The immediate costs and long‐term benefits of assisted gene flow in large populations
With the genetic health of many plant and animal populations deteriorating due to climate change outpacing adaptation, interventions, such as assisted gene flow (AGF), may provide genetic variation necessary for populations to adapt to climate change. We ran genetic simulations to mimic different AG...
Saved in:
Published in | Conservation biology Vol. 36; no. 4; pp. e13911 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the genetic health of many plant and animal populations deteriorating due to climate change outpacing adaptation, interventions, such as assisted gene flow (AGF), may provide genetic variation necessary for populations to adapt to climate change. We ran genetic simulations to mimic different AGF scenarios in large populations and measured their outcomes on population‐level fitness to determine circumstances in which it is worthwhile to perform AGF. In the absence of inbreeding depression, AGF was beneficial within a few generations only when introduced genotypes had much higher fitness than local individuals and traits affecting fitness were controlled by a few genes of large effect. AGF was harmful over short periods (e.g., first ∼10–20 generations) if there was strong outbreeding depression or introduced deleterious genetic variation. When the adaptive trait was controlled by many loci of small effect, the benefits of AGF took over 10 generations to realize—potentially too long for most climate‐related management scenarios. The genomic integrity of the recipient population typically remained intact following AGF; the amount of genetic material from the donor population usually constituted no more of the recipient population's genome than the fraction of the population introduced. Significant genomic turnover (e.g., >50% replacement) only occurred when the selective advantage of the adaptive trait and translocation fraction were extremely high. Our results will be useful when adaptive management is used to maintain the genetic health and productivity of large populations under climate change.
Resumen
Con el deterioro de la salud genética de muchas poblaciones de plantas y animales debido a la ventaja que le lleva el cambio climático a la adaptación, algunas intervenciones, como el flujo génico asistido (FGA), pueden proporcionar la variación genética necesaria para que las poblaciones se adapten al cambio climático. Simulamos diferentes escenarios de FGA aplicado en poblaciones grandes y medimos los resultados en la aptitud a nivel poblacional para determinar las circunstancias en las que merece la pena realizar FGA. Cuando no hubo depresión endogámica, el FGA produjo un beneficio en pocas generaciones sólo cuando se introdujeron genotipos que tenían una aptitud mucho mayor que los individuos locales y cuando unos cuantos genes de gran efecto controlaron los rasgos que afectaban a la aptitud. El flujo génico asistido fue dañino en periodos cortos (p.ej.: las primeras 10–20 generaciones) si existía una fuerte depresión exogámica o una variación genética deletérea introducida. Cuando muchos loci de pequeño efecto controlaron el rasgo adaptativo, los beneficios del FGA tardaron más de 10 generaciones en aparecer – un tiempo potencialmente muy largo para la mayoría de la gestión relacionada con el clima. La integridad genómica de la población receptora casi siempre permaneció intacta después del FGA; es decir, la cantidad de material genético de la población donante generalmente no constituyó más que la fracción de población introducida en el genoma de la población receptora. La rotación genómica significativa (p.ej.: reemplazos >50%) sólo ocurrió cuando la ventaja selectiva del rasgo adaptativo y la fracción de reubicación fueron extremadamente elevadas. Nuestros resultados serán útiles cuando se use la gestión adaptativa para mantener la salud genética y la productividad de las poblaciones grandes bajo el cambio climático. |
---|---|
AbstractList | With the genetic health of many plant and animal populations deteriorating due to climate change outpacing adaptation, interventions, such as assisted gene flow (AGF), may provide genetic variation necessary for populations to adapt to climate change. We ran genetic simulations to mimic different AGF scenarios in large populations and measured their outcomes on population‐level fitness to determine circumstances in which it is worthwhile to perform AGF. In the absence of inbreeding depression, AGF was beneficial within a few generations only when introduced genotypes had much higher fitness than local individuals and traits affecting fitness were controlled by a few genes of large effect. AGF was harmful over short periods (e.g., first ∼10–20 generations) if there was strong outbreeding depression or introduced deleterious genetic variation. When the adaptive trait was controlled by many loci of small effect, the benefits of AGF took over 10 generations to realize—potentially too long for most climate‐related management scenarios. The genomic integrity of the recipient population typically remained intact following AGF; the amount of genetic material from the donor population usually constituted no more of the recipient population's genome than the fraction of the population introduced. Significant genomic turnover (e.g., >50% replacement) only occurred when the selective advantage of the adaptive trait and translocation fraction were extremely high. Our results will be useful when adaptive management is used to maintain the genetic health and productivity of large populations under climate change. With the genetic health of many plant and animal populations deteriorating due to climate change outpacing adaptation, interventions, such as assisted gene flow (AGF), may provide genetic variation necessary for populations to adapt to climate change. We ran genetic simulations to mimic different AGF scenarios in large populations and measured their outcomes on population‐level fitness to determine circumstances in which it is worthwhile to perform AGF. In the absence of inbreeding depression, AGF was beneficial within a few generations only when introduced genotypes had much higher fitness than local individuals and traits affecting fitness were controlled by a few genes of large effect. AGF was harmful over short periods (e.g., first ∼10–20 generations) if there was strong outbreeding depression or introduced deleterious genetic variation. When the adaptive trait was controlled by many loci of small effect, the benefits of AGF took over 10 generations to realize—potentially too long for most climate‐related management scenarios. The genomic integrity of the recipient population typically remained intact following AGF; the amount of genetic material from the donor population usually constituted no more of the recipient population's genome than the fraction of the population introduced. Significant genomic turnover (e.g., >50% replacement) only occurred when the selective advantage of the adaptive trait and translocation fraction were extremely high. Our results will be useful when adaptive management is used to maintain the genetic health and productivity of large populations under climate change. Resumen Con el deterioro de la salud genética de muchas poblaciones de plantas y animales debido a la ventaja que le lleva el cambio climático a la adaptación, algunas intervenciones, como el flujo génico asistido (FGA), pueden proporcionar la variación genética necesaria para que las poblaciones se adapten al cambio climático. Simulamos diferentes escenarios de FGA aplicado en poblaciones grandes y medimos los resultados en la aptitud a nivel poblacional para determinar las circunstancias en las que merece la pena realizar FGA. Cuando no hubo depresión endogámica, el FGA produjo un beneficio en pocas generaciones sólo cuando se introdujeron genotipos que tenían una aptitud mucho mayor que los individuos locales y cuando unos cuantos genes de gran efecto controlaron los rasgos que afectaban a la aptitud. El flujo génico asistido fue dañino en periodos cortos (p.ej.: las primeras 10–20 generaciones) si existía una fuerte depresión exogámica o una variación genética deletérea introducida. Cuando muchos loci de pequeño efecto controlaron el rasgo adaptativo, los beneficios del FGA tardaron más de 10 generaciones en aparecer – un tiempo potencialmente muy largo para la mayoría de la gestión relacionada con el clima. La integridad genómica de la población receptora casi siempre permaneció intacta después del FGA; es decir, la cantidad de material genético de la población donante generalmente no constituyó más que la fracción de población introducida en el genoma de la población receptora. La rotación genómica significativa (p.ej.: reemplazos >50%) sólo ocurrió cuando la ventaja selectiva del rasgo adaptativo y la fracción de reubicación fueron extremadamente elevadas. Nuestros resultados serán útiles cuando se use la gestión adaptativa para mantener la salud genética y la productividad de las poblaciones grandes bajo el cambio climático. With the genetic health of many plant and animal populations deteriorating due to climate change outpacing adaptation, interventions, such as assisted gene flow (AGF), may provide genetic variation necessary for populations to adapt to climate change. We ran genetic simulations to mimic different AGF scenarios in large populations and measured their outcomes on population‐level fitness to determine circumstances in which it is worthwhile to perform AGF. In the absence of inbreeding depression, AGF was beneficial within a few generations only when introduced genotypes had much higher fitness than local individuals and traits affecting fitness were controlled by a few genes of large effect. AGF was harmful over short periods (e.g., first ∼10–20 generations) if there was strong outbreeding depression or introduced deleterious genetic variation. When the adaptive trait was controlled by many loci of small effect, the benefits of AGF took over 10 generations to realize—potentially too long for most climate‐related management scenarios. The genomic integrity of the recipient population typically remained intact following AGF; the amount of genetic material from the donor population usually constituted no more of the recipient population's genome than the fraction of the population introduced. Significant genomic turnover (e.g., >50% replacement) only occurred when the selective advantage of the adaptive trait and translocation fraction were extremely high. Our results will be useful when adaptive management is used to maintain the genetic health and productivity of large populations under climate change. Con el deterioro de la salud genética de muchas poblaciones de plantas y animales debido a la ventaja que le lleva el cambio climático a la adaptación, algunas intervenciones, como el flujo génico asistido (FGA), pueden proporcionar la variación genética necesaria para que las poblaciones se adapten al cambio climático. Simulamos diferentes escenarios de FGA aplicado en poblaciones grandes y medimos los resultados en la aptitud a nivel poblacional para determinar las circunstancias en las que merece la pena realizar FGA. Cuando no hubo depresión endogámica, el FGA produjo un beneficio en pocas generaciones sólo cuando se introdujeron genotipos que tenían una aptitud mucho mayor que los individuos locales y cuando unos cuantos genes de gran efecto controlaron los rasgos que afectaban a la aptitud. El flujo génico asistido fue dañino en periodos cortos (p.ej.: las primeras 10–20 generaciones) si existía una fuerte depresión exogámica o una variación genética deletérea introducida. Cuando muchos loci de pequeño efecto controlaron el rasgo adaptativo, los beneficios del FGA tardaron más de 10 generaciones en aparecer – un tiempo potencialmente muy largo para la mayoría de la gestión relacionada con el clima. La integridad genómica de la población receptora casi siempre permaneció intacta después del FGA; es decir, la cantidad de material genético de la población donante generalmente no constituyó más que la fracción de población introducida en el genoma de la población receptora. La rotación genómica significativa (p.ej.: reemplazos >50%) sólo ocurrió cuando la ventaja selectiva del rasgo adaptativo y la fracción de reubicación fueron extremadamente elevadas. Nuestros resultados serán útiles cuando se use la gestión adaptativa para mantener la salud genética y la productividad de las poblaciones grandes bajo el cambio climático. With the genetic health of many plant and animal populations deteriorating due to climate change outpacing adaptation, interventions, such as assisted gene flow (AGF), may provide genetic variation necessary for populations to adapt to climate change. We ran genetic simulations to mimic different AGF scenarios in large populations and measured their outcomes on population-level fitness to determine circumstances in which it is worthwhile to perform AGF. In the absence of inbreeding depression, AGF was beneficial within a few generations only when introduced genotypes had much higher fitness than local individuals and traits affecting fitness were controlled by a few genes of large effect. AGF was harmful over short periods (e.g., first ∼10-20 generations) if there was strong outbreeding depression or introduced deleterious genetic variation. When the adaptive trait was controlled by many loci of small effect, the benefits of AGF took over 10 generations to realize-potentially too long for most climate-related management scenarios. The genomic integrity of the recipient population typically remained intact following AGF; the amount of genetic material from the donor population usually constituted no more of the recipient population's genome than the fraction of the population introduced. Significant genomic turnover (e.g., >50% replacement) only occurred when the selective advantage of the adaptive trait and translocation fraction were extremely high. Our results will be useful when adaptive management is used to maintain the genetic health and productivity of large populations under climate change.With the genetic health of many plant and animal populations deteriorating due to climate change outpacing adaptation, interventions, such as assisted gene flow (AGF), may provide genetic variation necessary for populations to adapt to climate change. We ran genetic simulations to mimic different AGF scenarios in large populations and measured their outcomes on population-level fitness to determine circumstances in which it is worthwhile to perform AGF. In the absence of inbreeding depression, AGF was beneficial within a few generations only when introduced genotypes had much higher fitness than local individuals and traits affecting fitness were controlled by a few genes of large effect. AGF was harmful over short periods (e.g., first ∼10-20 generations) if there was strong outbreeding depression or introduced deleterious genetic variation. When the adaptive trait was controlled by many loci of small effect, the benefits of AGF took over 10 generations to realize-potentially too long for most climate-related management scenarios. The genomic integrity of the recipient population typically remained intact following AGF; the amount of genetic material from the donor population usually constituted no more of the recipient population's genome than the fraction of the population introduced. Significant genomic turnover (e.g., >50% replacement) only occurred when the selective advantage of the adaptive trait and translocation fraction were extremely high. Our results will be useful when adaptive management is used to maintain the genetic health and productivity of large populations under climate change. |
Author | Matthey‐Doret, Remi Booker, Tom R. Whitlock, Michael C. Grummer, Jared A. Nietlisbach, Pirmin Thomaz, Andréa T. |
Author_xml | – sequence: 1 givenname: Jared A. orcidid: 0000-0003-3627-0769 surname: Grummer fullname: Grummer, Jared A. email: grummer@zoology.ubc.ca organization: University of British Columbia – sequence: 2 givenname: Tom R. orcidid: 0000-0001-8403-6219 surname: Booker fullname: Booker, Tom R. organization: University of Calgary – sequence: 3 givenname: Remi orcidid: 0000-0001-5614-5629 surname: Matthey‐Doret fullname: Matthey‐Doret, Remi organization: University of Bern – sequence: 4 givenname: Pirmin orcidid: 0000-0002-6224-2246 surname: Nietlisbach fullname: Nietlisbach, Pirmin organization: Illinois State University – sequence: 5 givenname: Andréa T. orcidid: 0000-0002-9755-2674 surname: Thomaz fullname: Thomaz, Andréa T. organization: Universidad del Rosario – sequence: 6 givenname: Michael C. orcidid: 0000-0002-0782-1843 surname: Whitlock fullname: Whitlock, Michael C. organization: University of British Columbia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35390208$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1KHTEUB_AgFr3abnyAEnBThNF8ziRLvVQrCG4uuBwymTPXSCa5TWYQd32EPmOfpNGrXUhpAyGQ_M6B_M8B2g0xAEJHlJzSss5s7Nwp5ZrSHbSgkvGKNlzvogVRSlVKabaPDnJ-IIRoScUe2ueSa8KIWqC71T1gN47QOzMBtjFPGZvQYx_D-tePnxOkEXcQYHDlIQ7Y5OzyBD1el0s8-PiIXcDepDXgTdzM3kwuhvwRfRiMz_Dp9TxEq8uvq-W36ub26np5flNZzgitOiOIZYJasEIbJRoxWCkoBVZTORihaqO6XhNpZc8E512jiCqbdVrVduCH6Mu27SbF7zPkqR1dtuC9CRDn3LKGKqakVuz_tBYlKqV1XejxO_oQ5xTKP4rSUhLSNE1Rn1_V3JX82k1yo0lP7Vu4BZxsgU0x5wTDH0JJ-zy59nly7cvkCibvsHXTS5ZTMs7_vYRuSx6dh6d_NG-XtxfX25rfhcmpzg |
CitedBy_id | crossref_primary_10_1007_s00338_023_02458_5 crossref_primary_10_3390_ani14101455 crossref_primary_10_1111_eva_13711 crossref_primary_10_1086_728669 crossref_primary_10_1016_j_biocon_2023_110381 crossref_primary_10_1146_annurev_arplant_070523_044239 crossref_primary_10_3389_fmars_2023_1092202 crossref_primary_10_1093_evolut_qpad102 crossref_primary_10_3390_ani14233395 crossref_primary_10_1038_s42003_024_06970_4 crossref_primary_10_1016_j_foreco_2023_121056 crossref_primary_10_1111_gcb_70014 crossref_primary_10_1038_s41598_024_71944_9 crossref_primary_10_1111_mec_17605 crossref_primary_10_1086_726736 crossref_primary_10_1093_biosci_biac101 crossref_primary_10_1139_gen_2024_0036 crossref_primary_10_1111_eva_70057 crossref_primary_10_1111_mec_17601 crossref_primary_10_1111_ele_14377 crossref_primary_10_1111_ecog_06699 crossref_primary_10_1111_eva_70087 crossref_primary_10_1111_icad_12678 crossref_primary_10_1016_j_biocon_2023_110430 crossref_primary_10_1038_s41558_024_02080_5 crossref_primary_10_1016_j_biocon_2023_110374 crossref_primary_10_1093_jhered_esae006 crossref_primary_10_1111_rec_70030 |
Cites_doi | 10.1111/nph.13693 10.1111/evo.14038 10.1038/s41586-019-1520-9 10.1016/j.foreco.2009.08.035 10.1093/oso/9780198830870.001.0001 10.1111/cobi.12574 10.1016/j.tree.2016.03.012 10.1038/nature09670 10.1038/nclimate3223 10.1038/s41467-019-10924-4 10.1111/j.1523-1739.2011.01662.x 10.1002/zoo.1430050206 10.1126/science.aba4674 10.1016/j.ecss.2008.09.003 10.1016/j.tree.2004.07.003 10.1093/genetics/139.4.1805 10.1146/annurev-ecolsys-110512-135747 10.1126/sciadv.1500052 10.1111/evo.13385 10.1038/s41559-017-0423-0 10.1038/s41586-019-1111-9 10.1146/annurev-ecolsys-120213-091747 10.1002/ecy.1632 10.1890/08-2257.1 10.1101/2020.11.01.364349 10.1098/rstb.2012.0404 10.1111/gcb.13647 10.1111/eva.12293 10.1016/S0169-5347(03)00067-3 10.1086/704608 10.1073/pnas.1406314111 10.1126/science.1085046 10.1101/2021.06.24.449762 10.1111/eva.12367 10.1086/673914 10.2307/2937107 10.1016/j.cub.2014.10.044 10.1016/S0169-5347(00)02065-6 10.1093/genetics/144.4.1331 10.1126/sciadv.1701413 10.1073/pnas.1820663116 10.1073/pnas.1504732112 10.1080/21550085.2015.1111629 10.1007/s10592-018-1132-1 10.1111/1755‐0998.13372 10.1038/s41467-018-03384-9 10.1016/S0169-5347(03)00100-9 10.1371/journal.pgen.1007220 |
ContentType | Journal Article |
Copyright | 2022 Society for Conservation Biology 2022 Society for Conservation Biology. 2022, Society for Conservation Biology. |
Copyright_xml | – notice: 2022 Society for Conservation Biology – notice: 2022 Society for Conservation Biology. – notice: 2022, Society for Conservation Biology. |
DBID | AAYXX CITATION NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 |
DOI | 10.1111/cobi.13911 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Sustainability Science Abstracts Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed CrossRef MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1523-1739 |
EndPage | n/a |
ExternalDocumentID | 35390208 10_1111_cobi_13911 COBI13911 |
Genre | article Journal Article |
GroupedDBID | --- -DZ .-4 .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANHP AANLZ AAONW AASGY AAUTI AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPPZ ABPVW ABSQW ABTLG ABXSQ ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACHIC ACNCT ACPOU ACPRK ACPVT ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADUKH ADULT ADXAS ADXHL ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGUYK AGXDD AGYGG AHBTC AHXOZ AI. AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD COF CS3 CUYZI D-E D-F D0L DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST LATKE LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OES OIG OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RSU RX1 SA0 SAMSI SUPJJ TEORI TN5 UB1 UKR UQL V8K VH1 VOH W8V W99 WBKPD WHG WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 XIH XSW YFH YUY YV5 YZZ ZCA ZCG ZO4 ZZTAW ~02 ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3201-ba40c241cec49a8474fc5411e2615fa486a8bd905c5d2433b78087802b986cf3 |
IEDL.DBID | DR2 |
ISSN | 0888-8892 1523-1739 |
IngestDate | Fri Jul 11 18:29:56 EDT 2025 Fri Jul 11 04:59:46 EDT 2025 Sat Jul 19 13:10:45 EDT 2025 Mon Jul 21 05:46:32 EDT 2025 Thu Apr 24 22:50:35 EDT 2025 Tue Jul 01 02:25:34 EDT 2025 Sun Jul 06 04:44:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | local adaptation migración latente translocation genética de la conservación migration pulsing reubicación outbreeding depression adaptación local migración asistida assisted migration depresión exogámica conservation genetics |
Language | English |
License | 2022 Society for Conservation Biology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3201-ba40c241cec49a8474fc5411e2615fa486a8bd905c5d2433b78087802b986cf3 |
Notes | Jared A. Grummer, Tom R. Booker, Remi Matthey‐Doret, Pirmin Nietlisbach, and Andréa T. Thomaz contributed equally to this work. Assisted gene flow can aid adaptation and improve the genetic health or fitness of a population, but usually the effect is small or delayed. Article impact statement ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9755-2674 0000-0002-6224-2246 0000-0001-5614-5629 0000-0003-3627-0769 0000-0001-8403-6219 0000-0002-0782-1843 |
PMID | 35390208 |
PQID | 2695500777 |
PQPubID | 36794 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2718285982 proquest_miscellaneous_2648898996 proquest_journals_2695500777 pubmed_primary_35390208 crossref_primary_10_1111_cobi_13911 crossref_citationtrail_10_1111_cobi_13911 wiley_primary_10_1111_cobi_13911_COBI13911 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Conservation biology |
PublicationTitleAlternate | Conserv Biol |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2017; 7 2021; 21 2017; 3 2019; 10 2013; 368 2020; 369 1995; 139 2016; 31 2016; 30 2014; 24 1996; 144 2003; 18 2019; 569 2011; 470 2018; 9 2010; 20 2018; 2 2019; 20 2006; 27 1986; 5 2019; 116 2001; 16 2018; 72 2011; 25 2019; 194 2015; 1 2015; 18 2013; 44 2017; 23 2007 2014; 111 2014; 45 2009; 258 2020; 30 2004; 19 2020; 74 2021 2020 2017; 98 2015; 112 1991; 61 2016; 210 2018 2014; 183 2003; 301 2019; 573 2016; 9 2008; 80 2018; 14 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_49_1 e_1_2_6_3_1 Howe (e_1_2_6_24_1) 2006 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 Shryock D. F. (e_1_2_6_42_1) 2020; 30 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 Hauskeller M. (e_1_2_6_22_1) 2007 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – year: 2020 article-title: Climate warming weakens local adaptation publication-title: bioRxiv – volume: 1 issue: 2 year: 2015 article-title: Habitat fragmentation and its lasting impact on Earth's ecosystems publication-title: Science Advances – volume: 9 start-page: 1 issue: 1 year: 2018 end-page: 11 article-title: Strong phenotypic plasticity limits potential for evolutionary responses to climate change publication-title: Nature Communications – volume: 72 start-page: 82 issue: 1 year: 2018 end-page: 94 article-title: Polygenic evolution drives species divergence and climate adaptation in corals publication-title: Evolution – year: 2021 article-title: Migration pulsedness alters patterns of allele fixation and local adaptation in a mainland‐island model publication-title: bioRxiv – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 14 article-title: Adaptive responses of animals to climate change are most likely insufficient publication-title: Nature Communications – volume: 14 issue: 4 year: 2018 article-title: Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral publication-title: PLoS Genetics – volume: 569 start-page: 215 issue: 7755 year: 2019 end-page: 221 article-title: Mapping the world's free‐flowing rivers publication-title: Nature – volume: 20 start-page: 59 issue: 1 year: 2019 end-page: 64 article-title: Genetic rescue and the maintenance of native ancestry publication-title: Conservation Genetics – volume: 30 start-page: 698 issue: 2021 year: 2020 end-page: 717 article-title: Harnessing landscape genomics to identify future climate resilient genotypes in a desert annual publication-title: Molecular Ecology – volume: 144 start-page: 1331 issue: 4 year: 1996 end-page: 1335 article-title: Dobzhansky, Bateson, and the genetics of speciation publication-title: Genetics – volume: 116 start-page: 10418 issue: 21 year: 2019 end-page: 10423 article-title: Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 2 start-page: 352 issue: 2 year: 2018 end-page: 358 article-title: Genomic basis and evolutionary potential for extreme drought adaptation in publication-title: Nature Ecology & Evolution – year: 2018 – volume: 61 start-page: 225 issue: 3 year: 1991 end-page: 244 article-title: Comparative demography of three species of scleractinian corals using age‐and size‐dependent classifications publication-title: Ecological Monographs – volume: 20 start-page: 153 issue: 1 year: 2010 end-page: 163 article-title: Integrating environmental and genetic effects to predict responses of tree populations to climate publication-title: Ecological Applications – volume: 30 start-page: 33 issue: 1 year: 2016 end-page: 41 article-title: Adaptive introgression as a resource for management and genetic conservation in a changing climate publication-title: Conservation Biology – volume: 23 start-page: 3437 issue: 9 year: 2017 end-page: 3448 article-title: Shifting paradigms in restoration of the world's coral reefs publication-title: Global Change Biology – volume: 111 start-page: 7906 issue: 22 year: 2014 end-page: 7913 article-title: Lagging adaptation to warming climate in publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 start-page: 271 issue: 1 year: 2016 end-page: 290 article-title: Time to get moving: Assisted gene flow of forest trees publication-title: Evolutionary Applications – volume: 369 issue: 6501 year: 2020 article-title: Population genetics of the coral : Toward genomic prediction of bleaching publication-title: Science – volume: 470 start-page: 479 issue: 7335 year: 2011 end-page: 485 article-title: Climate change and evolutionary adaptation publication-title: Nature – volume: 301 start-page: 929 issue: 5635 year: 2003 end-page: 933 article-title: Climate change, human impacts, and the resilience of coral reefs publication-title: Science – volume: 16 start-page: 62 issue: 2 year: 2001 end-page: 63 article-title: Restoration of genetic variation lost–the genetic rescue hypothesis publication-title: Trends in Ecology & Evolution – volume: 18 start-page: 233 issue: 3 year: 2015 end-page: 247 article-title: Is there a prima facie duty to preserve genetic integrity in conservation biology? publication-title: Ethics, Policy & Environment – volume: 183 start-page: E17 issue: 1 year: 2014 end-page: E35 article-title: Evolutionary rescue in structured populations publication-title: The American Naturalist – volume: 9 start-page: 892 issue: 7 year: 2016 end-page: 908 article-title: Hybridization and extinction publication-title: Evolutionary Applications – volume: 98 start-page: 211 issue: 1 year: 2017 end-page: 227 article-title: Distinct genecological patterns in seedlings of Norway spruce and silver fir from a mountainous landscape publication-title: Ecology – volume: 7 start-page: 205 issue: 3 year: 2017 end-page: 208 article-title: Species’ traits influenced their response to recent climate change publication-title: Nature Climate Change – volume: 24 start-page: 2952 issue: 24 year: 2014 end-page: 2956 article-title: Multilocus adaptation associated with heat resistance in reef‐building corals publication-title: Current Biology – volume: 45 start-page: 1 year: 2014 end-page: 22 article-title: Prescriptive evolution to conserve and manage biodiversity publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 80 start-page: 435 issue: 4 year: 2008 end-page: 471 article-title: Climate change and coral reef bleaching: An ecological assessment of long‐term impacts, recovery trends and future outlook publication-title: Estuarine, Coastal and Shelf Science – volume: 21 start-page: 1745 year: 2021 end-page: 1754 article-title: SimBit: A high performance, flexible and easy‐to‐use population genetic simulator publication-title: Molecular Ecology Resources – year: 2007 – volume: 258 start-page: S5 year: 2009 end-page: S24 article-title: Ponderosa pine mortality during a severe bark beetle (Coleoptera: Curculionidae, Scolytinae) outbreak in southern British Columbia and implications for wildlife habitat management publication-title: Forest Ecology and Management – volume: 5 start-page: 115 issue: 2 year: 1986 end-page: 125 article-title: Local adaptation, coadaptation, and population boundaries publication-title: Zoo Biology – volume: 573 start-page: 126 issue: 7772 year: 2019 end-page: 129 article-title: Natural selection on the genome in present and future climates publication-title: Nature – volume: 3 issue: 11 year: 2017 article-title: Genomic models predict successful coral adaptation if future ocean warming rates are reduced publication-title: Science Advances – volume: 18 start-page: 331 issue: 7 year: 2003 end-page: 336 article-title: Population diversity and ecosystem services publication-title: Trends in Ecology & Evolution – volume: 44 start-page: 367 year: 2013 end-page: 388 article-title: Assisted gene flow to facilitate local adaptation to climate change publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 368 year: 2013 article-title: Evolutionary rescue: An emerging focus at the intersection between ecology and evolution publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 19 start-page: 489 issue: 9 year: 2004 end-page: 496 article-title: The alluring simplicity and complex reality of genetic rescue publication-title: Trends in Ecology & Evolution – volume: 112 start-page: 10557 issue: 33 year: 2015 end-page: 10562 article-title: Three types of rescue can avert extinction in a changing environment publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 74 start-page: 1640 year: 2020 end-page: 1653 article-title: When does gene flow facilitate evolutionary rescue? publication-title: Evolution – volume: 194 start-page: 316 issue: 3 year: 2019 end-page: 333 article-title: Pulsed immigration events can facilitate adaptation to harsh sink environments publication-title: The American Naturalist – volume: 31 start-page: 563 issue: 7 year: 2016 end-page: 574 article-title: Evaluating ‘plasticity‐first’ evolution in nature: Key criteria and empirical approaches publication-title: Trends in Ecology & Evolution – volume: 18 start-page: 326 issue: 7 year: 2003 end-page: 330 article-title: Measuring the changing state of nature publication-title: Trends in Ecology & Evolution – volume: 27 start-page: 245 year: 2006 end-page: 353 – volume: 139 start-page: 1805 issue: 4 year: 1995 end-page: 1813 article-title: The population genetics of speciation: The evolution of hybrid incompatibilities publication-title: Genetics – volume: 210 start-page: 81 issue: 1 year: 2016 end-page: 87 article-title: Plant fitness in a rapidly changing world publication-title: New Phytologist – volume: 25 start-page: 465 issue: 3 year: 2011 end-page: 475 article-title: Predicting the probability of outbreeding depression publication-title: Conservation Biology – ident: e_1_2_6_4_1 doi: 10.1111/nph.13693 – ident: e_1_2_6_47_1 doi: 10.1111/evo.14038 – ident: e_1_2_6_13_1 doi: 10.1038/s41586-019-1520-9 – ident: e_1_2_6_28_1 doi: 10.1016/j.foreco.2009.08.035 – ident: e_1_2_6_50_1 doi: 10.1093/oso/9780198830870.001.0001 – ident: e_1_2_6_20_1 doi: 10.1111/cobi.12574 – volume-title: Biotechnology and the integrity of life: Taking public fears seriously year: 2007 ident: e_1_2_6_22_1 – ident: e_1_2_6_29_1 doi: 10.1016/j.tree.2016.03.012 – ident: e_1_2_6_23_1 doi: 10.1038/nature09670 – ident: e_1_2_6_36_1 doi: 10.1038/nclimate3223 – ident: e_1_2_6_38_1 doi: 10.1038/s41467-019-10924-4 – ident: e_1_2_6_15_1 doi: 10.1111/j.1523-1739.2011.01662.x – ident: e_1_2_6_45_1 doi: 10.1002/zoo.1430050206 – ident: e_1_2_6_16_1 doi: 10.1126/science.aba4674 – ident: e_1_2_6_7_1 doi: 10.1016/j.ecss.2008.09.003 – ident: e_1_2_6_44_1 doi: 10.1016/j.tree.2004.07.003 – ident: e_1_2_6_34_1 doi: 10.1093/genetics/139.4.1805 – ident: e_1_2_6_2_1 doi: 10.1146/annurev-ecolsys-110512-135747 – ident: e_1_2_6_19_1 doi: 10.1126/sciadv.1500052 – ident: e_1_2_6_41_1 doi: 10.1111/evo.13385 – ident: e_1_2_6_12_1 doi: 10.1038/s41559-017-0423-0 – ident: e_1_2_6_18_1 doi: 10.1038/s41586-019-1111-9 – ident: e_1_2_6_43_1 doi: 10.1146/annurev-ecolsys-120213-091747 – ident: e_1_2_6_14_1 doi: 10.1002/ecy.1632 – ident: e_1_2_6_51_1 doi: 10.1890/08-2257.1 – ident: e_1_2_6_11_1 doi: 10.1101/2020.11.01.364349 – ident: e_1_2_6_17_1 doi: 10.1098/rstb.2012.0404 – ident: e_1_2_6_49_1 doi: 10.1111/gcb.13647 – start-page: 245 volume-title: Plant Breeding Reviews year: 2006 ident: e_1_2_6_24_1 – ident: e_1_2_6_3_1 doi: 10.1111/eva.12293 – ident: e_1_2_6_8_1 doi: 10.1016/S0169-5347(03)00067-3 – volume: 30 start-page: 698 issue: 2021 year: 2020 ident: e_1_2_6_42_1 article-title: Harnessing landscape genomics to identify future climate resilient genotypes in a desert annual publication-title: Molecular Ecology – ident: e_1_2_6_37_1 doi: 10.1086/704608 – ident: e_1_2_6_52_1 doi: 10.1073/pnas.1406314111 – ident: e_1_2_6_26_1 doi: 10.1126/science.1085046 – ident: e_1_2_6_5_1 doi: 10.1101/2021.06.24.449762 – ident: e_1_2_6_46_1 doi: 10.1111/eva.12367 – ident: e_1_2_6_48_1 doi: 10.1086/673914 – ident: e_1_2_6_6_1 doi: 10.2307/2937107 – ident: e_1_2_6_9_1 doi: 10.1016/j.cub.2014.10.044 – ident: e_1_2_6_27_1 doi: 10.1016/S0169-5347(00)02065-6 – ident: e_1_2_6_35_1 doi: 10.1093/genetics/144.4.1331 – ident: e_1_2_6_10_1 doi: 10.1126/sciadv.1701413 – ident: e_1_2_6_39_1 doi: 10.1073/pnas.1820663116 – ident: e_1_2_6_25_1 doi: 10.1073/pnas.1504732112 – ident: e_1_2_6_40_1 doi: 10.1080/21550085.2015.1111629 – ident: e_1_2_6_21_1 doi: 10.1007/s10592-018-1132-1 – ident: e_1_2_6_30_1 doi: 10.1111/1755‐0998.13372 – ident: e_1_2_6_33_1 doi: 10.1038/s41467-018-03384-9 – ident: e_1_2_6_31_1 doi: 10.1016/S0169-5347(03)00100-9 – ident: e_1_2_6_32_1 doi: 10.1371/journal.pgen.1007220 |
SSID | ssj0009514 |
Score | 2.5203967 |
Snippet | With the genetic health of many plant and animal populations deteriorating due to climate change outpacing adaptation, interventions, such as assisted gene... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e13911 |
SubjectTerms | adaptación local Adaptive management Animal population Animal populations animals assisted migration Climate change conservation genetics depresión exogámica Fitness Gene flow Genes Genetic diversity Genetic variation Genomes Genomics Genotypes genética de la conservación Inbreeding Inbreeding depression local adaptation migración asistida migración latente migration pulsing Outbreeding outbreeding depression Population Population genetics Populations Reproductive fitness reubicación Translocation wildlife management |
Title | The immediate costs and long‐term benefits of assisted gene flow in large populations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.13911 https://www.ncbi.nlm.nih.gov/pubmed/35390208 https://www.proquest.com/docview/2695500777 https://www.proquest.com/docview/2648898996 https://www.proquest.com/docview/2718285982 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9UwFD-MgbAXnc4_3aZE9EWhl94kbRPYi46NOZiCTNyLlCRNxmV37Vh7GduTH8HPuE_iSfrHTWWgD4VCTiFpzsn5nfac3wF4banLjS1t7LKEYYBi0lg4qeLEOsQLOrHc-eLkg4_Z3he-f5QeLcHWUAvT8UOMH9y8ZYTz2hu40s0NIze1nk0Qv4TCXp-s5RHRZ3qDcbcj9sYQLxZC0p6b1Kfx_Hr0tjf6A2LeRqzB5ew-gG_DZLtMk5PJotUTc_Ubj-P_rmYV7vdYlLzrlOchLNnqEdzrulNe4t1OYLS-XIOvqExkdhqqTFpLTN20DVFVSeZ1dXz9_Yc_3onGU9PNcKB2BBG5V5-SoHpa4ub1BZlVZO6zzsnZ2DKseQyHuzuH23tx35EhNgyRQqwV7ib6fGMNlwodG-5kyqdTi3FY6hQXmRK6lElq0pJyxnQuEoEX1VJkxrEnsFzVlX0GJLEql1pbjuie85TJVJSCTkuG8IxxkUTwZtiYwvRs5b5pxrwYohb_xorwxiJ4NcqedRwdf5XaHPa36O20KWgmMURL8jyP4OU4jBbmf5uoytYLL4OHnMS4NLtDBl28pwIUNIKnne6MU2G4Ot8KNYK3QQPumGOx_en9h3C3_i_CG7BCfVVGyEvchOX2fGGfI1Zq9YtgEz8Bek0Oag |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fi9QwEB_kRPTF_57VUyP6otClm6Rt8qjHHXt6d4KseG-lSRNZXNvDdpHzyY_gZ_STOJN2653KgT4UCp1C0sxkfpPO_AbgqeM-t65ysc8SgQGKTWPldRknziNeMImTnoqTDw6z2Tv56ig9GnJzqBam54cYD9zIMsJ-TQZOB9KnrNw2ZjFBAEOVvReppXeIqN7yU5y7PbU3BnmxUpoP7KSUyPPr3bP-6A-QeRazBqeze63vrNoGrkLKNfk4WXVmYr_-xuT43_O5DlcHOMpe9PpzAy64-iZc6htUnuDdTiC1PrkF71Gf2OJTKDTpHLNN27WsrCu2bOoPP759px2eGdw4_QIfNJ4hKCcNqhhqqGN-2Xxhi5otKfGcHY9dw9rbMN_dmW_P4qEpQ2wFgoXYlLig6Pats1KX6NtwMVM5nToMxVJfSpWVylQ6SW1acSmEyVWi8OJGq8x6cQc26qZ2d4Elrsy1MU4iwJcyFTpVleLTSiBCE1IlETxbr0xhB8Jy6puxLNaBC32xInyxCJ6Mssc9TcdfpbbWC1wMptoWPNMYpSV5nkfweHyMRkZ_TsraNSuSwX1OY2ianSODXp7YABWPYLNXnnEoAmdH3VAjeB5U4JwxFttvXu6Fu3v_IvwILs_mB_vF_t7h6_twhVORRkhT3IKN7vPKPUDo1JmHwUB-AlWjEoU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSAulDcpBYzgAlJWXttJbIkLtF21PApCRfRSRbFjoxVLsmKzQuXET-hv7C9h7DxoAVWCQyRLnkh-zHi-STzfADy2zGXGljZ2KeUYoJgklk4VMbUO8YKmVjifnPxmL935IF4eJAcr8KzPhWn5IYYPbt4ywnntDXxeulNGbmo9HSF-8Ym9F0RKpdfprffsFOVuy-yNMV4spWIdOam_x_Pr3bPu6A-MeRayBp8zWYPDfrTtVZPPo2WjR-b7b0SO_zudq3ClA6Pkeas912DFVtfhYlue8ghb24HS-ugGfERtItMvIc2kscTUi2ZBiqoks7r6dPLj2J_vROOx6abYUTuCkNzrT0lQPy1xs_obmVZk5q-dk_lQM2xxE_Yn2_ubO3FXkiE2HKFCrAvcTnT6xhqhCvRsuJWJGI8tBmKJK4RMC6lLRROTlExwrjNJJT5MK5kax2_BalVX9g4QaotMaW0FwnshEq4SWUo2LjniMy4kjeBJvzG56ejKfdWMWd6HLX7F8rBiETwaZOctScdfpTb6_c07Q13kLFUYo9EsyyJ4OHSjifn_JkVl66WXwVNOYWCaniODPt5zAUoWwe1Wd4ahcJydr4UawdOgAeeMMd98-2I3tNb_RfgBXHq3Nclf7-69uguXmc_QCHcUN2C1-bq09xA3Nfp-MI-fK5oRPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+immediate+costs+and+long%E2%80%90term+benefits+of+assisted+gene+flow+in+large+populations&rft.jtitle=Conservation+biology&rft.au=Grummer%2C+Jared+A&rft.au=Booker%2C+Tom+R.&rft.au=Matthey%E2%80%90Doret%2C+Remi&rft.au=Nietlisbach%2C+Pirmin&rft.date=2022-08-01&rft.issn=0888-8892&rft.volume=36&rft.issue=4+p.e13911-&rft_id=info:doi/10.1111%2Fcobi.13911&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon |