Rescue of multiple class II CFTR mutations by elexacaftor+tezacaftor+ivacaftor mediated in part by the dual activities of elexacaftor as both corrector and potentiator
Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to imp...
Saved in:
Published in | The European respiratory journal Vol. 57; no. 6; p. 2002774 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
European Respiratory Society
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta.
Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved.
Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity.
These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR. |
---|---|
AbstractList | Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta.Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved.Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity.These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR.Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta.Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved.Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity.These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR. Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta. Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved. Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity. These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR. Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta. Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved. Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity. These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR. Using pre-clinical studies of F508del in nasal cultures as a benchmark, this study identified other CF mutations for which Trikafta may be clinically effective https://bit.ly/3mbMOqL Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta.Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved.Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity.These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR. |
Author | Ouyang, Hong Gunawardena, Tarini N.A. Laselva, Onofrio Bartlett, Claire Bear, Christine E. Gonska, Tanja Eckford, Paul D.W. Moraes, Theo J. |
AuthorAffiliation | 2 Dept of Physiology, University of Toronto, Toronto, ON, Canada 4 Dept of Paediatrics, University of Toronto, Toronto, ON, Canada 3 Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada 1 Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada 5 Dept of Biochemistry, University of Toronto, Toronto, ON, Canada |
AuthorAffiliation_xml | – name: 5 Dept of Biochemistry, University of Toronto, Toronto, ON, Canada – name: 2 Dept of Physiology, University of Toronto, Toronto, ON, Canada – name: 3 Programme in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada – name: 1 Programme in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada – name: 4 Dept of Paediatrics, University of Toronto, Toronto, ON, Canada |
Author_xml | – sequence: 1 givenname: Onofrio orcidid: 0000-0002-0237-4079 surname: Laselva fullname: Laselva, Onofrio – sequence: 2 givenname: Claire surname: Bartlett fullname: Bartlett, Claire – sequence: 3 givenname: Tarini N.A. surname: Gunawardena fullname: Gunawardena, Tarini N.A. – sequence: 4 givenname: Hong surname: Ouyang fullname: Ouyang, Hong – sequence: 5 givenname: Paul D.W. surname: Eckford fullname: Eckford, Paul D.W. – sequence: 6 givenname: Theo J. surname: Moraes fullname: Moraes, Theo J. – sequence: 7 givenname: Christine E. surname: Bear fullname: Bear, Christine E. – sequence: 8 givenname: Tanja surname: Gonska fullname: Gonska, Tanja |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33303536$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ul2L1DAUDbLizq7-AkHyKEjXm9y2074IMrg6sCAs63NI01snkmnGJB1c_5B_03RnRlYffMrl5HyQ3HPBzkY_EmMvBVwJ0eBbgW2LAHgFcrksCwkSnrDFjBYzfMYW0AIWosX6nF3E-A1A1CWKZ-wcEQErrBfs1y1FMxH3A99OLtmdI26cjpGv13x1fXeb4aST9WPk3T0nRz-00UPy4U2in6fR7o8T31JvdaKe25HvdEizKG2I95N2XJtk9zZZinPeIy-us7tPG258CGQekLHnO59oTNnPh-fs6aBdpBfH85J9uf5wt_pU3Hz-uF69vykMSoBCQK-h0WCgq0wlS7EUJITEUraS-qauO6qX2OuuGmjo26GHOv8JDSVUtdQg8ZK9O_jupi6_xeT8oJ3aBbvV4V55bdXfN6PdqK9-rxoJbdmU2eD10SD47xPFpLY2GnJOj-SnqGTZYAkNYJ2prx5n_Qk5bScT2gPBBB9joEEZe1hGjrZOCVBzE9SpCeqhCWpuQtbiP9qT_f9UvwF-G7kI |
CitedBy_id | crossref_primary_10_3389_fphys_2024_1385661 crossref_primary_10_1165_rcmb_2023_0398OC crossref_primary_10_1016_j_jcf_2022_09_010 crossref_primary_10_1183_23120541_00716_2021 crossref_primary_10_3389_fphar_2024_1494327 crossref_primary_10_3390_ijms24065199 crossref_primary_10_3390_cells11010136 crossref_primary_10_1016_j_sbi_2021_11_009 crossref_primary_10_1183_13993003_00908_2021 crossref_primary_10_1165_rcmb_2021_0337OC crossref_primary_10_1016_j_isci_2021_103710 crossref_primary_10_1038_s41598_021_99184_1 crossref_primary_10_3390_ijms22094448 crossref_primary_10_1016_j_pupt_2021_102098 crossref_primary_10_1002_ppul_27211 crossref_primary_10_1111_bph_15709 crossref_primary_10_1080_17460441_2021_1912732 crossref_primary_10_1186_s13023_024_03334_3 crossref_primary_10_1016_j_jcf_2022_10_011 crossref_primary_10_3390_jor2020005 crossref_primary_10_1080_14656566_2023_2230129 crossref_primary_10_3390_jpm11080811 crossref_primary_10_1183_13993003_02380_2021 crossref_primary_10_1172_JCI176328 crossref_primary_10_1021_acs_jmedchem_4c02547 crossref_primary_10_1016_j_coph_2022_102210 crossref_primary_10_3390_ijms222111972 crossref_primary_10_1016_j_heliyon_2024_e26955 crossref_primary_10_1016_j_anpede_2024_11_006 crossref_primary_10_3390_jpm13010102 crossref_primary_10_1128_mbio_01516_23 crossref_primary_10_3390_biomedicines13010082 crossref_primary_10_1016_j_anpedi_2024_09_003 crossref_primary_10_3390_ijms24020930 crossref_primary_10_5863_1551_6776_27_4_396 crossref_primary_10_3390_ijms241612838 crossref_primary_10_3390_jor1040022 crossref_primary_10_1016_j_arbres_2024_04_007 crossref_primary_10_3390_jpm12101577 crossref_primary_10_3390_jpm11040301 crossref_primary_10_1126_science_ade2216 crossref_primary_10_1038_s41598_022_08661_8 crossref_primary_10_3390_ijms22105262 crossref_primary_10_1016_j_heliyon_2023_e15756 crossref_primary_10_1007_s00018_022_04215_3 crossref_primary_10_1152_ajpcell_00334_2021 crossref_primary_10_1016_j_jmb_2024_168591 crossref_primary_10_1016_j_jcf_2023_06_001 crossref_primary_10_1038_s41598_021_02044_1 crossref_primary_10_3390_ijms232315170 crossref_primary_10_1183_13993003_01959_2023 crossref_primary_10_3390_cells10082132 crossref_primary_10_1007_s00018_022_04554_1 crossref_primary_10_3389_fendo_2024_1293709 crossref_primary_10_3390_molecules29040821 crossref_primary_10_1038_s41467_024_50641_1 crossref_primary_10_3390_jpm12040632 crossref_primary_10_1016_j_str_2022_05_011 crossref_primary_10_1007_s10930_021_10006_9 crossref_primary_10_3390_jpm12091421 crossref_primary_10_3390_ijms23031437 crossref_primary_10_2147_JEP_S255377 crossref_primary_10_1186_s12931_024_03059_8 crossref_primary_10_3390_arm92040026 crossref_primary_10_1016_S0140_6736_23_01609_4 crossref_primary_10_3390_ijms241411457 crossref_primary_10_1016_j_jcf_2024_11_010 crossref_primary_10_1021_acs_jmedchem_4c00685 crossref_primary_10_1016_j_stemcr_2021_09_020 crossref_primary_10_1183_13993003_01387_2023 crossref_primary_10_1016_j_ejphar_2024_176390 crossref_primary_10_3390_ijms23052442 crossref_primary_10_1007_s00018_022_04671_x crossref_primary_10_1016_j_rmcr_2023_101938 crossref_primary_10_3389_fmolb_2024_1446875 crossref_primary_10_1113_JP282143 crossref_primary_10_1007_s00431_021_04168_y crossref_primary_10_3390_ijms241512365 crossref_primary_10_1016_j_rmcr_2022_101775 crossref_primary_10_1183_13993003_00671_2021 crossref_primary_10_3390_jpm11050421 crossref_primary_10_1016_j_jcf_2022_02_011 crossref_primary_10_1183_13993003_00110_2023 crossref_primary_10_26508_lsa_202201857 crossref_primary_10_3389_fmolb_2022_905468 crossref_primary_10_3390_cells11121868 crossref_primary_10_3390_jpm11050384 crossref_primary_10_1038_s41572_024_00538_6 crossref_primary_10_1016_j_jcf_2022_02_014 crossref_primary_10_3390_biom11101417 crossref_primary_10_2174_2772432818666230201094115 crossref_primary_10_1016_j_virol_2023_109915 crossref_primary_10_1183_23120541_00746_2023 crossref_primary_10_1038_s42003_024_05966_4 crossref_primary_10_1007_s10719_024_10174_7 crossref_primary_10_1186_s13578_023_00975_y crossref_primary_10_1042_BSR20212006 crossref_primary_10_3390_ijms241210358 crossref_primary_10_3390_ijms222313064 crossref_primary_10_3390_jpm11070643 |
Cites_doi | 10.1126/science.2475911 10.1016/j.jcf.2018.03.013 10.1038/mtm.2015.34 10.1038/s41598-019-49921-4 10.1172/jci.insight.139983 10.1056/NEJMoa1807120 10.1002/prot.25496 10.1371/journal.pone.0119796 10.1016/j.jcf.2018.12.001 10.1124/mol.119.117143 10.1016/j.jcf.2019.12.001 10.1183/13993003.00205-2020 10.3390/biom10020334 10.15252/emmm.201607137 10.1016/j.jcf.2018.05.010 10.1124/mol.118.111799 10.1016/j.jcf.2018.05.011 10.1056/NEJMoa1409547 10.1016/j.jcf.2020.07.015 10.3389/fphar.2012.00160 10.1056/NEJMoa1908639 10.1016/j.jcf.2018.05.016 10.3389/fphar.2018.00719 10.1056/NEJMoa1105185 10.1016/S0140-6736(19)32597-8 10.1056/NEJMoa1709846 10.3390/jpm10040209 10.1096/fba.2019-00039 10.3390/cells8080804 10.3390/jpm10020040 10.1056/NEJMra043184 10.1016/j.omtm.2020.05.002 10.1038/s41598-019-54158-2 10.1172/jci.insight.121159 10.1159/000475578 10.1080/17460441.2020.1750592 10.1126/scitranslmed.3008680 10.1126/scitranslmed.3008889 10.1016/0092-8674(92)90155-6 |
ContentType | Journal Article |
Copyright | Copyright ©ERS 2021. Copyright ©ERS 2021 2021 |
Copyright_xml | – notice: Copyright ©ERS 2021. – notice: Copyright ©ERS 2021 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1183/13993003.02774-2020 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Rescue of multiple class II CFTR mutations by elexacaftor+tezacaftor+ivacaftor |
EISSN | 1399-3003 |
ExternalDocumentID | PMC8209484 33303536 10_1183_13993003_02774_2020 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: OGI-148 |
GroupedDBID | --- .55 .GJ 18M 1OC 2WC 31~ 3O- 53G 5GY 5RE 5VS 8-1 AADJU AAFWJ AAYXX AAZMJ ABCQX ABJNI ABOCM ABSQV ACEMG ACGFO ACPRK ACXQS ADBBV ADDZX ADMOG ADYFA AENEX AFFNX AFHIN AFZJQ AIZTS AJAOE ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CAG CITATION COF CS3 DIK E3Z EBS EJD F5P F9R GX1 H13 INIJC J5H KQ8 L7B LH4 LW6 OK1 P2P PQQKQ R0Z RHI TER TR2 W8F WOQ X7M ZE2 ZGI ZXP ~02 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c3200-10da08a0c0b5c524171e11234292ed866be673dab5fefd9fd06164ef40562a023 |
ISSN | 0903-1936 1399-3003 |
IngestDate | Thu Aug 21 13:46:23 EDT 2025 Fri Jul 11 07:32:01 EDT 2025 Thu Apr 03 07:11:51 EDT 2025 Thu Apr 24 23:12:41 EDT 2025 Tue Jul 01 05:27:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright ©ERS 2021. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3200-10da08a0c0b5c524171e11234292ed866be673dab5fefd9fd06164ef40562a023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0237-4079 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8209484 |
PMID | 33303536 |
PQID | 2483408036 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8209484 proquest_miscellaneous_2483408036 pubmed_primary_33303536 crossref_citationtrail_10_1183_13993003_02774_2020 crossref_primary_10_1183_13993003_02774_2020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | The European respiratory journal |
PublicationTitleAlternate | Eur Respir J |
PublicationYear | 2021 |
Publisher | European Respiratory Society |
Publisher_xml | – name: European Respiratory Society |
References | Han (2024102102103939000_57.6.2002774.15) 2018; 3 Keating (2024102102103939000_57.6.2002774.7) 2018; 379 2024102102103939000_57.6.2002774.22 Chin (2024102102103939000_57.6.2002774.28) 2019; 8 DeStefano (2024102102103939000_57.6.2002774.14) 2018; 17 Laselva (2024102102103939000_57.6.2002774.18) 2019; 1 2024102102103939000_57.6.2002774.20 2024102102103939000_57.6.2002774.21 Laselva (2024102102103939000_57.6.2002774.17) 2020; 10 Erwood (2024102102103939000_57.6.2002774.24) 2020; 17 Laselva (2024102102103939000_57.6.2002774.23) 2020; 10 Laselva (2024102102103939000_57.6.2002774.29) 2018; 9 Valley (2024102102103939000_57.6.2002774.19) 2019; 18 Liu (2024102102103939000_57.6.2002774.13) 2018; 17 Phuan (2024102102103939000_57.6.2002774.38) 2019; 9 Laselva (2024102102103939000_57.6.2002774.35) 2021; 20 Laselva (2024102102103939000_57.6.2002774.25) 2020; 10 2024102102103939000_57.6.2002774.16 Phuan (2024102102103939000_57.6.2002774.39) 2018; 17 Veit (2024102102103939000_57.6.2002774.37) 2020; 5 2024102102103939000_57.6.2002774.11 Molinski (2024102102103939000_57.6.2002774.30) 2018; 86 2024102102103939000_57.6.2002774.33 2024102102103939000_57.6.2002774.34 2024102102103939000_57.6.2002774.9 2024102102103939000_57.6.2002774.36 2024102102103939000_57.6.2002774.6 2024102102103939000_57.6.2002774.5 2024102102103939000_57.6.2002774.31 2024102102103939000_57.6.2002774.4 2024102102103939000_57.6.2002774.10 2024102102103939000_57.6.2002774.32 2024102102103939000_57.6.2002774.3 2024102102103939000_57.6.2002774.2 2024102102103939000_57.6.2002774.1 Lopes-Pacheco (2024102102103939000_57.6.2002774.12) 2017; 41 Guerra (2024102102103939000_57.6.2002774.8) 2020; 15 Laselva (2024102102103939000_57.6.2002774.27) 2020; 19 Cao (2024102102103939000_57.6.2002774.26) 2015; 2 |
References_xml | – ident: 2024102102103939000_57.6.2002774.1 doi: 10.1126/science.2475911 – ident: 2024102102103939000_57.6.2002774.16 doi: 10.1016/j.jcf.2018.03.013 – volume: 2 start-page: 15034 year: 2015 ident: 2024102102103939000_57.6.2002774.26 article-title: Testing gene therapy vectors in human primary nasal epithelial cultures publication-title: Mol Ther Methods Clin Dev doi: 10.1038/mtm.2015.34 – ident: 2024102102103939000_57.6.2002774.34 doi: 10.1038/s41598-019-49921-4 – volume: 5 start-page: e139983 year: 2020 ident: 2024102102103939000_57.6.2002774.37 article-title: Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor–tezacaftor–ivacaftor (Trikafta) combination publication-title: JCI Insight doi: 10.1172/jci.insight.139983 – volume: 379 start-page: 1612 year: 2018 ident: 2024102102103939000_57.6.2002774.7 article-title: VX-445–tezacaftor–ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles publication-title: N Engl J Med doi: 10.1056/NEJMoa1807120 – volume: 86 start-page: 833 year: 2018 ident: 2024102102103939000_57.6.2002774.30 article-title: Comprehensive mapping of cystic fibrosis mutations to CFTR protein identifies mutation clusters and molecular docking predicts corrector binding site publication-title: Proteins doi: 10.1002/prot.25496 – ident: 2024102102103939000_57.6.2002774.11 doi: 10.1371/journal.pone.0119796 – volume: 18 start-page: 476 year: 2019 ident: 2024102102103939000_57.6.2002774.19 article-title: Isogenic cell models of cystic fibrosis-causing variants in natively expressing pulmonary epithelial cells publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2018.12.001 – ident: 2024102102103939000_57.6.2002774.20 doi: 10.1124/mol.119.117143 – volume: 19 start-page: 717 year: 2020 ident: 2024102102103939000_57.6.2002774.27 article-title: Functional rescue of c.3846G>A (W1282X) in patient-derived nasal cultures achieved by inhibition of nonsense mediated decay and protein modulators with complementary mechanisms of action publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2019.12.001 – ident: 2024102102103939000_57.6.2002774.21 doi: 10.1183/13993003.00205-2020 – volume: 10 start-page: 334 year: 2020 ident: 2024102102103939000_57.6.2002774.25 article-title: Anti-infectives restore ORKAMBI rescue of F508del-CFTR function in human bronchial epithelial cells infected with clinical strains of P. aeruginosa publication-title: Biomolecules doi: 10.3390/biom10020334 – ident: 2024102102103939000_57.6.2002774.22 doi: 10.15252/emmm.201607137 – volume: 17 start-page: 595 year: 2018 ident: 2024102102103939000_57.6.2002774.39 article-title: Combination potentiator (‘co-potentiator’) therapy for CF caused by CFTR mutants, including N1303K, that are poorly responsive to single potentiators publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2018.05.010 – ident: 2024102102103939000_57.6.2002774.31 doi: 10.1124/mol.118.111799 – volume: 17 start-page: 573 year: 2018 ident: 2024102102103939000_57.6.2002774.14 article-title: Physiological and pharmacological characterization of the N1303K mutant CFTR publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2018.05.011 – ident: 2024102102103939000_57.6.2002774.4 doi: 10.1056/NEJMoa1409547 – volume: 20 start-page: 106 year: 2021 ident: 2024102102103939000_57.6.2002774.35 article-title: Emerging preclinical modulators developed for F508del-CFTR have the potential to be effective for ORKAMBI resistant processing mutants publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2020.07.015 – ident: 2024102102103939000_57.6.2002774.10 doi: 10.3389/fphar.2012.00160 – ident: 2024102102103939000_57.6.2002774.9 doi: 10.1056/NEJMoa1908639 – volume: 17 start-page: 582 year: 2018 ident: 2024102102103939000_57.6.2002774.13 article-title: Rescue of CFTR NBD2 mutants N1303K and S1235R is influenced by the functioning of the autophagosome publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2018.05.016 – volume: 9 start-page: 719 year: 2018 ident: 2024102102103939000_57.6.2002774.29 article-title: Molecular mechanism of action of trimethylangelicin derivatives as CFTR modulators publication-title: Front Pharmacol doi: 10.3389/fphar.2018.00719 – ident: 2024102102103939000_57.6.2002774.5 doi: 10.1056/NEJMoa1105185 – ident: 2024102102103939000_57.6.2002774.36 doi: 10.1016/S0140-6736(19)32597-8 – ident: 2024102102103939000_57.6.2002774.6 doi: 10.1056/NEJMoa1709846 – volume: 10 start-page: E209 year: 2020 ident: 2024102102103939000_57.6.2002774.23 article-title: Preclinical studies of a rare CF-causing mutation in the second nucleotide binding domain (c.3700A>G) show robust functional rescue in primary nasal cultures by novel CFTR modulators publication-title: J Pers Med doi: 10.3390/jpm10040209 – volume: 1 start-page: 661 year: 2019 ident: 2024102102103939000_57.6.2002774.18 article-title: Activity of lumacaftor is not conserved in zebrafish Cftr bearing the major cystic fibrosis-causing mutation publication-title: FASEB Bioadv doi: 10.1096/fba.2019-00039 – volume: 8 start-page: 804 year: 2019 ident: 2024102102103939000_57.6.2002774.28 article-title: Cholesterol interaction directly enhances intrinsic activity of the cystic fibrosis transmembrane conductance regulator (CFTR) publication-title: Cells doi: 10.3390/cells8080804 – volume: 10 start-page: 40 year: 2020 ident: 2024102102103939000_57.6.2002774.17 article-title: The CFTR mutation c.3453G > C (D1152H) confers an anion selectivity defect in primary airway tissue that can be rescued by ivacaftor publication-title: J Pers Med doi: 10.3390/jpm10020040 – ident: 2024102102103939000_57.6.2002774.3 doi: 10.1056/NEJMra043184 – volume: 17 start-page: 1118 year: 2020 ident: 2024102102103939000_57.6.2002774.24 article-title: Allele-specific prevention of nonsense-mediated decay in cystic fibrosis using homology-independent genome editing publication-title: Mol Ther Methods Clin Dev doi: 10.1016/j.omtm.2020.05.002 – volume: 9 start-page: 17640 year: 2019 ident: 2024102102103939000_57.6.2002774.38 article-title: Nanomolar-potency ‘co-potentiator’ therapy for cystic fibrosis caused by a defined subset of minimal function CFTR mutants publication-title: Sci Rep doi: 10.1038/s41598-019-54158-2 – volume: 3 start-page: e121159 year: 2018 ident: 2024102102103939000_57.6.2002774.15 article-title: Residual function of cystic fibrosis mutants predicts response to small molecule CFTR modulators publication-title: JCI Insight doi: 10.1172/jci.insight.121159 – volume: 41 start-page: 2194 year: 2017 ident: 2024102102103939000_57.6.2002774.12 article-title: Combination of correctors rescues CFTR transmembrane-domain mutants by mitigating their interactions with proteostasis publication-title: Cell Physiol Biochem doi: 10.1159/000475578 – volume: 15 start-page: 873 year: 2020 ident: 2024102102103939000_57.6.2002774.8 article-title: The preclinical discovery and development of the combination of ivacaftor+tezacaftor used to treat cystic fibrosis publication-title: Expert Opin Drug Discov doi: 10.1080/17460441.2020.1750592 – ident: 2024102102103939000_57.6.2002774.32 doi: 10.1126/scitranslmed.3008680 – ident: 2024102102103939000_57.6.2002774.33 doi: 10.1126/scitranslmed.3008889 – ident: 2024102102103939000_57.6.2002774.2 doi: 10.1016/0092-8674(92)90155-6 |
SSID | ssj0016431 |
Score | 2.6244078 |
Snippet | Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2002774 |
SubjectTerms | Aminophenols Benzodioxoles Cystic Fibrosis Cystic Fibrosis Transmembrane Conductance Regulator - genetics Drug Combinations HEK293 Cells Humans Indoles Mutation Original Pyrazoles Pyridines Pyrrolidines Quinolines Quinolones |
Title | Rescue of multiple class II CFTR mutations by elexacaftor+tezacaftor+ivacaftor mediated in part by the dual activities of elexacaftor as both corrector and potentiator |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33303536 https://www.proquest.com/docview/2483408036 https://pubmed.ncbi.nlm.nih.gov/PMC8209484 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkKa9IO6Um4zEW8lI49z6CBWjBW0TUyftLXIcR1QqyZQmlbY_xH_g13GO7STuKAh4idIkPlZ1vsSffc75TMjrOAyAh2eRk01QVJt7Y4cHQjpRnAHZ8HIRCCxOPj4JZ-f-p4vgYjD4YWUtNXV6KK531pX8j1fhGvgVq2T_wbOdUbgA5-BfOIKH4fhXPj6Ta9GoSX-XFyiQDY_m89H0aHEGl2uT6gYsU2Iti-C5WqV_X8vr_sdyY851JQmyUKW5WtWKngKUVMkWFkFslAQr9mnZw91q0lIlsVeVigNoAYKyxmQkrhWNOxKM0OyiAJUV67f_tBKDXMvVRrHb06LMK50yptddKzCk41rTFbcyeD82BcdEYKlr3RYcI1Sjk37J9rS5Mkvks9KM2mbRw7OSsw6l_lADsXKY6zL7S66lrg1iw90DRIxCFdgaGx9iBNsHTKmCvNqCzOU3hRnGYIgP2A2xbj38m1u3yG0w4uHuGZ-_9BEsYHpjo3IFfb7d0eMB2W9tbJOiX2Y6NxN2LQa0uEvumKkLfadxeI8MZHGf7B-b5IwH5LuGIy1z2sKRKjjS-ZwiHGkHR5peURs-PRhHHRRpC0W6LChCERsBFClCkfZQxP4sW5SDdYAi7aBIAYrUguJDcn70YTGdOWYfEEcweN2BKWTcjbkr3DQQAVDOaCxhmsBwpzWZxWGYyjBiGU-DXObZJM-Ao4a-zH0k9xxI6SOyV5SFfEJoFEQ58zLXT8MMJgJ8IuHZOI-ZHwSZH6VD4rWOSIQRyce9WlaJmizHLGkdmShHJujIIXnTNbrUGjF_fvxV6-EEvuUYoOOFLJt14uHKPkzhWDgkj7XHO4MtVIYk2sJC9wDqxG_fKZZflV48kPyJH_tPf2vzGTnoX7LnZK-uGvkCuHadvlSg_gm0GNhW |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rescue+of+multiple+class+II+CFTR+mutations+by+elexacaftor%2Btezacaftor%2Bivacaftor+mediated+in+part+by+the+dual+activities+of+elexacaftor+as+both+corrector+and+potentiator&rft.jtitle=The+European+respiratory+journal&rft.au=Laselva%2C+Onofrio&rft.au=Bartlett%2C+Claire&rft.au=Gunawardena%2C+Tarini+N+A&rft.au=Ouyang%2C+Hong&rft.date=2021-06-01&rft.eissn=1399-3003&rft.volume=57&rft.issue=6&rft_id=info:doi/10.1183%2F13993003.02774-2020&rft_id=info%3Apmid%2F33303536&rft.externalDocID=33303536 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0903-1936&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0903-1936&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0903-1936&client=summon |