Estimation of logistic regression with covariates missing separately or simultaneously via multiple imputation methods

Logistic regression is a standard model in many studies of binary outcome data, and the analysis of missing data in this model is a fascinating topic. Based on the idea of Wang D, Chen SX (2009) Empirical likelihood for estimating equations with missing values. Ann Stat, 37:490–517, proposed are two...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics Vol. 38; no. 2; pp. 899 - 934
Main Authors Lee, Shen-Ming, Le, Truong-Nhat, Tran, Phuoc-Loc, Li, Chin-Shang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0943-4062
1613-9658
DOI10.1007/s00180-022-01250-3

Cover

Loading…
Abstract Logistic regression is a standard model in many studies of binary outcome data, and the analysis of missing data in this model is a fascinating topic. Based on the idea of Wang D, Chen SX (2009) Empirical likelihood for estimating equations with missing values. Ann Stat, 37:490–517, proposed are two different types of multiple imputation (MI) estimation methods, which each use three empirical conditional distribution functions to generate random values to impute missing data, to estimate the parameters of logistic regression with covariates missing at random (MAR) separately or simultaneously by using the estimating equations of Fay RE (1996) Alternative paradigms for the analysis of imputed survey data. J Am Stat Assoc, 91:490–498. The derivation of the two proposed MI estimation methods is under the assumption of MAR separately or simultaneously and exclusively for categorical/discrete data. The two proposed methods are computationally effective, as evidenced by simulation studies. They have a quite similar efficiency and outperform the complete-case, semiparametric inverse probability weighting, validation likelihood, and random forest MI by chained equations methods. Although the two proposed methods are comparable with the joint conditional likelihood (JCL) method, they have more straightforward calculations and shorter computing times compared to the JCL and MICE methods. Two real data examples are used to illustrate the applicability of the proposed methods.
AbstractList Logistic regression is a standard model in many studies of binary outcome data, and the analysis of missing data in this model is a fascinating topic. Based on the idea of Wang D, Chen SX (2009) Empirical likelihood for estimating equations with missing values. Ann Stat, 37:490–517, proposed are two different types of multiple imputation (MI) estimation methods, which each use three empirical conditional distribution functions to generate random values to impute missing data, to estimate the parameters of logistic regression with covariates missing at random (MAR) separately or simultaneously by using the estimating equations of Fay RE (1996) Alternative paradigms for the analysis of imputed survey data. J Am Stat Assoc, 91:490–498. The derivation of the two proposed MI estimation methods is under the assumption of MAR separately or simultaneously and exclusively for categorical/discrete data. The two proposed methods are computationally effective, as evidenced by simulation studies. They have a quite similar efficiency and outperform the complete-case, semiparametric inverse probability weighting, validation likelihood, and random forest MI by chained equations methods. Although the two proposed methods are comparable with the joint conditional likelihood (JCL) method, they have more straightforward calculations and shorter computing times compared to the JCL and MICE methods. Two real data examples are used to illustrate the applicability of the proposed methods.
Author Le, Truong-Nhat
Lee, Shen-Ming
Li, Chin-Shang
Tran, Phuoc-Loc
Author_xml – sequence: 1
  givenname: Shen-Ming
  orcidid: 0000-0002-6030-0297
  surname: Lee
  fullname: Lee, Shen-Ming
  organization: Department of Statistics, Feng Chia University
– sequence: 2
  givenname: Truong-Nhat
  orcidid: 0000-0002-1022-1144
  surname: Le
  fullname: Le, Truong-Nhat
  organization: Department of Statistics, Feng Chia University, Faculty of Mathematics and Statistics, Ton Duc Thang University
– sequence: 3
  givenname: Phuoc-Loc
  orcidid: 0000-0001-9373-9522
  surname: Tran
  fullname: Tran, Phuoc-Loc
  organization: Department of Mathematics, College of Natural Science, Can Tho University
– sequence: 4
  givenname: Chin-Shang
  orcidid: 0000-0002-0054-4476
  surname: Li
  fullname: Li, Chin-Shang
  email: csli2003@gmail.com
  organization: School of Nursing, The State University of New York, University at Buffalo
BookMark eNp9kMtqwzAQRUVJoUnaH-hK0LVbPfyIlyWkDwh0066FLI8cBdtyJTklf1-lLhS6yGrgcM_McBdo1tseELql5J4SUjx4QuiKJISxhFCWkYRfoDnNKU_KPFvN0JyUKU9SkrMrtPB-T2KyYHSODhsfTCeDsT22Gre2MREo7KBx4P0Jf5mww8oepDMygMedibxvsIdBukjaI7YOe9ONbZA92NFHcjASn4AZWsCmG8Yw3egg7Gztr9Gllq2Hm9-5RB9Pm_f1S7J9e35dP24TxWkZEl3XoCCrCp7zglS0qqusUnWZgk4hB1bUmZS8zmhJKtCalSqjOmV1rlJd5iXwJbqb9g7Ofo7gg9jb0fXxpGArWjBGiiyPqdWUUs5670ALZaZ_g5OmFZSIU8tialnE7sRPy4JHlf1TBxf7dMfzEp8kH8N9A-7vqzPWN7P0liE
CitedBy_id crossref_primary_10_1080_03610926_2025_2461611
crossref_primary_10_3390_math11071718
crossref_primary_10_22144_ctujos_2024_389
crossref_primary_10_1111_stan_12368
crossref_primary_10_1007_s10463_024_00914_9
Cites_doi 10.18637/jss.v045.i03
10.1186/2193-1801-2-222
10.1111/biom.12498
10.1214/07-AOS585
10.1007/s00184-011-0345-9
10.1111/j.1541-0420.2010.01499.x
10.1016/j.csda.2013.03.007
10.1007/s00180-019-00930-x
10.1080/01621459.1996.10476909
10.1080/01621459.1997.10474004
10.1002/sim.4780110608
10.1080/01621459.1996.10476908
10.1016/j.csda.2019.106907
10.1016/S0167-7152(01)00167-5
10.2307/2534015
10.1002/sim.4067
10.1093/biomet/63.3.581
10.1016/j.jspi.2009.09.020
10.1002/9781118548387
10.1080/01621459.1952.10483446
10.1007/s00184-015-0563-7
10.1080/01621459.1986.10478280
10.1111/j.1752-7325.2010.00197.x
10.1093/biomet/75.1.11
10.1080/03610926.2021.1943443
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8C1
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s00180-022-01250-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Proquest Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1613-9658
EndPage 934
ExternalDocumentID 10_1007_s00180_022_01250_3
GrantInformation_xml – fundername: ministry of science and technology, taiwan
  grantid: MOST-109-2118-M-035-002-MY3
  funderid: http://dx.doi.org/10.13039/501100004663
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7WY
88I
8C1
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-fddece5b736370b1bdb5bcd94ef4e6e27d5aa3d5190beff29c51f42d6c4f969e3
IEDL.DBID U2A
ISSN 0943-4062
IngestDate Fri Jul 25 19:09:48 EDT 2025
Thu Apr 24 22:50:19 EDT 2025
Tue Jul 01 04:23:19 EDT 2025
Fri Feb 21 02:43:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Inverse probability weighting
Validation likelihood
Joint conditional likelihood
Multiple imputation
Missing at random
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-fddece5b736370b1bdb5bcd94ef4e6e27d5aa3d5190beff29c51f42d6c4f969e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9373-9522
0000-0002-6030-0297
0000-0002-1022-1144
0000-0002-0054-4476
PQID 2817220756
PQPubID 54096
PageCount 36
ParticipantIDs proquest_journals_2817220756
crossref_citationtrail_10_1007_s00180_022_01250_3
crossref_primary_10_1007_s00180_022_01250_3
springer_journals_10_1007_s00180_022_01250_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Computational statistics
PublicationTitleAbbrev Comput Stat
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Horvitz, Thompson (CR5) 1952; 47
Lee, Gee, Hsieh (CR10) 2011; 67
Lipsitz, Parzen, Ewell (CR14) 1998; 54
Little, Rubin (CR16) 2019
White, Royston, Wood (CR28) 2011; 30
Rubin, Schenker (CR22) 1986; 81
Wang, Wang, Zhao, Ou (CR25) 1997; 92
Rubin (CR19) 1976; 63
Wang, Chen (CR26) 2009; 37
Zhao, Lipsitz (CR29) 1992; 11
Rubin (CR20) 1987
Wang, Chen, Lee, Ou (CR24) 2002; 12
Hsieh, Li, Lee (CR8) 2013; 66
Hosmer, Lemeshow, Sturdivant (CR6) 2013
Lee, Lukusa, Li (CR13) 2020; 35
Hsieh, Lee, Shen (CR7) 2010; 140
Buuren, Groothuis-Oudshoorn (CR2) 2011; 45
Jiang, Josse, Lavielle, Group (CR9) 2020; 145
Fay (CR4) 1996; 91
Dong, Peng (CR3) 2013
CR23
Lee, Li, Hsieh, Huang (CR12) 2012; 75
Wang, Wang (CR27) 2001; 55
Lukusa, Lee, Li (CR17) 2016; 79
Little (CR15) 1992; 87
Pahel, Preisser, Stearns, Rozier (CR18) 2011; 71
Breslow, Cain (CR1) 1988; 75
Lee, Hwang, de Dieu Tapsoba (CR11) 2016; 72
Rubin (CR21) 1996; 91
RJ Little (1250_CR16) 2019
SV Buuren (1250_CR2) 2011; 45
SM Lee (1250_CR10) 2011; 67
SM Lee (1250_CR13) 2020; 35
DG Horvitz (1250_CR5) 1952; 47
SM Lee (1250_CR12) 2012; 75
1250_CR23
DB Rubin (1250_CR20) 1987
DB Rubin (1250_CR22) 1986; 81
Y Dong (1250_CR3) 2013
IR White (1250_CR28) 2011; 30
CY Wang (1250_CR24) 2002; 12
CY Wang (1250_CR25) 1997; 92
SR Lipsitz (1250_CR14) 1998; 54
W Jiang (1250_CR9) 2020; 145
NE Breslow (1250_CR1) 1988; 75
LP Zhao (1250_CR29) 1992; 11
DB Rubin (1250_CR19) 1976; 63
DW Hosmer (1250_CR6) 2013
RE Fay (1250_CR4) 1996; 91
DB Rubin (1250_CR21) 1996; 91
RJ Little (1250_CR15) 1992; 87
D Wang (1250_CR26) 2009; 37
SH Hsieh (1250_CR7) 2010; 140
S Wang (1250_CR27) 2001; 55
SH Hsieh (1250_CR8) 2013; 66
TM Lukusa (1250_CR17) 2016; 79
BT Pahel (1250_CR18) 2011; 71
SM Lee (1250_CR11) 2016; 72
References_xml – volume: 45
  start-page: 1
  issue: 3
  year: 2011
  end-page: 67
  ident: CR2
  article-title: Mice: multivariate imputation by chained equations in R
  publication-title: J Stat Softw
  doi: 10.18637/jss.v045.i03
– year: 2013
  ident: CR3
  publication-title: Principled missing data methods for researchers
  doi: 10.1186/2193-1801-2-222
– volume: 72
  start-page: 1294
  year: 2016
  end-page: 1304
  ident: CR11
  article-title: Estimation in closed capture-recapture models when covariates are missing at random
  publication-title: Biometrics
  doi: 10.1111/biom.12498
– volume: 37
  start-page: 490
  year: 2009
  end-page: 517
  ident: CR26
  article-title: Empirical likelihood for estimating equations with missing values
  publication-title: Ann Stat
  doi: 10.1214/07-AOS585
– volume: 75
  start-page: 621
  year: 2012
  end-page: 653
  ident: CR12
  article-title: Semiparametric estimation of logistic regression model with missing covariates and outcome
  publication-title: Metrika
  doi: 10.1007/s00184-011-0345-9
– volume: 67
  start-page: 788
  year: 2011
  end-page: 798
  ident: CR10
  article-title: Semiparametric methods in the proportional odds model for ordinal response data with missing covariates
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2010.01499.x
– volume: 87
  start-page: 1227
  year: 1992
  end-page: 1237
  ident: CR15
  article-title: Regression with missing X’s: a review
  publication-title: J Am Stat Assoc
– volume: 66
  start-page: 32
  year: 2013
  end-page: 54
  ident: CR8
  article-title: Logistic regression with outcome and covariates missing separately or simultaneously
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2013.03.007
– volume: 35
  start-page: 725
  year: 2020
  end-page: 754
  ident: CR13
  article-title: Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods
  publication-title: Computat Stat
  doi: 10.1007/s00180-019-00930-x
– volume: 91
  start-page: 490
  year: 1996
  end-page: 498
  ident: CR4
  article-title: Alternative paradigms for the analysis of imputed survey data
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1996.10476909
– volume: 12
  start-page: 555
  year: 2002
  end-page: 574
  ident: CR24
  article-title: Joint conditional likelihood estimator in logistic regression with missing covariate data
  publication-title: Statistica Sinica
– volume: 92
  start-page: 512
  year: 1997
  end-page: 525
  ident: CR25
  article-title: Weighted semiparametric estimation in regression analysis with missing covariate data
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1997.10474004
– volume: 11
  start-page: 769
  year: 1992
  end-page: 782
  ident: CR29
  article-title: Designs and analysis of two-stage studies
  publication-title: Stat Med
  doi: 10.1002/sim.4780110608
– volume: 91
  start-page: 473
  year: 1996
  end-page: 489
  ident: CR21
  article-title: Multiple imputation after 18+ years
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1996.10476908
– volume: 145
  start-page: 106907
  year: 2020
  ident: CR9
  article-title: Logistic regression with missing covariates|parameter estimation, model selection and prediction within a joint-modeling framework
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2019.106907
– ident: CR23
– volume: 55
  start-page: 439
  year: 2001
  end-page: 449
  ident: CR27
  article-title: A note on kernel assisted estimators in missing covariate regression
  publication-title: Statistics and Probability Letters
  doi: 10.1016/S0167-7152(01)00167-5
– volume: 54
  start-page: 295
  year: 1998
  end-page: 303
  ident: CR14
  article-title: Inference using conditional logistic regression with missing covariates
  publication-title: Biometrics
  doi: 10.2307/2534015
– volume: 30
  start-page: 377
  year: 2011
  end-page: 399
  ident: CR28
  article-title: Multiple imputation using chained equations: issues and guidance for practice
  publication-title: Stat Med
  doi: 10.1002/sim.4067
– volume: 63
  start-page: 581
  year: 1976
  end-page: 592
  ident: CR19
  article-title: Inference and missing data
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.581
– volume: 140
  start-page: 927
  year: 2010
  end-page: 940
  ident: CR7
  article-title: Logistic regression analysis of randomized response data with missing covariates
  publication-title: J Stat Plann Infer
  doi: 10.1016/j.jspi.2009.09.020
– year: 2019
  ident: CR16
  publication-title: Statistical analysis with missing data
– year: 2013
  ident: CR6
  publication-title: Applied logistic regression
  doi: 10.1002/9781118548387
– volume: 47
  start-page: 663
  year: 1952
  end-page: 685
  ident: CR5
  article-title: A generalization of sampling without replacement from a finite universe
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1952.10483446
– volume: 79
  start-page: 457
  year: 2016
  end-page: 483
  ident: CR17
  article-title: Semiparametric estimation of a zero-inflated Poisson regression model with missing covariates
  publication-title: Metrika
  doi: 10.1007/s00184-015-0563-7
– volume: 81
  start-page: 366
  year: 1986
  end-page: 374
  ident: CR22
  article-title: Multiple imputation for interval estimation from simple random samples with ignorable nonresponse
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1986.10478280
– volume: 71
  start-page: 71
  year: 2011
  end-page: 78
  ident: CR18
  article-title: Multiple imputation of dental caries data using a zero-inflated Poisson regression model
  publication-title: J Public Health Dent
  doi: 10.1111/j.1752-7325.2010.00197.x
– volume: 75
  start-page: 11
  year: 1988
  end-page: 20
  ident: CR1
  article-title: Logistic regression for two-stage case-control data
  publication-title: Biometrika
  doi: 10.1093/biomet/75.1.11
– year: 1987
  ident: CR20
  publication-title: Statistical analysis with missing data
– volume: 91
  start-page: 490
  year: 1996
  ident: 1250_CR4
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1996.10476909
– volume: 12
  start-page: 555
  year: 2002
  ident: 1250_CR24
  publication-title: Statistica Sinica
– ident: 1250_CR23
  doi: 10.1080/03610926.2021.1943443
– volume: 72
  start-page: 1294
  year: 2016
  ident: 1250_CR11
  publication-title: Biometrics
  doi: 10.1111/biom.12498
– volume: 87
  start-page: 1227
  year: 1992
  ident: 1250_CR15
  publication-title: J Am Stat Assoc
– volume: 45
  start-page: 1
  issue: 3
  year: 2011
  ident: 1250_CR2
  publication-title: J Stat Softw
  doi: 10.18637/jss.v045.i03
– volume: 67
  start-page: 788
  year: 2011
  ident: 1250_CR10
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2010.01499.x
– volume: 63
  start-page: 581
  year: 1976
  ident: 1250_CR19
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.581
– volume: 75
  start-page: 621
  year: 2012
  ident: 1250_CR12
  publication-title: Metrika
  doi: 10.1007/s00184-011-0345-9
– volume: 37
  start-page: 490
  year: 2009
  ident: 1250_CR26
  publication-title: Ann Stat
  doi: 10.1214/07-AOS585
– volume: 35
  start-page: 725
  year: 2020
  ident: 1250_CR13
  publication-title: Computat Stat
  doi: 10.1007/s00180-019-00930-x
– volume: 79
  start-page: 457
  year: 2016
  ident: 1250_CR17
  publication-title: Metrika
  doi: 10.1007/s00184-015-0563-7
– volume: 92
  start-page: 512
  year: 1997
  ident: 1250_CR25
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1997.10474004
– volume: 66
  start-page: 32
  year: 2013
  ident: 1250_CR8
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2013.03.007
– volume: 145
  start-page: 106907
  year: 2020
  ident: 1250_CR9
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2019.106907
– volume: 54
  start-page: 295
  year: 1998
  ident: 1250_CR14
  publication-title: Biometrics
  doi: 10.2307/2534015
– volume: 71
  start-page: 71
  year: 2011
  ident: 1250_CR18
  publication-title: J Public Health Dent
  doi: 10.1111/j.1752-7325.2010.00197.x
– volume: 140
  start-page: 927
  year: 2010
  ident: 1250_CR7
  publication-title: J Stat Plann Infer
  doi: 10.1016/j.jspi.2009.09.020
– volume: 55
  start-page: 439
  year: 2001
  ident: 1250_CR27
  publication-title: Statistics and Probability Letters
  doi: 10.1016/S0167-7152(01)00167-5
– volume-title: Applied logistic regression
  year: 2013
  ident: 1250_CR6
  doi: 10.1002/9781118548387
– volume: 30
  start-page: 377
  year: 2011
  ident: 1250_CR28
  publication-title: Stat Med
  doi: 10.1002/sim.4067
– volume-title: Principled missing data methods for researchers
  year: 2013
  ident: 1250_CR3
  doi: 10.1186/2193-1801-2-222
– volume: 47
  start-page: 663
  year: 1952
  ident: 1250_CR5
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1952.10483446
– volume: 11
  start-page: 769
  year: 1992
  ident: 1250_CR29
  publication-title: Stat Med
  doi: 10.1002/sim.4780110608
– volume: 81
  start-page: 366
  year: 1986
  ident: 1250_CR22
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1986.10478280
– volume-title: Statistical analysis with missing data
  year: 1987
  ident: 1250_CR20
– volume-title: Statistical analysis with missing data
  year: 2019
  ident: 1250_CR16
– volume: 91
  start-page: 473
  year: 1996
  ident: 1250_CR21
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1996.10476908
– volume: 75
  start-page: 11
  year: 1988
  ident: 1250_CR1
  publication-title: Biometrika
  doi: 10.1093/biomet/75.1.11
SSID ssj0022721
Score 2.3662696
Snippet Logistic regression is a standard model in many studies of binary outcome data, and the analysis of missing data in this model is a fascinating topic. Based on...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 899
SubjectTerms Data analysis
Distribution functions
Economic Theory/Quantitative Economics/Mathematical Methods
Empirical equations
Estimation
Mathematics and Statistics
Missing data
Original Paper
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Regression analysis
Regression models
Statistical analysis
Statistics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGJ9sQdvGkw22U1zEpWKCC0iFryFfcxKQZLa1IL_3tlk06Kg1zw2kG_nuTPzEXJuWahNJEwAINMgYRAHGGcpjFJkH8KYaxW65uThSDyMk8dX_uoTbpUvq2x1Yq2oTaldjvyK9dHUMjRw4nr6ETjWKHe66ik01kkXVXCfd0j3djB6el6GXCytO69c-RxGSoL5tpm6ec7x0YWBq2ZHJc1RG_00TSt_89cRaW157rfJlncZ6U2D8Q5Zg2KXbA6X81arPbIYoKQ2TYi0tLRp65loOoO3ps61oC7hSnW5wNjYuZcU8XVpAlpBPf0b3r9oOaPVxFUYygLKzwqvLCaStiWHdOL4H5pvNLzT1T4Z3w9e7h4Cz6gQaBS1eWBRmWngKo1FnIYqUkZxpU2WgE1AAEsNlzI26NWFCqxlmeaRTZgROrGZyCA-IJ2iLOCQUIORGgcmpJFxwiRTWQSZlEqkNgWmRI9E7c_MtR837lgv3vPloOQagBwByGsA8rhHLpbvTJthG_8-fdJilHvBq_LVNumRyxa31e2_Vzv6f7VjsuGI5psisRPSmc8-4RTdkbk683vuG_Ff390
  priority: 102
  providerName: ProQuest
Title Estimation of logistic regression with covariates missing separately or simultaneously via multiple imputation methods
URI https://link.springer.com/article/10.1007/s00180-022-01250-3
https://www.proquest.com/docview/2817220756
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yuKSHkEdL06aLDrm1Blu25PVxE3YTEhJC6EJ6MnqMykKwy3qzkH_fkWU7tCSBXGxjy7LxWNL3Sd_MAJw4HhubSBshqjzKOKYR8SxNLEWNMU6F0bF3Tr6-kRfz7PJe3HdOYU2vdu-XJNueenB28_nj4sirz6lTFdR7bMK2IO7uhXxzPhloFs9bbysvmSN2JHnnKvNyHf8OR88Y879l0Xa0me3BbgcT2STYdR82sDqAD9dDjNXmAHY8Tgxhlg9hPaWD4IXIaseCX8_CsCX-DkLXivkZV2bqNZFjjy8ZGdjPE7AG2_Df-PDE6iVrFl5iqCqsHxs6s14o1msO2cIngAjPCImnm48wn01_nl1EXUqFyFBbW0WOejODQuepTPNYJ9pqoY0tMnQZSuS5FUqllmBdrNE5XhiRuIxbaTJXyALTT7BV1RV-BmaJqgnkUlmVZlxxXSRYKKVl7nLkWh5B0n_Z0nTxxn3ai4dyiJTcWqMka5StNcr0CL4P9_wJ0TbeLH3cG6zsWl5T8jFBMk5AiF7gR2_E58uv1_blfcW_wo7PPB9UY8ewtVo-4jfCJys9gs3xWeK3s_MRbE_Of11NaX86vbm9G7W_6l910-Rl
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOBQOVUtbdVtofYATjZo4iUMOCNF20VLYFapA4pb6Ma5WQglslq34U_xGxnGyKyqVG9ckdiTPeB72fPMBbFseahMJEyDKLEg4xgHlWYqyFLmHYZxqFTpw8nAkBhfJz8v0cgnuOyyMK6vsbGJjqE2l3Rn5V75HrpaTgxMH1zeBY41yt6sdhYZXixO8-0spW71__IPku8P5Uf_8-yBoWQUCTeo2DSxtaI2pymIRZ6GKlFGp0iZP0CYokGcmlTI2FNmECq3luU4jm3AjdGJzkWNM8y7DKoUZOe2i1W_90dmveYrHswbp5cr1KDMTvIXpNGA9x38XBq56npxCStbvsStcxLf_XMk2nu7oFbxsQ1R26HXqNSxhuQHrw3l_1_oNzPpkGTzokVWWeRjRWLMJ_vF1tSVzB7xMVzPKxV04y0if3LEEq7HpNo5Xd6yasHrsKhplidVtTU9mY8m6Ekc2dnwT_h-e57p-CxfPstbvYKWsSnwPzFBmmCIX0sg44ZKrPMJcSiUymyFXogdRt5iFbtubO5aNq2LemLkRQEECKBoBFHEPdudjrn1zjye_3uxkVLQbvS4WatmDL53cFq__P9uHp2f7DC8G58PT4vR4dPIR1hzJvS9Q24SV6eQWtygUmqpPrf4x-P3cKv8Awh4fvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiF6QOUlthTwAU4QNbETe3NACLVdtZRWHKjUW_BjjFaqknaz3ap_jV_HOE52VSR66zUPR8p89szY38wH8N7z1LpMugRRqyTnKBLKswxlKXqMqSisSUNx8vGJPDjNv50VZ2vwZ6iFCbTKYU3sFmrX2LBHvsPH5Go5OTi543taxI-9yZeLyyQoSIWT1kFOI0LkCG-uKX1rPx_uka0_cD7Z_7l7kPQKA4kl6M0TT5PbYmGUkEKlJjPOFMa6Mkefo0SuXKG1cBTlpAa956UtMp9zJ23uS1mioHEfwEMl1DjIRox3l_QSzlVX8xWIe5SjSd4X7HRle0EJL00Cj57cQ0Hr4G2nuIp0_zmc7XzeZBOe9MEq-xrR9RTWsH4GG8fLTq_tc1js0xoRyx9Z41ksKJpaNsPfkWFbs7DVy2yzoKw8BLaMkBU2KFiLXd9xPL9hzYy108Bt1DU2Vy1dWUw1G8iObBqUJ-I3ouJ1-wJO7-VPv4T1uqnxFTBHOWKBXGqnRc41N2WGpdZGKq-QGzmCbPiZle0bnQe9jfNq2aK5M0BFBqg6A1RiBB-X71zENh93Pr092Kjqp3xbrQA6gk-D3Va3_z_a1t2jvYNHBPTq--HJ0Wt4HNTuI1NtG9bnsyt8QzHR3LztwMfg132j_S9u8CJP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+logistic+regression+with+covariates+missing+separately+or+simultaneously+via+multiple+imputation+methods&rft.jtitle=Computational+statistics&rft.au=Lee%2C+Shen-Ming&rft.au=Le%2C+Truong-Nhat&rft.au=Tran%2C+Phuoc-Loc&rft.au=Li%2C+Chin-Shang&rft.date=2023-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=38&rft.issue=2&rft.spage=899&rft.epage=934&rft_id=info:doi/10.1007%2Fs00180-022-01250-3&rft.externalDocID=10_1007_s00180_022_01250_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon