Investigation on surface integrity and process parameter optimisation of carburised 18CrNiMo7-6 steel by induction-heating-assisted ultrasonic surface rolling process
The purpose of induction-heating-assisted ultrasonic surface rolling process is to introduce the temperature field into the ultrasonic surface strengthening process of materials and use the influence of heating temperature on the mechanical properties and microstructure of the material so that a sur...
Saved in:
Published in | International journal of advanced manufacturing technology Vol. 129; no. 3-4; pp. 1071 - 1086 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.11.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0268-3768 1433-3015 |
DOI | 10.1007/s00170-023-12301-4 |
Cover
Loading…
Abstract | The purpose of induction-heating-assisted ultrasonic surface rolling process is to introduce the temperature field into the ultrasonic surface strengthening process of materials and use the influence of heating temperature on the mechanical properties and microstructure of the material so that a surface-modified layer with improved performance can be obtained. Many studies on the ultrasonic surface rolling process have been conducted at room temperature. In this study, the effect of temperature on the surface integrity of carburised 18CrNiMo7-6 steel after ultrasonic surface rolling process was studied by induction heating. Compared with the result of ultrasonic surface rolling process at room temperature, below 250 °C, with the increase of heating temperature, the residual compressive stress and residual compressive stress depth of the sample increase continuously. The maximum surface residual compressive stress and residual compressive stress depth can be obtained at 250 °C, the surface residual compressive stress increases by 29%, and the residual compressive stress depth increases from 1700 to 2450 μm. The surface hardness of the sample also shows an increasing trend when the heating temperature is from 100 to 250 °C, and the hardness influence layer increases with the increase of heating temperature. The minimum surface roughness can be obtained by ultrasonic surface rolling process at 100 °C. In addition, the induction-heating-assisted ultrasonic surface rolling process parameters are optimised by grey correlation analysis method, and the optimum process parameters to achieve the best surface integrity are obtained as follows: static pressure of 400 N, rotation speed of 50 r/min, feed rate of 0.04 mm/r, and heating temperature of 250 °C. The order of significance of influence on surface integrity is static pressure
>
rotation speed
>
feed rate
>
heating temperature. The conclusion has a certain guiding significance for the anti-fatigue manufacturing of materials. |
---|---|
AbstractList | The purpose of induction-heating-assisted ultrasonic surface rolling process is to introduce the temperature field into the ultrasonic surface strengthening process of materials and use the influence of heating temperature on the mechanical properties and microstructure of the material so that a surface-modified layer with improved performance can be obtained. Many studies on the ultrasonic surface rolling process have been conducted at room temperature. In this study, the effect of temperature on the surface integrity of carburised 18CrNiMo7-6 steel after ultrasonic surface rolling process was studied by induction heating. Compared with the result of ultrasonic surface rolling process at room temperature, below 250 °C, with the increase of heating temperature, the residual compressive stress and residual compressive stress depth of the sample increase continuously. The maximum surface residual compressive stress and residual compressive stress depth can be obtained at 250 °C, the surface residual compressive stress increases by 29%, and the residual compressive stress depth increases from 1700 to 2450 μm. The surface hardness of the sample also shows an increasing trend when the heating temperature is from 100 to 250 °C, and the hardness influence layer increases with the increase of heating temperature. The minimum surface roughness can be obtained by ultrasonic surface rolling process at 100 °C. In addition, the induction-heating-assisted ultrasonic surface rolling process parameters are optimised by grey correlation analysis method, and the optimum process parameters to achieve the best surface integrity are obtained as follows: static pressure of 400 N, rotation speed of 50 r/min, feed rate of 0.04 mm/r, and heating temperature of 250 °C. The order of significance of influence on surface integrity is static pressure > rotation speed > feed rate > heating temperature. The conclusion has a certain guiding significance for the anti-fatigue manufacturing of materials. The purpose of induction-heating-assisted ultrasonic surface rolling process is to introduce the temperature field into the ultrasonic surface strengthening process of materials and use the influence of heating temperature on the mechanical properties and microstructure of the material so that a surface-modified layer with improved performance can be obtained. Many studies on the ultrasonic surface rolling process have been conducted at room temperature. In this study, the effect of temperature on the surface integrity of carburised 18CrNiMo7-6 steel after ultrasonic surface rolling process was studied by induction heating. Compared with the result of ultrasonic surface rolling process at room temperature, below 250 °C, with the increase of heating temperature, the residual compressive stress and residual compressive stress depth of the sample increase continuously. The maximum surface residual compressive stress and residual compressive stress depth can be obtained at 250 °C, the surface residual compressive stress increases by 29%, and the residual compressive stress depth increases from 1700 to 2450 μm. The surface hardness of the sample also shows an increasing trend when the heating temperature is from 100 to 250 °C, and the hardness influence layer increases with the increase of heating temperature. The minimum surface roughness can be obtained by ultrasonic surface rolling process at 100 °C. In addition, the induction-heating-assisted ultrasonic surface rolling process parameters are optimised by grey correlation analysis method, and the optimum process parameters to achieve the best surface integrity are obtained as follows: static pressure of 400 N, rotation speed of 50 r/min, feed rate of 0.04 mm/r, and heating temperature of 250 °C. The order of significance of influence on surface integrity is static pressure > rotation speed > feed rate > heating temperature. The conclusion has a certain guiding significance for the anti-fatigue manufacturing of materials. |
Author | Liu, Zhihua Tang, Peng Qin, Shengwei Zheng, Lingshuo |
Author_xml | – sequence: 1 givenname: Zhihua surname: Liu fullname: Liu, Zhihua email: liuzhihua@zzu.edu.cn organization: School of Mechanical and Power Engineering, Zhengzhou University, Henan Key Engineering Laboratory for Anti-Fatigue Manufacturing Technology – sequence: 2 givenname: Lingshuo surname: Zheng fullname: Zheng, Lingshuo organization: School of Mechanical and Power Engineering, Zhengzhou University, Henan Key Engineering Laboratory for Anti-Fatigue Manufacturing Technology – sequence: 3 givenname: Peng surname: Tang fullname: Tang, Peng organization: School of Mechanical and Power Engineering, Zhengzhou University, Henan Key Engineering Laboratory for Anti-Fatigue Manufacturing Technology – sequence: 4 givenname: Shengwei surname: Qin fullname: Qin, Shengwei organization: School of Mechanical and Power Engineering, Zhengzhou University, Henan Key Engineering Laboratory for Anti-Fatigue Manufacturing Technology |
BookMark | eNp9kctqHDEQRUWwIWM7P5CVIGslenS3NMsw5GGwnU2yFmp1aSLTI01U6sD8UL4zGo_tQBYGgRC6p25V3QtylnICQt4K_l5wrj8g50JzxqViQiouWPeKrESnFGuP_oysuBwMU3owr8kF4n2TD2IwK_LnOv0GrHHrasyJtoNLCc4DjanCtsR6oC5NdF-yB0S6d8XtoEKheV_jLuIjF6h3ZVxKRJioMJtyF2-zZgPFCjDT8dDqTYs_itlPaFDaMocY2_dEl7kWhzlF_-xe8jw3zZPvFTkPbkZ483hfkh-fP33ffGU3375cbz7eMK_EurIwcRNGZaZgpjYwyHUvuJadhwBaw9oJ5b3phqABRDe5Pnip-7Eb9Xo00kl1Sd6d6jbfX0tbjL3PS0nN0kpjBO-V6rumMieVLxmxQLA-1odFtDnibAW3x1TsKRXbUrEPqdgjKv9D9yXuXDm8DKkThE2ctlD-dfUC9RfED6Yk |
CitedBy_id | crossref_primary_10_1002_adem_202401100 crossref_primary_10_1016_j_surfcoat_2024_131689 |
Cites_doi | 10.35234/fumbd.1229068 10.4028/www.scientific.net/AMR.102-104.591 10.1007/s11665-008-9212-x 10.1016/j.ijmachtools.2018.09.005 10.1016/j.jmrt.2023.06.050 10.16490/j.cnki.issn.1001-3660.2022.08.015 10.1007/s00170-021-06642-1 10.1016/j.scriptamat.2006.10.017 10.1016/j.mechmachtheory.2021.104498 10.1016/j.apsusc.2022.155467 10.1016/0025-5416(85)90082-5 10.3969/j.issn.1009-279X.2021.z1.008 10.1016/j.matpr.2019.05.409 10.1016/j.msea.2012.11.099 10.1016/j.measurement.2017.11.001 10.12011/1000-6788(2008)4-135 10.13705/j.issn.1671-6833.2020.03.016 10.3969/j.issn.1007-2012.2022.03.005 10.1016/j.matlet.2022.133200 10.16490/j.cnki.issn.1001-3660.2020.12.015 10.1016/j.surfcoat.2017.01.099 10.1177/0954406220984194 10.1016/j.ijmachtools.2022.103979 10.3969/j.issn.1002-1639.2009.02.007 10.3969/j.issn.1003-5311.2008.10.028 10.1016/j.matdes.2010.04.057 10.3390/ma15248835 10.16490/j.cnki.issn.1001-3660.2023.02.011 10.13705/j.issn.1671-6833.2020.03.006 10.1016/j.ijfatigue.2019.03.041 10.1016/j.jmrt.2021.02.076 10.1016/S1003-6326(19)65049-1 10.1002/mawe.202100291 10.1109/TIE.2013.2281162 10.1016/j.surfcoat.2020.125745 10.1016/j.ijmecsci.2020.105824 10.1007/s43452-022-00431-7 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.1007/s00170-023-12301-4 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1433-3015 |
EndPage | 1086 |
ExternalDocumentID | 10_1007_s00170_023_12301_4 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: No. 52001281 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-fd08fb38df8d268e29510724cefe77e9a13cc846f7ee14da5fc275b4b79b82a23 |
IEDL.DBID | AGYKE |
ISSN | 0268-3768 |
IngestDate | Fri Jul 25 11:10:10 EDT 2025 Thu Apr 24 23:02:37 EDT 2025 Tue Jul 01 02:01:39 EDT 2025 Fri Feb 21 02:42:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | Surface integrity Ultrasonic surface rolling process Grey correlation analysis method Carburised 18CrNiMo7-6 steel Parameter optimisation Induction heating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-fd08fb38df8d268e29510724cefe77e9a13cc846f7ee14da5fc275b4b79b82a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2881053354 |
PQPubID | 2044010 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2881053354 crossref_citationtrail_10_1007_s00170_023_12301_4 crossref_primary_10_1007_s00170_023_12301_4 springer_journals_10_1007_s00170_023_12301_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231100 2023-11-00 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | International journal of advanced manufacturing technology |
PublicationTitleAbbrev | Int J Adv Manuf Technol |
PublicationYear | 2023 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Qin, Zhang, Zhao, Zhang (CR15) 2020; 49 Xu, Liu, Zhao (CR32) 2008; 10 Li, Qu, Xie, Li (CR17) 2017; 316 Zhang (CR31) 2009; 38 Yang (CR27) 2022 Wei, Liu, Xiao, Zhao, Ding, Kang (CR16) 2013; 564 Lian, Chen, Wang (CR39) 2021; 359 Wang, Wang, Liu, Wang, Fu (CR40) 2022; 29 Wang, Wen, Zhang, Zhao, Yue (CR38) 2019; 125 Hong (CR34) 1985; 76 Tao, Luo, Sun, Duan (CR3) 2023; 52 Bucior, Kluz, Trzepiecinski, Jurczak, Kubit, Ochal (CR6) 2022; 15 Wang, Sang, Zhang, Zhao, Xu, Peng (CR28) 2023; 25 Kanchanomai, Limtrakarn (CR30) 2008; 17 Celik, Caydas, Akyuz (CR36) 2022; 53 Qin, Zhang, Zhang (CR33) 2020; 41 CR4 Mei, Zhang, Ding (CR25) 2010; 910 CR5 Prakash, Gnanamoorthy, Kamaraj (CR35) 2010; 31 CR29 Liu, Zhang, Yang, Dai, Zhang (CR10) 2020; 41 Liu, Liu, Liu, Xiao, Sanderson (CR21) 2023; 617 Lucia, Maussion, Dede, Burdio (CR23) 2014; 61 CR24 Teimouri, Amini, Bami (CR2) 2018; 116 Wang, Zhou, Tang, Tang, Li (CR1) 2022; 167 Zhang, Shen, Wang, Xu, He, Bai (CR18) 2021; 12 Juijerm, Altenberger (CR19) 2006; 56 Sun, Dang (CR26) 2008; 04 Meng, Zhao, Zhang, Wang, He, Zhang (CR11) 2022; 51 Sarma, Kumar, Sahoo, Panda (CR8) 2020; 23 Wang, Pan, Liu, Fu, Li (CR13) 2021; 235 Luan, Zhao, Liang, Xiao, Liang, Chen, Zou, Wang (CR22) 2020; 392 Pan, Zhou, Wang, Yu (CR7) 2023; 184 Liu, Zhang, Zhao, Vincent, Wang (CR12) 2021; 113 Han, Zhang, Yan, Li, Wang (CR14) 2022; 328 Liu, Suslov, Ren, Dong, Ye (CR20) 2019; 136 Luo, Tan, Mo, Yin, Yang, Zhuang, Zhang (CR9) 2019; 29 Celik (CR37) 2023; 35 SW Qin (12301_CR15) 2020; 49 PC Wang (12301_CR13) 2021; 235 X Luo (12301_CR9) 2019; 29 ZH Liu (12301_CR12) 2021; 113 M Celik (12301_CR36) 2022; 53 M Bucior (12301_CR6) 2022; 15 ZH Liu (12301_CR10) 2020; 41 XS Luan (12301_CR22) 2020; 392 12301_CR24 PG Wang (12301_CR40) 2022; 29 R Teimouri (12301_CR2) 2018; 116 G Li (12301_CR17) 2017; 316 12301_CR4 YH Zhang (12301_CR31) 2009; 38 NA Prakash (12301_CR35) 2010; 31 HL Wei (12301_CR16) 2013; 564 12301_CR5 J Sarma (12301_CR8) 2020; 23 P Juijerm (12301_CR19) 2006; 56 ZQ Liu (12301_CR21) 2023; 617 GY Mei (12301_CR25) 2010; 910 YG Sun (12301_CR26) 2008; 04 J Liu (12301_CR20) 2019; 136 SH Wang (12301_CR1) 2022; 167 GY Tao (12301_CR3) 2023; 52 O Lucia (12301_CR23) 2014; 61 M Celik (12301_CR37) 2023; 35 12301_CR29 SW Qin (12301_CR33) 2020; 41 JJ Wang (12301_CR38) 2019; 125 HS Lian (12301_CR39) 2021; 359 CS Zhang (12301_CR18) 2021; 12 C Meng (12301_CR11) 2022; 51 C Kanchanomai (12301_CR30) 2008; 17 G Wang (12301_CR28) 2023; 25 XL Pan (12301_CR7) 2023; 184 M Yang (12301_CR27) 2022 XF Xu (12301_CR32) 2008; 10 SI Hong (12301_CR34) 1985; 76 MZ Han (12301_CR14) 2022; 328 |
References_xml | – volume: 35 start-page: 333 issue: 1 year: 2023 end-page: 342 ident: CR37 article-title: Investigation of the effects of roller burnishing on the surface quality of Inconel 718 alloy publication-title: Fırat Univ Müh Bilim Derg doi: 10.35234/fumbd.1229068 – ident: CR4 – volume: 910 start-page: 591 issue: 102 year: 2010 end-page: 594 ident: CR25 article-title: Study on the effect of ultrasonic surface rolling processing parameters on the surface roughness of Q345 hydraulic prop publication-title: Adv Mat Res doi: 10.4028/www.scientific.net/AMR.102-104.591 – volume: 17 start-page: 879 issue: 6 year: 2008 end-page: 887 ident: CR30 article-title: Effect of residual stress on fatigue failure of carbonitrided Low-Carbon steel publication-title: J Mater Eng Perform doi: 10.1007/s11665-008-9212-x – volume: 136 start-page: 19 year: 2019 end-page: 33 ident: CR20 article-title: Microstructure evolution in Ti64 subjected to laser-assisted ultrasonic nanocrystal surface modification publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2018.09.005 – volume: 25 start-page: 1649 year: 2023 end-page: 1661 ident: CR28 article-title: Carburization-induced microstructure evolution and hardening mechanism of 18CrNiMo7-6 steel publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2023.06.050 – volume: 51 start-page: 179 issue: 08 year: 2022 end-page: 202 ident: CR11 article-title: Research and application of ultrasonic rolling surface strengthening technology publication-title: Surf Technol doi: 10.16490/j.cnki.issn.1001-3660.2022.08.015 – volume: 113 start-page: 1307 year: 2021 end-page: 1330 ident: CR12 article-title: Theoretical analysis and performance prediction on modified surface layer caused by ultrasonic surface rolling publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-021-06642-1 – volume: 56 start-page: 285 issue: 4 year: 2006 end-page: 288 ident: CR19 article-title: Effect of high-temperature deep rolling on cyclic deformation behavior of solution-heat-treated Al-Mg-Si-Cu alloy publication-title: Scr Mater doi: 10.1016/j.scriptamat.2006.10.017 – volume: 167 start-page: 1 year: 2022 end-page: 20 ident: CR1 article-title: Digital tooth contact analysis of face gear drives with an accurate measurement model of face gear tooth surface inspected by CMMs publication-title: Mech Mach Theory doi: 10.1016/j.mechmachtheory.2021.104498 – ident: CR29 – volume: 617 start-page: 1 year: 2023 end-page: 12 ident: CR21 article-title: Improved rolling contact fatigue performance of selective electron beam melted Ti6Al4V with the as-built surface using induction-heating assisted ultrasonic surface rolling process publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2022.155467 – volume: 76 start-page: 77 year: 1985 end-page: 81 ident: CR34 article-title: Influence of dynamic strain aging on the apparent activation volume for deformation publication-title: Mater Sci Eng doi: 10.1016/0025-5416(85)90082-5 – year: 2022 ident: CR27 publication-title: Practical heat treatment technical manual – volume: 359 start-page: 35 issue: S1 year: 2021 end-page: 39 ident: CR39 article-title: Optimization of EDM parameters of insulated ceramic Al O using grey relational analysis method publication-title: Electromach Mould doi: 10.3969/j.issn.1009-279X.2021.z1.008 – volume: 23 start-page: 561 year: 2020 end-page: 564 ident: CR8 article-title: Enhancement of material properties of titanium alloys through heat treatment process: a brief review publication-title: Mater Today Proc doi: 10.1016/j.matpr.2019.05.409 – volume: 564 start-page: 140 year: 2013 end-page: 146 ident: CR16 article-title: Characterization of hot deformation behavior of a new microalloyed C-Mn-Al high-strength steel publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2012.11.099 – volume: 116 start-page: 129 year: 2018 end-page: 139 ident: CR2 article-title: Evaluation of optimized surface properties and residual stress in ultrasonic assisted ball burnishing of AA6061-T6 publication-title: Measurement doi: 10.1016/j.measurement.2017.11.001 – volume: 04 start-page: 135 year: 2008 end-page: 139 ident: CR26 article-title: Improvement on grey T’s correlation degree publication-title: Syst Eng Theory Pract doi: 10.12011/1000-6788(2008)4-135 – volume: 41 start-page: 44 issue: 02 year: 2020 end-page: 49 ident: CR10 article-title: Performance analysis of surface modification layer of 18CrNiMo7–6 gear steel treated by ultrasonic rolling publication-title: J Zhengzhou Univ Eng Sci doi: 10.13705/j.issn.1671-6833.2020.03.016 – volume: 29 start-page: 36 issue: 3 year: 2022 end-page: 43 ident: CR40 article-title: Optimization of process parameters of ultrasonic rolling extrusion based on grey correlation analysis method publication-title: J Plast Eng doi: 10.3969/j.issn.1007-2012.2022.03.005 – volume: 328 start-page: 72 year: 2022 end-page: 83 ident: CR14 article-title: Improving fatigue properties of 18CrNiMo7-6 steel by surface strengthening publication-title: Mater Lett doi: 10.1016/j.matlet.2022.133200 – volume: 49 start-page: 138 issue: 12 year: 2020 end-page: 143 ident: CR15 article-title: Effect of transformation plasticity coefficient on residual stress of 18CrNiMo7–6 carburizing steel publication-title: Surf Technol doi: 10.16490/j.cnki.issn.1001-3660.2020.12.015 – volume: 316 start-page: 75 year: 2017 end-page: 84 ident: CR17 article-title: Effect of ultrasonic surface rolling at low temperatures on surface layer microstructure and properties of HIP Ti-6Al-4V alloy publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2017.01.099 – volume: 235 start-page: 5594 issue: 21 year: 2021 end-page: 5602 ident: CR13 article-title: Research on surface properties of Ti-6Al-4V alloy by multi-ultrasonic rolling publication-title: Proc Inst Mech Eng C J Mech Eng Sci doi: 10.1177/0954406220984194 – volume: 184 start-page: 1 year: 2023 end-page: 15 ident: CR7 article-title: Microstructure and residual stress modulation of 7075 aluminum alloy for improving fatigue performance by laser shock peening publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2022.103979 – volume: 38 start-page: 23 issue: 02 year: 2009 end-page: 26 ident: CR31 article-title: Numerical simulation of temperature field for the induction heating of the metal forging preform based on ANSYS publication-title: Ind Heat doi: 10.3969/j.issn.1002-1639.2009.02.007 – volume: 10 start-page: 77 year: 2008 end-page: 80 ident: CR32 article-title: Study on numerical simulation technology of billet induction heating publication-title: New Technol New Process doi: 10.3969/j.issn.1003-5311.2008.10.028 – volume: 31 start-page: 4006 issue: 9 year: 2010 end-page: 4075 ident: CR35 article-title: Microstructural evolution and mechanical properties of oil jet peened aluminium alloy, AA6063-T6 publication-title: Mater Des doi: 10.1016/j.matdes.2010.04.057 – volume: 15 start-page: 8835 issue: 24 year: 2022 end-page: 8849 ident: CR6 article-title: The effect of shot peening on residual stress and surface roughness of AMS 5504 stainless steel joints welded using the TIG method publication-title: Materials doi: 10.3390/ma15248835 – volume: 52 start-page: 122 issue: 02 year: 2023 end-page: 134 ident: CR3 article-title: The state of the art of ultrasonic surface rolling technology and its combination technology publication-title: Surf Technol doi: 10.16490/j.cnki.issn.1001-3660.2023.02.011 – volume: 41 start-page: 56 issue: 02 year: 2020 end-page: 60 ident: CR33 article-title: Study on diffusion coefficient of carburizing process simulation of 18CrNiMo7–6 steel publication-title: J Zhengzhou Univ Eng Sci doi: 10.13705/j.issn.1671-6833.2020.03.006 – ident: CR5 – volume: 125 start-page: 101 year: 2019 end-page: 111 ident: CR38 article-title: Effect mechanism and equivalent model of surface roughness on fatigue behavior of nickel-based single crystal superalloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.03.041 – volume: 12 start-page: 100 year: 2021 end-page: 116 ident: CR18 article-title: Improving surface properties of Fe-based laser cladding coating deposited on a carbon steel by heat assisted ultrasonic burnishing publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2021.02.076 – volume: 29 start-page: 1424 issue: 7 year: 2019 end-page: 1429 ident: CR9 article-title: Effect of deep surface rolling on microstructure and properties of AZ91 magnesium alloy publication-title: T Nonferr Metal Soc doi: 10.1016/S1003-6326(19)65049-1 – volume: 53 start-page: 608 issue: 5 year: 2022 end-page: 616 ident: CR36 article-title: The influence of roller burnishing process parameters on surface quality and fatigue life of AA 7075–T6 alloy publication-title: Materwiss Werksttech doi: 10.1002/mawe.202100291 – volume: 61 start-page: 2509 issue: 5 year: 2014 end-page: 2520 ident: CR23 article-title: Induction heating technology and its applications: past developments, current technology, and future challenges publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2013.2281162 – ident: CR24 – volume: 392 start-page: 1 year: 2020 end-page: 9 ident: CR22 article-title: Experimental study on surface integrity of ultra-high-strength steel by ultrasonic hot rolling surface strengthening publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2020.125745 – volume: 12 start-page: 100 year: 2021 ident: 12301_CR18 publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2021.02.076 – ident: 12301_CR29 – ident: 12301_CR5 doi: 10.1016/j.ijmecsci.2020.105824 – volume: 359 start-page: 35 issue: S1 year: 2021 ident: 12301_CR39 publication-title: Electromach Mould doi: 10.3969/j.issn.1009-279X.2021.z1.008 – volume: 51 start-page: 179 issue: 08 year: 2022 ident: 12301_CR11 publication-title: Surf Technol doi: 10.16490/j.cnki.issn.1001-3660.2022.08.015 – volume: 167 start-page: 1 year: 2022 ident: 12301_CR1 publication-title: Mech Mach Theory doi: 10.1016/j.mechmachtheory.2021.104498 – volume: 38 start-page: 23 issue: 02 year: 2009 ident: 12301_CR31 publication-title: Ind Heat doi: 10.3969/j.issn.1002-1639.2009.02.007 – volume: 392 start-page: 1 year: 2020 ident: 12301_CR22 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2020.125745 – volume: 910 start-page: 591 issue: 102 year: 2010 ident: 12301_CR25 publication-title: Adv Mat Res doi: 10.4028/www.scientific.net/AMR.102-104.591 – volume: 316 start-page: 75 year: 2017 ident: 12301_CR17 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2017.01.099 – volume: 184 start-page: 1 year: 2023 ident: 12301_CR7 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2022.103979 – volume: 328 start-page: 72 year: 2022 ident: 12301_CR14 publication-title: Mater Lett doi: 10.1016/j.matlet.2022.133200 – volume: 17 start-page: 879 issue: 6 year: 2008 ident: 12301_CR30 publication-title: J Mater Eng Perform doi: 10.1007/s11665-008-9212-x – volume: 25 start-page: 1649 year: 2023 ident: 12301_CR28 publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2023.06.050 – volume: 113 start-page: 1307 year: 2021 ident: 12301_CR12 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-021-06642-1 – volume: 29 start-page: 36 issue: 3 year: 2022 ident: 12301_CR40 publication-title: J Plast Eng doi: 10.3969/j.issn.1007-2012.2022.03.005 – volume: 76 start-page: 77 year: 1985 ident: 12301_CR34 publication-title: Mater Sci Eng doi: 10.1016/0025-5416(85)90082-5 – volume: 23 start-page: 561 year: 2020 ident: 12301_CR8 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2019.05.409 – volume: 56 start-page: 285 issue: 4 year: 2006 ident: 12301_CR19 publication-title: Scr Mater doi: 10.1016/j.scriptamat.2006.10.017 – volume: 136 start-page: 19 year: 2019 ident: 12301_CR20 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2018.09.005 – volume: 04 start-page: 135 year: 2008 ident: 12301_CR26 publication-title: Syst Eng Theory Pract doi: 10.12011/1000-6788(2008)4-135 – volume: 53 start-page: 608 issue: 5 year: 2022 ident: 12301_CR36 publication-title: Materwiss Werksttech doi: 10.1002/mawe.202100291 – volume: 116 start-page: 129 year: 2018 ident: 12301_CR2 publication-title: Measurement doi: 10.1016/j.measurement.2017.11.001 – volume: 125 start-page: 101 year: 2019 ident: 12301_CR38 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.03.041 – volume: 15 start-page: 8835 issue: 24 year: 2022 ident: 12301_CR6 publication-title: Materials doi: 10.3390/ma15248835 – volume: 10 start-page: 77 year: 2008 ident: 12301_CR32 publication-title: New Technol New Process doi: 10.3969/j.issn.1003-5311.2008.10.028 – volume: 29 start-page: 1424 issue: 7 year: 2019 ident: 12301_CR9 publication-title: T Nonferr Metal Soc doi: 10.1016/S1003-6326(19)65049-1 – volume: 41 start-page: 56 issue: 02 year: 2020 ident: 12301_CR33 publication-title: J Zhengzhou Univ Eng Sci doi: 10.13705/j.issn.1671-6833.2020.03.006 – volume: 617 start-page: 1 year: 2023 ident: 12301_CR21 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2022.155467 – volume: 41 start-page: 44 issue: 02 year: 2020 ident: 12301_CR10 publication-title: J Zhengzhou Univ Eng Sci doi: 10.13705/j.issn.1671-6833.2020.03.016 – volume: 235 start-page: 5594 issue: 21 year: 2021 ident: 12301_CR13 publication-title: Proc Inst Mech Eng C J Mech Eng Sci doi: 10.1177/0954406220984194 – ident: 12301_CR4 doi: 10.1007/s43452-022-00431-7 – volume: 35 start-page: 333 issue: 1 year: 2023 ident: 12301_CR37 publication-title: Fırat Univ Müh Bilim Derg doi: 10.35234/fumbd.1229068 – volume-title: Practical heat treatment technical manual year: 2022 ident: 12301_CR27 – ident: 12301_CR24 – volume: 52 start-page: 122 issue: 02 year: 2023 ident: 12301_CR3 publication-title: Surf Technol doi: 10.16490/j.cnki.issn.1001-3660.2023.02.011 – volume: 31 start-page: 4006 issue: 9 year: 2010 ident: 12301_CR35 publication-title: Mater Des doi: 10.1016/j.matdes.2010.04.057 – volume: 564 start-page: 140 year: 2013 ident: 12301_CR16 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2012.11.099 – volume: 49 start-page: 138 issue: 12 year: 2020 ident: 12301_CR15 publication-title: Surf Technol doi: 10.16490/j.cnki.issn.1001-3660.2020.12.015 – volume: 61 start-page: 2509 issue: 5 year: 2014 ident: 12301_CR23 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2013.2281162 |
SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
Score | 2.3946748 |
Snippet | The purpose of induction-heating-assisted ultrasonic surface rolling process is to introduce the temperature field into the ultrasonic surface strengthening... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1071 |
SubjectTerms | Advanced manufacturing technologies CAE) and Design Carbon Carburizing Compressive properties Computer-Aided Engineering (CAD Correlation analysis Deformation Engineering Experiments Feed rate Heat resistance Induction heating Industrial and Production Engineering Integrity Lasers Magnetic fields Manufacturing Mechanical Engineering Mechanical properties Media Management Metal fatigue Nickel chromium molybdenum steels Optimization Original Article Process parameters Room temperature Rotation Skin pass rolling Static pressure Surface hardness Surface roughness Temperature Temperature distribution Temperature effects |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgXOBQ8Sm2FOQDN7BYO05snxCqWCqk9kSl3iJ_SpW2yZLsHvhD_E5mHGe3IFEptyR25HmeebE9bwh5D6Q7gJkNW9raMgmIYSZawxT8qzTBJBWzbsHFZXN-Jb9f19dlwW0sxypnn5gddeg9rpF_ElpzzBut5efNT4ZVo3B3tZTQeEgecYg0iHO9-jbjiRuFNTH3eBMGC9Ef8FzJupp2ucquQ8Nz6hx8pcaJp0uSTU61y0IzDCIcA18Pv-Dy70B2YKf_bKjmOLV6So4LwaRfJkQ8Iw9i95w8uSM7-IL8viOu0XcUrnE3JOsjncQjgJhT2wW6mZIIKMqD3-KxGdqDg7ktB4Bon6i3aJSbMQbK9dlweXPRK9ZQQE5cU_cL2guTOi1Dnw-dM-DqCKxAd-vtYEcU5t33PkwC4XO_L8nV6uuPs3NW6jUwDxN5y1JY6uQqHZIOMIRRIHtTQvqYolLRWF55D3wHABC5DLZOXqjaSaeM08KK6hU56vouviYUaFQA60kbdJC1XzqTEnfa8VA1nnuxIHwe_NYXMXOsqbFu9zLM2WAtGKzNBmvlgnzYv7OZpDzuffp0tmlbpvXYHkC4IB9nOx9u_7-1k_tbe0MeiwwtXNo5JUfbYRffAtnZuncZ0X8AmlX4HQ priority: 102 providerName: ProQuest |
Title | Investigation on surface integrity and process parameter optimisation of carburised 18CrNiMo7-6 steel by induction-heating-assisted ultrasonic surface rolling process |
URI | https://link.springer.com/article/10.1007/s00170-023-12301-4 https://www.proquest.com/docview/2881053354 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LatwwFBXNZNMu2vRF8xq06K5VGMmyLS1nwkxCS4ZSOpCujJ4QMrGD7Vm0H5TvzJVfk4a2EDB4IdmyuEdXR766Rwh9BNJtwcySTFSsCAfEEOmUJCmsVRIrfeoa3YKLZXK-4l8u48suKazqd7v3IcnGUw_Jbo3UC4E5hoC3hUUw30G7MRVSjNDu9Ozn13mPIyrTcBbmgDMmwwH0WxxHPI7a6FYXbUhokzIHXyfCgBNdcs3fW_1zAtuy0keB1GZ-WrxCq75n7baU65NNrU_M70eij0_t-h562RFWPG0R9ho9c_kb9OKBjOFbdPdArKPIMVzVpvTKONyKUQDRxyq3-LZNSsBBbvwmbMPBBTism25DES48NioY-apyFlNxWi6vLoqUJBiQ6NZY_4L32VbtloQ5BBonwP0DUC3erOtSVUHod2i9bAXH-3bfodVi_uP0nHTnPxADjqEm3k6E15GwXlgwjWOBDaaMG-ddmjqpaGQM8CcAlKPcqtgblsaa61RqwRSL3qNRXuTuA8JAyyyggisrLI_NREvvqRaa2igx1LB9RHujZqYTRw9ndKyzQda5sUEGNsgaG2R8H30anrltpUH-W_uox0rWuYkqY0LQkAwdQ_Hn3vTb4n-_7eBp1Q_Rc9agJ_w6OkKjuty4YyBTtR6jHbE4G8MIWsxmy3E3kuA-my-_fYfSFZveAw52Fsw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLam7gAc0PgShQE-wAksaseJ7cOEtrGpY2uF0CbtFhx_SJO6pCStpv2hHfmNvHaSdiCx26Te0thRnsfvR-z3eRF6D0G3BZgVGelUEw6MIcppRQTkKplVXrioWzCZZuMz_u08Pd9Av_tamHCssreJ0VDbyoRv5J-ZlDTUjab8y_wXCV2jwu5q30KjpcWxu76ClK3ZOfoK-H5g7PDgdH9Muq4CxADdFsTbkfRFIq2XlmXSsRBjCMaN804IpzRNjAGvDI_pKLc69YaJtOCFUIVkOggdgMnf5KGidYA29w6m33_0DKZKhC6cK4YzBQGNWK-ghKdJu6_W7XNkNBbrwXuRYanLrqwnFvdFaRsCPpWAd4Gkn__tOtfx8D9buNEzHm6hx11Ii3dbDj5BG658ih7dEjp8hm5uyXlUJYZfs6y9Ng63chWQCmBdWjxvyxZwECS_DAd1cAUm7bI7coQrj40ONLhonMVU7tfTi0klSIaBq26Gi2sYz7Z6uCR4GZicQHYQqGzxcraodROkgFez160keT_vc3R2L1i-QIOyKt1LhCFws4Ae11ZanppRobynhSyoTTJDDRsi2r_83HTy6aGLxyxfCT9HwHIALI-A5XyIPq7umbfiIXf-e7vHNO8MSZOvaT9En3qc15f_P9qru0d7hx6MTycn-cnR9Pg1esgizcKHpW00WNRL9wZCrUXxtuM3Rj_ve0n9AYrpN5k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LatwwFBVpAqVZlD5J2jTVortWZCTLlrQMaYckbYYuOpCd0RMCE3vweBb5oXxnruTHTEtbCHgnWdfoHl0dWbpHCH0C0u3AzYpMdK4JB8QQ5bUiAtYqhVNB-KRbcDUrzuf88jq_3sriT6fdhy3JLqchqjRV7cnShZMx8S3JvhCYbwhEXlgQ8ydoD8IxjUifs9MBUVSJeCvmiDim4lX0G0RnPM-6fa5-36GgKXkOvlPGoSf7NJu_2_x9Ktvw0z-2VNNMNX2BnvcUE592mHiJdnz1Cu1vCQ--Rvdb8hp1heFZrZugrcedfARQc6wrh5ddGgGOAuG38eAMriHE3PZHgHAdsNXRLTcr7zCVZ83s5qoWpMCAHb_A5g7ac50-LYlRH4wTYOsRWg6vF22jV1Gad7TedBLhg903aD799uvsnPQ3NhALQ7klwU1kMJl0QTroQs8ifxOMWx-8EF5pmlkLjAcg4Cl3Og-WidxwI5SRTLPsLdqt6sofIAxEyoH3uHbS8dxOjAqBGmmoywpLLTtEdOj80vZy5vFWjUU5CjEnh5XgsDI5rOSH6PP4zrIT8_hv7aPBp2U_sFclk5LG9OUcir8Mft4U_7u1d4-r_hE9_fl1Wv64mH1_j56xhLr43-cI7bbN2n8AJtSa4wT2B1m-_BE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+surface+integrity+and+process+parameter+optimisation+of+carburised+18CrNiMo7-6+steel+by+induction-heating-assisted+ultrasonic+surface+rolling+process&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Liu%2C+Zhihua&rft.au=Zheng%2C+Lingshuo&rft.au=Tang%2C+Peng&rft.au=Qin%2C+Shengwei&rft.date=2023-11-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=129&rft.issue=3-4&rft.spage=1071&rft.epage=1086&rft_id=info:doi/10.1007%2Fs00170-023-12301-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_023_12301_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |