based on maximum CP mode SAR values across seven models, B1+ efficiency and nonuniformity are improved by 13% and 25%, compared with the best achievable improvement without SAR constraints: 15% and 26%. Conclusion Two‐channel RF‐shimming can safely and significantly improve the transmit field inside the fetus when subject‐specific models are used with local SAR limits based on maximum CP mode SAR levels in the pregnant population.
This study evaluates the imaging performance of two-channel RF-shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR) management strategies. Due to the ambiguity of safe local SAR levels for fetal MRI, local SAR limits for RF shimming were determined based on either each individual's own SAR levels in standard imaging mode (CP mode) or the maximum SAR level observed across seven pregnant body models in CP mode. Local SAR was constrained either indirectly by further constraining the whole-body SAR (wbSAR) or directly by using subject-specific local SAR models. Each strategy was evaluated by the improvement of the transmit field efficiency (average |B |) and nonuniformity (|B | variation) inside the fetus compared with CP mode for the same wbSAR. Constraining wbSAR when using RF shimming decreases B efficiency inside the fetus compared with CP mode (by 12%-30% on average), making it inefficient for SAR management. Using subject-specific models with SAR limits based on each individual's own CP mode SAR value, B efficiency and nonuniformity are improved on average by 6% and 13% across seven pregnant models. In contrast, using SAR limits based on maximum CP mode SAR values across seven models, B efficiency and nonuniformity are improved by 13% and 25%, compared with the best achievable improvement without SAR constraints: 15% and 26%. Two-channel RF-shimming can safely and significantly improve the transmit field inside the fetus when subject-specific models are used with local SAR limits based on maximum CP mode SAR levels in the pregnant population.
Author Grant, Patricia Ellen
Yetisir, Filiz
Abaci Turk, Esra
Wald, Lawrence Leroy
Adalsteinsson, Elfar
Author_xml – sequence: 1
  givenname: Filiz
  orcidid: 0000-0002-3100-1159
  surname: Yetisir
  fullname: Yetisir, Filiz
  email: filiz.yetisir@childrens.harvard.edu
  organization: Boston Children's Hospital
– sequence: 2
  givenname: Esra
  orcidid: 0000-0003-0246-8793
  surname: Abaci Turk
  fullname: Abaci Turk, Esra
  organization: Harvard Medical School
– sequence: 3
  givenname: Elfar
  surname: Adalsteinsson
  fullname: Adalsteinsson, Elfar
  organization: Massachusetts Institute of Technology
– sequence: 4
  givenname: Lawrence Leroy
  orcidid: 0000-0001-8278-6307
  surname: Wald
  fullname: Wald, Lawrence Leroy
  organization: Harvard Medical School
– sequence: 5
  givenname: Patricia Ellen
  surname: Grant
  fullname: Grant, Patricia Ellen
  organization: Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37929768$$D View this record in MEDLINE/PubMed
BookMark eNp10D9PwkAYx_GLwcgfHXwD5kYdCvePXm8kRJQEYoIYx-Z6fQo1vRZ7bQgbq5uvkVdiFXRzepbP8xu-XdTKixwQuqakTwlhA1vaPlOK8jPUoUPGPDZUooU6RAricapEG3WdeyOEKCXFBWpzqZiSftBBr7PC6Aw_jxbY6lyvwEJeYVeVuoJVCg5XBa4d4GpbHPafZq3zHDK8mGC3Tq1N8xVOihInUDUj88UU6wrzw_5jeYnOE505uDrdHnqZ3C_Hj97s6WE6Hs08wxnhXiQ0jWXMtNBDBZwlLDaJpEIQrrVP_VhSFQcmksC5YYRpyZk2kYhMEAVJIHgP3R53N2XxXoOrQps6A1mmcyhqF7Ig8IdNGuY39OZE68hCHG7K1OpyF_7GaMDdEZiycK6E5I9QEn6HDpvQ4U_oxg6OdptmsPsfhvPF_PjxBenifyc
Cites_doi 10.1002/nbm.4450
10.1053/j.semperi.2013.06.005
10.1109/TBME.2022.3222748
10.1002/mrm.20824
10.1016/0360‐3016(84)90379‐1
10.3929/ethz‐a‐005743425
10.1002/pd.5593
10.1002/mrm.28006
10.1080/10407782.2013.869075
10.1088/0031‐9155/55/2/N01
10.1002/mrm.20011
10.1002/mrm.29215
10.1097/00004032-200408000-00008
10.1109/JERM.2023.3236153
10.1007/s00330‐013‐2825‐y
10.1016/j.neuroimage.2018.09.038
10.1152/jappl.1948.1.2.93
10.1002/mrm.26491
10.1088/0031‐9155/56/7/N01
10.1002/jmri.24791
10.1002/mrm.27948
10.1088/0031‐9155/55/4/001
10.1002/mrm.24690
10.1007/174_2010_122
10.1002/mrm.10353
10.1515/jpm‐2014‐0268
10.1002/mrm.28398
10.1002/mrm.26268
10.1109/TMI.2013.2295465
10.1002/mrm.20321
10.1016/j.mri.2022.08.006
10.1002/mrm.28895
10.1088/0031‐9155/59/18/5287
10.1016/j.mric.2007.06.002
10.1002/mrm.26501
10.3109/02656736.2010.534527
10.1016/S0140‐6736(16)31723‐8
10.1002/mrm.25986
10.1155/2019/9618680
10.1002/mrm.27518
10.2214/AJR.14.14205
10.1088/0031‐9155/55/8/018
ContentType Journal Article
Copyright 2023 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2023 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mrm.29913
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1178
ExternalDocumentID 37929768
10_1002_mrm_29913
MRM29913
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  funderid: R01EB006847; R01EB017337; R01HD100009; U01HD087211; R01EB032708
– fundername: NICHD NIH HHS
  grantid: P50 HD105351
– fundername: NICHD NIH HHS
  grantid: R01 HD100009
– fundername: NIBIB NIH HHS
  grantid: R01 EB017337
– fundername: NICHD NIH HHS
  grantid: U01 HD087211
– fundername: NIBIB NIH HHS
  grantid: R01 EB032708
– fundername: NIBIB NIH HHS
  grantid: R01 EB006847
– fundername: NIH HHS
  grantid: R01EB032708
– fundername: NIH HHS
  grantid: U01HD087211
– fundername: NIH HHS
  grantid: R01EB006847
– fundername: NIH HHS
  grantid: R01EB017337
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3203-b4a1d7d2a4a59e32f2dcf714403aa616d719d8cb7e33c202a732acb4bc8b8f843
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 00:09:47 EDT 2025
Mon Jul 21 05:55:31 EDT 2025
Sun Jul 06 05:06:03 EDT 2025
Wed Aug 20 07:27:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords fetal MRI
RF shimming
high field MRI
parallel RF transmission
local SAR
3 T
Language English
License 2023 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3203-b4a1d7d2a4a59e32f2dcf714403aa616d719d8cb7e33c202a732acb4bc8b8f843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3100-1159
0000-0001-8278-6307
0000-0003-0246-8793
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10843691
PMID 37929768
PQID 2886599126
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2886599126
pubmed_primary_37929768
crossref_primary_10_1002_mrm_29913
wiley_primary_10_1002_mrm_29913_MRM29913
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
2024-Mar
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2024
References 2004; 87
2010; 55
2019; 2019
2021; 86
2022; 93
2020; 40
2010
2016; 206
2020; 83
2006; 55
2023; 7
2013; 23
2016; 76
2008
2011; 56
2022; 88
2019; 184
2007; 15
2014; 65
2013; 37
2004; 51
2019; 81
2021; 34
2022
2017; 77
2015; 42
1948; 1
1984; 10
2015; 43
2017; 78
2014; 59
2005; 53
2018
2003; 49
2011; 27
2021; 85
2017; 389
2014; 71
2014; 33
2023; 70
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Malik SJ (e_1_2_7_41_1) 2018
Yetisir F (e_1_2_7_24_1) 2022
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 59
  start-page: 5287
  year: 2014
  end-page: 5303
  article-title: Development of a new generation of high‐resolution anatomical models for medical device evaluation: the virtual population 3.0
  publication-title: Phys Med Biol.
– volume: 37
  start-page: 301
  year: 2013
  end-page: 304
  article-title: Benefits and risks of MRI in pregnancy
  publication-title: Semin Perinatol.
– volume: 1
  start-page: 93
  year: 1948
  end-page: 122
  article-title: Analysis of tissue and arterial blood temperatures in the resting human forearm
  publication-title: J Appl Physiol.
– volume: 23
  start-page: 2215
  year: 2013
  end-page: 2227
  article-title: CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?
  publication-title: Eur Radiol.
– volume: 55
  start-page: 883
  year: 2006
  end-page: 893
  article-title: Prediction of specific absorption rate in mother and fetus associated with MRI examinations during pregnancy
  publication-title: Magn Reson Med.
– volume: 43
  start-page: 209
  year: 2015
  end-page: 220
  article-title: MR imaging of the fetal brain at 1.5T and 3.0T field strengths: comparing specific absorption rate (SAR) and image quality
  publication-title: J Perinat Med
– volume: 88
  start-page: 464
  year: 2022
  end-page: 475
  article-title: Personalized local SAR prediction for parallel transmit neuroimaging at 7T from a single T1‐weighted dataset
  publication-title: Magn Reson Med.
– volume: 389
  start-page: 538
  year: 2017
  end-page: 546
  article-title: Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a multicentre, prospective cohort study
  publication-title: Lancet Lond Engl.
– volume: 34
  year: 2021
  article-title: Three‐dimensional static and dynamic parallel transmission of the human heart at 7 T
  publication-title: NMR Biomed.
– volume: 15
  start-page: 277
  year: 2007
  end-page: 290
  article-title: A review of MR physics: 3T versus 1.5T
  publication-title: Magn Reson Imaging Clin N Am.
– volume: 93
  start-page: 87
  year: 2022
  end-page: 96
  article-title: Parallel transmission 2D RARE imaging at 7T with transmit field inhomogeneity mitigation and local SAR control
  publication-title: Magn Reson Imaging.
– volume: 27
  start-page: 320
  year: 2011
  end-page: 343
  article-title: Thresholds for thermal damage to normal tissues: an update
  publication-title: Int J Hyperth off J Eur Soc Hyperthermic Oncol North Am Hyperth Group.
– volume: 51
  start-page: 775
  year: 2004
  end-page: 784
  article-title: Parallel excitation with an array of transmit coils
  publication-title: Magn Reson Med.
– volume: 42
  start-page: 855
  year: 2015
  end-page: 869
  article-title: Clinical applications of dual‐channel transmit MRI: a review: clinical applications of dual‐channel transmit MRI
  publication-title: J Magn Reson Imaging.
– volume: 65
  start-page: 1176
  year: 2014
  end-page: 1186
  article-title: Computation of temperature elevation in a fetus exposed to ambient heat and radio frequency fields
  publication-title: Numer Heat Transf Part Appl.
– volume: 56
  start-page: N93
  year: 2011
  end-page: N98
  article-title: Dielectric properties of human placenta, umbilical cord and amniotic fluid
  publication-title: Phys Med Biol.
– volume: 206
  start-page: 195
  year: 2016
  end-page: 201
  article-title: Comparison between 1.5‐T and 3‐T MRI for fetal imaging: is there an advantage to imaging with a higher field strength?
  publication-title: AJR Am J Roentgenol.
– volume: 85
  start-page: 429
  year: 2021
  end-page: 443
  article-title: Individualized SAR calculations using computer vision‐based MR segmentation and a fast electromagnetic solver
  publication-title: Magn Reson Med
– volume: 7
  start-page: 168
  year: 2023
  end-page: 175
  article-title: Evaluation and correction of B ‐based brain subject‐specific SAR maps using electrical properties tomography
  publication-title: IEEE J Electromagn RF Microw Med Biol.
– volume: 40
  start-page: 142
  year: 2020
  end-page: 150
  article-title: Prenatal diagnosis of congenital head, face, and neck malformations—is complementary fetal MRI of value?
  publication-title: Prenat Diagn.
– volume: 55
  start-page: N23
  year: 2010
  end-page: N38
  article-title: The virtual family—development of surface‐based anatomical models of two adults and two children for dosimetric simulations
  publication-title: Phys Med Biol.
– volume: 83
  start-page: 695
  year: 2020
  end-page: 711
  article-title: A deep learning method for image‐based subject‐specific local SAR assessment
  publication-title: Magn Reson Med.
– volume: 33
  start-page: 739
  year: 2014
  end-page: 748
  article-title: On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints
  publication-title: IEEE Trans Med Imaging.
– volume: 184
  start-page: 396
  year: 2019
  end-page: 408
  article-title: Human connectome project‐style resting‐state functional MRI at 7 tesla using radiofrequency parallel transmission
  publication-title: Neuroimage.
– volume: 70
  start-page: 1575
  year: 2023
  end-page: 1586
  article-title: MARIE 2.0: a perturbation matrix based patient‐specific MRI field simulator
  publication-title: IEEE Trans Biomed Eng.
– volume: 87
  start-page: 197
  year: 2004
  end-page: 216
  article-title: 2004 medical magnetic resonance (MR) procedures: protection of patients
  publication-title: Health Phys.
– start-page: 1460
  year: 2018
– start-page: 2556
  year: 2022
– volume: 10
  start-page: 787
  year: 1984
  end-page: 800
  article-title: Thermal dose determination in cancer therapy
  publication-title: Int J Radiat Oncol.
– volume: 53
  start-page: 434
  year: 2005
  end-page: 445
  article-title: Transmit and receive transmission line arrays for 7 tesla parallel imaging
  publication-title: Magn Reson Med.
– volume: 78
  start-page: 1050
  year: 2017
  end-page: 1058
  article-title: High‐resolution gradient‐recalled echo imaging at 9.4T using 16‐channel parallel transmit simultaneous multislice spokes excitations with slice‐by‐slice flip angle homogenization
  publication-title: Magn Reson Med.
– start-page: 49
  year: 2010
  end-page: 54
– volume: 55
  start-page: 2411
  year: 2010
  end-page: 2426
  article-title: Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging
  publication-title: Phys Med Biol.
– year: 2008
– year: 2022
– volume: 81
  start-page: 2106
  year: 2019
  end-page: 2119
  article-title: Intersubject specific absorption rate variability analysis through construction of 23 realistic body models for prostate imaging at 7T
  publication-title: Magn Reson Med.
– volume: 49
  start-page: 144
  year: 2003
  end-page: 150
  article-title: Transmit SENSE
  publication-title: Magn Reson Med.
– volume: 86
  start-page: 2810
  year: 2021
  end-page: 2821
  article-title: Safety and imaging performance of two‐channel RF shimming for fetal MRI at 3T
  publication-title: Magn Reson Med.
– volume: 76
  start-page: 986
  year: 2016
  end-page: 997
  article-title: Virtual population‐based assessment of the impact of 3 tesla radiofrequency shimming and thermoregulation on safety and B1+ uniformity
  publication-title: Magn Reson Med.
– volume: 78
  start-page: 1009
  year: 2017
  end-page: 1019
  article-title: In vivo demonstration of whole‐brain multislice multispoke parallel transmit radiofrequency pulse design in the small and large flip angle regimes at 7 tesla
  publication-title: Magn Reson Med.
– volume: 71
  start-page: 839
  year: 2014
  end-page: 845
  article-title: Whole‐body and local RF absorption in human models as a function of anatomy and position within 1.5T MR body coil
  publication-title: Magn Reson Med.
– volume: 55
  start-page: 913
  year: 2010
  end-page: 930
  article-title: Numerical study of RF exposure and the resulting temperature rise in the foetus during a magnetic resonance procedure
  publication-title: Phys Med Biol.
– volume: 77
  start-page: 2048
  year: 2017
  end-page: 2056
  article-title: Pregnant women models analyzed for RF exposure and temperature increase in 3T RF shimmed birdcages
  publication-title: Magn Reson Med.
– volume: 83
  start-page: 1418
  year: 2020
  end-page: 1428
  article-title: Individual variation in simulated fetal SAR assessed in multiple body models
  publication-title: Magn Reson Med.
– volume: 2019
  year: 2019
  article-title: Thermal effects associated with RF exposures in diagnostic MRI: overview of existing and emerging concepts of protection
  publication-title: Concepts Magn Reson Part B Magn Reson Eng.
– ident: e_1_2_7_14_1
  doi: 10.1002/nbm.4450
– ident: e_1_2_7_3_1
  doi: 10.1053/j.semperi.2013.06.005
– ident: e_1_2_7_34_1
  doi: 10.1109/TBME.2022.3222748
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.20824
– ident: e_1_2_7_45_1
  doi: 10.1016/0360‐3016(84)90379‐1
– ident: e_1_2_7_46_1
  doi: 10.3929/ethz‐a‐005743425
– ident: e_1_2_7_2_1
  doi: 10.1002/pd.5593
– ident: e_1_2_7_25_1
  doi: 10.1002/mrm.28006
– ident: e_1_2_7_47_1
  doi: 10.1080/10407782.2013.869075
– ident: e_1_2_7_26_1
  doi: 10.1088/0031‐9155/55/2/N01
– ident: e_1_2_7_9_1
  doi: 10.1002/mrm.20011
– ident: e_1_2_7_38_1
  doi: 10.1002/mrm.29215
– ident: e_1_2_7_40_1
  doi: 10.1097/00004032-200408000-00008
– ident: e_1_2_7_37_1
  doi: 10.1109/JERM.2023.3236153
– ident: e_1_2_7_43_1
  doi: 10.1007/s00330‐013‐2825‐y
– ident: e_1_2_7_28_1
– ident: e_1_2_7_16_1
  doi: 10.1016/j.neuroimage.2018.09.038
– ident: e_1_2_7_31_1
  doi: 10.1152/jappl.1948.1.2.93
– start-page: 1460
  volume-title: Proceedings of the 26th Annual Meeting of the International Society of Magnetic Resonance in Medicine
  year: 2018
  ident: e_1_2_7_41_1
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.26491
– ident: e_1_2_7_29_1
  doi: 10.1088/0031‐9155/56/7/N01
– ident: e_1_2_7_13_1
  doi: 10.1002/jmri.24791
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.27948
– ident: e_1_2_7_33_1
  doi: 10.1088/0031‐9155/55/4/001
– ident: e_1_2_7_39_1
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.24690
– ident: e_1_2_7_23_1
  doi: 10.1007/174_2010_122
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.10353
– ident: e_1_2_7_5_1
  doi: 10.1515/jpm‐2014‐0268
– ident: e_1_2_7_35_1
  doi: 10.1002/mrm.28398
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.26268
– ident: e_1_2_7_20_1
  doi: 10.1109/TMI.2013.2295465
– ident: e_1_2_7_10_1
  doi: 10.1002/mrm.20321
– ident: e_1_2_7_18_1
  doi: 10.1016/j.mri.2022.08.006
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.28895
– ident: e_1_2_7_27_1
  doi: 10.1088/0031‐9155/59/18/5287
– ident: e_1_2_7_7_1
  doi: 10.1016/j.mric.2007.06.002
– ident: e_1_2_7_17_1
  doi: 10.1002/mrm.26501
– ident: e_1_2_7_42_1
  doi: 10.3109/02656736.2010.534527
– ident: e_1_2_7_4_1
  doi: 10.1016/S0140‐6736(16)31723‐8
– ident: e_1_2_7_22_1
  doi: 10.1002/mrm.25986
– ident: e_1_2_7_44_1
  doi: 10.1155/2019/9618680
– ident: e_1_2_7_15_1
  doi: 10.1002/mrm.27518
– ident: e_1_2_7_6_1
  doi: 10.2214/AJR.14.14205
– ident: e_1_2_7_32_1
  doi: 10.1088/0031‐9155/55/8/018
– start-page: 2556
  volume-title: Proceedings of the 30th Annual Meeting of the International Society of Magnetic Resonance in Medicine
  year: 2022
  ident: e_1_2_7_24_1
SSID ssj0009974
Score 2.4562435
Snippet Purpose This study evaluates the imaging performance of two‐channel RF‐shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR)...
This study evaluates the imaging performance of two-channel RF-shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR)...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1165
SubjectTerms 3 T
Computer Simulation
Female
fetal MRI
Fetus - diagnostic imaging
high field MRI
Humans
local SAR
Magnetic Resonance Imaging - methods
parallel RF transmission
Phantoms, Imaging
Pregnancy
Radio Waves
RF shimming
Title Local SAR management strategies to use two‐channel RF shimming for fetal MRI at 3 T
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29913
https://www.ncbi.nlm.nih.gov/pubmed/37929768
https://www.proquest.com/docview/2886599126
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9CSCAuGwMG5WMyiAOXtIntfIlThVaVaeUQqOhhUuRPgaa0qEk1aSeu3Pgb-Uuw46YVmyah3XJwLNvP771f8n7-GeAUax1x4ksv9LXwqD3bw5VPPM01Y7H0le9YvldRf0i_jcLRCpw3Z2GcPsTih5v1jDpeWwdnvOwsRUOLadE2sbS-sdZytSwgypbSUWnqFJhjauNMShtVIR93Fm--zUV_Acy3eLVOOL2P8KMZquOZ_GzPKt4Wv_9QcfzPuWzChzkQRV23cz7BihpvwfpgXmrfgrWaGyrKbbj9bvMduu5mqFiQZVBZNSITqJqgWalQ9Wvy8vhsTxKb4aCsh8q7-6IwqREZYIy0MjAfDbJLxCpEXh6fbnZg2Pt6c9H35vcxeIJgYz9OWSBjiRllYaoI1lgKHdvqMGEsCiIZB6lMBI8VIQL7mMUEM8EpFwlPdELJZ1gdT8ZqDxAmjAaaYB4pSlOtuBSSiSCUjAQs1aIFJ41l8gcnu5E7gWWcm8XK68VqwXFjs9w4ha10sLGazMocJ0kUmiY4asGuM-aiGxIbRGg-slpwVpvk3_3ng2xQP-y_v-kBbJiZU8dSO4TVajpTRwa2VPxLvT9fAZZg6b8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKlouLdAWlpbiIg5csiS285J6QVVXC91wSBfBBUV-qghlF5GskDhx5cZv5Jdgx5tFUFVC3HJwLHvGnvlsz3wDsI21jjjxpRf6WnjU5vZw5RNPc81YLH3luyjfw6h_RA9OwpM5-NHmwjh-iNmFm90Zjb22G9xeSO8-soaWl2XXGFNbsvaNrejdHKjyR_KoNHUczDG1lialLa-Qj3dnvz71Rv9AzKeItXE5vQ9w2g7WRZqcdyc174rrZzyOr53NEryfYlG05xbPMsyp0Qq8zaav7Suw0ISHiuojHA-sy0N_9nJUzuJlUFW3PBOoHqNJpVB9Nb6_ubPJxGY8KO-h6u9ZWRrviAw2RloZpI-yfB-xGpH7m9vhJzjq_Rr-7HvTkgyeINiokFMWyFhiRlmYKoI1lkLH9oGYMBYFkYyDVCaCx4oQgX3MYoKZ4JSLhCc6oeQzzI_GI7UGCBNGA00wjxSlqVZcCslEEEpGApZq0YGtVjXFhWPeKBzHMi6MsIpGWB343iqtMPvCPnawkRpPqgInSRSaJjjqwKrT5qwbEhtQaM5ZHdhpdPL__ossz5qP9Zc33YR3_WE2KAb7h7-_wKKRAnVBa19hvr6cqA2DYmr-rVmsDy557do
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUBEXaHku0NatOHDJktjOS5xQ6QpaFqEAggNS5KdAKLtokxUSp7321t_IL6kdbxZBhYS45eBYtuf1JTPzGWALax1x4ksv9LXwqO3t4connuaasVj6yndVvsfRwTn9dRleTsFu0wvj-CEmP9ysZdT-2hr4ndQ7T6ShxaBoG19qb6ydoZGfWJXez564o9LUUTDH1DqalDa0Qj7embz6PBj9hzCfA9Y64nQW4KpZqys0uW0PK94WDy9oHN-5mY8wP0aiaM-pzieYUr1FmO2Oc-2L8KEuDhXlElwc2YCHTvcyVEyqZVBZNSwTqOqjYalQdd9_HP21rcRmOSjroPL6pihMbEQGGSOtDM5H3ewQsQqRx9Gfs2U47_w8-3HgjS9k8ATBRoCcskDGEjPKwlQRrLEUOrbpYcJYFEQyDlKZCB4rQgT2MYsJZoJTLhKe6ISSFZju9XtqDRAmjAaaYB4pSlOtuBSSiSCUjAQs1aIF3xvJ5HeOdyN3DMs4N4eV14fVgm-NzHJjFTbVwXqqPyxznCRRaIbgqAWrTpiTaUhsIKH5ymrBdi2S1-fPu1m3flh_-9CvMHuy38mPDo9_b8CcOQTqKtY2YboaDNVnA2Eq_qVW1X-VKOyS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+SAR+management+strategies+to+use+two-channel+RF+shimming+for+fetal+MRI+at+3%E2%80%89T&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Yetisir%2C+Filiz&rft.au=Abaci+Turk%2C+Esra&rft.au=Adalsteinsson%2C+Elfar&rft.au=Wald%2C+Lawrence+Leroy&rft.date=2024-03-01&rft.eissn=1522-2594&rft.volume=91&rft.issue=3&rft.spage=1165&rft_id=info:doi/10.1002%2Fmrm.29913&rft_id=info%3Apmid%2F37929768&rft.externalDocID=37929768
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon