Action detection with two-stream enhanced detector

Action understanding in videos is a challenging task that has attracted widespread attention in recent years. Most current methods localize bounding box of actors at frame level, and then track or link these detections to form action tubes across frames. These methods often focus on utilizing tempor...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 39; no. 3; pp. 1193 - 1204
Main Authors Zhang, Min, Hu, Haiyang, Li, Zhongjin, Chen, Jie
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Action understanding in videos is a challenging task that has attracted widespread attention in recent years. Most current methods localize bounding box of actors at frame level, and then track or link these detections to form action tubes across frames. These methods often focus on utilizing temporal context in videos while neglecting the importance of the detector itself. In this paper, we present a two-stream enhanced framework to deal with the problem of action detection. Specifically, we devise an appearance and motion detectors in two-stream manner to detect actions, which take k consecutive RGB frames and optical flow images as input respectively. To improve the feature presentation capabilities, anchor refinement sub-module with feature alignment is introduced into the two-stream architecture to generate flexible anchor cuboids. Meanwhile, hierarchical fusion strategy is utilized to concatenate intermediate feature maps for capturing fast moving subjects. Moreover, layer normalization with skip connection is adopted to reduce the internal co-variate shift between network layers, which makes the training process simple and effective. Compared to state-of-the-art methods, the proposed approach yields impressive performance gain on three prevailing datasets: UCF-Sports, UCF-101 and J-HMDB, which confirm the effectiveness of our enhanced detector for action detection.
AbstractList Action understanding in videos is a challenging task that has attracted widespread attention in recent years. Most current methods localize bounding box of actors at frame level, and then track or link these detections to form action tubes across frames. These methods often focus on utilizing temporal context in videos while neglecting the importance of the detector itself. In this paper, we present a two-stream enhanced framework to deal with the problem of action detection. Specifically, we devise an appearance and motion detectors in two-stream manner to detect actions, which take k consecutive RGB frames and optical flow images as input respectively. To improve the feature presentation capabilities, anchor refinement sub-module with feature alignment is introduced into the two-stream architecture to generate flexible anchor cuboids. Meanwhile, hierarchical fusion strategy is utilized to concatenate intermediate feature maps for capturing fast moving subjects. Moreover, layer normalization with skip connection is adopted to reduce the internal co-variate shift between network layers, which makes the training process simple and effective. Compared to state-of-the-art methods, the proposed approach yields impressive performance gain on three prevailing datasets: UCF-Sports, UCF-101 and J-HMDB, which confirm the effectiveness of our enhanced detector for action detection.
Action understanding in videos is a challenging task that has attracted widespread attention in recent years. Most current methods localize bounding box of actors at frame level, and then track or link these detections to form action tubes across frames. These methods often focus on utilizing temporal context in videos while neglecting the importance of the detector itself. In this paper, we present a two-stream enhanced framework to deal with the problem of action detection. Specifically, we devise an appearance and motion detectors in two-stream manner to detect actions, which take k consecutive RGB frames and optical flow images as input respectively. To improve the feature presentation capabilities, anchor refinement sub-module with feature alignment is introduced into the two-stream architecture to generate flexible anchor cuboids. Meanwhile, hierarchical fusion strategy is utilized to concatenate intermediate feature maps for capturing fast moving subjects. Moreover, layer normalization with skip connection is adopted to reduce the internal co-variate shift between network layers, which makes the training process simple and effective. Compared to state-of-the-art methods, the proposed approach yields impressive performance gain on three prevailing datasets: UCF-Sports, UCF-101 and J-HMDB, which confirm the effectiveness of our enhanced detector for action detection.
Author Hu, Haiyang
Li, Zhongjin
Chen, Jie
Zhang, Min
Author_xml – sequence: 1
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
  organization: School of Computer Science and Technology, Hangzhou Dianzi University
– sequence: 2
  givenname: Haiyang
  orcidid: 0000-0002-6070-8524
  surname: Hu
  fullname: Hu, Haiyang
  email: huhaiyang@hdu.edu.cn
  organization: School of Computer Science and Technology, Hangzhou Dianzi University
– sequence: 3
  givenname: Zhongjin
  surname: Li
  fullname: Li, Zhongjin
  organization: School of Computer Science and Technology, Hangzhou Dianzi University
– sequence: 4
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  organization: School of Computer Science and Technology, Hangzhou Dianzi University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Fz9FJsmmSYyl-QcGLnkM2ydotbVKTlOK_d9ctCB56GGYG3mc-3gkahRg8QrcE7gmAeMgATBAMtA-mBJYXaEwqRjFlhI_QGIiQmAqprtAk5w10vajUGNGFLW0MM-eLH6pjW9azcow4l-TNbubD2gTr3UkS0zW6bMw2-5tTnqKPp8f35QtevT2_LhcrbBlRBTc1AcuJU0SCmRtjaOUYd0aCpTX3rnHUiVoBq2XlFG_m3AkquQBRScuYYVN0N8zdp_h18LnoTTyk0K3UVBGhqJICOpUcVDbFnJNvtG2L6T8pybRbTUD3DunBId05pH8d0rJD6T90n9qdSd_nITZAuROHT5_-rjpD_QA3UnnK
CitedBy_id crossref_primary_10_1016_j_compeleceng_2024_109739
crossref_primary_10_3390_s23062892
Cites_doi 10.1007/s11263-013-0620-5
10.1007/s00371-020-01833-5
10.1007/s00371-020-01805-9
10.1049/ccs.2018.0005
10.1016/j.asoc.2019.105820
10.1007/s00371-019-01733-3
10.1109/TMM.2020.2965434
10.1109/TII.2019.2938527
10.1109/TIP.2020.3037472
10.1007/s00371-020-01824-6
10.1016/j.neucom.2020.01.085
10.1109/TIFS.2019.2900907
10.1007/s00371-019-01787-3
10.1109/TMM.2020.2990070
10.1109/CVPR42600.2020.01079
10.1007/978-3-030-58452-8_13
10.1609/aaai.v34i07.6811
10.1109/CVPR.2015.7298676
10.1007/978-3-319-46493-0_45
10.1109/MIPR.2019.00036
10.1007/978-3-030-58542-6_39
10.5244/C.30.58
10.1007/s00371-019-01778-4
10.1109/ICCV.2017.617
10.1109/ICCV.2015.169
10.1109/CVPR.2008.4587727
10.1109/CVPR.2018.00054
10.1007/978-3-030-01231-1_19
10.1109/CVPR.2016.91
10.1109/CVPR42600.2020.00067
10.1109/ICCV.2017.393
10.1109/CVPR.2019.01017
10.1609/aaai.v33i01.33018191
10.1007/978-3-319-46487-9_47
10.1109/ICCV.2019.00015
10.1109/ICCV.2013.396
10.1109/ICCV.2011.6126472
10.1109/ICCV.2013.10
10.1007/978-3-319-46448-0_2
10.1109/ICASSP40776.2020.9054394
10.1109/ICCV.2015.362
10.1109/ICCV.2017.472
10.1109/ICRA.2019.8794224
10.1109/ICCV.2017.620
10.1109/CVPR.2014.81
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-021-02397-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 1204
ExternalDocumentID 10_1007_s00371_021_02397_8
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61572162; 61572551
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Zhejiang Provincial Key Science and Technology Project Foundation
  grantid: 2018C01012
– fundername: National Natural Science Foundation of China
  grantid: 61802095; 61702144
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LQ17F020003
  funderid: http://dx.doi.org/10.13039/501100004731
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c319t-fb10c51d9180a6aaa24d35da80c2b5edfd2d7b903b84d95f65d728570748c33a3
IEDL.DBID U2A
ISSN 0178-2789
IngestDate Sat Aug 23 13:33:27 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
Tue Jul 01 01:05:51 EDT 2025
Fri Feb 21 02:46:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Action detection
Anchor cuboid
Spatiotemporal localization
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-fb10c51d9180a6aaa24d35da80c2b5edfd2d7b903b84d95f65d728570748c33a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6070-8524
PQID 2917929870
PQPubID 2043737
PageCount 12
ParticipantIDs proquest_journals_2917929870
crossref_citationtrail_10_1007_s00371_021_02397_8
crossref_primary_10_1007_s00371_021_02397_8
springer_journals_10_1007_s00371_021_02397_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References CR38
CR36
CR35
CR34
CR33
Li, Yang, Giannetti (CR11) 2019; 1
CR30
Cai, Hu (CR32) 2020; 36
Dong, Deng, Wang (CR3) 2021; 37
CR8
Nawaratne, Alahakoon, De Silva, Yu (CR5) 2019; 16
CR7
CR49
CR48
CR47
CR46
CR45
Dai, Liu, Lai (CR4) 2020; 86
CR44
CR43
CR42
CR41
CR40
Abbass, Kwon, Kim (CR37) 2021; 37
Wei, Cui, Hu, Sun, Hou (CR13) 2021; 37
Gong, Cao, Xiao, Fang (CR9) 2021; 37
CR19
CR18
Wu, Sahoo, Hoi (CR23) 2020; 396
CR17
CR16
CR15
Mandal, Dhar, Mishra, Vipparthi, Abdel-Mottaleb (CR1) 2021; 30
CR14
CR12
CR10
CR53
CR52
CR51
CR50
Li, Liu, Zhang, Zhang, Song, Sebe (CR31) 2020; 22
Uijlings, Van De Sande, Gevers, Smeulders (CR21) 2013; 104
Deng, Pan, Yao, Zhou, Li, Mei (CR2) 2021; 23
CR29
CR28
CR27
CR26
CR25
CR24
CR22
CR20
Gilbarg, Trudinger (CR39) 2015
Zhou, Du, Zhu, Peng, Liu, Goh (CR6) 2019; 14
2397_CR35
2397_CR34
JT Zhou (2397_CR6) 2019; 14
2397_CR36
2397_CR38
X Wu (2397_CR23) 2020; 396
2397_CR30
2397_CR33
L Wei (2397_CR13) 2021; 37
2397_CR24
2397_CR26
JR Uijlings (2397_CR21) 2013; 104
2397_CR25
2397_CR28
2397_CR27
2397_CR29
J Li (2397_CR31) 2020; 22
J Deng (2397_CR2) 2021; 23
J Cai (2397_CR32) 2020; 36
2397_CR20
2397_CR22
2397_CR12
2397_CR15
2397_CR14
2397_CR17
2397_CR16
2397_CR19
C Dai (2397_CR4) 2020; 86
2397_CR18
E Dong (2397_CR3) 2021; 37
R Nawaratne (2397_CR5) 2019; 16
MY Abbass (2397_CR37) 2021; 37
2397_CR7
2397_CR8
2397_CR51
2397_CR50
2397_CR53
M Mandal (2397_CR1) 2021; 30
2397_CR52
2397_CR10
2397_CR46
2397_CR45
2397_CR48
2397_CR47
D Gilbarg (2397_CR39) 2015
2397_CR49
K Gong (2397_CR9) 2021; 37
C Li (2397_CR11) 2019; 1
2397_CR40
2397_CR42
2397_CR41
2397_CR44
2397_CR43
References_xml – ident: CR45
– ident: CR22
– volume: 104
  start-page: 154
  issue: 2
  year: 2013
  end-page: 171
  ident: CR21
  article-title: Selective search for object recognition
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0620-5
– ident: CR49
– ident: CR16
– ident: CR51
– ident: CR12
– volume: 37
  start-page: 831
  issue: 4
  year: 2021
  end-page: 842
  ident: CR37
  article-title: Efficient object tracking using hierarchical convolutional features model and correlation filters
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01833-5
– volume: 37
  start-page: 371
  issue: 2
  year: 2021
  end-page: 383
  ident: CR9
  article-title: Abrupt-motion-aware lightweight visual tracking for unmanned aerial vehicles
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01805-9
– volume: 1
  start-page: 20
  issue: 1
  year: 2019
  end-page: 25
  ident: CR11
  article-title: Segmentation and generalisation for writing skills transfer from humans to robots
  publication-title: Cogn. Comput. Syst.
  doi: 10.1049/ccs.2018.0005
– ident: CR35
– ident: CR29
– ident: CR8
– ident: CR25
– ident: CR42
– ident: CR46
– ident: CR19
– ident: CR15
– start-page: 13
  year: 2015
  end-page: 70
  ident: CR39
  publication-title: Elliptic Partial Differential Equations of Second Order
– ident: CR50
– volume: 86
  year: 2020
  ident: CR4
  article-title: Human action recognition using two-stream attention based LSTM networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105820
– volume: 36
  start-page: 1261
  issue: 6
  year: 2020
  end-page: 1270
  ident: CR32
  article-title: 3D RANs: 3D residual attention networks for action recognition
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01733-3
– ident: CR36
– ident: CR26
– ident: CR18
– ident: CR43
– ident: CR47
– ident: CR14
– ident: CR53
– ident: CR30
– ident: CR10
– volume: 22
  start-page: 2990
  issue: 11
  year: 2020
  end-page: 3001
  ident: CR31
  article-title: Spatio-temporal attention networks for action recognition and detection
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.2965434
– ident: CR33
– ident: CR40
– ident: CR27
– volume: 16
  start-page: 393
  issue: 1
  year: 2019
  end-page: 402
  ident: CR5
  article-title: Spatiotemporal anomaly detection using deep learning for real-time video surveillance
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2938527
– ident: CR44
– volume: 30
  start-page: 546
  year: 2021
  end-page: 558
  ident: CR1
  article-title: 3DCD: scene independent end-to-end spatiotemporal feature learning framework for change detection in unseen videos
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3037472
– volume: 37
  start-page: 567
  issue: 3
  year: 2021
  end-page: 585
  ident: CR3
  article-title: A robust tracking algorithm with on online detector and high-confidence updating strategy
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01824-6
– ident: CR48
– volume: 396
  start-page: 39
  year: 2020
  end-page: 64
  ident: CR23
  article-title: Recent advances in deep learning for object detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.085
– volume: 14
  start-page: 2537
  issue: 10
  year: 2019
  end-page: 2550
  ident: CR6
  article-title: Anomalynet: an anomaly detection network for video surveillance
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2019.2900907
– ident: CR38
– ident: CR52
– ident: CR17
– volume: 37
  start-page: 133
  issue: 1
  year: 2021
  end-page: 142
  ident: CR13
  article-title: A single-shot multi-level feature reused neural network for object detection
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01787-3
– ident: CR34
– volume: 23
  start-page: 846
  year: 2021
  end-page: 858
  ident: CR2
  article-title: Single shot video object detector
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.2990070
– ident: CR7
– ident: CR28
– ident: CR41
– ident: CR24
– ident: CR20
– volume: 37
  start-page: 133
  issue: 1
  year: 2021
  ident: 2397_CR13
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01787-3
– volume: 30
  start-page: 546
  year: 2021
  ident: 2397_CR1
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3037472
– ident: 2397_CR25
  doi: 10.1109/CVPR42600.2020.01079
– ident: 2397_CR24
  doi: 10.1007/978-3-030-58452-8_13
– volume: 22
  start-page: 2990
  issue: 11
  year: 2020
  ident: 2397_CR31
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.2965434
– ident: 2397_CR14
  doi: 10.1609/aaai.v34i07.6811
– volume: 36
  start-page: 1261
  issue: 6
  year: 2020
  ident: 2397_CR32
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01733-3
– ident: 2397_CR33
  doi: 10.1109/CVPR.2015.7298676
– volume: 16
  start-page: 393
  issue: 1
  year: 2019
  ident: 2397_CR5
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2938527
– volume: 23
  start-page: 846
  year: 2021
  ident: 2397_CR2
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.2990070
– ident: 2397_CR15
  doi: 10.1007/978-3-319-46493-0_45
– volume: 37
  start-page: 567
  issue: 3
  year: 2021
  ident: 2397_CR3
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01824-6
– ident: 2397_CR42
– ident: 2397_CR8
  doi: 10.1109/MIPR.2019.00036
– volume: 104
  start-page: 154
  issue: 2
  year: 2013
  ident: 2397_CR21
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0620-5
– ident: 2397_CR20
  doi: 10.1007/978-3-030-58542-6_39
– ident: 2397_CR16
  doi: 10.5244/C.30.58
– ident: 2397_CR19
  doi: 10.1007/s00371-019-01778-4
– ident: 2397_CR17
  doi: 10.1109/ICCV.2017.617
– ident: 2397_CR27
  doi: 10.1109/ICCV.2015.169
– ident: 2397_CR41
  doi: 10.1109/CVPR.2008.4587727
– volume: 86
  year: 2020
  ident: 2397_CR4
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105820
– ident: 2397_CR12
  doi: 10.1109/CVPR.2018.00054
– volume: 14
  start-page: 2537
  issue: 10
  year: 2019
  ident: 2397_CR6
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2019.2900907
– ident: 2397_CR35
  doi: 10.1007/978-3-030-01231-1_19
– ident: 2397_CR29
  doi: 10.1109/CVPR.2016.91
– ident: 2397_CR45
– ident: 2397_CR28
– volume: 37
  start-page: 831
  issue: 4
  year: 2021
  ident: 2397_CR37
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01833-5
– volume: 1
  start-page: 20
  issue: 1
  year: 2019
  ident: 2397_CR11
  publication-title: Cogn. Comput. Syst.
  doi: 10.1049/ccs.2018.0005
– ident: 2397_CR38
  doi: 10.1109/CVPR42600.2020.00067
– volume: 396
  start-page: 39
  year: 2020
  ident: 2397_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.085
– ident: 2397_CR40
  doi: 10.1109/ICCV.2017.393
– ident: 2397_CR51
– ident: 2397_CR53
  doi: 10.1109/CVPR.2019.01017
– ident: 2397_CR10
  doi: 10.1609/aaai.v33i01.33018191
– ident: 2397_CR30
  doi: 10.1007/978-3-319-46487-9_47
– ident: 2397_CR48
  doi: 10.1109/ICCV.2019.00015
– ident: 2397_CR43
  doi: 10.1109/ICCV.2013.396
– ident: 2397_CR44
  doi: 10.1109/ICCV.2011.6126472
– ident: 2397_CR22
  doi: 10.1109/ICCV.2013.10
– volume: 37
  start-page: 371
  issue: 2
  year: 2021
  ident: 2397_CR9
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01805-9
– ident: 2397_CR18
  doi: 10.1007/978-3-319-46448-0_2
– ident: 2397_CR49
  doi: 10.1109/ICASSP40776.2020.9054394
– ident: 2397_CR50
– ident: 2397_CR34
  doi: 10.1109/ICCV.2015.362
– ident: 2397_CR36
  doi: 10.1109/ICCV.2017.472
– ident: 2397_CR47
– ident: 2397_CR7
  doi: 10.1109/ICRA.2019.8794224
– ident: 2397_CR46
  doi: 10.1109/ICCV.2017.620
– start-page: 13
  volume-title: Elliptic Partial Differential Equations of Second Order
  year: 2015
  ident: 2397_CR39
– ident: 2397_CR26
  doi: 10.1109/CVPR.2014.81
– ident: 2397_CR52
  doi: 10.1609/aaai.v34i07.6811
SSID ssj0017749
Score 2.3434188
Snippet Action understanding in videos is a challenging task that has attracted widespread attention in recent years. Most current methods localize bounding box of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1193
SubjectTerms Accuracy
Artificial Intelligence
Classification
Computer Graphics
Computer Science
Efficiency
Feature maps
Image Processing and Computer Vision
Localization
Motion detectors
Neural networks
Optical flow (image analysis)
Original Article
Proposals
Tubes
Video
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXWBAPEWhoAxsYJHYcexMqKBWFUOFEJW6RXbOEQMkpQ3i72M7TgtIdIsU28Nn-x6-u-8QutKQxFIlClOShtjoY42lJAxT4GBEoSiodGyfk2Q8jR9nbOYf3JY-rbKViU5QQ5XbN_JbYvwKo8rN8bqbf2DbNcpGV30LjW3UNSJYGOerez-cPD2v4gjGuHEGcGR8JVvz6ctmXPGcY6vDNkXBFngaWf1bNa3tzT8hUqd5Rvtoz5uMwaDZ4wO0pctDtPuDSPAIkYErTwhA17r5su-rQf1VYVsMIt8DXb66WL8fUi2O0XQ0fHkYY98NAefmmtS4UFGYswjSSIQykQbRGCgDKcKcKKahAAJcpSFVIoaUFQkDTix9PY9FTqmkJ6hTVqU-RQFNRJrHoc3wVDHnUmlgnAtFoCCFAtlDUQtElnuqcNux4i1bkRw78DIDXubAy0QPXa_mzBuijI2j-y2-mb80y2y9xT1002K-_v3_amebVztHO7ZJfJM51kedevGpL4wpUatLf16-AWsUwyY
  priority: 102
  providerName: ProQuest
Title Action detection with two-stream enhanced detector
URI https://link.springer.com/article/10.1007/s00371-021-02397-8
https://www.proquest.com/docview/2917929870
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_odtGDH1NxOkcP3jTQJk2THqvsA4Uh4mCeStKkeNBOtor_vknabioqeGqhSQ4vyfvoe7_fAzjXKgqFjCQiOPaRsccaCYEpIoopowp5ToRj-5xE42l4M6OzGhS2bKrdm5Sk09QrsJtjl0O2pMACMo1u3YQ2tbG7OcVTnKxyB8ahcU5vYOIji_OsoTI_r_HVHK19zG9pUWdthnuwU7uJXlLt6z5s6KIDu00LBq--kR3Y_sQneAA4cSgFT-lSV2_2N6tXvs-RxYSIF08XTy7lXw-ZLw5hOhw8XI9R3RQBZea2lCiXgZ_RQMUB90UkjGBDRagS3M-wpFrlCismY59IHqqY5hFVDFsWexbyjBBBjqBVzAt9DB6JeJyFvi30lCFjQmpFGeMSqxznUokuBI1s0qxmDLeNK57TFdexk2dq5Jk6eaa8CxerOa8VX8afo3uNyNP67ixTbCJI47QZRdKFy2Yb1p9_X-3kf8NPYcv2jq8KynrQKhdv-sx4GKXswyYfjvrQTkaPtwPzvBpM7u777ph9ANmxyO8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT8IwFH5BPKgH48-Iou6gJ23c2v3oDsYQFUGQEyTcZrt28aCAMEP8p_wbbbsN1ERu3Jasa5avX_te2_e9B3Amhe8y7nNEcGgjZY8lYgx7iIhAqKWQJoSZbJ8dv9FzH_tevwRfhRZGh1UWa6JZqMUw1mfkV1jtK5QpV_S6Gb0jXTVK364WJTQyWrTk51Rt2SbXzTs1vucY1--7tw2UVxVAsaJbihLu2LHniNChNvOZ-jNXEE8waseYe1IkAouAhzbh1BWhl_ieCLBOAx-4NCaEEdXvCqy6hIR6RtH6w-zWQrlSxt121M5MK0xzkY6R6pnceEgHRGg5qbIMvw3h3Lv9cyFr7Fx9CzZzB9WqZYzahpIc7MDGj7SFu4BrRgxhCZnK7Emf5lrpdIi09IS9WXLwYiIL8ibD8R70loLSPpQHw4E8AIv4NIxdW8eTcjcIGJfCCwLKsUhwwgWrgFMAEcV5YnJdH-M1mqVUNuBFCrzIgBfRClzMvhllaTkWtq4W-Eb5FJ1Ec0JV4LLAfP76_94OF_d2CmuN7lM7ajc7rSNY1-Xps5i1KpTT8Yc8Vk5Myk8Mcyx4XjZVvwEJqP64
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaIwYAeuEG0Nmma9DgB03ho4sCk3aqkScUBumkU8fdJ0scGAiRulepEqpPYTu3vM8C5VlEoZCQRwbGPjD_WSAhMEVFMGVPIMyIc2-coGo7DuwmdLKH4XbV7nZIsMQ2WpSkvejOV9Rrgm2OaQ7a8wIIzjZ1dhTVjjgO7r8e43-QRTHDjAuDA3JUs5rOCzfw8x1fXtIg3v6VInecZ7MBWFTJ6_XKNd2FF523YrtsxeNXpbMPmErfgHuC-Qyx4She6fLK_XL3iY4osPkS8ejp_dun_SmQ634fx4ObpaoiqBgkoNZ9aoEwGfkoDFQfcF5EwSg4VoUpwP8WSapUprJiMfSJ5qGKaRVQxbBntWchTQgQ5gFY-zfUheCTicRr6tuhThowJqRVljEusMpxJJToQ1LpJ0oo93DaxeEka3mOnz8ToM3H6THgHLpoxs5I740_pbq3ypDpHbwk2t0kTwBmj0oHLehkWr3-f7eh_4mew_ng9SB5uR_fHsGFbypd1Zl1oFfN3fWICj0Keur31CSP6zAo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Action+detection+with+two-stream+enhanced+detector&rft.jtitle=The+Visual+computer&rft.au=Zhang%2C+Min&rft.au=Hu%2C+Haiyang&rft.au=Li%2C+Zhongjin&rft.au=Chen%2C+Jie&rft.date=2023-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=39&rft.issue=3&rft.spage=1193&rft.epage=1204&rft_id=info:doi/10.1007%2Fs00371-021-02397-8&rft.externalDocID=10_1007_s00371_021_02397_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon