How programmers find online learning resources
When learning a new technology, programmers often have to sift through multiple online resources to find information that addresses their questions. Prior work has reported that information seekers use a number of different strategies, including following scents , or indicators, to locate appropriat...
Saved in:
Published in | Empirical software engineering : an international journal Vol. 28; no. 2; p. 23 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When learning a new technology, programmers often have to sift through multiple online resources to find information that addresses their questions. Prior work has reported that information seekers use a number of different strategies, including following
scents
, or indicators, to locate appropriate resources. We present a qualitative and quantitative investigation of how programmers learning a new technology employ these strategies to navigate between online resources and evaluate the pertinence of these resources. We performed a diary and interview study with ten programmers learning a new technology, to study how users navigate from the question they have to the resource that satisfies this need. Based on our observations, we propose a resource-seeking model that represents the online resource seeking behaviour of programmers when learning a new technology. The model is comprised of six components that can be divided into two groups: Need-oriented components, i.e. Questions, Preferences, and Beliefs, and Resource-oriented components, i.e. Resources, Cues, and Impression Factors. We identified nine relations between these components and studied how the components are associated. We report on the characteristics of the components and the relationships between them, and discuss the importance of search customization and other implications of our observations for resource creators and search tools. |
---|---|
AbstractList | When learning a new technology, programmers often have to sift through multiple online resources to find information that addresses their questions. Prior work has reported that information seekers use a number of different strategies, including following scents, or indicators, to locate appropriate resources. We present a qualitative and quantitative investigation of how programmers learning a new technology employ these strategies to navigate between online resources and evaluate the pertinence of these resources. We performed a diary and interview study with ten programmers learning a new technology, to study how users navigate from the question they have to the resource that satisfies this need. Based on our observations, we propose a resource-seeking model that represents the online resource seeking behaviour of programmers when learning a new technology. The model is comprised of six components that can be divided into two groups: Need-oriented components, i.e. Questions, Preferences, and Beliefs, and Resource-oriented components, i.e. Resources, Cues, and Impression Factors. We identified nine relations between these components and studied how the components are associated. We report on the characteristics of the components and the relationships between them, and discuss the importance of search customization and other implications of our observations for resource creators and search tools. When learning a new technology, programmers often have to sift through multiple online resources to find information that addresses their questions. Prior work has reported that information seekers use a number of different strategies, including following scents , or indicators, to locate appropriate resources. We present a qualitative and quantitative investigation of how programmers learning a new technology employ these strategies to navigate between online resources and evaluate the pertinence of these resources. We performed a diary and interview study with ten programmers learning a new technology, to study how users navigate from the question they have to the resource that satisfies this need. Based on our observations, we propose a resource-seeking model that represents the online resource seeking behaviour of programmers when learning a new technology. The model is comprised of six components that can be divided into two groups: Need-oriented components, i.e. Questions, Preferences, and Beliefs, and Resource-oriented components, i.e. Resources, Cues, and Impression Factors. We identified nine relations between these components and studied how the components are associated. We report on the characteristics of the components and the relationships between them, and discuss the importance of search customization and other implications of our observations for resource creators and search tools. |
ArticleNumber | 23 |
Author | Arya, Deeksha M. Robillard, Martin P. Guo, Jin L. C. |
Author_xml | – sequence: 1 givenname: Deeksha M. orcidid: 0000-0002-3719-5011 surname: Arya fullname: Arya, Deeksha M. email: deeksha.arya@mail.mcgill.ca organization: School of Computer Science, McGill University – sequence: 2 givenname: Jin L. C. orcidid: 0000-0003-1782-1545 surname: Guo fullname: Guo, Jin L. C. organization: School of Computer Science, McGill University – sequence: 3 givenname: Martin P. orcidid: 0000-0002-0248-1384 surname: Robillard fullname: Robillard, Martin P. organization: School of Computer Science, McGill University |
BookMark | eNp9kMFKAzEQhoNUsK2-gKcFz6mTTTazOUpRKxS86DmE3UnZss3WZIv07Y1WEDz0NHP4v5mfb8YmYQjE2K2AhQDA-yRAa8WhLLmAUml-vGBTUaHkqIWe5F3WJZdlpa_YLKUtABhU1ZQtVsNnsY_DJrrdjmIqfBfaYgh9F6joycXQhU0RKQ2H2FC6Zpfe9YlufuecvT89vi1XfP36_LJ8WPNGCjNyTxU47RvVoGqN16RRk5LOGeMkuta0WleoGuMdVIgSQbVAnpwjSWRAztnd6W6u9nGgNNptLhDyS1tihTWqusacqk-pJg4pRfK26UY3dkMYo-t6K8B-27EnOzbbsT927DGj5T90H7udi8fzkDxBKYfDhuJfqzPUF1Grejg |
CitedBy_id | crossref_primary_10_1109_TSE_2023_3332568 |
Cites_doi | 10.1145/1518701.1518944 10.1016/j.ipm.2011.08.009 10.1145/1985429.1985440 10.1016/B978-0-12-805390-4.00006-6 10.1109/ICSME46990.2020.00052 10.1075/hts.1.thi1 10.1109/ICSE-SEET.2019.00026 10.2307/2529310 10.1109/SANER48275.2020.9054828 10.1145/3369255.3369258 10.1007/s10664-020-09857-0 10.1109/WPC.1998.693322 10.1145/357436.357440 10.1109/ICSME.2017.17 10.1109/ASE.1998.732658 10.1109/BigData50022.2020.9378083 10.1145/2786805.2786855 10.1109/MS.2021.3090978 10.1109/ICSM.2015.7332447 10.1016/B978-0-12-805390-4.00011-X 10.1007/s10791-017-9305-y 10.1145/985692.985745 10.1145/1181775.1181779 10.1145/3387904.3389274 10.1109/HICSS.1990.205259 10.1145/2858036.2858469 10.1109/ICSE.2007.45 10.1007/3-540-44963-9_8 10.1145/1357054.1357261 10.1145/3358931.3358937 10.1145/3449240 10.1037/0033-295X.106.4.643 10.1109/ICSE.2012.6227187 10.1007/s10664-017-9514-4 10.1145/3377811.3380330 10.1145/2775441.2775457 10.1145/3194793.3194796 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS S0W |
DOI | 10.1007/s10664-022-10246-y |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Technology Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7616 |
ExternalDocumentID | 10_1007_s10664_022_10246_y |
GrantInformation_xml | – fundername: natural sciences and engineering research council of canada funderid: https://doi.org/10.13039/501100000038 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8R Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 8FD ABRTQ DWQXO JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-fe50a6fc4c74d9f6e676e43aa99a37ad9d66574c9fa05773704d0efeaae3ee903 |
IEDL.DBID | U2A |
ISSN | 1382-3256 |
IngestDate | Fri Jul 25 12:29:37 EDT 2025 Thu Apr 24 23:11:16 EDT 2025 Tue Jul 01 03:32:21 EDT 2025 Fri Feb 21 02:43:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Online learning resources Information seeking Software documentation User study Diary study Qualitative analysis Quantitative analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-fe50a6fc4c74d9f6e676e43aa99a37ad9d66574c9fa05773704d0efeaae3ee903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0248-1384 0000-0002-3719-5011 0000-0003-1782-1545 |
PQID | 2757874887 |
PQPubID | 326341 |
ParticipantIDs | proquest_journals_2757874887 crossref_citationtrail_10_1007_s10664_022_10246_y crossref_primary_10_1007_s10664_022_10246_y springer_journals_10_1007_s10664_022_10246_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Empirical software engineering : an international journal |
PublicationTitleAbbrev | Empir Software Eng |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Lazar J, Feng JH, Hochheiser H Lazar J, Feng J H, Hochheiser H (eds) (2017a) Chapter 11—analyzing qualitative data. Morgan Kaufmann, Boston MengMSteinhardtSSchubertAHow developers use API documentation: an observation studyCommun Des Q Rev20197404910.1145/3358931.3358937 MehtaCRPatelNRIBM SPSS exact tests2011ArmonkIBM Corporation Bai GR, Kayani J, Stolee KT (2020) How graduate computing students search when using an unfamiliar programming language. In: Proceedings of the 28th international conference on program comprehension, ICPC, Association for computing machinery, pp 160–171 Pirolli P, Fu WT (2003) SNIF-ACT: a model of information foraging on the World Wide Web XiaXBaoLLoDKochharPSHassanAXingZWhat do developers search for on the web?Empir Softw Eng2017223149318510.1007/s10664-017-9514-4 Gallardo-Valencia RE, Sim SE (2011) What kinds of development problems can be solved by searching the web?: a field study. In: Proceedings—international conference on software engineering, pp 41–44 Piorkowski D, Fleming SD, Scaffidi C, Burnett M, Kwan I, Henley AZ, Macbeth J, Hill C, Horvath A (2015) To fix or to learn? How production bias affects developers’ information foraging during debugging. In: IEEE International conference on software maintenance and evolution (ICSME), pp 11–20 SprentPFisher exact test2011BerlinSpringer524525 Escobar-Avila J, Venuti D, Di Penta M, Haiduc S (2019) A survey on online learning preferences for computer science and programming. In: Proceedings of international conference on software engineering: software engineering education and training (ICSE-SEET), pp 170–181 Srinivasa Ragavan S, Kuttal SK, Hill C, Sarma A, Piorkowski D, Burnett M (2016) Foraging among an overabundance of similar variants. In: Proceedings of the 2016 CHI conference on human factors in computing systems, CHI ’16. Association for Computing Machinery, New York, pp 3509–3521 Jääskeläinen R (2010) Think-aloud protocol. In: Handbook of translation studies, vol 1, pp 371–374 Marques A, Bradley NC, Murphy GC (2020) Characterizing task-relevant information in natural language software artifacts. In: IEEE international conference on software maintenance and evolution (ICSME), pp 476–487 Treude C, Aniche M (2018) Where does google find API documentation?. In: Proceedings of international conference on software engineering. ACM, pp 23–26 Sillito J, Murphy GC, De Volder K (2006) Questions programmers ask during software evolution tasks. In: Proceedings of the SIGSOFT international symposium on foundations of software engineering (FSE). Association for Computing Machinery, pp 23–34 XieIJooSFactors affecting the selection of search tactics: tasks, knowledge, process, and systemsInf Process Manag201248225427010.1016/j.ipm.2011.08.009 Liu MX, Kittur A, Myers BA (2021) To reuse or not to reuse? A framework and system for evaluating summarized knowledge. In: Proceedings of the ACM on human-computer interaction (CSCW1) Arya DM, Nassif M, Robillard MP (2021) A data-centric study of software tutorial design. IEEE Softw Erdos K, Sneed HM (1998) Partial comprehension of complex programs (enough to perform maintenance). In: Proceedings. 6th International workshop on program comprehension. IWPC’98, pp 98–105 Nadi S, Treude C (2020) Essential sentences for navigating stack overflow answers. In: International conference on software analysis, evolution and reengineering (SANER). IEEE, pp 229–239 Duala-Ekoko E, Robillard MP (2012) Asking and answering questions about unfamiliar apis: an exploratory study. In: 2012 34th International conference on software engineering (ICSE). IEEE, pp 266–276 Lazar J, Feng JH, Hochheiser H (2017b) Chapter 6—diaries. In: Lazar J, Feng J H, Hochheiser H (eds) Research methods in human computer interaction, 2nd edn. Morgan Kaufmann, Boston, pp 135–152 Dondio P, Shaheen S (2019) Is Stack Overflow an effective complement to gaining practical knowledge compared to traditional computer science learning?. In: Proceedings of the international conference on education technology and computers (ICETC), pp 132–138 PirolliPCardSInformation foragingPsychol Rev199910664367510.1037/0033-295X.106.4.643 Earle RH, Rosso MA, Alexander KE (2015) User preferences of software documentation genres. In: Proceedings of the 33rd annual international conference on the design of communication, SIGDOC ’15. Association for Computing Machinery SharpeDChi-square test is statistically significant: now what?Pract Assess Res Eval20152018 Abdi H et al (2007) Bonferroni and šidák corrections for multiple comparisons. In: Encyclopedia of measurement and statistics, vol 3, pp 103–107 Sadowski C, Stolee KT, Elbaum S (2015) How developers search for code: a case study. In: Proceedings of the 10th joint meeting on foundations of software engineering, ESEC/FSE. Association for Computing Machinery, pp 191–201 Brandt J, Guo PJ, Lewenstein J, Dontcheva M, Klemmer SR (2009) Two studies of opportunistic programming: interleaving web foraging, learning, and writing code. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’09. Association for Computing Machinery, pp 1589–1598 MackRLLewisCHCarrollJMLearning to use word processors: problems and prospectsACM Trans Inf Syst19831325427110.1145/357436.357440 AryaDMGuoJLCRobillardMPInformation correspondence between types of documentation for APIsEmpir Softw Eng20202554069409610.1007/s10664-020-09857-0 Chattopadhyay S, Nelson N, Au A, Morales N, Sanchez C, Pandita R, Sarma A (2020) A tale from the trenches: cognitive biases and software development. In: Proceedings of the 42nd ACM/IEEE international conference on software engineering, ICSE ’20. Association for Computing Machinery, New York, pp 654–665 Robillard MP, Marcus A, Treude C, Bavota G, Chaparro O, Ernst N, Gerosa MA, Godfrey M, Lanza M, Linares-vásquez M, Murphy GC, Moreno L, Shepherd D, Wong E (2017) On-demand developer documentation. In: International conference on software maintenance and evolution (ICSME). IEEE, pp 479–483 LuYHsiaoIHPersonalized information seeking assistant (pisa): from programming information seeking to learningInf Retr20172043345510.1007/s10791-017-9305-y Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated software development teams. In: 29th International conference on software engineering, pp 344–353 Lawrance J, Bellamy R, Burnett M, Rector K (2008) Using information scent to model the dynamic foraging behavior of programmers in maintenance tasks. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’08. Association for Computing Machinery, pp 1323–1332 Erdem A, Marsella S, Johnson W (1998) Task oriented software understanding. In: Proceedings of international conference on automated software engineering. IEEE Computer Society, p 230 LandisJRKochGThe measurement of observer agreement for categorical dataBiometrics19773315917410.2307/25293100351.62039 Rao N, Bansal C, Zimmermann T, Awadallah AH, Nagappan N (2019) Analyzing web search behavior for software engineering tasks. arXiv:1912.09519 Carroll J (1990) An overview of minimalist instruction. In: Annual Hawaii international conference on system sciences, vol 4. IEEE Computer Society, pp 210–219 Teevan J, Alvarado C, Ackerman MS, Karger DR (2004) The perfect search engine is not enough: a study of orienteering behavior in directed search. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 415–422 10246_CR18 P Pirolli (10246_CR29) 1999; 106 10246_CR19 Y Lu (10246_CR22) 2017; 20 10246_CR9 RL Mack (10246_CR23) 1983; 1 D Sharpe (10246_CR34) 2015; 20 DM Arya (10246_CR2) 2020; 25 CR Mehta (10246_CR25) 2011 10246_CR20 P Sprent (10246_CR36) 2011 X Xia (10246_CR40) 2017; 22 10246_CR24 10246_CR21 M Meng (10246_CR26) 2019; 7 10246_CR27 10246_CR28 JR Landis (10246_CR17) 1977; 33 10246_CR3 10246_CR4 10246_CR1 10246_CR7 10246_CR30 10246_CR8 10246_CR31 10246_CR5 10246_CR6 10246_CR12 I Xie (10246_CR41) 2012; 48 10246_CR13 10246_CR35 10246_CR10 10246_CR32 10246_CR11 10246_CR33 10246_CR16 10246_CR38 10246_CR39 10246_CR14 10246_CR15 10246_CR37 |
References_xml | – reference: Erdos K, Sneed HM (1998) Partial comprehension of complex programs (enough to perform maintenance). In: Proceedings. 6th International workshop on program comprehension. IWPC’98, pp 98–105 – reference: MehtaCRPatelNRIBM SPSS exact tests2011ArmonkIBM Corporation – reference: Lazar J, Feng JH, Hochheiser H Lazar J, Feng J H, Hochheiser H (eds) (2017a) Chapter 11—analyzing qualitative data. Morgan Kaufmann, Boston – reference: Arya DM, Nassif M, Robillard MP (2021) A data-centric study of software tutorial design. IEEE Softw – reference: Chattopadhyay S, Nelson N, Au A, Morales N, Sanchez C, Pandita R, Sarma A (2020) A tale from the trenches: cognitive biases and software development. In: Proceedings of the 42nd ACM/IEEE international conference on software engineering, ICSE ’20. Association for Computing Machinery, New York, pp 654–665 – reference: Duala-Ekoko E, Robillard MP (2012) Asking and answering questions about unfamiliar apis: an exploratory study. In: 2012 34th International conference on software engineering (ICSE). IEEE, pp 266–276 – reference: Sillito J, Murphy GC, De Volder K (2006) Questions programmers ask during software evolution tasks. In: Proceedings of the SIGSOFT international symposium on foundations of software engineering (FSE). Association for Computing Machinery, pp 23–34 – reference: LandisJRKochGThe measurement of observer agreement for categorical dataBiometrics19773315917410.2307/25293100351.62039 – reference: Sadowski C, Stolee KT, Elbaum S (2015) How developers search for code: a case study. In: Proceedings of the 10th joint meeting on foundations of software engineering, ESEC/FSE. Association for Computing Machinery, pp 191–201 – reference: SharpeDChi-square test is statistically significant: now what?Pract Assess Res Eval20152018 – reference: SprentPFisher exact test2011BerlinSpringer524525 – reference: Lazar J, Feng JH, Hochheiser H (2017b) Chapter 6—diaries. In: Lazar J, Feng J H, Hochheiser H (eds) Research methods in human computer interaction, 2nd edn. Morgan Kaufmann, Boston, pp 135–152 – reference: LuYHsiaoIHPersonalized information seeking assistant (pisa): from programming information seeking to learningInf Retr20172043345510.1007/s10791-017-9305-y – reference: MackRLLewisCHCarrollJMLearning to use word processors: problems and prospectsACM Trans Inf Syst19831325427110.1145/357436.357440 – reference: Earle RH, Rosso MA, Alexander KE (2015) User preferences of software documentation genres. In: Proceedings of the 33rd annual international conference on the design of communication, SIGDOC ’15. Association for Computing Machinery – reference: Brandt J, Guo PJ, Lewenstein J, Dontcheva M, Klemmer SR (2009) Two studies of opportunistic programming: interleaving web foraging, learning, and writing code. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’09. Association for Computing Machinery, pp 1589–1598 – reference: Robillard MP, Marcus A, Treude C, Bavota G, Chaparro O, Ernst N, Gerosa MA, Godfrey M, Lanza M, Linares-vásquez M, Murphy GC, Moreno L, Shepherd D, Wong E (2017) On-demand developer documentation. In: International conference on software maintenance and evolution (ICSME). IEEE, pp 479–483 – reference: Marques A, Bradley NC, Murphy GC (2020) Characterizing task-relevant information in natural language software artifacts. In: IEEE international conference on software maintenance and evolution (ICSME), pp 476–487 – reference: Bai GR, Kayani J, Stolee KT (2020) How graduate computing students search when using an unfamiliar programming language. In: Proceedings of the 28th international conference on program comprehension, ICPC, Association for computing machinery, pp 160–171 – reference: Carroll J (1990) An overview of minimalist instruction. In: Annual Hawaii international conference on system sciences, vol 4. IEEE Computer Society, pp 210–219 – reference: Dondio P, Shaheen S (2019) Is Stack Overflow an effective complement to gaining practical knowledge compared to traditional computer science learning?. In: Proceedings of the international conference on education technology and computers (ICETC), pp 132–138 – reference: Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated software development teams. In: 29th International conference on software engineering, pp 344–353 – reference: Gallardo-Valencia RE, Sim SE (2011) What kinds of development problems can be solved by searching the web?: a field study. In: Proceedings—international conference on software engineering, pp 41–44 – reference: Rao N, Bansal C, Zimmermann T, Awadallah AH, Nagappan N (2019) Analyzing web search behavior for software engineering tasks. arXiv:1912.09519 – reference: Nadi S, Treude C (2020) Essential sentences for navigating stack overflow answers. In: International conference on software analysis, evolution and reengineering (SANER). IEEE, pp 229–239 – reference: XieIJooSFactors affecting the selection of search tactics: tasks, knowledge, process, and systemsInf Process Manag201248225427010.1016/j.ipm.2011.08.009 – reference: Lawrance J, Bellamy R, Burnett M, Rector K (2008) Using information scent to model the dynamic foraging behavior of programmers in maintenance tasks. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’08. Association for Computing Machinery, pp 1323–1332 – reference: Erdem A, Marsella S, Johnson W (1998) Task oriented software understanding. In: Proceedings of international conference on automated software engineering. IEEE Computer Society, p 230 – reference: PirolliPCardSInformation foragingPsychol Rev199910664367510.1037/0033-295X.106.4.643 – reference: MengMSteinhardtSSchubertAHow developers use API documentation: an observation studyCommun Des Q Rev20197404910.1145/3358931.3358937 – reference: Teevan J, Alvarado C, Ackerman MS, Karger DR (2004) The perfect search engine is not enough: a study of orienteering behavior in directed search. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 415–422 – reference: Liu MX, Kittur A, Myers BA (2021) To reuse or not to reuse? A framework and system for evaluating summarized knowledge. In: Proceedings of the ACM on human-computer interaction (CSCW1) – reference: Escobar-Avila J, Venuti D, Di Penta M, Haiduc S (2019) A survey on online learning preferences for computer science and programming. In: Proceedings of international conference on software engineering: software engineering education and training (ICSE-SEET), pp 170–181 – reference: XiaXBaoLLoDKochharPSHassanAXingZWhat do developers search for on the web?Empir Softw Eng2017223149318510.1007/s10664-017-9514-4 – reference: Abdi H et al (2007) Bonferroni and šidák corrections for multiple comparisons. In: Encyclopedia of measurement and statistics, vol 3, pp 103–107 – reference: Pirolli P, Fu WT (2003) SNIF-ACT: a model of information foraging on the World Wide Web – reference: Srinivasa Ragavan S, Kuttal SK, Hill C, Sarma A, Piorkowski D, Burnett M (2016) Foraging among an overabundance of similar variants. In: Proceedings of the 2016 CHI conference on human factors in computing systems, CHI ’16. Association for Computing Machinery, New York, pp 3509–3521 – reference: Jääskeläinen R (2010) Think-aloud protocol. In: Handbook of translation studies, vol 1, pp 371–374 – reference: Treude C, Aniche M (2018) Where does google find API documentation?. In: Proceedings of international conference on software engineering. ACM, pp 23–26 – reference: AryaDMGuoJLCRobillardMPInformation correspondence between types of documentation for APIsEmpir Softw Eng20202554069409610.1007/s10664-020-09857-0 – reference: Piorkowski D, Fleming SD, Scaffidi C, Burnett M, Kwan I, Henley AZ, Macbeth J, Hill C, Horvath A (2015) To fix or to learn? How production bias affects developers’ information foraging during debugging. In: IEEE International conference on software maintenance and evolution (ICSME), pp 11–20 – ident: 10246_CR5 doi: 10.1145/1518701.1518944 – volume: 48 start-page: 254 issue: 2 year: 2012 ident: 10246_CR41 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2011.08.009 – ident: 10246_CR14 doi: 10.1145/1985429.1985440 – ident: 10246_CR20 doi: 10.1016/B978-0-12-805390-4.00006-6 – ident: 10246_CR24 doi: 10.1109/ICSME46990.2020.00052 – ident: 10246_CR15 doi: 10.1075/hts.1.thi1 – start-page: 524 volume-title: Fisher exact test year: 2011 ident: 10246_CR36 – volume-title: IBM SPSS exact tests year: 2011 ident: 10246_CR25 – volume: 20 start-page: 8 issue: 1 year: 2015 ident: 10246_CR34 publication-title: Pract Assess Res Eval – ident: 10246_CR13 doi: 10.1109/ICSE-SEET.2019.00026 – volume: 33 start-page: 159 year: 1977 ident: 10246_CR17 publication-title: Biometrics doi: 10.2307/2529310 – ident: 10246_CR27 doi: 10.1109/SANER48275.2020.9054828 – ident: 10246_CR8 doi: 10.1145/3369255.3369258 – volume: 25 start-page: 4069 issue: 5 year: 2020 ident: 10246_CR2 publication-title: Empir Softw Eng doi: 10.1007/s10664-020-09857-0 – ident: 10246_CR12 doi: 10.1109/WPC.1998.693322 – volume: 1 start-page: 254 issue: 3 year: 1983 ident: 10246_CR23 publication-title: ACM Trans Inf Syst doi: 10.1145/357436.357440 – ident: 10246_CR32 doi: 10.1109/ICSME.2017.17 – ident: 10246_CR11 doi: 10.1109/ASE.1998.732658 – ident: 10246_CR31 doi: 10.1109/BigData50022.2020.9378083 – ident: 10246_CR33 doi: 10.1145/2786805.2786855 – ident: 10246_CR3 doi: 10.1109/MS.2021.3090978 – ident: 10246_CR28 doi: 10.1109/ICSM.2015.7332447 – ident: 10246_CR1 – ident: 10246_CR19 doi: 10.1016/B978-0-12-805390-4.00011-X – volume: 20 start-page: 433 year: 2017 ident: 10246_CR22 publication-title: Inf Retr doi: 10.1007/s10791-017-9305-y – ident: 10246_CR38 doi: 10.1145/985692.985745 – ident: 10246_CR35 doi: 10.1145/1181775.1181779 – ident: 10246_CR4 doi: 10.1145/3387904.3389274 – ident: 10246_CR6 doi: 10.1109/HICSS.1990.205259 – ident: 10246_CR37 doi: 10.1145/2858036.2858469 – ident: 10246_CR16 doi: 10.1109/ICSE.2007.45 – ident: 10246_CR30 doi: 10.1007/3-540-44963-9_8 – ident: 10246_CR18 doi: 10.1145/1357054.1357261 – volume: 7 start-page: 40 year: 2019 ident: 10246_CR26 publication-title: Commun Des Q Rev doi: 10.1145/3358931.3358937 – ident: 10246_CR21 doi: 10.1145/3449240 – volume: 106 start-page: 643 year: 1999 ident: 10246_CR29 publication-title: Psychol Rev doi: 10.1037/0033-295X.106.4.643 – ident: 10246_CR9 doi: 10.1109/ICSE.2012.6227187 – volume: 22 start-page: 3149 year: 2017 ident: 10246_CR40 publication-title: Empir Softw Eng doi: 10.1007/s10664-017-9514-4 – ident: 10246_CR7 doi: 10.1145/3377811.3380330 – ident: 10246_CR10 doi: 10.1145/2775441.2775457 – ident: 10246_CR39 doi: 10.1145/3194793.3194796 |
SSID | ssj0009745 |
Score | 2.3836644 |
Snippet | When learning a new technology, programmers often have to sift through multiple online resources to find information that addresses their questions. Prior work... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 23 |
SubjectTerms | Compilers Computer Science Distance learning Internet resources Interpreters New technology Programmers Programming Languages Quantitative analysis Questions Software Engineering/Programming and Operating Systems |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu7DwRhQK8sAGhhQ7djIhQK0qJCqEqNQt8pMFtaUtQv33-BqHCCSYk3j47Hvk7vx9AGd5muoQ6BjVmQ8_KFxYqjuGU6fy3EsutBd4d_hxIPpD_jBKR7HgNo9jlZVPXDlqOzFYI7-6RuJ1GY6bvJm-U1SNwu5qlNBYh2ZwwVnWgOZdd_D0XNPuypVMMRLtURaie7w2Ey_PCcEpTrOHIMsFXf4MTXW--atFuoo8vW3YjCkjuS33eAfW3HgXtio5BhKtcw8u-5NPEuetsBpNsB9NSioMEtUhXsks1uvn-zDsdV_u-zTKIVAT7GRBvUsTJbzhRnKbe-GEFI4zFVBVTCqbW-yicJN7FZIwyWTCbeK8U8ox5_KEHUBjPBm7QyCJtkw6o7CcwRPmMq5VZqzrSKZRAb0FnQqJwkSucJSseCtqlmNErwjoFSv0imULzr-_mZZMGf--3a4ALqLVzIt6j1twUYFeP_57taP_VzuGDVSJL0fH2tBYzD7cScglFvo0HpgvDyDFLw priority: 102 providerName: ProQuest |
Title | How programmers find online learning resources |
URI | https://link.springer.com/article/10.1007/s10664-022-10246-y https://www.proquest.com/docview/2757874887 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RdmHhG1EolQc2MEprx07GgloqEBVCVCqTZTs2C2pRW4T677EThwACJKYMcTy8-Hxn3917ACdpHCvn6AhWiXUHFMoyrDqaYiPT1HLKlGW-d_h2xIZjej2JJ6EpbFFWu5cpyXyn_tTsxhjFvvrcOUXK8KoGjdid3X0h17jbq6h2eS5N7Mn1MHEePbTK_DzHV3dUxZjf0qK5txlswUYIE1Gv-K_bsGamO7BZSjCgYJG7cD6cvaFQY-VvoJHPQaOC_gIFRYgnNA939Is9GA_6D5dDHCQQsHa2scTWxJFkVlPNaZZaZhhnhhLpkJSEyyzNfOaE6tRKF3hxwiOaRcYaKQ0xJo3IPtSns6k5ABSpjHCjpb_CoBExCVUy0ZnpcKK86nkTOiUSQgd-cC9T8SwqZmOPnnDoiRw9sWrC6cc3LwU7xp-jWyXAIljKQnQ9oT532whvwlkJevX699kO_zf8CNa9UnxRPtaC-nL-ao5dPLFUbaglg6s2NHpXjzd997zoj-7u2_miegcjAMUa |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGWDhjShPDzCBIa0duxkQQkAp9DG1UrfgOA4LaktbhPqn-I34EocIJNg6J7GS8xff2Xf3fQAnge9H1tExGtUSu0HhIqZRRXNqVBAkkosoEdg73O6IRo8_9f3-AnzmvTBYVpmvielCHQ81npFfVpF4XVq4yevRG0XVKMyu5hIaGSyaZvZht2yTq8c7O7-n1Wr9vnvboE5VgGoLtylNjO8pkWiuJY-DRBghheFM2ZdTTKo4iDEZwXWQKBvLSCY9HnsmMUoZZkzgMTvuIizZ7wtws1erPxQkvzIVRUZaP8psLOGadFyrnhCcYu28delc0NlPR1hEt78Ssqmfq6_DqgtQyU2GqA1YMINNWMvFH4hbC7bgojH8IK66C8--CWa_SUa8QZwWxQsZu-zAZBt6czHTDpQGw4HZBeJFMZNGKzw84R4zNR6pmo5NRbII9dbLUMktEWrHTI4CGa9hwamM1gut9cLUeuGsDGffz4wyXo5_7z7IDRy6f3QSFogqw3lu9OLy36Pt_T_aMSw3uu1W2HrsNPdhBfXps6K1AyhNx-_m0EYx0-gohQ6B53lj9Qu1zgI- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BKyEu7IhCAR_gBIa0du3mgBBLq7JVCIHELTiOzQW1pS2q-mt8HZ7GIQIJbj0nGUUvL56xZ3kAe2GtFjtHx2hct26DwkVC44rm1KgwtJKL2ArsHb5ri9YTv36uPc_AZ9YLg2WV2Zo4WaiTrsYz8uMqDl6Xjm7y2PqyiPvL5mnvnaKCFGZaMzmNlCI3Zjxy27fBydWl-9b71Wqz8XjRol5hgGpHvSG1phYoYTXXkiehFUZIYThT7kUVkyoJE0xMcB1a5eIayWTAk8BYo5RhxoQBc3ZnoShxV1SA4nmjff-Qj_yVE4lkHPJHmYssfMuOb9wTglOspHcOngs6_ukW81j3V3p24vWaS7Dgw1VylvJrGWZMZwUWMykI4leGVThqdUfE13rhSTjBXDhJx3AQr0zxSvo-VzBYg6epALUOhU63YzaABHHCpNEKj1J4wEydx6quE1ORLEb19RJUMiQi7eeUo1zGW5RPWEb0IodeNEEvGpfg4PuZXjql49-7yxnAkf9jB1HOrxIcZqDnl_-2tvm_tV2YczyNbq_aN1swj2L1aQVbGQrD_ofZdiHNMN7x3CHwMm26fgEHowfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+programmers+find+online+learning+resources&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Arya%2C+Deeksha+M.&rft.au=Guo%2C+Jin+L.+C.&rft.au=Robillard%2C+Martin+P.&rft.date=2023-03-01&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1007%2Fs10664-022-10246-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10664_022_10246_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon |