How programmers find online learning resources

When learning a new technology, programmers often have to sift through multiple online resources to find information that addresses their questions. Prior work has reported that information seekers use a number of different strategies, including following scents , or indicators, to locate appropriat...

Full description

Saved in:
Bibliographic Details
Published inEmpirical software engineering : an international journal Vol. 28; no. 2; p. 23
Main Authors Arya, Deeksha M., Guo, Jin L. C., Robillard, Martin P.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When learning a new technology, programmers often have to sift through multiple online resources to find information that addresses their questions. Prior work has reported that information seekers use a number of different strategies, including following scents , or indicators, to locate appropriate resources. We present a qualitative and quantitative investigation of how programmers learning a new technology employ these strategies to navigate between online resources and evaluate the pertinence of these resources. We performed a diary and interview study with ten programmers learning a new technology, to study how users navigate from the question they have to the resource that satisfies this need. Based on our observations, we propose a resource-seeking model that represents the online resource seeking behaviour of programmers when learning a new technology. The model is comprised of six components that can be divided into two groups: Need-oriented components, i.e. Questions, Preferences, and Beliefs, and Resource-oriented components, i.e. Resources, Cues, and Impression Factors. We identified nine relations between these components and studied how the components are associated. We report on the characteristics of the components and the relationships between them, and discuss the importance of search customization and other implications of our observations for resource creators and search tools.
AbstractList When learning a new technology, programmers often have to sift through multiple online resources to find information that addresses their questions. Prior work has reported that information seekers use a number of different strategies, including following scents, or indicators, to locate appropriate resources. We present a qualitative and quantitative investigation of how programmers learning a new technology employ these strategies to navigate between online resources and evaluate the pertinence of these resources. We performed a diary and interview study with ten programmers learning a new technology, to study how users navigate from the question they have to the resource that satisfies this need. Based on our observations, we propose a resource-seeking model that represents the online resource seeking behaviour of programmers when learning a new technology. The model is comprised of six components that can be divided into two groups: Need-oriented components, i.e. Questions, Preferences, and Beliefs, and Resource-oriented components, i.e. Resources, Cues, and Impression Factors. We identified nine relations between these components and studied how the components are associated. We report on the characteristics of the components and the relationships between them, and discuss the importance of search customization and other implications of our observations for resource creators and search tools.
When learning a new technology, programmers often have to sift through multiple online resources to find information that addresses their questions. Prior work has reported that information seekers use a number of different strategies, including following scents , or indicators, to locate appropriate resources. We present a qualitative and quantitative investigation of how programmers learning a new technology employ these strategies to navigate between online resources and evaluate the pertinence of these resources. We performed a diary and interview study with ten programmers learning a new technology, to study how users navigate from the question they have to the resource that satisfies this need. Based on our observations, we propose a resource-seeking model that represents the online resource seeking behaviour of programmers when learning a new technology. The model is comprised of six components that can be divided into two groups: Need-oriented components, i.e. Questions, Preferences, and Beliefs, and Resource-oriented components, i.e. Resources, Cues, and Impression Factors. We identified nine relations between these components and studied how the components are associated. We report on the characteristics of the components and the relationships between them, and discuss the importance of search customization and other implications of our observations for resource creators and search tools.
ArticleNumber 23
Author Arya, Deeksha M.
Robillard, Martin P.
Guo, Jin L. C.
Author_xml – sequence: 1
  givenname: Deeksha M.
  orcidid: 0000-0002-3719-5011
  surname: Arya
  fullname: Arya, Deeksha M.
  email: deeksha.arya@mail.mcgill.ca
  organization: School of Computer Science, McGill University
– sequence: 2
  givenname: Jin L. C.
  orcidid: 0000-0003-1782-1545
  surname: Guo
  fullname: Guo, Jin L. C.
  organization: School of Computer Science, McGill University
– sequence: 3
  givenname: Martin P.
  orcidid: 0000-0002-0248-1384
  surname: Robillard
  fullname: Robillard, Martin P.
  organization: School of Computer Science, McGill University
BookMark eNp9kMFKAzEQhoNUsK2-gKcFz6mTTTazOUpRKxS86DmE3UnZss3WZIv07Y1WEDz0NHP4v5mfb8YmYQjE2K2AhQDA-yRAa8WhLLmAUml-vGBTUaHkqIWe5F3WJZdlpa_YLKUtABhU1ZQtVsNnsY_DJrrdjmIqfBfaYgh9F6joycXQhU0RKQ2H2FC6Zpfe9YlufuecvT89vi1XfP36_LJ8WPNGCjNyTxU47RvVoGqN16RRk5LOGeMkuta0WleoGuMdVIgSQbVAnpwjSWRAztnd6W6u9nGgNNptLhDyS1tihTWqusacqk-pJg4pRfK26UY3dkMYo-t6K8B-27EnOzbbsT927DGj5T90H7udi8fzkDxBKYfDhuJfqzPUF1Grejg
CitedBy_id crossref_primary_10_1109_TSE_2023_3332568
Cites_doi 10.1145/1518701.1518944
10.1016/j.ipm.2011.08.009
10.1145/1985429.1985440
10.1016/B978-0-12-805390-4.00006-6
10.1109/ICSME46990.2020.00052
10.1075/hts.1.thi1
10.1109/ICSE-SEET.2019.00026
10.2307/2529310
10.1109/SANER48275.2020.9054828
10.1145/3369255.3369258
10.1007/s10664-020-09857-0
10.1109/WPC.1998.693322
10.1145/357436.357440
10.1109/ICSME.2017.17
10.1109/ASE.1998.732658
10.1109/BigData50022.2020.9378083
10.1145/2786805.2786855
10.1109/MS.2021.3090978
10.1109/ICSM.2015.7332447
10.1016/B978-0-12-805390-4.00011-X
10.1007/s10791-017-9305-y
10.1145/985692.985745
10.1145/1181775.1181779
10.1145/3387904.3389274
10.1109/HICSS.1990.205259
10.1145/2858036.2858469
10.1109/ICSE.2007.45
10.1007/3-540-44963-9_8
10.1145/1357054.1357261
10.1145/3358931.3358937
10.1145/3449240
10.1037/0033-295X.106.4.643
10.1109/ICSE.2012.6227187
10.1007/s10664-017-9514-4
10.1145/3377811.3380330
10.1145/2775441.2775457
10.1145/3194793.3194796
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10664-022-10246-y
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Technology Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID 10_1007_s10664_022_10246_y
GrantInformation_xml – fundername: natural sciences and engineering research council of canada
  funderid: https://doi.org/10.13039/501100000038
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-fe50a6fc4c74d9f6e676e43aa99a37ad9d66574c9fa05773704d0efeaae3ee903
IEDL.DBID U2A
ISSN 1382-3256
IngestDate Fri Jul 25 12:29:37 EDT 2025
Thu Apr 24 23:11:16 EDT 2025
Tue Jul 01 03:32:21 EDT 2025
Fri Feb 21 02:43:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Online learning resources
Information seeking
Software documentation
User study
Diary study
Qualitative analysis
Quantitative analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-fe50a6fc4c74d9f6e676e43aa99a37ad9d66574c9fa05773704d0efeaae3ee903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0248-1384
0000-0002-3719-5011
0000-0003-1782-1545
PQID 2757874887
PQPubID 326341
ParticipantIDs proquest_journals_2757874887
crossref_citationtrail_10_1007_s10664_022_10246_y
crossref_primary_10_1007_s10664_022_10246_y
springer_journals_10_1007_s10664_022_10246_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Lazar J, Feng JH, Hochheiser H Lazar J, Feng J H, Hochheiser H (eds) (2017a) Chapter 11—analyzing qualitative data. Morgan Kaufmann, Boston
MengMSteinhardtSSchubertAHow developers use API documentation: an observation studyCommun Des Q Rev20197404910.1145/3358931.3358937
MehtaCRPatelNRIBM SPSS exact tests2011ArmonkIBM Corporation
Bai GR, Kayani J, Stolee KT (2020) How graduate computing students search when using an unfamiliar programming language. In: Proceedings of the 28th international conference on program comprehension, ICPC, Association for computing machinery, pp 160–171
Pirolli P, Fu WT (2003) SNIF-ACT: a model of information foraging on the World Wide Web
XiaXBaoLLoDKochharPSHassanAXingZWhat do developers search for on the web?Empir Softw Eng2017223149318510.1007/s10664-017-9514-4
Gallardo-Valencia RE, Sim SE (2011) What kinds of development problems can be solved by searching the web?: a field study. In: Proceedings—international conference on software engineering, pp 41–44
Piorkowski D, Fleming SD, Scaffidi C, Burnett M, Kwan I, Henley AZ, Macbeth J, Hill C, Horvath A (2015) To fix or to learn? How production bias affects developers’ information foraging during debugging. In: IEEE International conference on software maintenance and evolution (ICSME), pp 11–20
SprentPFisher exact test2011BerlinSpringer524525
Escobar-Avila J, Venuti D, Di Penta M, Haiduc S (2019) A survey on online learning preferences for computer science and programming. In: Proceedings of international conference on software engineering: software engineering education and training (ICSE-SEET), pp 170–181
Srinivasa Ragavan S, Kuttal SK, Hill C, Sarma A, Piorkowski D, Burnett M (2016) Foraging among an overabundance of similar variants. In: Proceedings of the 2016 CHI conference on human factors in computing systems, CHI ’16. Association for Computing Machinery, New York, pp 3509–3521
Jääskeläinen R (2010) Think-aloud protocol. In: Handbook of translation studies, vol 1, pp 371–374
Marques A, Bradley NC, Murphy GC (2020) Characterizing task-relevant information in natural language software artifacts. In: IEEE international conference on software maintenance and evolution (ICSME), pp 476–487
Treude C, Aniche M (2018) Where does google find API documentation?. In: Proceedings of international conference on software engineering. ACM, pp 23–26
Sillito J, Murphy GC, De Volder K (2006) Questions programmers ask during software evolution tasks. In: Proceedings of the SIGSOFT international symposium on foundations of software engineering (FSE). Association for Computing Machinery, pp 23–34
XieIJooSFactors affecting the selection of search tactics: tasks, knowledge, process, and systemsInf Process Manag201248225427010.1016/j.ipm.2011.08.009
Liu MX, Kittur A, Myers BA (2021) To reuse or not to reuse? A framework and system for evaluating summarized knowledge. In: Proceedings of the ACM on human-computer interaction (CSCW1)
Arya DM, Nassif M, Robillard MP (2021) A data-centric study of software tutorial design. IEEE Softw
Erdos K, Sneed HM (1998) Partial comprehension of complex programs (enough to perform maintenance). In: Proceedings. 6th International workshop on program comprehension. IWPC’98, pp 98–105
Nadi S, Treude C (2020) Essential sentences for navigating stack overflow answers. In: International conference on software analysis, evolution and reengineering (SANER). IEEE, pp 229–239
Duala-Ekoko E, Robillard MP (2012) Asking and answering questions about unfamiliar apis: an exploratory study. In: 2012 34th International conference on software engineering (ICSE). IEEE, pp 266–276
Lazar J, Feng JH, Hochheiser H (2017b) Chapter 6—diaries. In: Lazar J, Feng J H, Hochheiser H (eds) Research methods in human computer interaction, 2nd edn. Morgan Kaufmann, Boston, pp 135–152
Dondio P, Shaheen S (2019) Is Stack Overflow an effective complement to gaining practical knowledge compared to traditional computer science learning?. In: Proceedings of the international conference on education technology and computers (ICETC), pp 132–138
PirolliPCardSInformation foragingPsychol Rev199910664367510.1037/0033-295X.106.4.643
Earle RH, Rosso MA, Alexander KE (2015) User preferences of software documentation genres. In: Proceedings of the 33rd annual international conference on the design of communication, SIGDOC ’15. Association for Computing Machinery
SharpeDChi-square test is statistically significant: now what?Pract Assess Res Eval20152018
Abdi H et al (2007) Bonferroni and šidák corrections for multiple comparisons. In: Encyclopedia of measurement and statistics, vol 3, pp 103–107
Sadowski C, Stolee KT, Elbaum S (2015) How developers search for code: a case study. In: Proceedings of the 10th joint meeting on foundations of software engineering, ESEC/FSE. Association for Computing Machinery, pp 191–201
Brandt J, Guo PJ, Lewenstein J, Dontcheva M, Klemmer SR (2009) Two studies of opportunistic programming: interleaving web foraging, learning, and writing code. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’09. Association for Computing Machinery, pp 1589–1598
MackRLLewisCHCarrollJMLearning to use word processors: problems and prospectsACM Trans Inf Syst19831325427110.1145/357436.357440
AryaDMGuoJLCRobillardMPInformation correspondence between types of documentation for APIsEmpir Softw Eng20202554069409610.1007/s10664-020-09857-0
Chattopadhyay S, Nelson N, Au A, Morales N, Sanchez C, Pandita R, Sarma A (2020) A tale from the trenches: cognitive biases and software development. In: Proceedings of the 42nd ACM/IEEE international conference on software engineering, ICSE ’20. Association for Computing Machinery, New York, pp 654–665
Robillard MP, Marcus A, Treude C, Bavota G, Chaparro O, Ernst N, Gerosa MA, Godfrey M, Lanza M, Linares-vásquez M, Murphy GC, Moreno L, Shepherd D, Wong E (2017) On-demand developer documentation. In: International conference on software maintenance and evolution (ICSME). IEEE, pp 479–483
LuYHsiaoIHPersonalized information seeking assistant (pisa): from programming information seeking to learningInf Retr20172043345510.1007/s10791-017-9305-y
Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated software development teams. In: 29th International conference on software engineering, pp 344–353
Lawrance J, Bellamy R, Burnett M, Rector K (2008) Using information scent to model the dynamic foraging behavior of programmers in maintenance tasks. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’08. Association for Computing Machinery, pp 1323–1332
Erdem A, Marsella S, Johnson W (1998) Task oriented software understanding. In: Proceedings of international conference on automated software engineering. IEEE Computer Society, p 230
LandisJRKochGThe measurement of observer agreement for categorical dataBiometrics19773315917410.2307/25293100351.62039
Rao N, Bansal C, Zimmermann T, Awadallah AH, Nagappan N (2019) Analyzing web search behavior for software engineering tasks. arXiv:1912.09519
Carroll J (1990) An overview of minimalist instruction. In: Annual Hawaii international conference on system sciences, vol 4. IEEE Computer Society, pp 210–219
Teevan J, Alvarado C, Ackerman MS, Karger DR (2004) The perfect search engine is not enough: a study of orienteering behavior in directed search. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 415–422
10246_CR18
P Pirolli (10246_CR29) 1999; 106
10246_CR19
Y Lu (10246_CR22) 2017; 20
10246_CR9
RL Mack (10246_CR23) 1983; 1
D Sharpe (10246_CR34) 2015; 20
DM Arya (10246_CR2) 2020; 25
CR Mehta (10246_CR25) 2011
10246_CR20
P Sprent (10246_CR36) 2011
X Xia (10246_CR40) 2017; 22
10246_CR24
10246_CR21
M Meng (10246_CR26) 2019; 7
10246_CR27
10246_CR28
JR Landis (10246_CR17) 1977; 33
10246_CR3
10246_CR4
10246_CR1
10246_CR7
10246_CR30
10246_CR8
10246_CR31
10246_CR5
10246_CR6
10246_CR12
I Xie (10246_CR41) 2012; 48
10246_CR13
10246_CR35
10246_CR10
10246_CR32
10246_CR11
10246_CR33
10246_CR16
10246_CR38
10246_CR39
10246_CR14
10246_CR15
10246_CR37
References_xml – reference: Erdos K, Sneed HM (1998) Partial comprehension of complex programs (enough to perform maintenance). In: Proceedings. 6th International workshop on program comprehension. IWPC’98, pp 98–105
– reference: MehtaCRPatelNRIBM SPSS exact tests2011ArmonkIBM Corporation
– reference: Lazar J, Feng JH, Hochheiser H Lazar J, Feng J H, Hochheiser H (eds) (2017a) Chapter 11—analyzing qualitative data. Morgan Kaufmann, Boston
– reference: Arya DM, Nassif M, Robillard MP (2021) A data-centric study of software tutorial design. IEEE Softw
– reference: Chattopadhyay S, Nelson N, Au A, Morales N, Sanchez C, Pandita R, Sarma A (2020) A tale from the trenches: cognitive biases and software development. In: Proceedings of the 42nd ACM/IEEE international conference on software engineering, ICSE ’20. Association for Computing Machinery, New York, pp 654–665
– reference: Duala-Ekoko E, Robillard MP (2012) Asking and answering questions about unfamiliar apis: an exploratory study. In: 2012 34th International conference on software engineering (ICSE). IEEE, pp 266–276
– reference: Sillito J, Murphy GC, De Volder K (2006) Questions programmers ask during software evolution tasks. In: Proceedings of the SIGSOFT international symposium on foundations of software engineering (FSE). Association for Computing Machinery, pp 23–34
– reference: LandisJRKochGThe measurement of observer agreement for categorical dataBiometrics19773315917410.2307/25293100351.62039
– reference: Sadowski C, Stolee KT, Elbaum S (2015) How developers search for code: a case study. In: Proceedings of the 10th joint meeting on foundations of software engineering, ESEC/FSE. Association for Computing Machinery, pp 191–201
– reference: SharpeDChi-square test is statistically significant: now what?Pract Assess Res Eval20152018
– reference: SprentPFisher exact test2011BerlinSpringer524525
– reference: Lazar J, Feng JH, Hochheiser H (2017b) Chapter 6—diaries. In: Lazar J, Feng J H, Hochheiser H (eds) Research methods in human computer interaction, 2nd edn. Morgan Kaufmann, Boston, pp 135–152
– reference: LuYHsiaoIHPersonalized information seeking assistant (pisa): from programming information seeking to learningInf Retr20172043345510.1007/s10791-017-9305-y
– reference: MackRLLewisCHCarrollJMLearning to use word processors: problems and prospectsACM Trans Inf Syst19831325427110.1145/357436.357440
– reference: Earle RH, Rosso MA, Alexander KE (2015) User preferences of software documentation genres. In: Proceedings of the 33rd annual international conference on the design of communication, SIGDOC ’15. Association for Computing Machinery
– reference: Brandt J, Guo PJ, Lewenstein J, Dontcheva M, Klemmer SR (2009) Two studies of opportunistic programming: interleaving web foraging, learning, and writing code. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’09. Association for Computing Machinery, pp 1589–1598
– reference: Robillard MP, Marcus A, Treude C, Bavota G, Chaparro O, Ernst N, Gerosa MA, Godfrey M, Lanza M, Linares-vásquez M, Murphy GC, Moreno L, Shepherd D, Wong E (2017) On-demand developer documentation. In: International conference on software maintenance and evolution (ICSME). IEEE, pp 479–483
– reference: Marques A, Bradley NC, Murphy GC (2020) Characterizing task-relevant information in natural language software artifacts. In: IEEE international conference on software maintenance and evolution (ICSME), pp 476–487
– reference: Bai GR, Kayani J, Stolee KT (2020) How graduate computing students search when using an unfamiliar programming language. In: Proceedings of the 28th international conference on program comprehension, ICPC, Association for computing machinery, pp 160–171
– reference: Carroll J (1990) An overview of minimalist instruction. In: Annual Hawaii international conference on system sciences, vol 4. IEEE Computer Society, pp 210–219
– reference: Dondio P, Shaheen S (2019) Is Stack Overflow an effective complement to gaining practical knowledge compared to traditional computer science learning?. In: Proceedings of the international conference on education technology and computers (ICETC), pp 132–138
– reference: Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated software development teams. In: 29th International conference on software engineering, pp 344–353
– reference: Gallardo-Valencia RE, Sim SE (2011) What kinds of development problems can be solved by searching the web?: a field study. In: Proceedings—international conference on software engineering, pp 41–44
– reference: Rao N, Bansal C, Zimmermann T, Awadallah AH, Nagappan N (2019) Analyzing web search behavior for software engineering tasks. arXiv:1912.09519
– reference: Nadi S, Treude C (2020) Essential sentences for navigating stack overflow answers. In: International conference on software analysis, evolution and reengineering (SANER). IEEE, pp 229–239
– reference: XieIJooSFactors affecting the selection of search tactics: tasks, knowledge, process, and systemsInf Process Manag201248225427010.1016/j.ipm.2011.08.009
– reference: Lawrance J, Bellamy R, Burnett M, Rector K (2008) Using information scent to model the dynamic foraging behavior of programmers in maintenance tasks. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’08. Association for Computing Machinery, pp 1323–1332
– reference: Erdem A, Marsella S, Johnson W (1998) Task oriented software understanding. In: Proceedings of international conference on automated software engineering. IEEE Computer Society, p 230
– reference: PirolliPCardSInformation foragingPsychol Rev199910664367510.1037/0033-295X.106.4.643
– reference: MengMSteinhardtSSchubertAHow developers use API documentation: an observation studyCommun Des Q Rev20197404910.1145/3358931.3358937
– reference: Teevan J, Alvarado C, Ackerman MS, Karger DR (2004) The perfect search engine is not enough: a study of orienteering behavior in directed search. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 415–422
– reference: Liu MX, Kittur A, Myers BA (2021) To reuse or not to reuse? A framework and system for evaluating summarized knowledge. In: Proceedings of the ACM on human-computer interaction (CSCW1)
– reference: Escobar-Avila J, Venuti D, Di Penta M, Haiduc S (2019) A survey on online learning preferences for computer science and programming. In: Proceedings of international conference on software engineering: software engineering education and training (ICSE-SEET), pp 170–181
– reference: XiaXBaoLLoDKochharPSHassanAXingZWhat do developers search for on the web?Empir Softw Eng2017223149318510.1007/s10664-017-9514-4
– reference: Abdi H et al (2007) Bonferroni and šidák corrections for multiple comparisons. In: Encyclopedia of measurement and statistics, vol 3, pp 103–107
– reference: Pirolli P, Fu WT (2003) SNIF-ACT: a model of information foraging on the World Wide Web
– reference: Srinivasa Ragavan S, Kuttal SK, Hill C, Sarma A, Piorkowski D, Burnett M (2016) Foraging among an overabundance of similar variants. In: Proceedings of the 2016 CHI conference on human factors in computing systems, CHI ’16. Association for Computing Machinery, New York, pp 3509–3521
– reference: Jääskeläinen R (2010) Think-aloud protocol. In: Handbook of translation studies, vol 1, pp 371–374
– reference: Treude C, Aniche M (2018) Where does google find API documentation?. In: Proceedings of international conference on software engineering. ACM, pp 23–26
– reference: AryaDMGuoJLCRobillardMPInformation correspondence between types of documentation for APIsEmpir Softw Eng20202554069409610.1007/s10664-020-09857-0
– reference: Piorkowski D, Fleming SD, Scaffidi C, Burnett M, Kwan I, Henley AZ, Macbeth J, Hill C, Horvath A (2015) To fix or to learn? How production bias affects developers’ information foraging during debugging. In: IEEE International conference on software maintenance and evolution (ICSME), pp 11–20
– ident: 10246_CR5
  doi: 10.1145/1518701.1518944
– volume: 48
  start-page: 254
  issue: 2
  year: 2012
  ident: 10246_CR41
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2011.08.009
– ident: 10246_CR14
  doi: 10.1145/1985429.1985440
– ident: 10246_CR20
  doi: 10.1016/B978-0-12-805390-4.00006-6
– ident: 10246_CR24
  doi: 10.1109/ICSME46990.2020.00052
– ident: 10246_CR15
  doi: 10.1075/hts.1.thi1
– start-page: 524
  volume-title: Fisher exact test
  year: 2011
  ident: 10246_CR36
– volume-title: IBM SPSS exact tests
  year: 2011
  ident: 10246_CR25
– volume: 20
  start-page: 8
  issue: 1
  year: 2015
  ident: 10246_CR34
  publication-title: Pract Assess Res Eval
– ident: 10246_CR13
  doi: 10.1109/ICSE-SEET.2019.00026
– volume: 33
  start-page: 159
  year: 1977
  ident: 10246_CR17
  publication-title: Biometrics
  doi: 10.2307/2529310
– ident: 10246_CR27
  doi: 10.1109/SANER48275.2020.9054828
– ident: 10246_CR8
  doi: 10.1145/3369255.3369258
– volume: 25
  start-page: 4069
  issue: 5
  year: 2020
  ident: 10246_CR2
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-020-09857-0
– ident: 10246_CR12
  doi: 10.1109/WPC.1998.693322
– volume: 1
  start-page: 254
  issue: 3
  year: 1983
  ident: 10246_CR23
  publication-title: ACM Trans Inf Syst
  doi: 10.1145/357436.357440
– ident: 10246_CR32
  doi: 10.1109/ICSME.2017.17
– ident: 10246_CR11
  doi: 10.1109/ASE.1998.732658
– ident: 10246_CR31
  doi: 10.1109/BigData50022.2020.9378083
– ident: 10246_CR33
  doi: 10.1145/2786805.2786855
– ident: 10246_CR3
  doi: 10.1109/MS.2021.3090978
– ident: 10246_CR28
  doi: 10.1109/ICSM.2015.7332447
– ident: 10246_CR1
– ident: 10246_CR19
  doi: 10.1016/B978-0-12-805390-4.00011-X
– volume: 20
  start-page: 433
  year: 2017
  ident: 10246_CR22
  publication-title: Inf Retr
  doi: 10.1007/s10791-017-9305-y
– ident: 10246_CR38
  doi: 10.1145/985692.985745
– ident: 10246_CR35
  doi: 10.1145/1181775.1181779
– ident: 10246_CR4
  doi: 10.1145/3387904.3389274
– ident: 10246_CR6
  doi: 10.1109/HICSS.1990.205259
– ident: 10246_CR37
  doi: 10.1145/2858036.2858469
– ident: 10246_CR16
  doi: 10.1109/ICSE.2007.45
– ident: 10246_CR30
  doi: 10.1007/3-540-44963-9_8
– ident: 10246_CR18
  doi: 10.1145/1357054.1357261
– volume: 7
  start-page: 40
  year: 2019
  ident: 10246_CR26
  publication-title: Commun Des Q Rev
  doi: 10.1145/3358931.3358937
– ident: 10246_CR21
  doi: 10.1145/3449240
– volume: 106
  start-page: 643
  year: 1999
  ident: 10246_CR29
  publication-title: Psychol Rev
  doi: 10.1037/0033-295X.106.4.643
– ident: 10246_CR9
  doi: 10.1109/ICSE.2012.6227187
– volume: 22
  start-page: 3149
  year: 2017
  ident: 10246_CR40
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-017-9514-4
– ident: 10246_CR7
  doi: 10.1145/3377811.3380330
– ident: 10246_CR10
  doi: 10.1145/2775441.2775457
– ident: 10246_CR39
  doi: 10.1145/3194793.3194796
SSID ssj0009745
Score 2.3836644
Snippet When learning a new technology, programmers often have to sift through multiple online resources to find information that addresses their questions. Prior work...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23
SubjectTerms Compilers
Computer Science
Distance learning
Internet resources
Interpreters
New technology
Programmers
Programming Languages
Quantitative analysis
Questions
Software Engineering/Programming and Operating Systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu7DwRhQK8sAGhhQ7djIhQK0qJCqEqNQt8pMFtaUtQv33-BqHCCSYk3j47Hvk7vx9AGd5muoQ6BjVmQ8_KFxYqjuGU6fy3EsutBd4d_hxIPpD_jBKR7HgNo9jlZVPXDlqOzFYI7-6RuJ1GY6bvJm-U1SNwu5qlNBYh2ZwwVnWgOZdd_D0XNPuypVMMRLtURaie7w2Ey_PCcEpTrOHIMsFXf4MTXW--atFuoo8vW3YjCkjuS33eAfW3HgXtio5BhKtcw8u-5NPEuetsBpNsB9NSioMEtUhXsks1uvn-zDsdV_u-zTKIVAT7GRBvUsTJbzhRnKbe-GEFI4zFVBVTCqbW-yicJN7FZIwyWTCbeK8U8ox5_KEHUBjPBm7QyCJtkw6o7CcwRPmMq5VZqzrSKZRAb0FnQqJwkSucJSseCtqlmNErwjoFSv0imULzr-_mZZMGf--3a4ALqLVzIt6j1twUYFeP_57taP_VzuGDVSJL0fH2tBYzD7cScglFvo0HpgvDyDFLw
  priority: 102
  providerName: ProQuest
Title How programmers find online learning resources
URI https://link.springer.com/article/10.1007/s10664-022-10246-y
https://www.proquest.com/docview/2757874887
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RdmHhG1EolQc2MEprx07GgloqEBVCVCqTZTs2C2pRW4T677EThwACJKYMcTy8-Hxn3917ACdpHCvn6AhWiXUHFMoyrDqaYiPT1HLKlGW-d_h2xIZjej2JJ6EpbFFWu5cpyXyn_tTsxhjFvvrcOUXK8KoGjdid3X0h17jbq6h2eS5N7Mn1MHEePbTK_DzHV3dUxZjf0qK5txlswUYIE1Gv-K_bsGamO7BZSjCgYJG7cD6cvaFQY-VvoJHPQaOC_gIFRYgnNA939Is9GA_6D5dDHCQQsHa2scTWxJFkVlPNaZZaZhhnhhLpkJSEyyzNfOaE6tRKF3hxwiOaRcYaKQ0xJo3IPtSns6k5ABSpjHCjpb_CoBExCVUy0ZnpcKK86nkTOiUSQgd-cC9T8SwqZmOPnnDoiRw9sWrC6cc3LwU7xp-jWyXAIljKQnQ9oT532whvwlkJevX699kO_zf8CNa9UnxRPtaC-nL-ao5dPLFUbaglg6s2NHpXjzd997zoj-7u2_miegcjAMUa
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGWDhjShPDzCBIa0duxkQQkAp9DG1UrfgOA4LaktbhPqn-I34EocIJNg6J7GS8xff2Xf3fQAnge9H1tExGtUSu0HhIqZRRXNqVBAkkosoEdg73O6IRo8_9f3-AnzmvTBYVpmvielCHQ81npFfVpF4XVq4yevRG0XVKMyu5hIaGSyaZvZht2yTq8c7O7-n1Wr9vnvboE5VgGoLtylNjO8pkWiuJY-DRBghheFM2ZdTTKo4iDEZwXWQKBvLSCY9HnsmMUoZZkzgMTvuIizZ7wtws1erPxQkvzIVRUZaP8psLOGadFyrnhCcYu28delc0NlPR1hEt78Ssqmfq6_DqgtQyU2GqA1YMINNWMvFH4hbC7bgojH8IK66C8--CWa_SUa8QZwWxQsZu-zAZBt6czHTDpQGw4HZBeJFMZNGKzw84R4zNR6pmo5NRbII9dbLUMktEWrHTI4CGa9hwamM1gut9cLUeuGsDGffz4wyXo5_7z7IDRy6f3QSFogqw3lu9OLy36Pt_T_aMSw3uu1W2HrsNPdhBfXps6K1AyhNx-_m0EYx0-gohQ6B53lj9Qu1zgI-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BKyEu7IhCAR_gBIa0du3mgBBLq7JVCIHELTiOzQW1pS2q-mt8HZ7GIQIJbj0nGUUvL56xZ3kAe2GtFjtHx2hct26DwkVC44rm1KgwtJKL2ArsHb5ri9YTv36uPc_AZ9YLg2WV2Zo4WaiTrsYz8uMqDl6Xjm7y2PqyiPvL5mnvnaKCFGZaMzmNlCI3Zjxy27fBydWl-9b71Wqz8XjRol5hgGpHvSG1phYoYTXXkiehFUZIYThT7kUVkyoJE0xMcB1a5eIayWTAk8BYo5RhxoQBc3ZnoShxV1SA4nmjff-Qj_yVE4lkHPJHmYssfMuOb9wTglOspHcOngs6_ukW81j3V3p24vWaS7Dgw1VylvJrGWZMZwUWMykI4leGVThqdUfE13rhSTjBXDhJx3AQr0zxSvo-VzBYg6epALUOhU63YzaABHHCpNEKj1J4wEydx6quE1ORLEb19RJUMiQi7eeUo1zGW5RPWEb0IodeNEEvGpfg4PuZXjql49-7yxnAkf9jB1HOrxIcZqDnl_-2tvm_tV2YczyNbq_aN1swj2L1aQVbGQrD_ofZdiHNMN7x3CHwMm26fgEHowfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+programmers+find+online+learning+resources&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Arya%2C+Deeksha+M.&rft.au=Guo%2C+Jin+L.+C.&rft.au=Robillard%2C+Martin+P.&rft.date=2023-03-01&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1007%2Fs10664-022-10246-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10664_022_10246_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon