Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods

Plant leaf disease detection is critical for long-term agricultural viability. Numerous Artificial Intelligence (AI) and Machine Learning (ML) technologies have been implemented for detecting rice diseases. However, such methods failed to identify or have slow recognition causing severe output loss....

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 23; pp. 36091 - 36117
Main Authors Rajpoot, Vikram, Tiwari, Akhilesh, Jalal, Anand Singh
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant leaf disease detection is critical for long-term agricultural viability. Numerous Artificial Intelligence (AI) and Machine Learning (ML) technologies have been implemented for detecting rice diseases. However, such methods failed to identify or have slow recognition causing severe output loss. Therefore, an advanced and precise detection method has become necessary to overcome this issue. This study analyzes plant diseases that affect rice, comprising three different forms of diseases. Bacterial leaf blight, Brown spot, and Leaf smut are three of the six diseases that can affect rice plants. In the proposed approach a VGG-16 transfer learning with Faster R-CNN deep architecture is used to extract features. After completing the transfer learning step, the gathered characteristics are categorized using the random forest method. The random forest classifier divided the radish field into three distinct regions. The images of rice plant leaves are taken from UCI Machine Learning Repository. The proposed approach obtains an average predicting accuracy of 97.3% for rice disease imagery class prediction. The extensive experiment outcomes demonstrate the suggested technique’s validity, so it effectively detects rice diseases.
AbstractList Plant leaf disease detection is critical for long-term agricultural viability. Numerous Artificial Intelligence (AI) and Machine Learning (ML) technologies have been implemented for detecting rice diseases. However, such methods failed to identify or have slow recognition causing severe output loss. Therefore, an advanced and precise detection method has become necessary to overcome this issue. This study analyzes plant diseases that affect rice, comprising three different forms of diseases. Bacterial leaf blight, Brown spot, and Leaf smut are three of the six diseases that can affect rice plants. In the proposed approach a VGG-16 transfer learning with Faster R-CNN deep architecture is used to extract features. After completing the transfer learning step, the gathered characteristics are categorized using the random forest method. The random forest classifier divided the radish field into three distinct regions. The images of rice plant leaves are taken from UCI Machine Learning Repository. The proposed approach obtains an average predicting accuracy of 97.3% for rice disease imagery class prediction. The extensive experiment outcomes demonstrate the suggested technique’s validity, so it effectively detects rice diseases.
Author Rajpoot, Vikram
Tiwari, Akhilesh
Jalal, Anand Singh
Author_xml – sequence: 1
  givenname: Vikram
  surname: Rajpoot
  fullname: Rajpoot, Vikram
  organization: Department of Information Technology, Madhav Institute of Technology & Science
– sequence: 2
  givenname: Akhilesh
  surname: Tiwari
  fullname: Tiwari, Akhilesh
  organization: Department of Information Technology, Madhav Institute of Technology & Science
– sequence: 3
  givenname: Anand Singh
  orcidid: 0000-0002-7469-6608
  surname: Jalal
  fullname: Jalal, Anand Singh
  email: asjalal@gla.ac.in
  organization: Department of Computer Engineering and Applications
BookMark eNp9kE1LAzEURYNUsFb_gKuA69F8zmSWpfgFBTe6Dmny0qa0mZqki_n3zlih4MJVws09eY9zjSaxi4DQHSUPlJDmMVNKBKsI4xUVbd1W_QWaUtnwqmkYnQx3rkjVSEKv0HXOW0JoLZmYovX8WLq9KcFiMGnXYwcFbAldxJ3HKVjAOzAeu5DBZMj4mENc402_SsENZTiM7ymOoYkO743dhAjncA9l07l8gy692WW4_T1n6PP56WPxWi3fX94W82VlOW1L5S1ZGc8sFY1whHNPxEqRRglwK04bKUXNwNvWqzFgTJjWKSGJc0x4TjyfofvTv4fUfR0hF73tjikOIzVTdS2lUlIOLXZq2dTlnMDrQwp7k3pNiR6F6pNQPQjVP0J1P0DqD2RDMaOqkkzY_Y_yE5qHOXEN6bzVP9Q3HdmOfw
CitedBy_id crossref_primary_10_1007_s11042_024_18723_w
crossref_primary_10_1016_j_cpb_2024_100382
crossref_primary_10_3389_fpls_2023_1255015
crossref_primary_10_1007_s11042_023_16882_w
crossref_primary_10_33889_IJMEMS_2024_9_4_050
crossref_primary_10_3390_agriculture14122188
crossref_primary_10_53759_7669_jmc202404095
Cites_doi 10.1109/ICACCS.2019.8728415
10.1016/j.neucom.2017.06.023
10.1016/j.procs.2020.03.404
10.1016/j.compag.2018.01.009
10.20546/ijcmas.2019.806.337
10.1109/CVPR.2014.81
10.1109/AICAI.2019.8701294
10.1016/j.compag.2018.04.023
10.1109/Confluence47617.2020.9057889
10.1007/s11356-021-16627-y
10.1109/TGRS.2021.3090410
10.1016/j.compag.2017.04.013
10.1002/jsfa.10365
10.9734/arrb/2020/v35i130180
10.1109/ICDI3C.2018.00017
10.1109/ICSP.2016.7878133
10.1007/s40974-017-0074-7
10.2139/ssrn.3351641
10.1016/j.envres.2021.111275
10.3390/su11010189
10.1109/GCAT47503.2019.8978431
10.1109/IACC48062.2019.8971580
10.1109/ICASERT.2019.8934568
10.3233/IDT-170301
10.5423/PPJ.OA.07.2019.0205
10.1109/STI47673.2019.9068096
10.1016/j.chemosphere.2021.132569
10.1109/CCECE.2017.7946787
10.1016/j.compag.2020.105220
10.1080/17517575.2018.1557256
10.48550/arXiv.1506.01497
10.7717/peerj-cs.432
10.1109/ICCV.2015.169
10.1007/s11263-015-0816-y
10.1109/ICon-CuTE47290.2019.8991476
10.1109/ICMETE.2018.00063
10.1155/2022/2845320
10.1109/ICSCET.2018.8537336
10.3389/fpls.2015.01066
10.1016/j.compag.2019.104962
10.1080/21645515.2017.1379639
10.1016/j.compag.2019.105197
10.1016/j.compag.2019.105099
10.1109/STI47673.2019.9068092
10.1080/00987913.2004.10764916
10.1007/978-981-16-8763-1_38
10.1155/2022/6504616
10.1109/IC3INA.2018.8629507
10.1016/j.compag.2019.104948
10.17582/journal.pjar/2019/32.2.359.380
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-14969-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 36117
ExternalDocumentID 10_1007_s11042_023_14969_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-fc0baf2c1474d033f04b80784edb31755462efc9f8edb3224a9d8450dd24f30f3
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 25 23:17:02 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
Tue Jul 01 04:13:20 EDT 2025
Fri Feb 21 02:42:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Rice leaf disease
VGG-16
Machine learning
Plant Disease
Faster R-CNN
Deep Learning
Random Forest
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-fc0baf2c1474d033f04b80784edb31755462efc9f8edb3224a9d8450dd24f30f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7469-6608
PQID 2866558855
PQPubID 54626
PageCount 27
ParticipantIDs proquest_journals_2866558855
crossref_primary_10_1007_s11042_023_14969_y
crossref_citationtrail_10_1007_s11042_023_14969_y
springer_journals_10_1007_s11042_023_14969_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Hasan MJ, Mahbub S, Alom MS, Abu Nasim M (2019) “Rice disease identification and classification by integrating support vector machine with deep convolutional neural network,”https://doi.org/10.1109/ICASERT.2019.8934568
de Bigirimana VP, Hua GKH, Nyamangyoku OI, Hòfte M (2015) “Rice sheath rot: An emerging ubiquitous destructive disease complex,” Front Plant Sci, https://doi.org/10.3389/fpls.2015.01066
Ginanni K (2004) Peace Corps' information collection and exchange. Ser Rev 30(3):249–251
PrasadKNLVNKumarCSPSubediBAbrahaHBSathishkumarVERice leaf diseases prediction using deep neural networks with transfer learningEnviron Res202119811127510.1016/j.envres.2021.111275
Chokey T, Jain S (2019) “Quality assessment of crops using machine learning techniques,”https://doi.org/10.1109/AICAI.2019.8701294
Arun Pandian J, Geetharamani G, Annette B (2019) “Data augmentation on plant leaf disease image dataset using image manipulation and deep learning techniques,”https://doi.org/10.1109/IACC48062.2019.8971580
BhattiUAYuZHasnainANawazSAYuanLWenLBhattiMAEvaluating the impact of roads on the diversity pattern and density of trees to improve the conservation of speciesEnviron Sci Pollut Res20222910147801479010.1007/s11356-021-16627-y
Ahmed K, Shahidi TR, Irfanul Alam SM, Momen S (2019) “Rice leaf disease detection using machine learning techniques,”https://doi.org/10.1109/STI47673.2019.9068096
Lee SH, Goëau H, Bonnet P, Joly A (2020) “New perspectives on plant disease characterization based on deep learning,” Comput Electron Agric, https://doi.org/10.1016/j.compag.2020.105220
SinghAKSreenivasuSVNMahalaxmiUSBKSharmaHPatilDDAsensoEHybrid feature-based disease detection in plant leaf using convolutional neural network, Bayesian optimized SVM, and random Forest classifierJ Food Qual202220222845320284531610.1155/2022/2845320
Anjna, MS, Singh PK (2020) “Hybrid System for Detection and Classification of Plant Disease Using Qualitative Texture Features Analysis,”https://doi.org/10.1016/j.procs.2020.03.404
Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst. https://doi.org/10.48550/arXiv.1506.01497
Nanjundan J et al (2020) “Identification of new source of resistance to powdery mildew of indian mustard and studying its inheritance,” Plant Pathol J, https://doi.org/10.5423/PPJ.OA.07.2019.0205
SinhaKGhoshalDBhuniaNRice leaf disease classification using transfer learningLect Notes Networks Syst202237546747510.1007/978-981-16-8763-1_38
Govardhan M, Veena MB (2019) “Diagnosis of tomato plant diseases using random Forest,”https://doi.org/10.1109/GCAT47503.2019.8978431
BohraJSadhukhanVPRManagement of brown spot disease in rice (Helminthosporium oryzae) by spraying of cow urineInt J Chem Stud20186117211723
Bari BS, Islam MN, Rashid M, Hasan MJ, Razman MAM, Musa RM, Ab Nasir AF, Abdul PP, Majeed A (2021) A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework. PeerJ Comput Sci 7:e432–e432. https://doi.org/10.7717/peerj-cs.432
Cynthia ST, Shahrukh Hossain KM, Hasan MN, Asaduzzaman M, Das AK (2019) “Automated detection of plant diseases using image processing and faster R-CNN algorithm,”https://doi.org/10.1109/STI47673.2019.9068092
Kamal KC, Yin Z, Wu M, Wu Z (2019) “Depthwise separable convolution architectures for plant disease classification,” Comput Electron Agric, https://doi.org/10.1016/j.compag.2019.104948
Ferentinos KP (2018) “Deep learning models for plant disease detection and diagnosis,” Comput Electron Agric, https://doi.org/10.1016/j.compag.2018.01.009
Girshick R, Donahue J, Darrell T, Malik J (2013) “Rich feature hierarchies for accurate object detection and semantic segmentation,” Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, https://doi.org/10.1109/CVPR.2014.81
Naqvi SAH (2019) “Bacterial Leaf Blight of Rice: An Overview of Epidemiology and Management with Special Reference to-Indian-Sub-Continent,” Pakistan J Agric Res, https://doi.org/10.17582/journal.pjar/2019/32.2.359.380
BhattiUAHuangMWangHZhangYMehmoodADiWRecommendation system for immunization coverage and monitoringHum Vaccin Immunother201814116517110.1080/21645515.2017.1379639
BhavatariniCMTPriyadharshiniVRadhakrishnanMA machine learning approach for plant disease classification and pesticides suggestion using rank based attribute selectionInt J Sci Eng Res202011310211024
Chen J, Zhang D, Nanehkaran Y, Li D (2020) “Detection of rice plant diseases based on deep transfer learning,” J Sci Food Agric, vol. 100, https://doi.org/10.1002/jsfa.10365
Kusumo BS, Heryana A, Mahendra O, Pardede HF (2019) “Machine learning-based for automatic detection of Corn-Plant diseases using image processing,” https://doi.org/10.1109/IC3INA.2018.8629507
Prajapati HB, Shah JP, Dabhi VK (2017) “Detection and classification of rice plant diseases,” Intell Decis Technol, https://doi.org/10.3233/IDT-170301
Shahriar SA, Imtiaz AA, Hossain MB, Husna A, Eaty MNK (2020) “Review: Rice blast disease,” Annu Res Rev Biol, https://doi.org/10.9734/arrb/2020/v35i130180
BhattiUALocal Similarity-Based Spatial-Spectral Fusion Hyperspectral Image Classification With Deep CNN and Gabor FilteringIEEE Trans Geosci Remote Sens20226011510.1109/TGRS.2021.3090410
Kim WS, Lee DH, Kim YJ (2020) “Machine vision-based automatic disease symptom detection of onion downy mildew,” Comput Electron Agric, https://doi.org/10.1016/j.compag.2019.105099
Sharif M, Khan MA, Iqbal Z, Azam MF, Lali MIU, Javed MY (2018) “Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection,” Comput Electron Agric https://doi.org/10.1016/j.compag.2018.04.023
BhattiUAHuangMWuDZhangYMehmoodAHanHRecommendation system using feature extraction and pattern recognition in clinical care systemsEnterp Inf Syst201913332935110.1080/17517575.2018.1557256
Barbosa A, Trevisan R, Hovakimyan N, Martin NF (2020) “Modeling yield response to crop management using convolutional neural networks,” Comput Electron Agric, https://doi.org/10.1016/j.compag.2019.105197
Shruthi U, Nagaveni V, Raghavendra BK (2019) “A review on machine learning classification techniques for plant disease detection,”https://doi.org/10.1109/ICACCS.2019.8728415
Girshick R (2015) “Fast R-CNN,”\, https://doi.org/10.1109/ICCV.2015.169
Truong T, Dinh A, Wahid K (2017) “An IoT environmental data collection system for fungal detection in crop fields,”https://doi.org/10.1109/CCECE.2017.7946787
Baranwal S, Khandelwal S, Arora A (2019) “Deep learning convolutional neural network for apple leaves disease detection,” SSRN Electron J, https://doi.org/10.2139/ssrn.3351641
Sharma P, Hans P, Gupta SC (2020) “Classification of plant leaf diseases using machine learning and image preprocessing techniques,”, https://doi.org/10.1109/Confluence47617.2020.9057889
Russakovsky O et al (2015) “ImageNet large scale visual recognition challenge,” Int J Comput Vis, https://doi.org/10.1007/s11263-015-0816-y
Singh R, Sunder S, Kumar P (2016) Sheath blight of rice: current status and perspectives. Indian Phytopathol 69(4):340–351
Verma G, Taluja C, Saxena AK (2019) “Vision based detection and classification of disease on Rice crops using convolutional neural network,” https://doi.org/10.1109/ICon-CuTE47290.2019.8991476
Johannes A et al (2017) “Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case,” Comput Electron Agric https://doi.org/10.1016/j.compag.2017.04.013
Abduljabbar R, Dia H, Liyanage S, Bagloee SA (2019) “Applications of artificial intelligence in transport: An overview,” Sustain (Switzerland), https://doi.org/10.3390/su11010189
Saberi AnariMA hybrid model for leaf diseases classification based on the modified deep transfer learning and ensemble approach for agricultural AIoT-based monitoringComput Intell Neurosci20222022650461610.1155/2022/6504616
Tian K, Li J, Zeng J, Evans A, Zhang L (2019) “Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm,” Comput Electron Agric, https://doi.org/10.1016/j.compag.2019.104962
Chopda J, Raveshiya H, Nakum S, Nakrani V (2018) “Cotton crop disease detection using decision tree classifier,”https://doi.org/10.1109/ICSCET.2018.8537336
Sandika B, Avil S, Sanat S, Srinivasu P (2016) “Random forest based classification of diseases in grapes from images captured in uncontrolled environments,”https://doi.org/10.1109/ICSP.2016.7878133
Ramesh S, Vydeki D (2018) “Rice blast disease detection and classification using machine learning algorithm,”https://doi.org/10.1109/ICMETE.2018.00063
BhattiUAZeeshanZNizamaniMMBazaiSYuZYuanLAssessing the change of ambient air quality patterns in Jiangsu Province of China pre-to post-COVID-19Chemosphere202228813256910.1016/j.chemosphere.2021.132569
Maniyath SR et al (2018) “Plant disease detection using machine learning,”https://doi.org/10.1109/ICDI3C.2018.00017
“Faster R-CNN | ML,” (2020) geeksforgeeks
Singh R, Singh GS (2017) “Traditional agriculture: a climate-smart approach for sustainable food production,” Energy Ecol Environ, https://doi.org/10.1007/s40974-017-0074-7
Lu Y, Yi S, Zeng N, Liu Y, Zhang Y (2017) “Identification of rice diseases using deep convolutional neural networks,” Neurocomputing, https://doi.org/10.1016/j.neucom.2017.06.023
Chaudhari AK, Rakholiya KB, Baria TT (2019) “Epidemiological Study of False Smut of Rice (Oryza sativa L.) in Gujarat,” Int J Curr Microbiol Appl Sci, https://doi.org/10.20546/ijcmas.2019.806.337
UA Bhatti (14969_CR11) 2022; 60
UA Bhatti (14969_CR9) 2019; 13
K Sinha (14969_CR51) 2022; 375
14969_CR3
14969_CR35
14969_CR4
14969_CR34
14969_CR1
14969_CR33
14969_CR2
14969_CR32
14969_CR31
14969_CR30
UA Bhatti (14969_CR12) 2022; 29
14969_CR39
14969_CR37
AK Singh (14969_CR50) 2022; 2022
14969_CR36
KNLVN Prasad (14969_CR38) 2021; 198
UA Bhatti (14969_CR10) 2022; 288
14969_CR7
14969_CR5
14969_CR6
14969_CR46
14969_CR45
14969_CR44
14969_CR43
14969_CR41
14969_CR40
J Bohra (14969_CR14) 2018; 6
14969_CR49
14969_CR48
14969_CR47
CMT Bhavatarini (14969_CR13) 2020; 11
14969_CR54
14969_CR53
14969_CR52
14969_CR19
14969_CR18
14969_CR17
14969_CR16
14969_CR15
M Saberi Anari (14969_CR42) 2022; 2022
14969_CR24
14969_CR23
14969_CR22
14969_CR21
14969_CR20
UA Bhatti (14969_CR8) 2018; 14
14969_CR29
14969_CR28
14969_CR27
14969_CR26
14969_CR25
References_xml – reference: PrasadKNLVNKumarCSPSubediBAbrahaHBSathishkumarVERice leaf diseases prediction using deep neural networks with transfer learningEnviron Res202119811127510.1016/j.envres.2021.111275
– reference: Girshick R, Donahue J, Darrell T, Malik J (2013) “Rich feature hierarchies for accurate object detection and semantic segmentation,” Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, https://doi.org/10.1109/CVPR.2014.81
– reference: Maniyath SR et al (2018) “Plant disease detection using machine learning,”https://doi.org/10.1109/ICDI3C.2018.00017
– reference: Cynthia ST, Shahrukh Hossain KM, Hasan MN, Asaduzzaman M, Das AK (2019) “Automated detection of plant diseases using image processing and faster R-CNN algorithm,”https://doi.org/10.1109/STI47673.2019.9068092
– reference: Abduljabbar R, Dia H, Liyanage S, Bagloee SA (2019) “Applications of artificial intelligence in transport: An overview,” Sustain (Switzerland), https://doi.org/10.3390/su11010189
– reference: Anjna, MS, Singh PK (2020) “Hybrid System for Detection and Classification of Plant Disease Using Qualitative Texture Features Analysis,”https://doi.org/10.1016/j.procs.2020.03.404
– reference: Sandika B, Avil S, Sanat S, Srinivasu P (2016) “Random forest based classification of diseases in grapes from images captured in uncontrolled environments,”https://doi.org/10.1109/ICSP.2016.7878133
– reference: BhattiUAYuZHasnainANawazSAYuanLWenLBhattiMAEvaluating the impact of roads on the diversity pattern and density of trees to improve the conservation of speciesEnviron Sci Pollut Res20222910147801479010.1007/s11356-021-16627-y
– reference: Girshick R (2015) “Fast R-CNN,”\, https://doi.org/10.1109/ICCV.2015.169
– reference: Chen J, Zhang D, Nanehkaran Y, Li D (2020) “Detection of rice plant diseases based on deep transfer learning,” J Sci Food Agric, vol. 100, https://doi.org/10.1002/jsfa.10365
– reference: Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst. https://doi.org/10.48550/arXiv.1506.01497
– reference: Ginanni K (2004) Peace Corps' information collection and exchange. Ser Rev 30(3):249–251
– reference: Shruthi U, Nagaveni V, Raghavendra BK (2019) “A review on machine learning classification techniques for plant disease detection,”https://doi.org/10.1109/ICACCS.2019.8728415
– reference: Barbosa A, Trevisan R, Hovakimyan N, Martin NF (2020) “Modeling yield response to crop management using convolutional neural networks,” Comput Electron Agric, https://doi.org/10.1016/j.compag.2019.105197
– reference: BhavatariniCMTPriyadharshiniVRadhakrishnanMA machine learning approach for plant disease classification and pesticides suggestion using rank based attribute selectionInt J Sci Eng Res202011310211024
– reference: SinghAKSreenivasuSVNMahalaxmiUSBKSharmaHPatilDDAsensoEHybrid feature-based disease detection in plant leaf using convolutional neural network, Bayesian optimized SVM, and random Forest classifierJ Food Qual202220222845320284531610.1155/2022/2845320
– reference: Baranwal S, Khandelwal S, Arora A (2019) “Deep learning convolutional neural network for apple leaves disease detection,” SSRN Electron J, https://doi.org/10.2139/ssrn.3351641
– reference: Chokey T, Jain S (2019) “Quality assessment of crops using machine learning techniques,”https://doi.org/10.1109/AICAI.2019.8701294
– reference: Hasan MJ, Mahbub S, Alom MS, Abu Nasim M (2019) “Rice disease identification and classification by integrating support vector machine with deep convolutional neural network,”https://doi.org/10.1109/ICASERT.2019.8934568
– reference: Bari BS, Islam MN, Rashid M, Hasan MJ, Razman MAM, Musa RM, Ab Nasir AF, Abdul PP, Majeed A (2021) A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework. PeerJ Comput Sci 7:e432–e432. https://doi.org/10.7717/peerj-cs.432
– reference: Shahriar SA, Imtiaz AA, Hossain MB, Husna A, Eaty MNK (2020) “Review: Rice blast disease,” Annu Res Rev Biol, https://doi.org/10.9734/arrb/2020/v35i130180
– reference: BhattiUAHuangMWuDZhangYMehmoodAHanHRecommendation system using feature extraction and pattern recognition in clinical care systemsEnterp Inf Syst201913332935110.1080/17517575.2018.1557256
– reference: Ahmed K, Shahidi TR, Irfanul Alam SM, Momen S (2019) “Rice leaf disease detection using machine learning techniques,”https://doi.org/10.1109/STI47673.2019.9068096
– reference: Singh R, Singh GS (2017) “Traditional agriculture: a climate-smart approach for sustainable food production,” Energy Ecol Environ, https://doi.org/10.1007/s40974-017-0074-7
– reference: “Faster R-CNN | ML,” (2020) geeksforgeeks
– reference: Tian K, Li J, Zeng J, Evans A, Zhang L (2019) “Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm,” Comput Electron Agric, https://doi.org/10.1016/j.compag.2019.104962
– reference: Naqvi SAH (2019) “Bacterial Leaf Blight of Rice: An Overview of Epidemiology and Management with Special Reference to-Indian-Sub-Continent,” Pakistan J Agric Res, https://doi.org/10.17582/journal.pjar/2019/32.2.359.380
– reference: de Bigirimana VP, Hua GKH, Nyamangyoku OI, Hòfte M (2015) “Rice sheath rot: An emerging ubiquitous destructive disease complex,” Front Plant Sci, https://doi.org/10.3389/fpls.2015.01066
– reference: Kamal KC, Yin Z, Wu M, Wu Z (2019) “Depthwise separable convolution architectures for plant disease classification,” Comput Electron Agric, https://doi.org/10.1016/j.compag.2019.104948
– reference: BhattiUALocal Similarity-Based Spatial-Spectral Fusion Hyperspectral Image Classification With Deep CNN and Gabor FilteringIEEE Trans Geosci Remote Sens20226011510.1109/TGRS.2021.3090410
– reference: Prajapati HB, Shah JP, Dabhi VK (2017) “Detection and classification of rice plant diseases,” Intell Decis Technol, https://doi.org/10.3233/IDT-170301
– reference: Johannes A et al (2017) “Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case,” Comput Electron Agric https://doi.org/10.1016/j.compag.2017.04.013
– reference: BhattiUAZeeshanZNizamaniMMBazaiSYuZYuanLAssessing the change of ambient air quality patterns in Jiangsu Province of China pre-to post-COVID-19Chemosphere202228813256910.1016/j.chemosphere.2021.132569
– reference: Kim WS, Lee DH, Kim YJ (2020) “Machine vision-based automatic disease symptom detection of onion downy mildew,” Comput Electron Agric, https://doi.org/10.1016/j.compag.2019.105099
– reference: Nanjundan J et al (2020) “Identification of new source of resistance to powdery mildew of indian mustard and studying its inheritance,” Plant Pathol J, https://doi.org/10.5423/PPJ.OA.07.2019.0205
– reference: Kusumo BS, Heryana A, Mahendra O, Pardede HF (2019) “Machine learning-based for automatic detection of Corn-Plant diseases using image processing,” https://doi.org/10.1109/IC3INA.2018.8629507
– reference: Lee SH, Goëau H, Bonnet P, Joly A (2020) “New perspectives on plant disease characterization based on deep learning,” Comput Electron Agric, https://doi.org/10.1016/j.compag.2020.105220
– reference: BhattiUAHuangMWangHZhangYMehmoodADiWRecommendation system for immunization coverage and monitoringHum Vaccin Immunother201814116517110.1080/21645515.2017.1379639
– reference: Russakovsky O et al (2015) “ImageNet large scale visual recognition challenge,” Int J Comput Vis, https://doi.org/10.1007/s11263-015-0816-y
– reference: Verma G, Taluja C, Saxena AK (2019) “Vision based detection and classification of disease on Rice crops using convolutional neural network,” https://doi.org/10.1109/ICon-CuTE47290.2019.8991476
– reference: Ramesh S, Vydeki D (2018) “Rice blast disease detection and classification using machine learning algorithm,”https://doi.org/10.1109/ICMETE.2018.00063
– reference: SinhaKGhoshalDBhuniaNRice leaf disease classification using transfer learningLect Notes Networks Syst202237546747510.1007/978-981-16-8763-1_38
– reference: Singh R, Sunder S, Kumar P (2016) Sheath blight of rice: current status and perspectives. Indian Phytopathol 69(4):340–351
– reference: Lu Y, Yi S, Zeng N, Liu Y, Zhang Y (2017) “Identification of rice diseases using deep convolutional neural networks,” Neurocomputing, https://doi.org/10.1016/j.neucom.2017.06.023
– reference: Arun Pandian J, Geetharamani G, Annette B (2019) “Data augmentation on plant leaf disease image dataset using image manipulation and deep learning techniques,”https://doi.org/10.1109/IACC48062.2019.8971580
– reference: Govardhan M, Veena MB (2019) “Diagnosis of tomato plant diseases using random Forest,”https://doi.org/10.1109/GCAT47503.2019.8978431
– reference: Truong T, Dinh A, Wahid K (2017) “An IoT environmental data collection system for fungal detection in crop fields,”https://doi.org/10.1109/CCECE.2017.7946787
– reference: Chaudhari AK, Rakholiya KB, Baria TT (2019) “Epidemiological Study of False Smut of Rice (Oryza sativa L.) in Gujarat,” Int J Curr Microbiol Appl Sci, https://doi.org/10.20546/ijcmas.2019.806.337
– reference: Ferentinos KP (2018) “Deep learning models for plant disease detection and diagnosis,” Comput Electron Agric, https://doi.org/10.1016/j.compag.2018.01.009
– reference: Sharif M, Khan MA, Iqbal Z, Azam MF, Lali MIU, Javed MY (2018) “Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection,” Comput Electron Agric https://doi.org/10.1016/j.compag.2018.04.023
– reference: Saberi AnariMA hybrid model for leaf diseases classification based on the modified deep transfer learning and ensemble approach for agricultural AIoT-based monitoringComput Intell Neurosci20222022650461610.1155/2022/6504616
– reference: Sharma P, Hans P, Gupta SC (2020) “Classification of plant leaf diseases using machine learning and image preprocessing techniques,”, https://doi.org/10.1109/Confluence47617.2020.9057889
– reference: Chopda J, Raveshiya H, Nakum S, Nakrani V (2018) “Cotton crop disease detection using decision tree classifier,”https://doi.org/10.1109/ICSCET.2018.8537336
– reference: BohraJSadhukhanVPRManagement of brown spot disease in rice (Helminthosporium oryzae) by spraying of cow urineInt J Chem Stud20186117211723
– ident: 14969_CR47
  doi: 10.1109/ICACCS.2019.8728415
– ident: 14969_CR33
  doi: 10.1016/j.neucom.2017.06.023
– ident: 14969_CR3
  doi: 10.1016/j.procs.2020.03.404
– ident: 14969_CR22
  doi: 10.1016/j.compag.2018.01.009
– ident: 14969_CR15
  doi: 10.20546/ijcmas.2019.806.337
– ident: 14969_CR25
  doi: 10.1109/CVPR.2014.81
– ident: 14969_CR17
  doi: 10.1109/AICAI.2019.8701294
– ident: 14969_CR45
  doi: 10.1016/j.compag.2018.04.023
– ident: 14969_CR46
  doi: 10.1109/Confluence47617.2020.9057889
– volume: 29
  start-page: 14780
  issue: 10
  year: 2022
  ident: 14969_CR12
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-16627-y
– volume: 60
  start-page: 1
  year: 2022
  ident: 14969_CR11
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2021.3090410
– ident: 14969_CR28
  doi: 10.1016/j.compag.2017.04.013
– ident: 14969_CR16
  doi: 10.1002/jsfa.10365
– ident: 14969_CR44
  doi: 10.9734/arrb/2020/v35i130180
– ident: 14969_CR34
  doi: 10.1109/ICDI3C.2018.00017
– ident: 14969_CR43
  doi: 10.1109/ICSP.2016.7878133
– ident: 14969_CR48
  doi: 10.1007/s40974-017-0074-7
– volume: 6
  start-page: 1721
  issue: 1
  year: 2018
  ident: 14969_CR14
  publication-title: Int J Chem Stud
– ident: 14969_CR5
  doi: 10.2139/ssrn.3351641
– volume: 198
  start-page: 111275
  year: 2021
  ident: 14969_CR38
  publication-title: Environ Res
  doi: 10.1016/j.envres.2021.111275
– ident: 14969_CR1
  doi: 10.3390/su11010189
– ident: 14969_CR26
  doi: 10.1109/GCAT47503.2019.8978431
– ident: 14969_CR4
  doi: 10.1109/IACC48062.2019.8971580
– ident: 14969_CR27
  doi: 10.1109/ICASERT.2019.8934568
– ident: 14969_CR37
  doi: 10.3233/IDT-170301
– ident: 14969_CR35
  doi: 10.5423/PPJ.OA.07.2019.0205
– ident: 14969_CR2
  doi: 10.1109/STI47673.2019.9068096
– volume: 288
  start-page: 132569
  year: 2022
  ident: 14969_CR10
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132569
– ident: 14969_CR53
  doi: 10.1109/CCECE.2017.7946787
– ident: 14969_CR32
  doi: 10.1016/j.compag.2020.105220
– volume: 13
  start-page: 329
  issue: 3
  year: 2019
  ident: 14969_CR9
  publication-title: Enterp Inf Syst
  doi: 10.1080/17517575.2018.1557256
– ident: 14969_CR49
– ident: 14969_CR40
  doi: 10.48550/arXiv.1506.01497
– ident: 14969_CR7
  doi: 10.7717/peerj-cs.432
– ident: 14969_CR24
  doi: 10.1109/ICCV.2015.169
– ident: 14969_CR41
  doi: 10.1007/s11263-015-0816-y
– ident: 14969_CR54
  doi: 10.1109/ICon-CuTE47290.2019.8991476
– ident: 14969_CR39
  doi: 10.1109/ICMETE.2018.00063
– volume: 2022
  start-page: 2845320
  year: 2022
  ident: 14969_CR50
  publication-title: J Food Qual
  doi: 10.1155/2022/2845320
– ident: 14969_CR18
  doi: 10.1109/ICSCET.2018.8537336
– ident: 14969_CR20
  doi: 10.3389/fpls.2015.01066
– ident: 14969_CR52
  doi: 10.1016/j.compag.2019.104962
– volume: 14
  start-page: 165
  issue: 1
  year: 2018
  ident: 14969_CR8
  publication-title: Hum Vaccin Immunother
  doi: 10.1080/21645515.2017.1379639
– ident: 14969_CR6
  doi: 10.1016/j.compag.2019.105197
– ident: 14969_CR30
  doi: 10.1016/j.compag.2019.105099
– ident: 14969_CR19
  doi: 10.1109/STI47673.2019.9068092
– volume: 11
  start-page: 1021
  issue: 3
  year: 2020
  ident: 14969_CR13
  publication-title: Int J Sci Eng Res
– ident: 14969_CR23
  doi: 10.1080/00987913.2004.10764916
– volume: 375
  start-page: 467
  year: 2022
  ident: 14969_CR51
  publication-title: Lect Notes Networks Syst
  doi: 10.1007/978-981-16-8763-1_38
– volume: 2022
  start-page: 6504616
  year: 2022
  ident: 14969_CR42
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/6504616
– ident: 14969_CR31
  doi: 10.1109/IC3INA.2018.8629507
– ident: 14969_CR21
– ident: 14969_CR29
  doi: 10.1016/j.compag.2019.104948
– ident: 14969_CR36
  doi: 10.17582/journal.pjar/2019/32.2.359.380
SSID ssj0016524
Score 2.4771135
Snippet Plant leaf disease detection is critical for long-term agricultural viability. Numerous Artificial Intelligence (AI) and Machine Learning (ML) technologies...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 36091
SubjectTerms Artificial intelligence
Blight
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Machine learning
Multimedia Information Systems
Plant diseases
Predictions
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1BWWDgG1EoyAMbWMSJnSYTAtQKMSCEQOoWOf4oQ0kLDUP_Pb7EIYBEV8fxkOfzXXx37wGcCaEiJrWgLJQB5ZF1NpfyPl4J6CAyGgvesdriIb574fcjMfIXbnNfVtmcidVBracK78gvQyRmE0kixNXsnaJqFGZXvYTGKqy5IzhJOrB2M3h4fPrOI8TCy9omAXW-kfm2mbp5jmFrivNZ1P0lxCld_HZNbbz5J0VaeZ7hNmz6kJFc1xjvwIopdmGrkWMg3jp3YeMHt-AejK8_y2nFx0oMkhgTbcqq7KogU0uQSohMjLTEZ2jmBCvgx-R1gS1cbrKZEa8oMSay0OStqro07WCtPT3fh5fh4Pn2jnpVBepQSUtqVZBLGyrG-9zBEdmA50g6z43OMZgQPA6NValNcMB5eJnqhItA65DbKLDRAXSKaWEOgVjJVMQjmeZK8L5VLpqTLHaT81z0uWRdYM0HzZSnHEfli0nWkiUjCJkDIatAyBZdOP9-Z1YTbiyd3WtwyrzxzbN2q3ThosGuffz_akfLVzuGdRSbryvMetApPz7NiQtJyvzU77svAIbdJA
  priority: 102
  providerName: ProQuest
Title Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods
URI https://link.springer.com/article/10.1007/s11042-023-14969-y
https://www.proquest.com/docview/2866558855
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xWGDgjSiUygMbRIoTO4-xRU0RSBVCVIIpcmK7DJBWJAz99_hShwACJCZLzsVDPjt3yX33HcAZ57lPheQO9YTrMF-bMxezEH8JSNdXEgnvyLYYB1cTdv3AH2xRWNmw3ZuUZP2mbovdKJaSGB_jmKg-iJ3FKqxz8-2ORK6J1__IHQTctrKNXMf4Q2pLZX5e46s7amPMb2nR2tskO7Blw0TSX-K6Cyuq2IPtpgUDsSdyDzY_6Qnuw7T_Vs1qDVaiULiYSFXVVKuCzDRB-SDyrIQmNitTEmS9T8nTAsu2jLGaE9tFYkpEIclLzbRU7eSy33R5AJNkeH955dhOCo5BIq4cnbuZ0F5OWcgMBL52WYZC80zJDAMIzgJP6TzWEU4Yry5iGTHuSukx7bvaP4S1YlaoIyBa0NxnvoiznLNQ5yaCEzQwxlnGQyZoB2jzQNPcyoxjt4vntBVIRhBSA0Jag5AuOnD-cc98KbLxp3W3wSm1B65MPdTt41HEeQcuGuzay7-vdvw_8xPYwIbzS5ZZF9aq1zd1asKSKuvBapSMerDeTwaDMY6jx5uhGQfD8e1dr96j72Y63qU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ReqA9QEuLunTb-gAnsBrHdjY5IIRot8vzBBK31PFje6DZhc2q2j_V31hP4hBAKjeujmNZnrFn7Jn5PoAtKTVnykjKYhVRwZ3fc5kY4JOAibg1mPCO2RbnyehSHF_JqyX429bCYFpleybWB7WZaHwj_xojMJtMUyn3pzcUWaMwutpSaDRqcWIXf_yVbbZ39M3LdzuOh98vDkc0sApQP6usok5HhXKxZmIg_HS4i0SBoOvCmgKNqRRJbJ3OXIoN3sKpzKRCRsbEwvHIcT_uC3gpuLfkWJk-_HEXtUhkINFNI-otMQtFOk2pHsNCGG8hqb-TJBldPDSEnXf7KCBb27nhG1gNDio5aDTqLSzZch3WWvIHEs6CdXh9D8nwHYwP5tWkRn8lFiGTibFVneRVkokjCFxErq1yJMSDZgTz7cfk1wILxnxnOyWBv2JMVGnI7zrH03aNDdP17D1cPstqb8ByOSntByBOMc0FV1mhpRg47X1HxRLfuSjkQCjWA9YuaK4DwDnybFznHTQzCiH3QshrIeSLHuzc_TNt4D2e7N1v5ZSHrT7LO8XswW4ru-7z_0fbfHq0L7Ayujg7zU-Pzk8-wiukuW9y2_qwXN3O7SfvDFXF51oDCfx8bpX_BxqiGMc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRarKoTxaxLZAfaCn1iJO7DwOCPFa8dIKVUXiljp-LAfILmxQtX-tv66exCEFqdy4Oo5lecaesWfm-wC2hFARk1pQFsqA8si6PZfxBJ8EdBAZjQnvmG0xjI8v-emVuJqDP20tDKZVtmdifVDrscI38u0QgdlEmgqxbX1axMXhYHdyR5FBCiOtLZ1GoyJnZvbbXd-mOyeHTtZfw3Bw9PPgmHqGAepmmFXUqqCQNlSMJ9xNLbIBLxCAnRtdoGEVPA6NVZlNscFZO5nplItA65DbKLCRG_cNzCd4K-rB_P7R8OLHYwwjFp5SNw2os8vMl-w0hXsMy2KcvaTuhhJndPbULHa-7rPwbG31Bkvw3rurZK_Rr2WYM-UKLLZUEMSfDCuw8A-u4QcY7T1U4xoLlhgEUCbaVHXKV0nGliCMEbkx0hIfHZoSzL4fkesZlo-5zmZCPJvFiMhSk9s649N0jQ3v9fQjXL7Keq9CrxyXZg2IlUxFPJJZoQRPrHKepGSx61wUIuGS9YG1C5orD3eOrBs3eQfUjELInRDyWgj5rA_fHv-ZNGAfL_Zeb-WU-40_zTs17cP3Vnbd5_-P9unl0b7AW6fu-fnJ8OwzvEPO-ybRbR161f2D2XCeUVVsehUk8Ou1tf4v6O4eWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+early+detection+of+rice+leaf+diseases+using+hybrid+deep+learning+and+machine+learning+methods&rft.jtitle=Multimedia+tools+and+applications&rft.au=Rajpoot%2C+Vikram&rft.au=Tiwari%2C+Akhilesh&rft.au=Jalal%2C+Anand+Singh&rft.date=2023-09-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=23&rft.spage=36091&rft.epage=36117&rft_id=info:doi/10.1007%2Fs11042-023-14969-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_14969_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon