Rescue of multiple class II CFTR mutations by elexacaftor+tezacaftor+ivacaftor mediated in part by the dual activities of elexacaftor as both corrector and potentiator

Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to imp...

Full description

Saved in:
Bibliographic Details
Published inThe European respiratory journal Vol. 57; no. 6; p. 2002774
Main Authors Laselva, Onofrio, Bartlett, Claire, Gunawardena, Tarini N.A., Ouyang, Hong, Eckford, Paul D.W., Moraes, Theo J., Bear, Christine E., Gonska, Tanja
Format Journal Article
LanguageEnglish
Published England European Respiratory Society 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta. Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved. Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity. These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR.
AbstractList Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta.Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved.Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity.These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR.Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta.Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved.Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity.These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR.
Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta. Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved. Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity. These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR.
Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta. Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved. Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity. These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR. Using pre-clinical studies of F508del in nasal cultures as a benchmark, this study identified other CF mutations for which Trikafta may be clinically effective https://bit.ly/3mbMOqL
Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta.Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved.Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity.These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR.
Author Ouyang, Hong
Gunawardena, Tarini N.A.
Laselva, Onofrio
Bartlett, Claire
Bear, Christine E.
Gonska, Tanja
Eckford, Paul D.W.
Moraes, Theo J.
AuthorAffiliation 2 Dept of Physiology, University of Toronto, Toronto, ON, Canada
4 Dept of Paediatrics, University of Toronto, Toronto, ON, Canada
3 Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
1 Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
5 Dept of Biochemistry, University of Toronto, Toronto, ON, Canada
AuthorAffiliation_xml – name: 5 Dept of Biochemistry, University of Toronto, Toronto, ON, Canada
– name: 2 Dept of Physiology, University of Toronto, Toronto, ON, Canada
– name: 3 Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
– name: 1 Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
– name: 4 Dept of Paediatrics, University of Toronto, Toronto, ON, Canada
Author_xml – sequence: 1
  givenname: Onofrio
  orcidid: 0000-0002-0237-4079
  surname: Laselva
  fullname: Laselva, Onofrio
– sequence: 2
  givenname: Claire
  surname: Bartlett
  fullname: Bartlett, Claire
– sequence: 3
  givenname: Tarini N.A.
  surname: Gunawardena
  fullname: Gunawardena, Tarini N.A.
– sequence: 4
  givenname: Hong
  surname: Ouyang
  fullname: Ouyang, Hong
– sequence: 5
  givenname: Paul D.W.
  surname: Eckford
  fullname: Eckford, Paul D.W.
– sequence: 6
  givenname: Theo J.
  surname: Moraes
  fullname: Moraes, Theo J.
– sequence: 7
  givenname: Christine E.
  surname: Bear
  fullname: Bear, Christine E.
– sequence: 8
  givenname: Tanja
  surname: Gonska
  fullname: Gonska, Tanja
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33303536$$D View this record in MEDLINE/PubMed
BookMark eNp9Ul2L1DAUDbLizq7-AkHyKEjXm9y2074IMrg6sCAs63NI01snkmnGJB1c_5B_03RnRlYffMrl5HyQ3HPBzkY_EmMvBVwJ0eBbgW2LAHgFcrksCwkSnrDFjBYzfMYW0AIWosX6nF3E-A1A1CWKZ-wcEQErrBfs1y1FMxH3A99OLtmdI26cjpGv13x1fXeb4aST9WPk3T0nRz-00UPy4U2in6fR7o8T31JvdaKe25HvdEizKG2I95N2XJtk9zZZinPeIy-us7tPG258CGQekLHnO59oTNnPh-fs6aBdpBfH85J9uf5wt_pU3Hz-uF69vykMSoBCQK-h0WCgq0wlS7EUJITEUraS-qauO6qX2OuuGmjo26GHOv8JDSVUtdQg8ZK9O_jupi6_xeT8oJ3aBbvV4V55bdXfN6PdqK9-rxoJbdmU2eD10SD47xPFpLY2GnJOj-SnqGTZYAkNYJ2prx5n_Qk5bScT2gPBBB9joEEZe1hGjrZOCVBzE9SpCeqhCWpuQtbiP9qT_f9UvwF-G7kI
CitedBy_id crossref_primary_10_3389_fphys_2024_1385661
crossref_primary_10_1165_rcmb_2023_0398OC
crossref_primary_10_1016_j_jcf_2022_09_010
crossref_primary_10_1183_23120541_00716_2021
crossref_primary_10_3389_fphar_2024_1494327
crossref_primary_10_3390_ijms24065199
crossref_primary_10_3390_cells11010136
crossref_primary_10_1016_j_sbi_2021_11_009
crossref_primary_10_1183_13993003_00908_2021
crossref_primary_10_1165_rcmb_2021_0337OC
crossref_primary_10_1016_j_isci_2021_103710
crossref_primary_10_1038_s41598_021_99184_1
crossref_primary_10_3390_ijms22094448
crossref_primary_10_1016_j_pupt_2021_102098
crossref_primary_10_1002_ppul_27211
crossref_primary_10_1111_bph_15709
crossref_primary_10_1080_17460441_2021_1912732
crossref_primary_10_1186_s13023_024_03334_3
crossref_primary_10_1016_j_jcf_2022_10_011
crossref_primary_10_3390_jor2020005
crossref_primary_10_1080_14656566_2023_2230129
crossref_primary_10_3390_jpm11080811
crossref_primary_10_1183_13993003_02380_2021
crossref_primary_10_1172_JCI176328
crossref_primary_10_1021_acs_jmedchem_4c02547
crossref_primary_10_1016_j_coph_2022_102210
crossref_primary_10_3390_ijms222111972
crossref_primary_10_1016_j_heliyon_2024_e26955
crossref_primary_10_1016_j_anpede_2024_11_006
crossref_primary_10_3390_jpm13010102
crossref_primary_10_1128_mbio_01516_23
crossref_primary_10_3390_biomedicines13010082
crossref_primary_10_1016_j_anpedi_2024_09_003
crossref_primary_10_3390_ijms24020930
crossref_primary_10_5863_1551_6776_27_4_396
crossref_primary_10_3390_ijms241612838
crossref_primary_10_3390_jor1040022
crossref_primary_10_1016_j_arbres_2024_04_007
crossref_primary_10_3390_jpm12101577
crossref_primary_10_3390_jpm11040301
crossref_primary_10_1126_science_ade2216
crossref_primary_10_1038_s41598_022_08661_8
crossref_primary_10_3390_ijms22105262
crossref_primary_10_1016_j_heliyon_2023_e15756
crossref_primary_10_1007_s00018_022_04215_3
crossref_primary_10_1152_ajpcell_00334_2021
crossref_primary_10_1016_j_jmb_2024_168591
crossref_primary_10_1016_j_jcf_2023_06_001
crossref_primary_10_1038_s41598_021_02044_1
crossref_primary_10_3390_ijms232315170
crossref_primary_10_1183_13993003_01959_2023
crossref_primary_10_3390_cells10082132
crossref_primary_10_1007_s00018_022_04554_1
crossref_primary_10_3389_fendo_2024_1293709
crossref_primary_10_3390_molecules29040821
crossref_primary_10_1038_s41467_024_50641_1
crossref_primary_10_3390_jpm12040632
crossref_primary_10_1016_j_str_2022_05_011
crossref_primary_10_1007_s10930_021_10006_9
crossref_primary_10_3390_jpm12091421
crossref_primary_10_3390_ijms23031437
crossref_primary_10_2147_JEP_S255377
crossref_primary_10_1186_s12931_024_03059_8
crossref_primary_10_3390_arm92040026
crossref_primary_10_1016_S0140_6736_23_01609_4
crossref_primary_10_3390_ijms241411457
crossref_primary_10_1016_j_jcf_2024_11_010
crossref_primary_10_1021_acs_jmedchem_4c00685
crossref_primary_10_1016_j_stemcr_2021_09_020
crossref_primary_10_1183_13993003_01387_2023
crossref_primary_10_1016_j_ejphar_2024_176390
crossref_primary_10_3390_ijms23052442
crossref_primary_10_1007_s00018_022_04671_x
crossref_primary_10_1016_j_rmcr_2023_101938
crossref_primary_10_3389_fmolb_2024_1446875
crossref_primary_10_1113_JP282143
crossref_primary_10_1007_s00431_021_04168_y
crossref_primary_10_3390_ijms241512365
crossref_primary_10_1016_j_rmcr_2022_101775
crossref_primary_10_1183_13993003_00671_2021
crossref_primary_10_3390_jpm11050421
crossref_primary_10_1016_j_jcf_2022_02_011
crossref_primary_10_1183_13993003_00110_2023
crossref_primary_10_26508_lsa_202201857
crossref_primary_10_3389_fmolb_2022_905468
crossref_primary_10_3390_cells11121868
crossref_primary_10_3390_jpm11050384
crossref_primary_10_1038_s41572_024_00538_6
crossref_primary_10_1016_j_jcf_2022_02_014
crossref_primary_10_3390_biom11101417
crossref_primary_10_2174_2772432818666230201094115
crossref_primary_10_1016_j_virol_2023_109915
crossref_primary_10_1183_23120541_00746_2023
crossref_primary_10_1038_s42003_024_05966_4
crossref_primary_10_1007_s10719_024_10174_7
crossref_primary_10_1186_s13578_023_00975_y
crossref_primary_10_1042_BSR20212006
crossref_primary_10_3390_ijms241210358
crossref_primary_10_3390_ijms222313064
crossref_primary_10_3390_jpm11070643
Cites_doi 10.1126/science.2475911
10.1016/j.jcf.2018.03.013
10.1038/mtm.2015.34
10.1038/s41598-019-49921-4
10.1172/jci.insight.139983
10.1056/NEJMoa1807120
10.1002/prot.25496
10.1371/journal.pone.0119796
10.1016/j.jcf.2018.12.001
10.1124/mol.119.117143
10.1016/j.jcf.2019.12.001
10.1183/13993003.00205-2020
10.3390/biom10020334
10.15252/emmm.201607137
10.1016/j.jcf.2018.05.010
10.1124/mol.118.111799
10.1016/j.jcf.2018.05.011
10.1056/NEJMoa1409547
10.1016/j.jcf.2020.07.015
10.3389/fphar.2012.00160
10.1056/NEJMoa1908639
10.1016/j.jcf.2018.05.016
10.3389/fphar.2018.00719
10.1056/NEJMoa1105185
10.1016/S0140-6736(19)32597-8
10.1056/NEJMoa1709846
10.3390/jpm10040209
10.1096/fba.2019-00039
10.3390/cells8080804
10.3390/jpm10020040
10.1056/NEJMra043184
10.1016/j.omtm.2020.05.002
10.1038/s41598-019-54158-2
10.1172/jci.insight.121159
10.1159/000475578
10.1080/17460441.2020.1750592
10.1126/scitranslmed.3008680
10.1126/scitranslmed.3008889
10.1016/0092-8674(92)90155-6
ContentType Journal Article
Copyright Copyright ©ERS 2021.
Copyright ©ERS 2021 2021
Copyright_xml – notice: Copyright ©ERS 2021.
– notice: Copyright ©ERS 2021 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1183/13993003.02774-2020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Rescue of multiple class II CFTR mutations by elexacaftor+tezacaftor+ivacaftor
EISSN 1399-3003
ExternalDocumentID PMC8209484
33303536
10_1183_13993003_02774_2020
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: OGI-148
GroupedDBID ---
.55
.GJ
18M
1OC
2WC
31~
3O-
53G
5GY
5RE
5VS
8-1
AADJU
AAFWJ
AAYXX
AAZMJ
ABCQX
ABJNI
ABOCM
ABSQV
ACEMG
ACGFO
ACPRK
ACXQS
ADBBV
ADDZX
ADMOG
ADYFA
AENEX
AFFNX
AFHIN
AFZJQ
AIZTS
AJAOE
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CAG
CITATION
COF
CS3
DIK
E3Z
EBS
EJD
F5P
F9R
GX1
H13
INIJC
J5H
KQ8
L7B
LH4
LW6
OK1
P2P
PQQKQ
R0Z
RHI
TER
TR2
W8F
WOQ
X7M
ZE2
ZGI
ZXP
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c3200-10da08a0c0b5c524171e11234292ed866be673dab5fefd9fd06164ef40562a023
ISSN 0903-1936
1399-3003
IngestDate Thu Aug 21 13:46:23 EDT 2025
Fri Jul 11 07:32:01 EDT 2025
Thu Apr 03 07:11:51 EDT 2025
Thu Apr 24 23:12:41 EDT 2025
Tue Jul 01 05:27:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright ©ERS 2021.
This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3200-10da08a0c0b5c524171e11234292ed866be673dab5fefd9fd06164ef40562a023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0237-4079
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8209484
PMID 33303536
PQID 2483408036
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8209484
proquest_miscellaneous_2483408036
pubmed_primary_33303536
crossref_citationtrail_10_1183_13993003_02774_2020
crossref_primary_10_1183_13993003_02774_2020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The European respiratory journal
PublicationTitleAlternate Eur Respir J
PublicationYear 2021
Publisher European Respiratory Society
Publisher_xml – name: European Respiratory Society
References Han (2024102102103939000_57.6.2002774.15) 2018; 3
Keating (2024102102103939000_57.6.2002774.7) 2018; 379
2024102102103939000_57.6.2002774.22
Chin (2024102102103939000_57.6.2002774.28) 2019; 8
DeStefano (2024102102103939000_57.6.2002774.14) 2018; 17
Laselva (2024102102103939000_57.6.2002774.18) 2019; 1
2024102102103939000_57.6.2002774.20
2024102102103939000_57.6.2002774.21
Laselva (2024102102103939000_57.6.2002774.17) 2020; 10
Erwood (2024102102103939000_57.6.2002774.24) 2020; 17
Laselva (2024102102103939000_57.6.2002774.23) 2020; 10
Laselva (2024102102103939000_57.6.2002774.29) 2018; 9
Valley (2024102102103939000_57.6.2002774.19) 2019; 18
Liu (2024102102103939000_57.6.2002774.13) 2018; 17
Phuan (2024102102103939000_57.6.2002774.38) 2019; 9
Laselva (2024102102103939000_57.6.2002774.35) 2021; 20
Laselva (2024102102103939000_57.6.2002774.25) 2020; 10
2024102102103939000_57.6.2002774.16
Phuan (2024102102103939000_57.6.2002774.39) 2018; 17
Veit (2024102102103939000_57.6.2002774.37) 2020; 5
2024102102103939000_57.6.2002774.11
Molinski (2024102102103939000_57.6.2002774.30) 2018; 86
2024102102103939000_57.6.2002774.33
2024102102103939000_57.6.2002774.34
2024102102103939000_57.6.2002774.9
2024102102103939000_57.6.2002774.36
2024102102103939000_57.6.2002774.6
2024102102103939000_57.6.2002774.5
2024102102103939000_57.6.2002774.31
2024102102103939000_57.6.2002774.4
2024102102103939000_57.6.2002774.10
2024102102103939000_57.6.2002774.32
2024102102103939000_57.6.2002774.3
2024102102103939000_57.6.2002774.2
2024102102103939000_57.6.2002774.1
Lopes-Pacheco (2024102102103939000_57.6.2002774.12) 2017; 41
Guerra (2024102102103939000_57.6.2002774.8) 2020; 15
Laselva (2024102102103939000_57.6.2002774.27) 2020; 19
Cao (2024102102103939000_57.6.2002774.26) 2015; 2
References_xml – ident: 2024102102103939000_57.6.2002774.1
  doi: 10.1126/science.2475911
– ident: 2024102102103939000_57.6.2002774.16
  doi: 10.1016/j.jcf.2018.03.013
– volume: 2
  start-page: 15034
  year: 2015
  ident: 2024102102103939000_57.6.2002774.26
  article-title: Testing gene therapy vectors in human primary nasal epithelial cultures
  publication-title: Mol Ther Methods Clin Dev
  doi: 10.1038/mtm.2015.34
– ident: 2024102102103939000_57.6.2002774.34
  doi: 10.1038/s41598-019-49921-4
– volume: 5
  start-page: e139983
  year: 2020
  ident: 2024102102103939000_57.6.2002774.37
  article-title: Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor–tezacaftor–ivacaftor (Trikafta) combination
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.139983
– volume: 379
  start-page: 1612
  year: 2018
  ident: 2024102102103939000_57.6.2002774.7
  article-title: VX-445–tezacaftor–ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1807120
– volume: 86
  start-page: 833
  year: 2018
  ident: 2024102102103939000_57.6.2002774.30
  article-title: Comprehensive mapping of cystic fibrosis mutations to CFTR protein identifies mutation clusters and molecular docking predicts corrector binding site
  publication-title: Proteins
  doi: 10.1002/prot.25496
– ident: 2024102102103939000_57.6.2002774.11
  doi: 10.1371/journal.pone.0119796
– volume: 18
  start-page: 476
  year: 2019
  ident: 2024102102103939000_57.6.2002774.19
  article-title: Isogenic cell models of cystic fibrosis-causing variants in natively expressing pulmonary epithelial cells
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2018.12.001
– ident: 2024102102103939000_57.6.2002774.20
  doi: 10.1124/mol.119.117143
– volume: 19
  start-page: 717
  year: 2020
  ident: 2024102102103939000_57.6.2002774.27
  article-title: Functional rescue of c.3846G>A (W1282X) in patient-derived nasal cultures achieved by inhibition of nonsense mediated decay and protein modulators with complementary mechanisms of action
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2019.12.001
– ident: 2024102102103939000_57.6.2002774.21
  doi: 10.1183/13993003.00205-2020
– volume: 10
  start-page: 334
  year: 2020
  ident: 2024102102103939000_57.6.2002774.25
  article-title: Anti-infectives restore ORKAMBI rescue of F508del-CFTR function in human bronchial epithelial cells infected with clinical strains of P. aeruginosa
  publication-title: Biomolecules
  doi: 10.3390/biom10020334
– ident: 2024102102103939000_57.6.2002774.22
  doi: 10.15252/emmm.201607137
– volume: 17
  start-page: 595
  year: 2018
  ident: 2024102102103939000_57.6.2002774.39
  article-title: Combination potentiator (‘co-potentiator’) therapy for CF caused by CFTR mutants, including N1303K, that are poorly responsive to single potentiators
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2018.05.010
– ident: 2024102102103939000_57.6.2002774.31
  doi: 10.1124/mol.118.111799
– volume: 17
  start-page: 573
  year: 2018
  ident: 2024102102103939000_57.6.2002774.14
  article-title: Physiological and pharmacological characterization of the N1303K mutant CFTR
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2018.05.011
– ident: 2024102102103939000_57.6.2002774.4
  doi: 10.1056/NEJMoa1409547
– volume: 20
  start-page: 106
  year: 2021
  ident: 2024102102103939000_57.6.2002774.35
  article-title: Emerging preclinical modulators developed for F508del-CFTR have the potential to be effective for ORKAMBI resistant processing mutants
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2020.07.015
– ident: 2024102102103939000_57.6.2002774.10
  doi: 10.3389/fphar.2012.00160
– ident: 2024102102103939000_57.6.2002774.9
  doi: 10.1056/NEJMoa1908639
– volume: 17
  start-page: 582
  year: 2018
  ident: 2024102102103939000_57.6.2002774.13
  article-title: Rescue of CFTR NBD2 mutants N1303K and S1235R is influenced by the functioning of the autophagosome
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2018.05.016
– volume: 9
  start-page: 719
  year: 2018
  ident: 2024102102103939000_57.6.2002774.29
  article-title: Molecular mechanism of action of trimethylangelicin derivatives as CFTR modulators
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2018.00719
– ident: 2024102102103939000_57.6.2002774.5
  doi: 10.1056/NEJMoa1105185
– ident: 2024102102103939000_57.6.2002774.36
  doi: 10.1016/S0140-6736(19)32597-8
– ident: 2024102102103939000_57.6.2002774.6
  doi: 10.1056/NEJMoa1709846
– volume: 10
  start-page: E209
  year: 2020
  ident: 2024102102103939000_57.6.2002774.23
  article-title: Preclinical studies of a rare CF-causing mutation in the second nucleotide binding domain (c.3700A>G) show robust functional rescue in primary nasal cultures by novel CFTR modulators
  publication-title: J Pers Med
  doi: 10.3390/jpm10040209
– volume: 1
  start-page: 661
  year: 2019
  ident: 2024102102103939000_57.6.2002774.18
  article-title: Activity of lumacaftor is not conserved in zebrafish Cftr bearing the major cystic fibrosis-causing mutation
  publication-title: FASEB Bioadv
  doi: 10.1096/fba.2019-00039
– volume: 8
  start-page: 804
  year: 2019
  ident: 2024102102103939000_57.6.2002774.28
  article-title: Cholesterol interaction directly enhances intrinsic activity of the cystic fibrosis transmembrane conductance regulator (CFTR)
  publication-title: Cells
  doi: 10.3390/cells8080804
– volume: 10
  start-page: 40
  year: 2020
  ident: 2024102102103939000_57.6.2002774.17
  article-title: The CFTR mutation c.3453G > C (D1152H) confers an anion selectivity defect in primary airway tissue that can be rescued by ivacaftor
  publication-title: J Pers Med
  doi: 10.3390/jpm10020040
– ident: 2024102102103939000_57.6.2002774.3
  doi: 10.1056/NEJMra043184
– volume: 17
  start-page: 1118
  year: 2020
  ident: 2024102102103939000_57.6.2002774.24
  article-title: Allele-specific prevention of nonsense-mediated decay in cystic fibrosis using homology-independent genome editing
  publication-title: Mol Ther Methods Clin Dev
  doi: 10.1016/j.omtm.2020.05.002
– volume: 9
  start-page: 17640
  year: 2019
  ident: 2024102102103939000_57.6.2002774.38
  article-title: Nanomolar-potency ‘co-potentiator’ therapy for cystic fibrosis caused by a defined subset of minimal function CFTR mutants
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-54158-2
– volume: 3
  start-page: e121159
  year: 2018
  ident: 2024102102103939000_57.6.2002774.15
  article-title: Residual function of cystic fibrosis mutants predicts response to small molecule CFTR modulators
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.121159
– volume: 41
  start-page: 2194
  year: 2017
  ident: 2024102102103939000_57.6.2002774.12
  article-title: Combination of correctors rescues CFTR transmembrane-domain mutants by mitigating their interactions with proteostasis
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000475578
– volume: 15
  start-page: 873
  year: 2020
  ident: 2024102102103939000_57.6.2002774.8
  article-title: The preclinical discovery and development of the combination of ivacaftor+tezacaftor used to treat cystic fibrosis
  publication-title: Expert Opin Drug Discov
  doi: 10.1080/17460441.2020.1750592
– ident: 2024102102103939000_57.6.2002774.32
  doi: 10.1126/scitranslmed.3008680
– ident: 2024102102103939000_57.6.2002774.33
  doi: 10.1126/scitranslmed.3008889
– ident: 2024102102103939000_57.6.2002774.2
  doi: 10.1016/0092-8674(92)90155-6
SSID ssj0016431
Score 2.6244078
Snippet Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2002774
SubjectTerms Aminophenols
Benzodioxoles
Cystic Fibrosis
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Drug Combinations
HEK293 Cells
Humans
Indoles
Mutation
Original
Pyrazoles
Pyridines
Pyrrolidines
Quinolines
Quinolones
Title Rescue of multiple class II CFTR mutations by elexacaftor+tezacaftor+ivacaftor mediated in part by the dual activities of elexacaftor as both corrector and potentiator
URI https://www.ncbi.nlm.nih.gov/pubmed/33303536
https://www.proquest.com/docview/2483408036
https://pubmed.ncbi.nlm.nih.gov/PMC8209484
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkKa9IO6Um4zEW8lI49z6CBWjBW0TUyftLXIcR1QqyZQmlbY_xH_g13GO7STuKAh4idIkPlZ1vsSffc75TMjrOAyAh2eRk01QVJt7Y4cHQjpRnAHZ8HIRCCxOPj4JZ-f-p4vgYjD4YWUtNXV6KK531pX8j1fhGvgVq2T_wbOdUbgA5-BfOIKH4fhXPj6Ta9GoSX-XFyiQDY_m89H0aHEGl2uT6gYsU2Iti-C5WqV_X8vr_sdyY851JQmyUKW5WtWKngKUVMkWFkFslAQr9mnZw91q0lIlsVeVigNoAYKyxmQkrhWNOxKM0OyiAJUV67f_tBKDXMvVRrHb06LMK50yptddKzCk41rTFbcyeD82BcdEYKlr3RYcI1Sjk37J9rS5Mkvks9KM2mbRw7OSsw6l_lADsXKY6zL7S66lrg1iw90DRIxCFdgaGx9iBNsHTKmCvNqCzOU3hRnGYIgP2A2xbj38m1u3yG0w4uHuGZ-_9BEsYHpjo3IFfb7d0eMB2W9tbJOiX2Y6NxN2LQa0uEvumKkLfadxeI8MZHGf7B-b5IwH5LuGIy1z2sKRKjjS-ZwiHGkHR5peURs-PRhHHRRpC0W6LChCERsBFClCkfZQxP4sW5SDdYAi7aBIAYrUguJDcn70YTGdOWYfEEcweN2BKWTcjbkr3DQQAVDOaCxhmsBwpzWZxWGYyjBiGU-DXObZJM-Ao4a-zH0k9xxI6SOyV5SFfEJoFEQ58zLXT8MMJgJ8IuHZOI-ZHwSZH6VD4rWOSIQRyce9WlaJmizHLGkdmShHJujIIXnTNbrUGjF_fvxV6-EEvuUYoOOFLJt14uHKPkzhWDgkj7XHO4MtVIYk2sJC9wDqxG_fKZZflV48kPyJH_tPf2vzGTnoX7LnZK-uGvkCuHadvlSg_gm0GNhW
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rescue+of+multiple+class+II+CFTR+mutations+by+elexacaftor%2Btezacaftor%2Bivacaftor+mediated+in+part+by+the+dual+activities+of+elexacaftor+as+both+corrector+and+potentiator&rft.jtitle=The+European+respiratory+journal&rft.au=Laselva%2C+Onofrio&rft.au=Bartlett%2C+Claire&rft.au=Gunawardena%2C+Tarini+N+A&rft.au=Ouyang%2C+Hong&rft.date=2021-06-01&rft.eissn=1399-3003&rft.volume=57&rft.issue=6&rft_id=info:doi/10.1183%2F13993003.02774-2020&rft_id=info%3Apmid%2F33303536&rft.externalDocID=33303536
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0903-1936&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0903-1936&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0903-1936&client=summon