Estimation of logistic regression with covariates missing separately or simultaneously via multiple imputation methods
Logistic regression is a standard model in many studies of binary outcome data, and the analysis of missing data in this model is a fascinating topic. Based on the idea of Wang D, Chen SX (2009) Empirical likelihood for estimating equations with missing values. Ann Stat, 37:490–517, proposed are two...
Saved in:
Published in | Computational statistics Vol. 38; no. 2; pp. 899 - 934 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0943-4062 1613-9658 |
DOI | 10.1007/s00180-022-01250-3 |
Cover
Loading…
Abstract | Logistic regression is a standard model in many studies of binary outcome data, and the analysis of missing data in this model is a fascinating topic. Based on the idea of Wang D, Chen SX (2009) Empirical likelihood for estimating equations with missing values. Ann Stat, 37:490–517, proposed are two different types of multiple imputation (MI) estimation methods, which each use three empirical conditional distribution functions to generate random values to impute missing data, to estimate the parameters of logistic regression with covariates missing at random (MAR) separately or simultaneously by using the estimating equations of Fay RE (1996) Alternative paradigms for the analysis of imputed survey data. J Am Stat Assoc, 91:490–498. The derivation of the two proposed MI estimation methods is under the assumption of MAR separately or simultaneously and exclusively for categorical/discrete data. The two proposed methods are computationally effective, as evidenced by simulation studies. They have a quite similar efficiency and outperform the complete-case, semiparametric inverse probability weighting, validation likelihood, and random forest MI by chained equations methods. Although the two proposed methods are comparable with the joint conditional likelihood (JCL) method, they have more straightforward calculations and shorter computing times compared to the JCL and MICE methods. Two real data examples are used to illustrate the applicability of the proposed methods. |
---|---|
AbstractList | Logistic regression is a standard model in many studies of binary outcome data, and the analysis of missing data in this model is a fascinating topic. Based on the idea of Wang D, Chen SX (2009) Empirical likelihood for estimating equations with missing values. Ann Stat, 37:490–517, proposed are two different types of multiple imputation (MI) estimation methods, which each use three empirical conditional distribution functions to generate random values to impute missing data, to estimate the parameters of logistic regression with covariates missing at random (MAR) separately or simultaneously by using the estimating equations of Fay RE (1996) Alternative paradigms for the analysis of imputed survey data. J Am Stat Assoc, 91:490–498. The derivation of the two proposed MI estimation methods is under the assumption of MAR separately or simultaneously and exclusively for categorical/discrete data. The two proposed methods are computationally effective, as evidenced by simulation studies. They have a quite similar efficiency and outperform the complete-case, semiparametric inverse probability weighting, validation likelihood, and random forest MI by chained equations methods. Although the two proposed methods are comparable with the joint conditional likelihood (JCL) method, they have more straightforward calculations and shorter computing times compared to the JCL and MICE methods. Two real data examples are used to illustrate the applicability of the proposed methods. |
Author | Le, Truong-Nhat Lee, Shen-Ming Li, Chin-Shang Tran, Phuoc-Loc |
Author_xml | – sequence: 1 givenname: Shen-Ming orcidid: 0000-0002-6030-0297 surname: Lee fullname: Lee, Shen-Ming organization: Department of Statistics, Feng Chia University – sequence: 2 givenname: Truong-Nhat orcidid: 0000-0002-1022-1144 surname: Le fullname: Le, Truong-Nhat organization: Department of Statistics, Feng Chia University, Faculty of Mathematics and Statistics, Ton Duc Thang University – sequence: 3 givenname: Phuoc-Loc orcidid: 0000-0001-9373-9522 surname: Tran fullname: Tran, Phuoc-Loc organization: Department of Mathematics, College of Natural Science, Can Tho University – sequence: 4 givenname: Chin-Shang orcidid: 0000-0002-0054-4476 surname: Li fullname: Li, Chin-Shang email: csli2003@gmail.com organization: School of Nursing, The State University of New York, University at Buffalo |
BookMark | eNp9kMtqwzAQRUVJoUnaH-hK0LVbPfyIlyWkDwh0066FLI8cBdtyJTklf1-lLhS6yGrgcM_McBdo1tseELql5J4SUjx4QuiKJISxhFCWkYRfoDnNKU_KPFvN0JyUKU9SkrMrtPB-T2KyYHSODhsfTCeDsT22Gre2MREo7KBx4P0Jf5mww8oepDMygMedibxvsIdBukjaI7YOe9ONbZA92NFHcjASn4AZWsCmG8Yw3egg7Gztr9Gllq2Hm9-5RB9Pm_f1S7J9e35dP24TxWkZEl3XoCCrCp7zglS0qqusUnWZgk4hB1bUmZS8zmhJKtCalSqjOmV1rlJd5iXwJbqb9g7Ofo7gg9jb0fXxpGArWjBGiiyPqdWUUs5670ALZaZ_g5OmFZSIU8tialnE7sRPy4JHlf1TBxf7dMfzEp8kH8N9A-7vqzPWN7P0liE |
CitedBy_id | crossref_primary_10_1080_03610926_2025_2461611 crossref_primary_10_3390_math11071718 crossref_primary_10_22144_ctujos_2024_389 crossref_primary_10_1111_stan_12368 crossref_primary_10_1007_s10463_024_00914_9 |
Cites_doi | 10.18637/jss.v045.i03 10.1186/2193-1801-2-222 10.1111/biom.12498 10.1214/07-AOS585 10.1007/s00184-011-0345-9 10.1111/j.1541-0420.2010.01499.x 10.1016/j.csda.2013.03.007 10.1007/s00180-019-00930-x 10.1080/01621459.1996.10476909 10.1080/01621459.1997.10474004 10.1002/sim.4780110608 10.1080/01621459.1996.10476908 10.1016/j.csda.2019.106907 10.1016/S0167-7152(01)00167-5 10.2307/2534015 10.1002/sim.4067 10.1093/biomet/63.3.581 10.1016/j.jspi.2009.09.020 10.1002/9781118548387 10.1080/01621459.1952.10483446 10.1007/s00184-015-0563-7 10.1080/01621459.1986.10478280 10.1111/j.1752-7325.2010.00197.x 10.1093/biomet/75.1.11 10.1080/03610926.2021.1943443 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8C1 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s00180-022-01250-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Proquest Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1613-9658 |
EndPage | 934 |
ExternalDocumentID | 10_1007_s00180_022_01250_3 |
GrantInformation_xml | – fundername: ministry of science and technology, taiwan grantid: MOST-109-2118-M-035-002-MY3 funderid: http://dx.doi.org/10.13039/501100004663 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7WY 88I 8C1 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- MK~ N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Y Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TB 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-fddece5b736370b1bdb5bcd94ef4e6e27d5aa3d5190beff29c51f42d6c4f969e3 |
IEDL.DBID | U2A |
ISSN | 0943-4062 |
IngestDate | Fri Jul 25 19:09:48 EDT 2025 Thu Apr 24 22:50:19 EDT 2025 Tue Jul 01 04:23:19 EDT 2025 Fri Feb 21 02:43:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Inverse probability weighting Validation likelihood Joint conditional likelihood Multiple imputation Missing at random |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-fddece5b736370b1bdb5bcd94ef4e6e27d5aa3d5190beff29c51f42d6c4f969e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9373-9522 0000-0002-6030-0297 0000-0002-1022-1144 0000-0002-0054-4476 |
PQID | 2817220756 |
PQPubID | 54096 |
PageCount | 36 |
ParticipantIDs | proquest_journals_2817220756 crossref_citationtrail_10_1007_s00180_022_01250_3 crossref_primary_10_1007_s00180_022_01250_3 springer_journals_10_1007_s00180_022_01250_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230600 2023-06-00 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Computational statistics |
PublicationTitleAbbrev | Comput Stat |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Horvitz, Thompson (CR5) 1952; 47 Lee, Gee, Hsieh (CR10) 2011; 67 Lipsitz, Parzen, Ewell (CR14) 1998; 54 Little, Rubin (CR16) 2019 White, Royston, Wood (CR28) 2011; 30 Rubin, Schenker (CR22) 1986; 81 Wang, Wang, Zhao, Ou (CR25) 1997; 92 Rubin (CR19) 1976; 63 Wang, Chen (CR26) 2009; 37 Zhao, Lipsitz (CR29) 1992; 11 Rubin (CR20) 1987 Wang, Chen, Lee, Ou (CR24) 2002; 12 Hsieh, Li, Lee (CR8) 2013; 66 Hosmer, Lemeshow, Sturdivant (CR6) 2013 Lee, Lukusa, Li (CR13) 2020; 35 Hsieh, Lee, Shen (CR7) 2010; 140 Buuren, Groothuis-Oudshoorn (CR2) 2011; 45 Jiang, Josse, Lavielle, Group (CR9) 2020; 145 Fay (CR4) 1996; 91 Dong, Peng (CR3) 2013 CR23 Lee, Li, Hsieh, Huang (CR12) 2012; 75 Wang, Wang (CR27) 2001; 55 Lukusa, Lee, Li (CR17) 2016; 79 Little (CR15) 1992; 87 Pahel, Preisser, Stearns, Rozier (CR18) 2011; 71 Breslow, Cain (CR1) 1988; 75 Lee, Hwang, de Dieu Tapsoba (CR11) 2016; 72 Rubin (CR21) 1996; 91 RJ Little (1250_CR16) 2019 SV Buuren (1250_CR2) 2011; 45 SM Lee (1250_CR10) 2011; 67 SM Lee (1250_CR13) 2020; 35 DG Horvitz (1250_CR5) 1952; 47 SM Lee (1250_CR12) 2012; 75 1250_CR23 DB Rubin (1250_CR20) 1987 DB Rubin (1250_CR22) 1986; 81 Y Dong (1250_CR3) 2013 IR White (1250_CR28) 2011; 30 CY Wang (1250_CR24) 2002; 12 CY Wang (1250_CR25) 1997; 92 SR Lipsitz (1250_CR14) 1998; 54 W Jiang (1250_CR9) 2020; 145 NE Breslow (1250_CR1) 1988; 75 LP Zhao (1250_CR29) 1992; 11 DB Rubin (1250_CR19) 1976; 63 DW Hosmer (1250_CR6) 2013 RE Fay (1250_CR4) 1996; 91 DB Rubin (1250_CR21) 1996; 91 RJ Little (1250_CR15) 1992; 87 D Wang (1250_CR26) 2009; 37 SH Hsieh (1250_CR7) 2010; 140 S Wang (1250_CR27) 2001; 55 SH Hsieh (1250_CR8) 2013; 66 TM Lukusa (1250_CR17) 2016; 79 BT Pahel (1250_CR18) 2011; 71 SM Lee (1250_CR11) 2016; 72 |
References_xml | – volume: 45 start-page: 1 issue: 3 year: 2011 end-page: 67 ident: CR2 article-title: Mice: multivariate imputation by chained equations in R publication-title: J Stat Softw doi: 10.18637/jss.v045.i03 – year: 2013 ident: CR3 publication-title: Principled missing data methods for researchers doi: 10.1186/2193-1801-2-222 – volume: 72 start-page: 1294 year: 2016 end-page: 1304 ident: CR11 article-title: Estimation in closed capture-recapture models when covariates are missing at random publication-title: Biometrics doi: 10.1111/biom.12498 – volume: 37 start-page: 490 year: 2009 end-page: 517 ident: CR26 article-title: Empirical likelihood for estimating equations with missing values publication-title: Ann Stat doi: 10.1214/07-AOS585 – volume: 75 start-page: 621 year: 2012 end-page: 653 ident: CR12 article-title: Semiparametric estimation of logistic regression model with missing covariates and outcome publication-title: Metrika doi: 10.1007/s00184-011-0345-9 – volume: 67 start-page: 788 year: 2011 end-page: 798 ident: CR10 article-title: Semiparametric methods in the proportional odds model for ordinal response data with missing covariates publication-title: Biometrics doi: 10.1111/j.1541-0420.2010.01499.x – volume: 87 start-page: 1227 year: 1992 end-page: 1237 ident: CR15 article-title: Regression with missing X’s: a review publication-title: J Am Stat Assoc – volume: 66 start-page: 32 year: 2013 end-page: 54 ident: CR8 article-title: Logistic regression with outcome and covariates missing separately or simultaneously publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2013.03.007 – volume: 35 start-page: 725 year: 2020 end-page: 754 ident: CR13 article-title: Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods publication-title: Computat Stat doi: 10.1007/s00180-019-00930-x – volume: 91 start-page: 490 year: 1996 end-page: 498 ident: CR4 article-title: Alternative paradigms for the analysis of imputed survey data publication-title: J Am Stat Assoc doi: 10.1080/01621459.1996.10476909 – volume: 12 start-page: 555 year: 2002 end-page: 574 ident: CR24 article-title: Joint conditional likelihood estimator in logistic regression with missing covariate data publication-title: Statistica Sinica – volume: 92 start-page: 512 year: 1997 end-page: 525 ident: CR25 article-title: Weighted semiparametric estimation in regression analysis with missing covariate data publication-title: J Am Stat Assoc doi: 10.1080/01621459.1997.10474004 – volume: 11 start-page: 769 year: 1992 end-page: 782 ident: CR29 article-title: Designs and analysis of two-stage studies publication-title: Stat Med doi: 10.1002/sim.4780110608 – volume: 91 start-page: 473 year: 1996 end-page: 489 ident: CR21 article-title: Multiple imputation after 18+ years publication-title: J Am Stat Assoc doi: 10.1080/01621459.1996.10476908 – volume: 145 start-page: 106907 year: 2020 ident: CR9 article-title: Logistic regression with missing covariates|parameter estimation, model selection and prediction within a joint-modeling framework publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2019.106907 – ident: CR23 – volume: 55 start-page: 439 year: 2001 end-page: 449 ident: CR27 article-title: A note on kernel assisted estimators in missing covariate regression publication-title: Statistics and Probability Letters doi: 10.1016/S0167-7152(01)00167-5 – volume: 54 start-page: 295 year: 1998 end-page: 303 ident: CR14 article-title: Inference using conditional logistic regression with missing covariates publication-title: Biometrics doi: 10.2307/2534015 – volume: 30 start-page: 377 year: 2011 end-page: 399 ident: CR28 article-title: Multiple imputation using chained equations: issues and guidance for practice publication-title: Stat Med doi: 10.1002/sim.4067 – volume: 63 start-page: 581 year: 1976 end-page: 592 ident: CR19 article-title: Inference and missing data publication-title: Biometrika doi: 10.1093/biomet/63.3.581 – volume: 140 start-page: 927 year: 2010 end-page: 940 ident: CR7 article-title: Logistic regression analysis of randomized response data with missing covariates publication-title: J Stat Plann Infer doi: 10.1016/j.jspi.2009.09.020 – year: 2019 ident: CR16 publication-title: Statistical analysis with missing data – year: 2013 ident: CR6 publication-title: Applied logistic regression doi: 10.1002/9781118548387 – volume: 47 start-page: 663 year: 1952 end-page: 685 ident: CR5 article-title: A generalization of sampling without replacement from a finite universe publication-title: J Am Stat Assoc doi: 10.1080/01621459.1952.10483446 – volume: 79 start-page: 457 year: 2016 end-page: 483 ident: CR17 article-title: Semiparametric estimation of a zero-inflated Poisson regression model with missing covariates publication-title: Metrika doi: 10.1007/s00184-015-0563-7 – volume: 81 start-page: 366 year: 1986 end-page: 374 ident: CR22 article-title: Multiple imputation for interval estimation from simple random samples with ignorable nonresponse publication-title: J Am Stat Assoc doi: 10.1080/01621459.1986.10478280 – volume: 71 start-page: 71 year: 2011 end-page: 78 ident: CR18 article-title: Multiple imputation of dental caries data using a zero-inflated Poisson regression model publication-title: J Public Health Dent doi: 10.1111/j.1752-7325.2010.00197.x – volume: 75 start-page: 11 year: 1988 end-page: 20 ident: CR1 article-title: Logistic regression for two-stage case-control data publication-title: Biometrika doi: 10.1093/biomet/75.1.11 – year: 1987 ident: CR20 publication-title: Statistical analysis with missing data – volume: 91 start-page: 490 year: 1996 ident: 1250_CR4 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1996.10476909 – volume: 12 start-page: 555 year: 2002 ident: 1250_CR24 publication-title: Statistica Sinica – ident: 1250_CR23 doi: 10.1080/03610926.2021.1943443 – volume: 72 start-page: 1294 year: 2016 ident: 1250_CR11 publication-title: Biometrics doi: 10.1111/biom.12498 – volume: 87 start-page: 1227 year: 1992 ident: 1250_CR15 publication-title: J Am Stat Assoc – volume: 45 start-page: 1 issue: 3 year: 2011 ident: 1250_CR2 publication-title: J Stat Softw doi: 10.18637/jss.v045.i03 – volume: 67 start-page: 788 year: 2011 ident: 1250_CR10 publication-title: Biometrics doi: 10.1111/j.1541-0420.2010.01499.x – volume: 63 start-page: 581 year: 1976 ident: 1250_CR19 publication-title: Biometrika doi: 10.1093/biomet/63.3.581 – volume: 75 start-page: 621 year: 2012 ident: 1250_CR12 publication-title: Metrika doi: 10.1007/s00184-011-0345-9 – volume: 37 start-page: 490 year: 2009 ident: 1250_CR26 publication-title: Ann Stat doi: 10.1214/07-AOS585 – volume: 35 start-page: 725 year: 2020 ident: 1250_CR13 publication-title: Computat Stat doi: 10.1007/s00180-019-00930-x – volume: 79 start-page: 457 year: 2016 ident: 1250_CR17 publication-title: Metrika doi: 10.1007/s00184-015-0563-7 – volume: 92 start-page: 512 year: 1997 ident: 1250_CR25 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1997.10474004 – volume: 66 start-page: 32 year: 2013 ident: 1250_CR8 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2013.03.007 – volume: 145 start-page: 106907 year: 2020 ident: 1250_CR9 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2019.106907 – volume: 54 start-page: 295 year: 1998 ident: 1250_CR14 publication-title: Biometrics doi: 10.2307/2534015 – volume: 71 start-page: 71 year: 2011 ident: 1250_CR18 publication-title: J Public Health Dent doi: 10.1111/j.1752-7325.2010.00197.x – volume: 140 start-page: 927 year: 2010 ident: 1250_CR7 publication-title: J Stat Plann Infer doi: 10.1016/j.jspi.2009.09.020 – volume: 55 start-page: 439 year: 2001 ident: 1250_CR27 publication-title: Statistics and Probability Letters doi: 10.1016/S0167-7152(01)00167-5 – volume-title: Applied logistic regression year: 2013 ident: 1250_CR6 doi: 10.1002/9781118548387 – volume: 30 start-page: 377 year: 2011 ident: 1250_CR28 publication-title: Stat Med doi: 10.1002/sim.4067 – volume-title: Principled missing data methods for researchers year: 2013 ident: 1250_CR3 doi: 10.1186/2193-1801-2-222 – volume: 47 start-page: 663 year: 1952 ident: 1250_CR5 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1952.10483446 – volume: 11 start-page: 769 year: 1992 ident: 1250_CR29 publication-title: Stat Med doi: 10.1002/sim.4780110608 – volume: 81 start-page: 366 year: 1986 ident: 1250_CR22 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1986.10478280 – volume-title: Statistical analysis with missing data year: 1987 ident: 1250_CR20 – volume-title: Statistical analysis with missing data year: 2019 ident: 1250_CR16 – volume: 91 start-page: 473 year: 1996 ident: 1250_CR21 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1996.10476908 – volume: 75 start-page: 11 year: 1988 ident: 1250_CR1 publication-title: Biometrika doi: 10.1093/biomet/75.1.11 |
SSID | ssj0022721 |
Score | 2.3662696 |
Snippet | Logistic regression is a standard model in many studies of binary outcome data, and the analysis of missing data in this model is a fascinating topic. Based on... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 899 |
SubjectTerms | Data analysis Distribution functions Economic Theory/Quantitative Economics/Mathematical Methods Empirical equations Estimation Mathematics and Statistics Missing data Original Paper Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Regression analysis Regression models Statistical analysis Statistics |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGJ9sQdvGkw22U1zEpWKCC0iFryFfcxKQZLa1IL_3tlk06Kg1zw2kG_nuTPzEXJuWahNJEwAINMgYRAHGGcpjFJkH8KYaxW65uThSDyMk8dX_uoTbpUvq2x1Yq2oTaldjvyK9dHUMjRw4nr6ETjWKHe66ik01kkXVXCfd0j3djB6el6GXCytO69c-RxGSoL5tpm6ec7x0YWBq2ZHJc1RG_00TSt_89cRaW157rfJlncZ6U2D8Q5Zg2KXbA6X81arPbIYoKQ2TYi0tLRp65loOoO3ps61oC7hSnW5wNjYuZcU8XVpAlpBPf0b3r9oOaPVxFUYygLKzwqvLCaStiWHdOL4H5pvNLzT1T4Z3w9e7h4Cz6gQaBS1eWBRmWngKo1FnIYqUkZxpU2WgE1AAEsNlzI26NWFCqxlmeaRTZgROrGZyCA-IJ2iLOCQUIORGgcmpJFxwiRTWQSZlEqkNgWmRI9E7c_MtR837lgv3vPloOQagBwByGsA8rhHLpbvTJthG_8-fdJilHvBq_LVNumRyxa31e2_Vzv6f7VjsuGI5psisRPSmc8-4RTdkbk683vuG_Ff390 priority: 102 providerName: ProQuest |
Title | Estimation of logistic regression with covariates missing separately or simultaneously via multiple imputation methods |
URI | https://link.springer.com/article/10.1007/s00180-022-01250-3 https://www.proquest.com/docview/2817220756 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yuKSHkEdL06aLDrm1Blu25PVxE3YTEhJC6EJ6MnqMykKwy3qzkH_fkWU7tCSBXGxjy7LxWNL3Sd_MAJw4HhubSBshqjzKOKYR8SxNLEWNMU6F0bF3Tr6-kRfz7PJe3HdOYU2vdu-XJNueenB28_nj4sirz6lTFdR7bMK2IO7uhXxzPhloFs9bbysvmSN2JHnnKvNyHf8OR88Y879l0Xa0me3BbgcT2STYdR82sDqAD9dDjNXmAHY8Tgxhlg9hPaWD4IXIaseCX8_CsCX-DkLXivkZV2bqNZFjjy8ZGdjPE7AG2_Df-PDE6iVrFl5iqCqsHxs6s14o1msO2cIngAjPCImnm48wn01_nl1EXUqFyFBbW0WOejODQuepTPNYJ9pqoY0tMnQZSuS5FUqllmBdrNE5XhiRuIxbaTJXyALTT7BV1RV-BmaJqgnkUlmVZlxxXSRYKKVl7nLkWh5B0n_Z0nTxxn3ai4dyiJTcWqMka5StNcr0CL4P9_wJ0TbeLH3cG6zsWl5T8jFBMk5AiF7gR2_E58uv1_blfcW_wo7PPB9UY8ewtVo-4jfCJys9gs3xWeK3s_MRbE_Of11NaX86vbm9G7W_6l910-Rl |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOBQOVUtbdVtofYATjZo4iUMOCNF20VLYFapA4pb6Ma5WQglslq34U_xGxnGyKyqVG9ckdiTPeB72fPMBbFseahMJEyDKLEg4xgHlWYqyFLmHYZxqFTpw8nAkBhfJz8v0cgnuOyyMK6vsbGJjqE2l3Rn5V75HrpaTgxMH1zeBY41yt6sdhYZXixO8-0spW71__IPku8P5Uf_8-yBoWQUCTeo2DSxtaI2pymIRZ6GKlFGp0iZP0CYokGcmlTI2FNmECq3luU4jm3AjdGJzkWNM8y7DKoUZOe2i1W_90dmveYrHswbp5cr1KDMTvIXpNGA9x38XBq56npxCStbvsStcxLf_XMk2nu7oFbxsQ1R26HXqNSxhuQHrw3l_1_oNzPpkGTzokVWWeRjRWLMJ_vF1tSVzB7xMVzPKxV04y0if3LEEq7HpNo5Xd6yasHrsKhplidVtTU9mY8m6Ekc2dnwT_h-e57p-CxfPstbvYKWsSnwPzFBmmCIX0sg44ZKrPMJcSiUymyFXogdRt5iFbtubO5aNq2LemLkRQEECKBoBFHEPdudjrn1zjye_3uxkVLQbvS4WatmDL53cFq__P9uHp2f7DC8G58PT4vR4dPIR1hzJvS9Q24SV6eQWtygUmqpPrf4x-P3cKv8Awh4fvQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiF6QOUlthTwAU4QNbETe3NACLVdtZRWHKjUW_BjjFaqknaz3ap_jV_HOE52VSR66zUPR8p89szY38wH8N7z1LpMugRRqyTnKBLKswxlKXqMqSisSUNx8vGJPDjNv50VZ2vwZ6iFCbTKYU3sFmrX2LBHvsPH5Go5OTi543taxI-9yZeLyyQoSIWT1kFOI0LkCG-uKX1rPx_uka0_cD7Z_7l7kPQKA4kl6M0TT5PbYmGUkEKlJjPOFMa6Mkefo0SuXKG1cBTlpAa956UtMp9zJ23uS1mioHEfwEMl1DjIRox3l_QSzlVX8xWIe5SjSd4X7HRle0EJL00Cj57cQ0Hr4G2nuIp0_zmc7XzeZBOe9MEq-xrR9RTWsH4GG8fLTq_tc1js0xoRyx9Z41ksKJpaNsPfkWFbs7DVy2yzoKw8BLaMkBU2KFiLXd9xPL9hzYy108Bt1DU2Vy1dWUw1G8iObBqUJ-I3ouJ1-wJO7-VPv4T1uqnxFTBHOWKBXGqnRc41N2WGpdZGKq-QGzmCbPiZle0bnQe9jfNq2aK5M0BFBqg6A1RiBB-X71zENh93Pr092Kjqp3xbrQA6gk-D3Va3_z_a1t2jvYNHBPTq--HJ0Wt4HNTuI1NtG9bnsyt8QzHR3LztwMfg132j_S9u8CJP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+logistic+regression+with+covariates+missing+separately+or+simultaneously+via+multiple+imputation+methods&rft.jtitle=Computational+statistics&rft.au=Lee%2C+Shen-Ming&rft.au=Le%2C+Truong-Nhat&rft.au=Tran%2C+Phuoc-Loc&rft.au=Li%2C+Chin-Shang&rft.date=2023-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=38&rft.issue=2&rft.spage=899&rft.epage=934&rft_id=info:doi/10.1007%2Fs00180-022-01250-3&rft.externalDocID=10_1007_s00180_022_01250_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon |