Opening black box Data Mining models using Sensitivity Analysis
There are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain high quality predictions, although the obtained models are difficult to interpret by humans. In this paper, we open these black box DM models b...
Saved in:
Published in | 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM) pp. 341 - 348 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain high quality predictions, although the obtained models are difficult to interpret by humans. In this paper, we open these black box DM models by using a novel visualization approach that is based on a Sensitivity Analysis (SA) method. In particular, we propose a Global SA (GSA), which extends the applicability of previous SA methods (e.g. to classification tasks), and several visualization techniques (e.g. variable effect characteristic curve), for assessing input relevance and effects on the model's responses. We show the GSA capabilities by conducting several experiments, using a NN ensemble and SVM model, in both synthetic and real-world datasets. |
---|---|
AbstractList | There are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain high quality predictions, although the obtained models are difficult to interpret by humans. In this paper, we open these black box DM models by using a novel visualization approach that is based on a Sensitivity Analysis (SA) method. In particular, we propose a Global SA (GSA), which extends the applicability of previous SA methods (e.g. to classification tasks), and several visualization techniques (e.g. variable effect characteristic curve), for assessing input relevance and effects on the model's responses. We show the GSA capabilities by conducting several experiments, using a NN ensemble and SVM model, in both synthetic and real-world datasets. There are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain high quality predictions, although the obtained models are difficult to inter- pret by humans. In this paper, we open these black box DM models by using a novel visualization approach that is based on a Sensitivity Analysis (SA) method. In particular, we propose a Global SA (GSA), which extends the applicability of previous SA methods (e.g. to classification tasks), and several visualization techniques (e.g. variable effect characteristic curve), for assessing input relevance and effects on the model’s responses. We show the GSA capabilities by conducting several experiments, using a NN ensemble and SVM model, in both synthetic and real-world datasets. |
Author | Embrechts, M. J. Cortez, P. |
Author_xml | – sequence: 1 givenname: P. surname: Cortez fullname: Cortez, P. organization: Dept. of Inf. Syst., Univ. of Minho, Guimaräes, Portugal – sequence: 2 givenname: M. J. surname: Embrechts fullname: Embrechts, M. J. email: embrem@rpi.edu organization: Dept. of Ind. & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA |
BookMark | eNpVkMtOg0AYhceoiVp5AONmXgBkLsxlZRrqpUmbLtQ1-Qd-zCgFwmAjb2-13Xg2J-fky1mcK3LWdi0ScsPShLHU3uXLxTrhKWNJZqWVXJyQyGrDJJfSWq7l6b-s9AWJQvhI91LKWKMuyf2mx9a379Q1UH5S133TBYxA1_6v3XYVNoF-hd_wgm3wo9_5caLzFpop-HBNzmtoAkZHn5G3x4fX_DlebZ6W-XwVl4KnItaiVFjrTFVGSWeFcJJlGgF5XUldKqXAGV0C1ihkZSCrmWHC6ArT2llpxIzQw-5QAvTFgDsfRggFM5wXbA-oPXJ7QDwiFv3gtzBMxfEZ8QMaC1bn |
CitedBy_id | crossref_primary_10_1061__ASCE_CP_1943_5487_0000770 crossref_primary_10_1145_3373464_3373472 crossref_primary_10_1007_s10639_020_10346_6 crossref_primary_10_18182_tjf_342504 crossref_primary_10_3390_app13148084 crossref_primary_10_1111_exsy_13494 crossref_primary_10_1002_widm_1052 crossref_primary_10_1089_big_2016_0007 crossref_primary_10_1109_ACCESS_2022_3191907 crossref_primary_10_1109_ACCESS_2020_2993930 crossref_primary_10_1016_j_jretconser_2018_05_001 crossref_primary_10_1016_j_ins_2012_10_039 crossref_primary_10_3151_jact_20_404 crossref_primary_10_3389_fdata_2021_688969 crossref_primary_10_1109_TITS_2022_3188671 crossref_primary_10_1007_s10064_021_02138_0 crossref_primary_10_1007_s10706_012_9585_3 crossref_primary_10_1515_rams_2022_0274 crossref_primary_10_1016_j_conbuildmat_2022_128300 crossref_primary_10_1109_TAI_2021_3133846 crossref_primary_10_1007_s00521_015_2157_8 crossref_primary_10_2139_ssrn_3335592 crossref_primary_10_3390_electronics10222862 crossref_primary_10_1109_ACCESS_2018_2870052 crossref_primary_10_1109_ACCESS_2021_3116481 crossref_primary_10_1016_j_fuel_2018_09_117 crossref_primary_10_1016_j_rtbm_2019_100413 crossref_primary_10_1016_j_conbuildmat_2020_120457 crossref_primary_10_3390_make3030032 crossref_primary_10_1007_s11831_023_09881_5 crossref_primary_10_1007_s00521_014_1573_5 crossref_primary_10_1016_j_artmed_2021_102038 crossref_primary_10_1007_s11831_015_9157_9 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL RCLKO |
DOI | 10.1109/CIDM.2011.5949423 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present RCAAP open access repository |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
DissertationSchool | Universidade do Minho |
EISBN | 9781424499274 1424499259 9781424499250 1424499275 |
EndPage | 348 |
ExternalDocumentID | 1822_14836 5949423 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL RCLKO |
ID | FETCH-LOGICAL-c3203-73c6ef756d864b933b4157eae2fd47c666ab87caefe34d8a5f181387de0fb9483 |
IEDL.DBID | RIE |
ISBN | 9781424499267 1424499267 |
IngestDate | Tue Oct 22 15:57:07 EDT 2024 Wed Jun 26 19:20:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3203-73c6ef756d864b933b4157eae2fd47c666ab87caefe34d8a5f181387de0fb9483 |
OpenAccessLink | http://hdl.handle.net/1822/14836 |
PageCount | 8 |
ParticipantIDs | ieee_primary_5949423 rcaap_revistas_1822_14836 |
PublicationCentury | 2000 |
PublicationDate | 2011-04 |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-04 |
PublicationDecade | 2010 |
PublicationTitle | 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM) |
PublicationTitleAbbrev | CIDM |
PublicationYear | 2011 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000668986 |
Score | 1.8336916 |
Snippet | There are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain... |
SourceID | rcaap ieee |
SourceType | Publisher |
StartPage | 341 |
SubjectTerms | Analytical models Artificial neural networks Delta modulation Predictive models Sensitivity Support vector machines |
Title | Opening black box Data Mining models using Sensitivity Analysis |
URI | https://ieeexplore.ieee.org/document/5949423 http://hdl.handle.net/1822/14836 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA1tV65UWrG-yMKl004nmTxWLlqlCiOCFrobkps7LoS29AHi15vMo4q4cJcEZshjcW5uzj2HkGuBYMEARCBHGHGDEAVlpShG4Inz8TKmoXY4exLTGX-cp_MWudnXwiBiST7DQWiWb_luCbuQKhummmsP_23SllpXtVr7fIqHTqWVaGq3tE6EbCSdmn79qjmK9XD8MMkqAc_6p7W7io9R12DM6gfI3B-SrJlexS15H-y2dgCfv5Qb_zv_I9L7Luejz3ugOiYtXHTJbaCS-C61IYVH7fKDTszW0Kx0jKClQ86GBlr8G30JLPfKZoI2KiY9Mru_ex1Po9pNIQKWxCySDAQWMhVOCW41Y9Zjt0SDSeG4BH8sxioJBgtk3CmTFh78mZIO48JqrtgJ6SyWCzwl1I2k4JD6YaU4JE7z4FoSM4MmRYG8T7ph8fmqEszI63X3Sb_c2zwQmH3su8n95Sbxlw_FxNnfn5yTgyqJG6gyF6SzXe_w0kcBW3tVHv8XRHetIw |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKOcAJUIsoqw8cSZvGjpcThxbUQlMh0Uq9RV4mHJDaqouE-HrsLAUhDtziSLE8SaQ3Hr95D6FbBkYbZUxgeBcCqsAEXlkpCMHQyLp8GWLfO5yM2WBKn2bxrIbudr0wAJCTz6DtL_OzfLswW18q68SSSgf_e2g_9nlF0a21q6g48BRSsKp7S8qI8UrUqRqX55rdUHZ6w35SSHiW05b-Ki5LXRmllj9g5vEIJdUCC3bJe3u70W3z-Uu78b8RHKPmd0MfftlB1QmqwbyB7j2ZxA2x9kU8rBcfuK82Cie5ZwTOPXLW2BPj3_Cr57kXRhO40jFpounjw6Q3CEo_hcCQKCQBJ4ZBxmNmBaNaEqIdenNQEGWWcuM-jNKCGwUZEGqFijMH_0RwC2GmJRXkFNXnizmcIWy7nFETu9tCUBNZSb1vSUgUqBgY0BZq-ODTZSGZkZZxt1Arf7eppzC77Heduu1N5LYfgrDzvx-5QQeDSTJKR8Px8wU6LEq6njhzieqb1RauXE6w0df5r_AFjACwcA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+Symposium+on+Computational+Intelligence+and+Data+Mining+%28CIDM%29&rft.atitle=Opening+black+box+Data+Mining+models+using+Sensitivity+Analysis&rft.au=Cortez%2C+P.&rft.au=Embrechts%2C+M.+J.&rft.date=2011-04-01&rft.pub=IEEE&rft.isbn=9781424499267&rft.spage=341&rft.epage=348&rft_id=info:doi/10.1109%2FCIDM.2011.5949423&rft.externalDocID=5949423 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424499267/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424499267/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424499267/sc.gif&client=summon&freeimage=true |