Opening black box Data Mining models using Sensitivity Analysis

There are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain high quality predictions, although the obtained models are difficult to interpret by humans. In this paper, we open these black box DM models b...

Full description

Saved in:
Bibliographic Details
Published in2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM) pp. 341 - 348
Main Authors Cortez, P., Embrechts, M. J.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain high quality predictions, although the obtained models are difficult to interpret by humans. In this paper, we open these black box DM models by using a novel visualization approach that is based on a Sensitivity Analysis (SA) method. In particular, we propose a Global SA (GSA), which extends the applicability of previous SA methods (e.g. to classification tasks), and several visualization techniques (e.g. variable effect characteristic curve), for assessing input relevance and effects on the model's responses. We show the GSA capabilities by conducting several experiments, using a NN ensemble and SVM model, in both synthetic and real-world datasets.
AbstractList There are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain high quality predictions, although the obtained models are difficult to interpret by humans. In this paper, we open these black box DM models by using a novel visualization approach that is based on a Sensitivity Analysis (SA) method. In particular, we propose a Global SA (GSA), which extends the applicability of previous SA methods (e.g. to classification tasks), and several visualization techniques (e.g. variable effect characteristic curve), for assessing input relevance and effects on the model's responses. We show the GSA capabilities by conducting several experiments, using a NN ensemble and SVM model, in both synthetic and real-world datasets.
There are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain high quality predictions, although the obtained models are difficult to inter- pret by humans. In this paper, we open these black box DM models by using a novel visualization approach that is based on a Sensitivity Analysis (SA) method. In particular, we propose a Global SA (GSA), which extends the applicability of previous SA methods (e.g. to classification tasks), and several visualization techniques (e.g. variable effect characteristic curve), for assessing input relevance and effects on the model’s responses. We show the GSA capabilities by conducting several experiments, using a NN ensemble and SVM model, in both synthetic and real-world datasets.
Author Embrechts, M. J.
Cortez, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Cortez
  fullname: Cortez, P.
  organization: Dept. of Inf. Syst., Univ. of Minho, Guimaräes, Portugal
– sequence: 2
  givenname: M. J.
  surname: Embrechts
  fullname: Embrechts, M. J.
  email: embrem@rpi.edu
  organization: Dept. of Ind. & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA
BookMark eNpVkMtOg0AYhceoiVp5AONmXgBkLsxlZRrqpUmbLtQ1-Qd-zCgFwmAjb2-13Xg2J-fky1mcK3LWdi0ScsPShLHU3uXLxTrhKWNJZqWVXJyQyGrDJJfSWq7l6b-s9AWJQvhI91LKWKMuyf2mx9a379Q1UH5S133TBYxA1_6v3XYVNoF-hd_wgm3wo9_5caLzFpop-HBNzmtoAkZHn5G3x4fX_DlebZ6W-XwVl4KnItaiVFjrTFVGSWeFcJJlGgF5XUldKqXAGV0C1ihkZSCrmWHC6ArT2llpxIzQw-5QAvTFgDsfRggFM5wXbA-oPXJ7QDwiFv3gtzBMxfEZ8QMaC1bn
CitedBy_id crossref_primary_10_1061__ASCE_CP_1943_5487_0000770
crossref_primary_10_1145_3373464_3373472
crossref_primary_10_1007_s10639_020_10346_6
crossref_primary_10_18182_tjf_342504
crossref_primary_10_3390_app13148084
crossref_primary_10_1111_exsy_13494
crossref_primary_10_1002_widm_1052
crossref_primary_10_1089_big_2016_0007
crossref_primary_10_1109_ACCESS_2022_3191907
crossref_primary_10_1109_ACCESS_2020_2993930
crossref_primary_10_1016_j_jretconser_2018_05_001
crossref_primary_10_1016_j_ins_2012_10_039
crossref_primary_10_3151_jact_20_404
crossref_primary_10_3389_fdata_2021_688969
crossref_primary_10_1109_TITS_2022_3188671
crossref_primary_10_1007_s10064_021_02138_0
crossref_primary_10_1007_s10706_012_9585_3
crossref_primary_10_1515_rams_2022_0274
crossref_primary_10_1016_j_conbuildmat_2022_128300
crossref_primary_10_1109_TAI_2021_3133846
crossref_primary_10_1007_s00521_015_2157_8
crossref_primary_10_2139_ssrn_3335592
crossref_primary_10_3390_electronics10222862
crossref_primary_10_1109_ACCESS_2018_2870052
crossref_primary_10_1109_ACCESS_2021_3116481
crossref_primary_10_1016_j_fuel_2018_09_117
crossref_primary_10_1016_j_rtbm_2019_100413
crossref_primary_10_1016_j_conbuildmat_2020_120457
crossref_primary_10_3390_make3030032
crossref_primary_10_1007_s11831_023_09881_5
crossref_primary_10_1007_s00521_014_1573_5
crossref_primary_10_1016_j_artmed_2021_102038
crossref_primary_10_1007_s11831_015_9157_9
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
RCLKO
DOI 10.1109/CIDM.2011.5949423
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
RCAAP open access repository
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
DissertationSchool Universidade do Minho
EISBN 9781424499274
1424499259
9781424499250
1424499275
EndPage 348
ExternalDocumentID 1822_14836
5949423
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
RCLKO
ID FETCH-LOGICAL-c3203-73c6ef756d864b933b4157eae2fd47c666ab87caefe34d8a5f181387de0fb9483
IEDL.DBID RIE
ISBN 9781424499267
1424499267
IngestDate Tue Oct 22 15:57:07 EDT 2024
Wed Jun 26 19:20:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3203-73c6ef756d864b933b4157eae2fd47c666ab87caefe34d8a5f181387de0fb9483
OpenAccessLink http://hdl.handle.net/1822/14836
PageCount 8
ParticipantIDs ieee_primary_5949423
rcaap_revistas_1822_14836
PublicationCentury 2000
PublicationDate 2011-04
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04
PublicationDecade 2010
PublicationTitle 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)
PublicationTitleAbbrev CIDM
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000668986
Score 1.8336916
Snippet There are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain...
SourceID rcaap
ieee
SourceType Publisher
StartPage 341
SubjectTerms Analytical models
Artificial neural networks
Delta modulation
Predictive models
Sensitivity
Support vector machines
Title Opening black box Data Mining models using Sensitivity Analysis
URI https://ieeexplore.ieee.org/document/5949423
http://hdl.handle.net/1822/14836
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA1tV65UWrG-yMKl004nmTxWLlqlCiOCFrobkps7LoS29AHi15vMo4q4cJcEZshjcW5uzj2HkGuBYMEARCBHGHGDEAVlpShG4Inz8TKmoXY4exLTGX-cp_MWudnXwiBiST7DQWiWb_luCbuQKhummmsP_23SllpXtVr7fIqHTqWVaGq3tE6EbCSdmn79qjmK9XD8MMkqAc_6p7W7io9R12DM6gfI3B-SrJlexS15H-y2dgCfv5Qb_zv_I9L7Luejz3ugOiYtXHTJbaCS-C61IYVH7fKDTszW0Kx0jKClQ86GBlr8G30JLPfKZoI2KiY9Mru_ex1Po9pNIQKWxCySDAQWMhVOCW41Y9Zjt0SDSeG4BH8sxioJBgtk3CmTFh78mZIO48JqrtgJ6SyWCzwl1I2k4JD6YaU4JE7z4FoSM4MmRYG8T7ph8fmqEszI63X3Sb_c2zwQmH3su8n95Sbxlw_FxNnfn5yTgyqJG6gyF6SzXe_w0kcBW3tVHv8XRHetIw
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKOcAJUIsoqw8cSZvGjpcThxbUQlMh0Uq9RV4mHJDaqouE-HrsLAUhDtziSLE8SaQ3Hr95D6FbBkYbZUxgeBcCqsAEXlkpCMHQyLp8GWLfO5yM2WBKn2bxrIbudr0wAJCTz6DtL_OzfLswW18q68SSSgf_e2g_9nlF0a21q6g48BRSsKp7S8qI8UrUqRqX55rdUHZ6w35SSHiW05b-Ki5LXRmllj9g5vEIJdUCC3bJe3u70W3z-Uu78b8RHKPmd0MfftlB1QmqwbyB7j2ZxA2x9kU8rBcfuK82Cie5ZwTOPXLW2BPj3_Cr57kXRhO40jFpounjw6Q3CEo_hcCQKCQBJ4ZBxmNmBaNaEqIdenNQEGWWcuM-jNKCGwUZEGqFijMH_0RwC2GmJRXkFNXnizmcIWy7nFETu9tCUBNZSb1vSUgUqBgY0BZq-ODTZSGZkZZxt1Arf7eppzC77Heduu1N5LYfgrDzvx-5QQeDSTJKR8Px8wU6LEq6njhzieqb1RauXE6w0df5r_AFjACwcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+Symposium+on+Computational+Intelligence+and+Data+Mining+%28CIDM%29&rft.atitle=Opening+black+box+Data+Mining+models+using+Sensitivity+Analysis&rft.au=Cortez%2C+P.&rft.au=Embrechts%2C+M.+J.&rft.date=2011-04-01&rft.pub=IEEE&rft.isbn=9781424499267&rft.spage=341&rft.epage=348&rft_id=info:doi/10.1109%2FCIDM.2011.5949423&rft.externalDocID=5949423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424499267/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424499267/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424499267/sc.gif&client=summon&freeimage=true