Superpixel Segmentation Using Gaussian Mixture Model

Superpixel segmentation partitions an image into perceptually coherent segments of similar size, namely, superpixels. It is becoming a fundamental preprocessing step for various computer vision tasks because superpixels significantly reduce the number of inputs and provide a meaningful representatio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 27; no. 8; pp. 4105 - 4117
Main Authors Ban, Zhihua, Liu, Jianguo, Cao, Li
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Superpixel segmentation partitions an image into perceptually coherent segments of similar size, namely, superpixels. It is becoming a fundamental preprocessing step for various computer vision tasks because superpixels significantly reduce the number of inputs and provide a meaningful representation for feature extraction. We present a pixel-related Gaussian mixture model (GMM) to segment images into superpixels. GMM is a weighted sum of Gaussian functions, each one corresponding to a superpixel, to describe the density of each pixel represented by a random variable. Different from previously proposed GMMs, our weights are constant, and Gaussian functions in the sums are subsets of all the Gaussian functions, resulting in segments of similar size and an algorithm of linear complexity with respect to the number of pixels. In addition to the linear complexity, our algorithm is inherently parallel and allows fast execution on multi-core systems. During the expectation-maximization iterations of estimating the unknown parameters in the Gaussian functions, we impose two lower bounds to truncate the eigenvalues of the covariance matrices, which enables the proposed algorithm to control the regularity of superpixels. Experiments on a well-known segmentation dataset show that our method can efficiently produce superpixels that adhere to object boundaries better than the current state-of-the-art methods.
AbstractList Superpixel segmentation partitions an image into perceptually coherent segments of similar size, namely, superpixels. It is becoming a fundamental preprocessing step for various computer vision tasks because superpixels significantly reduce the number of inputs and provide a meaningful representation for feature extraction. We present a pixel-related Gaussian mixture model (GMM) to segment images into superpixels. GMM is a weighted sum of Gaussian functions, each one corresponding to a superpixel, to describe the density of each pixel represented by a random variable. Different from previously proposed GMMs, our weights are constant, and Gaussian functions in the sums are subsets of all the Gaussian functions, resulting in segments of similar size and an algorithm of linear complexity with respect to the number of pixels. In addition to the linear complexity, our algorithm is inherently parallel and allows fast execution on multicore systems. During the expectation-maximization iterations of estimating the unknown parameters in the Gaussian functions, we impose two lower bounds to truncate the eigenvalues of the covariance matrices, which enables the proposed algorithm to control the regularity of superpixels. Experiments on a wellknown segmentation dataset show that our method can efficiently produce superpixels that adhere to object boundaries better than the current state-of-the-art methods.
Superpixel segmentation partitions an image into perceptually coherent segments of similar size, namely, superpixels. It is becoming a fundamental preprocessing step for various computer vision tasks because superpixels significantly reduce the number of inputs and provide a meaningful representation for feature extraction. We present a pixel-related Gaussian mixture model (GMM) to segment images into superpixels. GMM is a weighted sum of Gaussian functions, each one corresponding to a superpixel, to describe the density of each pixel represented by a random variable. Different from previously proposed GMMs, our weights are constant, and Gaussian functions in the sums are subsets of all the Gaussian functions, resulting in segments of similar size and an algorithm of linear complexity with respect to the number of pixels. In addition to the linear complexity, our algorithm is inherently parallel and allows fast execution on multi-core systems. During the expectation-maximization iterations of estimating the unknown parameters in the Gaussian functions, we impose two lower bounds to truncate the eigenvalues of the covariance matrices, which enables the proposed algorithm to control the regularity of superpixels. Experiments on a well-known segmentation dataset show that our method can efficiently produce superpixels that adhere to object boundaries better than the current state-of-the-art methods.
Superpixel segmentation partitions an image into perceptually coherent segments of similar size, namely, superpixels. It is becoming a fundamental preprocessing step for various computer vision tasks because superpixels significantly reduce the number of inputs and provide a meaningful representation for feature extraction. We present a pixel-related Gaussian mixture model (GMM) to segment images into superpixels. GMM is a weighted sum of Gaussian functions, each one corresponding to a superpixel, to describe the density of each pixel represented by a random variable. Different from previously proposed GMMs, our weights are constant, and Gaussian functions in the sums are subsets of all the Gaussian functions, resulting in segments of similar size and an algorithm of linear complexity with respect to the number of pixels. In addition to the linear complexity, our algorithm is inherently parallel and allows fast execution on multicore systems. During the expectation-maximization iterations of estimating the unknown parameters in the Gaussian functions, we impose two lower bounds to truncate the eigenvalues of the covariance matrices, which enables the proposed algorithm to control the regularity of superpixels. Experiments on a wellknown segmentation dataset show that our method can efficiently produce superpixels that adhere to object boundaries better than the current state-of-the-art methods.Superpixel segmentation partitions an image into perceptually coherent segments of similar size, namely, superpixels. It is becoming a fundamental preprocessing step for various computer vision tasks because superpixels significantly reduce the number of inputs and provide a meaningful representation for feature extraction. We present a pixel-related Gaussian mixture model (GMM) to segment images into superpixels. GMM is a weighted sum of Gaussian functions, each one corresponding to a superpixel, to describe the density of each pixel represented by a random variable. Different from previously proposed GMMs, our weights are constant, and Gaussian functions in the sums are subsets of all the Gaussian functions, resulting in segments of similar size and an algorithm of linear complexity with respect to the number of pixels. In addition to the linear complexity, our algorithm is inherently parallel and allows fast execution on multicore systems. During the expectation-maximization iterations of estimating the unknown parameters in the Gaussian functions, we impose two lower bounds to truncate the eigenvalues of the covariance matrices, which enables the proposed algorithm to control the regularity of superpixels. Experiments on a wellknown segmentation dataset show that our method can efficiently produce superpixels that adhere to object boundaries better than the current state-of-the-art methods.
Author Li Cao
Jianguo Liu
Zhihua Ban
Author_xml – sequence: 1
  givenname: Zhihua
  orcidid: 0000-0002-3209-4916
  surname: Ban
  fullname: Ban, Zhihua
– sequence: 2
  givenname: Jianguo
  orcidid: 0000-0002-3620-3905
  surname: Liu
  fullname: Liu, Jianguo
– sequence: 3
  givenname: Li
  surname: Cao
  fullname: Cao, Li
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29994528$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1Lw0AQhhep2A-9C4Lk6CV1J7vZ7B6laC20KLQ9h91kUlbyZTaB-u9NSfXgwdMO7PPOMM9MyaisSiTkFugcgKrH3ep9HlCQ80Aywai4IBNQHHxKeTDqaxpGfgRcjcnUuQ9KgYcgrsg4UErxMJATwrddjU1tj5h7WzwUWLa6tVXp7Z0tD95Sd85ZXXobe2y7Br1NlWJ-TS4znTu8Ob8zsn953i1e_fXbcrV4WvsJA9X6GQI1gnNmKBgeKIgMgDRhIlioRQImkJmkSNOo56MEIBVaZybMTCSzhCk2Iw9D37qpPjt0bVxYl2Ce6xKrzsUBFZJxkDLq0fsz2pkC07hubKGbr_hn0x6gA5A0lXMNZr8I0PgkM-5lxieZ8VlmHxF_Iokd7LSNtvl_wbshaBHxd07_2R-AsW_wS3-y
CODEN IIPRE4
CitedBy_id crossref_primary_10_32604_cmc_2024_046094
crossref_primary_10_1007_s11042_018_6774_y
crossref_primary_10_3390_rs14153731
crossref_primary_10_1158_0008_5472_CAN_19_0573
crossref_primary_10_1007_s00521_023_08579_w
crossref_primary_10_3390_s23021002
crossref_primary_10_1007_s00521_022_07315_0
crossref_primary_10_1109_TCSVT_2022_3221925
crossref_primary_10_1016_j_engappai_2023_107776
crossref_primary_10_1109_TIM_2025_3529072
crossref_primary_10_1007_s00371_020_01852_2
crossref_primary_10_1515_phys_2020_0101
crossref_primary_10_1109_TFUZZ_2019_2930030
crossref_primary_10_1016_j_sigpro_2019_02_015
crossref_primary_10_1109_TIP_2020_3002078
crossref_primary_10_3390_app9112276
crossref_primary_10_1038_s41598_024_68409_4
crossref_primary_10_1109_ACCESS_2021_3134887
crossref_primary_10_1007_s10851_023_01156_9
crossref_primary_10_1109_TIP_2019_2897941
crossref_primary_10_1080_21642583_2023_2185915
crossref_primary_10_1109_ACCESS_2024_3466906
crossref_primary_10_1016_j_scs_2021_103252
crossref_primary_10_1587_transinf_2019EDL8134
crossref_primary_10_1007_s11042_019_08438_8
crossref_primary_10_1016_j_isprsjprs_2024_01_002
crossref_primary_10_1007_s11042_018_6366_x
crossref_primary_10_1109_TIM_2022_3165263
crossref_primary_10_1177_01423312241284660
crossref_primary_10_1109_TFUZZ_2022_3220925
crossref_primary_10_1155_2021_5538927
crossref_primary_10_32604_iasc_2022_024746
crossref_primary_10_3390_rs12071219
crossref_primary_10_1049_iet_ipr_2020_1179
crossref_primary_10_3390_s22186861
crossref_primary_10_1109_LGRS_2024_3454973
crossref_primary_10_3390_drones8040142
crossref_primary_10_1002_ima_22609
crossref_primary_10_1145_3652509
crossref_primary_10_1016_j_dsp_2023_103968
crossref_primary_10_1109_ACCESS_2024_3430931
crossref_primary_10_1109_TGRS_2024_3392971
crossref_primary_10_1049_iet_ipr_2020_0402
crossref_primary_10_1109_TIP_2020_2983554
crossref_primary_10_3390_app132413109
crossref_primary_10_3390_rs15051194
crossref_primary_10_1007_s11517_021_02352_8
crossref_primary_10_1109_TGRS_2025_3539732
crossref_primary_10_1007_s13369_021_05958_0
crossref_primary_10_1109_TGRS_2023_3294884
crossref_primary_10_1016_j_cma_2022_115066
crossref_primary_10_1007_s00158_019_02301_y
crossref_primary_10_1109_TGRS_2022_3168126
crossref_primary_10_1109_TBME_2019_2957535
crossref_primary_10_1007_s11760_020_01647_x
crossref_primary_10_1016_j_sigpro_2021_107990
crossref_primary_10_1109_TGRS_2022_3161139
crossref_primary_10_1016_j_infrared_2022_104400
crossref_primary_10_1109_ACCESS_2021_3081919
crossref_primary_10_1016_j_ress_2021_107885
crossref_primary_10_1587_transinf_2019EDP7322
crossref_primary_10_1109_JPHOTOV_2022_3215890
crossref_primary_10_1109_TBDATA_2024_3423719
crossref_primary_10_1016_j_ibmed_2024_100168
crossref_primary_10_1049_ipr2_12744
crossref_primary_10_1109_ACCESS_2020_2973286
crossref_primary_10_1109_TMM_2022_3141606
crossref_primary_10_1088_2051_672X_ad4571
crossref_primary_10_1016_j_patcog_2023_109673
crossref_primary_10_1016_j_matpr_2020_08_618
crossref_primary_10_1016_j_neucom_2021_08_039
crossref_primary_10_1007_s42979_021_00879_z
crossref_primary_10_1016_j_crmeth_2023_100636
crossref_primary_10_1109_TCSVT_2022_3216303
crossref_primary_10_1016_j_cag_2020_12_002
crossref_primary_10_1080_08839514_2022_2094408
crossref_primary_10_1109_TIP_2021_3108403
crossref_primary_10_1007_s11042_021_11261_9
crossref_primary_10_1117_1_JRS_14_026521
crossref_primary_10_1007_s11042_023_14439_5
crossref_primary_10_1360_SSI_2022_0408
crossref_primary_10_3390_electronics12163481
crossref_primary_10_1016_j_ymssp_2023_110113
crossref_primary_10_1016_j_imavis_2022_104596
Cites_doi 10.1109/TPAMI.2010.161
10.1109/CVPR.2016.77
10.1109/ICCV.2005.112
10.1109/ICIP.2015.7351706
10.1007/s10044-014-0406-6
10.1023/B:VISI.0000022288.19776.77
10.1007/s11263-012-0588-6
10.1049/el.2014.3379
10.1109/TIP.2015.2401516
10.1007/s11554-016-0652-5
10.1145/1276377.1276390
10.1007/978-3-540-74936-3_26
10.1016/j.image.2017.04.007
10.1109/TGRS.2015.2441954
10.1109/ICME.2012.184
10.1109/TPAMI.2016.2552172
10.1109/CVPR.2014.49
10.1109/TPAMI.2004.1273918
10.1109/TMM.2014.2305571
10.1007/978-3-319-10602-1_49
10.1109/TIP.2015.2451011
10.1109/TIP.2014.2302892
10.1109/34.87344
10.5244/C.27.54
10.1016/j.patcog.2015.01.002
10.1007/978-1-4899-7488-4_196
10.1007/s11263-014-0744-2
10.1109/ICPR.2014.181
10.1016/j.neucom.2014.04.037
10.1109/TCSVT.2015.2430631
10.1109/CVPR.2011.5995323
10.1109/CVPR.2008.4587471
10.1109/TIP.2014.2300823
10.1109/ICIP.2015.7351017
10.1016/j.jvcir.2016.08.001
10.1109/ICCV.2011.6126393
10.1109/TPAMI.2009.96
10.1109/CRV.2014.25
10.1109/ICCV.2003.1238308
10.1109/34.868688
10.1109/TPAMI.2012.120
10.1109/ICIAFS.2014.7069599
10.1109/CVPR.2015.7299002
10.1109/TPAMI.2012.47
10.1109/CVPR.2015.7298913
10.1109/CVPR.2015.7298931
10.1109/34.1000236
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2018.2836306
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 4117
ExternalDocumentID 29994528
10_1109_TIP_2018_2836306
8360143
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
Z5M
7X8
ID FETCH-LOGICAL-c319t-fe10b6443b01b42917b118b5c635a6c1b28f80e0d7c317c11d6aafb5fb78fc393
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 07:14:46 EDT 2025
Wed Feb 19 02:09:29 EST 2025
Thu Apr 24 23:08:24 EDT 2025
Tue Jul 01 02:03:17 EDT 2025
Wed Aug 27 02:49:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-fe10b6443b01b42917b118b5c635a6c1b28f80e0d7c317c11d6aafb5fb78fc393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3620-3905
0000-0002-3209-4916
PMID 29994528
PQID 2068341887
PQPubID 23479
PageCount 13
ParticipantIDs crossref_primary_10_1109_TIP_2018_2836306
ieee_primary_8360143
pubmed_primary_29994528
crossref_citationtrail_10_1109_TIP_2018_2836306
proquest_miscellaneous_2068341887
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref56
ref12
ref15
neubert (ref59) 2012
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref48
ref47
ref42
ref41
ref44
ref43
veksler (ref32) 2010
moore (ref35) 2010
ref49
ref8
vedaldi (ref26) 2008
ref7
neubert (ref27) 2012
van den bergh (ref40) 2012
ref4
ref3
ref6
ref5
li (ref9) 2015
zhang (ref24) 2017; 27
ref37
ref36
ref31
ref30
ren (ref45) 2015
ref2
ref39
li (ref33) 2015
ref38
schick (ref58) 2012
avidan (ref34) 2007; 26
ref23
ref25
ref20
ref22
ref21
ref28
ref29
li (ref1) 2012
References_xml – ident: ref57
  doi: 10.1109/TPAMI.2010.161
– ident: ref55
  doi: 10.1109/CVPR.2016.77
– ident: ref30
  doi: 10.1109/ICCV.2005.112
– ident: ref47
  doi: 10.1109/ICIP.2015.7351706
– ident: ref19
  doi: 10.1007/s10044-014-0406-6
– ident: ref49
  doi: 10.1023/B:VISI.0000022288.19776.77
– ident: ref56
  doi: 10.1007/s11263-012-0588-6
– ident: ref46
  doi: 10.1049/el.2014.3379
– ident: ref2
  doi: 10.1109/TIP.2015.2401516
– start-page: 970
  year: 2015
  ident: ref33
  article-title: Edge-based split-and-merge superpixel segmentation
  publication-title: Proc ICIAP
– ident: ref48
  doi: 10.1007/s11554-016-0652-5
– year: 2012
  ident: ref59
  article-title: Superpixels and their application for visual place recognition in changing environments
– volume: 26
  start-page: 10
  year: 2007
  ident: ref34
  article-title: Seam carving for content-aware image resizing
  publication-title: Trans Graph
  doi: 10.1145/1276377.1276390
– ident: ref41
  doi: 10.1007/978-3-540-74936-3_26
– ident: ref28
  doi: 10.1016/j.image.2017.04.007
– ident: ref5
  doi: 10.1109/TGRS.2015.2441954
– ident: ref37
  doi: 10.1109/ICME.2012.184
– ident: ref53
  doi: 10.1109/TPAMI.2016.2552172
– ident: ref52
  doi: 10.1109/CVPR.2014.49
– ident: ref31
  doi: 10.1109/TPAMI.2004.1273918
– start-page: 1
  year: 2012
  ident: ref27
  article-title: Superpixel benchmark and comparison
  publication-title: Proc Forum Bildverarbeitung
– start-page: 13
  year: 2012
  ident: ref40
  article-title: SEEDS: Superpixels extracted via energy-driven sampling
  publication-title: Proc ECCV
– ident: ref36
  doi: 10.1109/TMM.2014.2305571
– ident: ref42
  doi: 10.1007/978-3-319-10602-1_49
– start-page: 789
  year: 2012
  ident: ref1
  article-title: Segmentation using superpixels: A bipartite graph partitioning approach
  publication-title: Proc CVPR
– ident: ref11
  doi: 10.1109/TIP.2015.2451011
– ident: ref15
  doi: 10.1109/TIP.2014.2302892
– ident: ref51
  doi: 10.1109/34.87344
– ident: ref29
  doi: 10.5244/C.27.54
– start-page: 705
  year: 2008
  ident: ref26
  article-title: Quick shift and kernel methods for mode seeking
  publication-title: Proc ECCV
– ident: ref4
  doi: 10.1016/j.patcog.2015.01.002
– ident: ref18
  doi: 10.1007/978-1-4899-7488-4_196
– ident: ref7
  doi: 10.1007/s11263-014-0744-2
– ident: ref13
  doi: 10.1109/ICPR.2014.181
– ident: ref20
  doi: 10.1016/j.neucom.2014.04.037
– start-page: 2117
  year: 2010
  ident: ref35
  article-title: 'Lattice Cut'-Constructing superpixels using layer constraints
  publication-title: Proc CVPR
– ident: ref23
  doi: 10.1109/TCSVT.2015.2430631
– ident: ref8
  doi: 10.1109/CVPR.2011.5995323
– ident: ref16
  doi: 10.1109/CVPR.2008.4587471
– ident: ref3
  doi: 10.1109/TIP.2014.2300823
– ident: ref39
  doi: 10.1109/ICIP.2015.7351017
– ident: ref21
  doi: 10.1016/j.jvcir.2016.08.001
– start-page: 211
  year: 2010
  ident: ref32
  article-title: Superpixels and supervoxels in an energy optimization framework
  publication-title: Proc ECCV
– ident: ref25
  doi: 10.1109/ICCV.2011.6126393
– volume: 27
  start-page: 1502
  year: 2017
  ident: ref24
  article-title: A simple algorithm of superpixel segmentation with boundary constraint
  publication-title: IEEE Trans Circuits Syst Video Technol
– start-page: 1356
  year: 2015
  ident: ref9
  article-title: Superpixel segmentation using linear spectral clustering
  publication-title: Proc CVPR
– year: 2015
  ident: ref45
  publication-title: gSLICr SLIC superpixels at over 250 Hz
– ident: ref12
  doi: 10.1109/TPAMI.2009.96
– ident: ref38
  doi: 10.1109/CRV.2014.25
– ident: ref22
  doi: 10.1109/ICCV.2003.1238308
– ident: ref17
  doi: 10.1109/34.868688
– start-page: 930
  year: 2012
  ident: ref58
  article-title: Measuring and evaluating the compactness of superpixels
  publication-title: Proc ICPR
– ident: ref10
  doi: 10.1109/TPAMI.2012.120
– ident: ref44
  doi: 10.1109/ICIAFS.2014.7069599
– ident: ref54
  doi: 10.1109/CVPR.2015.7299002
– ident: ref6
  doi: 10.1109/TPAMI.2012.47
– ident: ref43
  doi: 10.1109/CVPR.2015.7298913
– ident: ref14
  doi: 10.1109/CVPR.2015.7298931
– ident: ref50
  doi: 10.1109/34.1000236
SSID ssj0014516
Score 2.5680523
Snippet Superpixel segmentation partitions an image into perceptually coherent segments of similar size, namely, superpixels. It is becoming a fundamental...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4105
SubjectTerms Computational complexity
Covariance matrices
Erbium
expectation-maximization
Feature extraction
Gaussian mixture model
Image color analysis
Image segmentation
parallel algorithms
Shape
Superpixel
Title Superpixel Segmentation Using Gaussian Mixture Model
URI https://ieeexplore.ieee.org/document/8360143
https://www.ncbi.nlm.nih.gov/pubmed/29994528
https://www.proquest.com/docview/2068341887
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7onvTB6bzNGxV8EeyWXpM-iqhTmAgq-FaSNJHh7Ma2wvDXe5J2ZYiKD4VCkzTJSfp96bkBnPnUk5zRzPUzlrlhIANXcBG4CVPaU0TGwsbp7j_EvZfw_jV6XYGL2hdGKWWNz1TH3FpdfjaShflV1jUOB4jvq7CKB7fSV6vWGJiEs1azGVGXIu1fqCRJ0n2-ezQ2XKyDUBoHJrfREgTZnCq_00sLMzdN6C86WFqXvHeKmejIz2-xG_87gk3YqPimc1kukC1YUXkLmhX3dKqdPW3B-lJgwm0In4qxmowHczV0ntTbR-WglDvWwsC55cXUOF86_cHcaCAck1FtuAMvN9fPVz23yq_gStx4M1crjwjkQ4EgnkBc8qjA44aIJJIQHktP-EwzokhGsTyVnpfFnGsRaUGZlkES7EIjH-VqHxyNTzmOFi8WZthQKLmxWyVUkyTTtA3dxZSnsgo-bnJgDFN7CCFJikJKjZDSSkhtOK9rjMvAG3-U3TZTXZerZrkNpwupprhpjCaE52pUTLFyzBC-8QPbhr1S3HVlxOckjHx28HOjh7BmXl3aAB5BYzYp1DHykpk4sQvyC_6m3c4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1PTxQxFH8heEAPIKCyilgTPXiY3c7fdg4cjAK7whITloTb2HZaQ1hmN-xORD8LX4Xv5munOyFEvZF4mGSSaZuZvtf3fm_eP4B3EQuV4KwMopKXQRKrOJBCxkHOtQk1VZl0dbqHx1n_NPlylp4twU2bC6O1dsFnumtvnS-_nKja_irr2YQD1O8-hPJQ__yBBtpsd_AZqfk-ivb3Rp_6ge8hEChkrnlgdEgl6vxY0lCi7A2ZREgtU4WKVmQqlBE3nGpaMhzPVBiWmRBGpkYyblRsSy2hgH-EOCONmuyw1kdhW9w6X2rKAoaGxsIJSvPeaPDVRo3xLirvLLbdlO4oPdfF5e-A1im2_TW4XWxJE89y0a3nsqt-3asW-b_u2VNY9YiafGyOwDos6WoD1jy6Jl52zTbgyZ3Si5uQnNRTfTU9v9ZjcqK_X_oUrIq4GApyIOqZTS8lw_Nr62Mhtmfc-BmcPsiXPIflalLpLSAGnwrcXbx4UuJCiRI2MpcyQ_PSsA70FiQulC-vbrt8jAtnZtG8QKYoLFMUnik68KGdMW1Ki_xj7KYlbTvOU7UDbxdcVKBYsL4eUelJPcPJGUeAgiqkAy8a9monIwLJkzTiL_-86BtY6Y-GR8XR4PjwFTy2r9FEPG7D8vyq1q8Rhc3ljjsMBL49NCf9BiPnO1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superpixel+Segmentation+Using+Gaussian+Mixture+Model&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Ban%2C+Zhihua&rft.au=Liu%2C+Jianguo&rft.au=Cao%2C+Li&rft.date=2018-08-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft_id=info:doi/10.1109%2FTIP.2018.2836306&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon