Action detection with two-stream enhanced detector
Action understanding in videos is a challenging task that has attracted widespread attention in recent years. Most current methods localize bounding box of actors at frame level, and then track or link these detections to form action tubes across frames. These methods often focus on utilizing tempor...
Saved in:
Published in | The Visual computer Vol. 39; no. 3; pp. 1193 - 1204 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Action understanding in videos is a challenging task that has attracted widespread attention in recent years. Most current methods localize bounding box of actors at frame level, and then track or link these detections to form action tubes across frames. These methods often focus on utilizing temporal context in videos while neglecting the importance of the detector itself. In this paper, we present a two-stream enhanced framework to deal with the problem of action detection. Specifically, we devise an appearance and motion detectors in two-stream manner to detect actions, which take
k
consecutive RGB frames and optical flow images as input respectively. To improve the feature presentation capabilities, anchor refinement sub-module with feature alignment is introduced into the two-stream architecture to generate flexible anchor cuboids. Meanwhile, hierarchical fusion strategy is utilized to concatenate intermediate feature maps for capturing fast moving subjects. Moreover, layer normalization with skip connection is adopted to reduce the internal co-variate shift between network layers, which makes the training process simple and effective. Compared to state-of-the-art methods, the proposed approach yields impressive performance gain on three prevailing datasets: UCF-Sports, UCF-101 and J-HMDB, which confirm the effectiveness of our enhanced detector for action detection. |
---|---|
AbstractList | Action understanding in videos is a challenging task that has attracted widespread attention in recent years. Most current methods localize bounding box of actors at frame level, and then track or link these detections to form action tubes across frames. These methods often focus on utilizing temporal context in videos while neglecting the importance of the detector itself. In this paper, we present a two-stream enhanced framework to deal with the problem of action detection. Specifically, we devise an appearance and motion detectors in two-stream manner to detect actions, which take
k
consecutive RGB frames and optical flow images as input respectively. To improve the feature presentation capabilities, anchor refinement sub-module with feature alignment is introduced into the two-stream architecture to generate flexible anchor cuboids. Meanwhile, hierarchical fusion strategy is utilized to concatenate intermediate feature maps for capturing fast moving subjects. Moreover, layer normalization with skip connection is adopted to reduce the internal co-variate shift between network layers, which makes the training process simple and effective. Compared to state-of-the-art methods, the proposed approach yields impressive performance gain on three prevailing datasets: UCF-Sports, UCF-101 and J-HMDB, which confirm the effectiveness of our enhanced detector for action detection. Action understanding in videos is a challenging task that has attracted widespread attention in recent years. Most current methods localize bounding box of actors at frame level, and then track or link these detections to form action tubes across frames. These methods often focus on utilizing temporal context in videos while neglecting the importance of the detector itself. In this paper, we present a two-stream enhanced framework to deal with the problem of action detection. Specifically, we devise an appearance and motion detectors in two-stream manner to detect actions, which take k consecutive RGB frames and optical flow images as input respectively. To improve the feature presentation capabilities, anchor refinement sub-module with feature alignment is introduced into the two-stream architecture to generate flexible anchor cuboids. Meanwhile, hierarchical fusion strategy is utilized to concatenate intermediate feature maps for capturing fast moving subjects. Moreover, layer normalization with skip connection is adopted to reduce the internal co-variate shift between network layers, which makes the training process simple and effective. Compared to state-of-the-art methods, the proposed approach yields impressive performance gain on three prevailing datasets: UCF-Sports, UCF-101 and J-HMDB, which confirm the effectiveness of our enhanced detector for action detection. |
Author | Hu, Haiyang Li, Zhongjin Chen, Jie Zhang, Min |
Author_xml | – sequence: 1 givenname: Min surname: Zhang fullname: Zhang, Min organization: School of Computer Science and Technology, Hangzhou Dianzi University – sequence: 2 givenname: Haiyang orcidid: 0000-0002-6070-8524 surname: Hu fullname: Hu, Haiyang email: huhaiyang@hdu.edu.cn organization: School of Computer Science and Technology, Hangzhou Dianzi University – sequence: 3 givenname: Zhongjin surname: Li fullname: Li, Zhongjin organization: School of Computer Science and Technology, Hangzhou Dianzi University – sequence: 4 givenname: Jie surname: Chen fullname: Chen, Jie organization: School of Computer Science and Technology, Hangzhou Dianzi University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Fz9FJsmmSYyl-QcGLnkM2ydotbVKTlOK_d9ctCB56GGYG3mc-3gkahRg8QrcE7gmAeMgATBAMtA-mBJYXaEwqRjFlhI_QGIiQmAqprtAk5w10vajUGNGFLW0MM-eLH6pjW9azcow4l-TNbubD2gTr3UkS0zW6bMw2-5tTnqKPp8f35QtevT2_LhcrbBlRBTc1AcuJU0SCmRtjaOUYd0aCpTX3rnHUiVoBq2XlFG_m3AkquQBRScuYYVN0N8zdp_h18LnoTTyk0K3UVBGhqJICOpUcVDbFnJNvtG2L6T8pybRbTUD3DunBId05pH8d0rJD6T90n9qdSd_nITZAuROHT5_-rjpD_QA3UnnK |
CitedBy_id | crossref_primary_10_1016_j_compeleceng_2024_109739 crossref_primary_10_3390_s23062892 |
Cites_doi | 10.1007/s11263-013-0620-5 10.1007/s00371-020-01833-5 10.1007/s00371-020-01805-9 10.1049/ccs.2018.0005 10.1016/j.asoc.2019.105820 10.1007/s00371-019-01733-3 10.1109/TMM.2020.2965434 10.1109/TII.2019.2938527 10.1109/TIP.2020.3037472 10.1007/s00371-020-01824-6 10.1016/j.neucom.2020.01.085 10.1109/TIFS.2019.2900907 10.1007/s00371-019-01787-3 10.1109/TMM.2020.2990070 10.1109/CVPR42600.2020.01079 10.1007/978-3-030-58452-8_13 10.1609/aaai.v34i07.6811 10.1109/CVPR.2015.7298676 10.1007/978-3-319-46493-0_45 10.1109/MIPR.2019.00036 10.1007/978-3-030-58542-6_39 10.5244/C.30.58 10.1007/s00371-019-01778-4 10.1109/ICCV.2017.617 10.1109/ICCV.2015.169 10.1109/CVPR.2008.4587727 10.1109/CVPR.2018.00054 10.1007/978-3-030-01231-1_19 10.1109/CVPR.2016.91 10.1109/CVPR42600.2020.00067 10.1109/ICCV.2017.393 10.1109/CVPR.2019.01017 10.1609/aaai.v33i01.33018191 10.1007/978-3-319-46487-9_47 10.1109/ICCV.2019.00015 10.1109/ICCV.2013.396 10.1109/ICCV.2011.6126472 10.1109/ICCV.2013.10 10.1007/978-3-319-46448-0_2 10.1109/ICASSP40776.2020.9054394 10.1109/ICCV.2015.362 10.1109/ICCV.2017.472 10.1109/ICRA.2019.8794224 10.1109/ICCV.2017.620 10.1109/CVPR.2014.81 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00371-021-02397-8 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 1204 |
ExternalDocumentID | 10_1007_s00371_021_02397_8 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61572162; 61572551 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Zhejiang Provincial Key Science and Technology Project Foundation grantid: 2018C01012 – fundername: National Natural Science Foundation of China grantid: 61802095; 61702144 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Zhejiang Province grantid: LQ17F020003 funderid: http://dx.doi.org/10.13039/501100004731 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c319t-fb10c51d9180a6aaa24d35da80c2b5edfd2d7b903b84d95f65d728570748c33a3 |
IEDL.DBID | U2A |
ISSN | 0178-2789 |
IngestDate | Sat Aug 23 13:33:27 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 Tue Jul 01 01:05:51 EDT 2025 Fri Feb 21 02:46:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Action detection Anchor cuboid Spatiotemporal localization Object detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-fb10c51d9180a6aaa24d35da80c2b5edfd2d7b903b84d95f65d728570748c33a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6070-8524 |
PQID | 2917929870 |
PQPubID | 2043737 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2917929870 crossref_citationtrail_10_1007_s00371_021_02397_8 crossref_primary_10_1007_s00371_021_02397_8 springer_journals_10_1007_s00371_021_02397_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230300 2023-03-00 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230300 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | CR38 CR36 CR35 CR34 CR33 Li, Yang, Giannetti (CR11) 2019; 1 CR30 Cai, Hu (CR32) 2020; 36 Dong, Deng, Wang (CR3) 2021; 37 CR8 Nawaratne, Alahakoon, De Silva, Yu (CR5) 2019; 16 CR7 CR49 CR48 CR47 CR46 CR45 Dai, Liu, Lai (CR4) 2020; 86 CR44 CR43 CR42 CR41 CR40 Abbass, Kwon, Kim (CR37) 2021; 37 Wei, Cui, Hu, Sun, Hou (CR13) 2021; 37 Gong, Cao, Xiao, Fang (CR9) 2021; 37 CR19 CR18 Wu, Sahoo, Hoi (CR23) 2020; 396 CR17 CR16 CR15 Mandal, Dhar, Mishra, Vipparthi, Abdel-Mottaleb (CR1) 2021; 30 CR14 CR12 CR10 CR53 CR52 CR51 CR50 Li, Liu, Zhang, Zhang, Song, Sebe (CR31) 2020; 22 Uijlings, Van De Sande, Gevers, Smeulders (CR21) 2013; 104 Deng, Pan, Yao, Zhou, Li, Mei (CR2) 2021; 23 CR29 CR28 CR27 CR26 CR25 CR24 CR22 CR20 Gilbarg, Trudinger (CR39) 2015 Zhou, Du, Zhu, Peng, Liu, Goh (CR6) 2019; 14 2397_CR35 2397_CR34 JT Zhou (2397_CR6) 2019; 14 2397_CR36 2397_CR38 X Wu (2397_CR23) 2020; 396 2397_CR30 2397_CR33 L Wei (2397_CR13) 2021; 37 2397_CR24 2397_CR26 JR Uijlings (2397_CR21) 2013; 104 2397_CR25 2397_CR28 2397_CR27 2397_CR29 J Li (2397_CR31) 2020; 22 J Deng (2397_CR2) 2021; 23 J Cai (2397_CR32) 2020; 36 2397_CR20 2397_CR22 2397_CR12 2397_CR15 2397_CR14 2397_CR17 2397_CR16 2397_CR19 C Dai (2397_CR4) 2020; 86 2397_CR18 E Dong (2397_CR3) 2021; 37 R Nawaratne (2397_CR5) 2019; 16 MY Abbass (2397_CR37) 2021; 37 2397_CR7 2397_CR8 2397_CR51 2397_CR50 2397_CR53 M Mandal (2397_CR1) 2021; 30 2397_CR52 2397_CR10 2397_CR46 2397_CR45 2397_CR48 2397_CR47 D Gilbarg (2397_CR39) 2015 2397_CR49 K Gong (2397_CR9) 2021; 37 C Li (2397_CR11) 2019; 1 2397_CR40 2397_CR42 2397_CR41 2397_CR44 2397_CR43 |
References_xml | – ident: CR45 – ident: CR22 – volume: 104 start-page: 154 issue: 2 year: 2013 end-page: 171 ident: CR21 article-title: Selective search for object recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0620-5 – ident: CR49 – ident: CR16 – ident: CR51 – ident: CR12 – volume: 37 start-page: 831 issue: 4 year: 2021 end-page: 842 ident: CR37 article-title: Efficient object tracking using hierarchical convolutional features model and correlation filters publication-title: Vis. Comput. doi: 10.1007/s00371-020-01833-5 – volume: 37 start-page: 371 issue: 2 year: 2021 end-page: 383 ident: CR9 article-title: Abrupt-motion-aware lightweight visual tracking for unmanned aerial vehicles publication-title: Vis. Comput. doi: 10.1007/s00371-020-01805-9 – volume: 1 start-page: 20 issue: 1 year: 2019 end-page: 25 ident: CR11 article-title: Segmentation and generalisation for writing skills transfer from humans to robots publication-title: Cogn. Comput. Syst. doi: 10.1049/ccs.2018.0005 – ident: CR35 – ident: CR29 – ident: CR8 – ident: CR25 – ident: CR42 – ident: CR46 – ident: CR19 – ident: CR15 – start-page: 13 year: 2015 end-page: 70 ident: CR39 publication-title: Elliptic Partial Differential Equations of Second Order – ident: CR50 – volume: 86 year: 2020 ident: CR4 article-title: Human action recognition using two-stream attention based LSTM networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105820 – volume: 36 start-page: 1261 issue: 6 year: 2020 end-page: 1270 ident: CR32 article-title: 3D RANs: 3D residual attention networks for action recognition publication-title: Vis. Comput. doi: 10.1007/s00371-019-01733-3 – ident: CR36 – ident: CR26 – ident: CR18 – ident: CR43 – ident: CR47 – ident: CR14 – ident: CR53 – ident: CR30 – ident: CR10 – volume: 22 start-page: 2990 issue: 11 year: 2020 end-page: 3001 ident: CR31 article-title: Spatio-temporal attention networks for action recognition and detection publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.2965434 – ident: CR33 – ident: CR40 – ident: CR27 – volume: 16 start-page: 393 issue: 1 year: 2019 end-page: 402 ident: CR5 article-title: Spatiotemporal anomaly detection using deep learning for real-time video surveillance publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2938527 – ident: CR44 – volume: 30 start-page: 546 year: 2021 end-page: 558 ident: CR1 article-title: 3DCD: scene independent end-to-end spatiotemporal feature learning framework for change detection in unseen videos publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3037472 – volume: 37 start-page: 567 issue: 3 year: 2021 end-page: 585 ident: CR3 article-title: A robust tracking algorithm with on online detector and high-confidence updating strategy publication-title: Vis. Comput. doi: 10.1007/s00371-020-01824-6 – ident: CR48 – volume: 396 start-page: 39 year: 2020 end-page: 64 ident: CR23 article-title: Recent advances in deep learning for object detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.085 – volume: 14 start-page: 2537 issue: 10 year: 2019 end-page: 2550 ident: CR6 article-title: Anomalynet: an anomaly detection network for video surveillance publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2019.2900907 – ident: CR38 – ident: CR52 – ident: CR17 – volume: 37 start-page: 133 issue: 1 year: 2021 end-page: 142 ident: CR13 article-title: A single-shot multi-level feature reused neural network for object detection publication-title: Vis. Comput. doi: 10.1007/s00371-019-01787-3 – ident: CR34 – volume: 23 start-page: 846 year: 2021 end-page: 858 ident: CR2 article-title: Single shot video object detector publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.2990070 – ident: CR7 – ident: CR28 – ident: CR41 – ident: CR24 – ident: CR20 – volume: 37 start-page: 133 issue: 1 year: 2021 ident: 2397_CR13 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01787-3 – volume: 30 start-page: 546 year: 2021 ident: 2397_CR1 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3037472 – ident: 2397_CR25 doi: 10.1109/CVPR42600.2020.01079 – ident: 2397_CR24 doi: 10.1007/978-3-030-58452-8_13 – volume: 22 start-page: 2990 issue: 11 year: 2020 ident: 2397_CR31 publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.2965434 – ident: 2397_CR14 doi: 10.1609/aaai.v34i07.6811 – volume: 36 start-page: 1261 issue: 6 year: 2020 ident: 2397_CR32 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01733-3 – ident: 2397_CR33 doi: 10.1109/CVPR.2015.7298676 – volume: 16 start-page: 393 issue: 1 year: 2019 ident: 2397_CR5 publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2938527 – volume: 23 start-page: 846 year: 2021 ident: 2397_CR2 publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.2990070 – ident: 2397_CR15 doi: 10.1007/978-3-319-46493-0_45 – volume: 37 start-page: 567 issue: 3 year: 2021 ident: 2397_CR3 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01824-6 – ident: 2397_CR42 – ident: 2397_CR8 doi: 10.1109/MIPR.2019.00036 – volume: 104 start-page: 154 issue: 2 year: 2013 ident: 2397_CR21 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0620-5 – ident: 2397_CR20 doi: 10.1007/978-3-030-58542-6_39 – ident: 2397_CR16 doi: 10.5244/C.30.58 – ident: 2397_CR19 doi: 10.1007/s00371-019-01778-4 – ident: 2397_CR17 doi: 10.1109/ICCV.2017.617 – ident: 2397_CR27 doi: 10.1109/ICCV.2015.169 – ident: 2397_CR41 doi: 10.1109/CVPR.2008.4587727 – volume: 86 year: 2020 ident: 2397_CR4 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105820 – ident: 2397_CR12 doi: 10.1109/CVPR.2018.00054 – volume: 14 start-page: 2537 issue: 10 year: 2019 ident: 2397_CR6 publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2019.2900907 – ident: 2397_CR35 doi: 10.1007/978-3-030-01231-1_19 – ident: 2397_CR29 doi: 10.1109/CVPR.2016.91 – ident: 2397_CR45 – ident: 2397_CR28 – volume: 37 start-page: 831 issue: 4 year: 2021 ident: 2397_CR37 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01833-5 – volume: 1 start-page: 20 issue: 1 year: 2019 ident: 2397_CR11 publication-title: Cogn. Comput. Syst. doi: 10.1049/ccs.2018.0005 – ident: 2397_CR38 doi: 10.1109/CVPR42600.2020.00067 – volume: 396 start-page: 39 year: 2020 ident: 2397_CR23 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.085 – ident: 2397_CR40 doi: 10.1109/ICCV.2017.393 – ident: 2397_CR51 – ident: 2397_CR53 doi: 10.1109/CVPR.2019.01017 – ident: 2397_CR10 doi: 10.1609/aaai.v33i01.33018191 – ident: 2397_CR30 doi: 10.1007/978-3-319-46487-9_47 – ident: 2397_CR48 doi: 10.1109/ICCV.2019.00015 – ident: 2397_CR43 doi: 10.1109/ICCV.2013.396 – ident: 2397_CR44 doi: 10.1109/ICCV.2011.6126472 – ident: 2397_CR22 doi: 10.1109/ICCV.2013.10 – volume: 37 start-page: 371 issue: 2 year: 2021 ident: 2397_CR9 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01805-9 – ident: 2397_CR18 doi: 10.1007/978-3-319-46448-0_2 – ident: 2397_CR49 doi: 10.1109/ICASSP40776.2020.9054394 – ident: 2397_CR50 – ident: 2397_CR34 doi: 10.1109/ICCV.2015.362 – ident: 2397_CR36 doi: 10.1109/ICCV.2017.472 – ident: 2397_CR47 – ident: 2397_CR7 doi: 10.1109/ICRA.2019.8794224 – ident: 2397_CR46 doi: 10.1109/ICCV.2017.620 – start-page: 13 volume-title: Elliptic Partial Differential Equations of Second Order year: 2015 ident: 2397_CR39 – ident: 2397_CR26 doi: 10.1109/CVPR.2014.81 – ident: 2397_CR52 doi: 10.1609/aaai.v34i07.6811 |
SSID | ssj0017749 |
Score | 2.3434188 |
Snippet | Action understanding in videos is a challenging task that has attracted widespread attention in recent years. Most current methods localize bounding box of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1193 |
SubjectTerms | Accuracy Artificial Intelligence Classification Computer Graphics Computer Science Efficiency Feature maps Image Processing and Computer Vision Localization Motion detectors Neural networks Optical flow (image analysis) Original Article Proposals Tubes Video |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXWBAPEWhoAxsYJHYcexMqKBWFUOFEJW6RXbOEQMkpQ3i72M7TgtIdIsU28Nn-x6-u-8QutKQxFIlClOShtjoY42lJAxT4GBEoSiodGyfk2Q8jR9nbOYf3JY-rbKViU5QQ5XbN_JbYvwKo8rN8bqbf2DbNcpGV30LjW3UNSJYGOerez-cPD2v4gjGuHEGcGR8JVvz6ctmXPGcY6vDNkXBFngaWf1bNa3tzT8hUqd5Rvtoz5uMwaDZ4wO0pctDtPuDSPAIkYErTwhA17r5su-rQf1VYVsMIt8DXb66WL8fUi2O0XQ0fHkYY98NAefmmtS4UFGYswjSSIQykQbRGCgDKcKcKKahAAJcpSFVIoaUFQkDTix9PY9FTqmkJ6hTVqU-RQFNRJrHoc3wVDHnUmlgnAtFoCCFAtlDUQtElnuqcNux4i1bkRw78DIDXubAy0QPXa_mzBuijI2j-y2-mb80y2y9xT1002K-_v3_amebVztHO7ZJfJM51kedevGpL4wpUatLf16-AWsUwyY priority: 102 providerName: ProQuest |
Title | Action detection with two-stream enhanced detector |
URI | https://link.springer.com/article/10.1007/s00371-021-02397-8 https://www.proquest.com/docview/2917929870 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_odtGDH1NxOkcP3jTQJk2THqvsA4Uh4mCeStKkeNBOtor_vknabioqeGqhSQ4vyfvoe7_fAzjXKgqFjCQiOPaRsccaCYEpIoopowp5ToRj-5xE42l4M6OzGhS2bKrdm5Sk09QrsJtjl0O2pMACMo1u3YQ2tbG7OcVTnKxyB8ahcU5vYOIji_OsoTI_r_HVHK19zG9pUWdthnuwU7uJXlLt6z5s6KIDu00LBq--kR3Y_sQneAA4cSgFT-lSV2_2N6tXvs-RxYSIF08XTy7lXw-ZLw5hOhw8XI9R3RQBZea2lCiXgZ_RQMUB90UkjGBDRagS3M-wpFrlCismY59IHqqY5hFVDFsWexbyjBBBjqBVzAt9DB6JeJyFvi30lCFjQmpFGeMSqxznUokuBI1s0qxmDLeNK57TFdexk2dq5Jk6eaa8CxerOa8VX8afo3uNyNP67ixTbCJI47QZRdKFy2Yb1p9_X-3kf8NPYcv2jq8KynrQKhdv-sx4GKXswyYfjvrQTkaPtwPzvBpM7u777ph9ANmxyO8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT8IwFH5BPKgH48-Iou6gJ23c2v3oDsYQFUGQEyTcZrt28aCAMEP8p_wbbbsN1ERu3Jasa5avX_te2_e9B3Amhe8y7nNEcGgjZY8lYgx7iIhAqKWQJoSZbJ8dv9FzH_tevwRfhRZGh1UWa6JZqMUw1mfkV1jtK5QpV_S6Gb0jXTVK364WJTQyWrTk51Rt2SbXzTs1vucY1--7tw2UVxVAsaJbihLu2LHniNChNvOZ-jNXEE8waseYe1IkAouAhzbh1BWhl_ieCLBOAx-4NCaEEdXvCqy6hIR6RtH6w-zWQrlSxt121M5MK0xzkY6R6pnceEgHRGg5qbIMvw3h3Lv9cyFr7Fx9CzZzB9WqZYzahpIc7MDGj7SFu4BrRgxhCZnK7Emf5lrpdIi09IS9WXLwYiIL8ibD8R70loLSPpQHw4E8AIv4NIxdW8eTcjcIGJfCCwLKsUhwwgWrgFMAEcV5YnJdH-M1mqVUNuBFCrzIgBfRClzMvhllaTkWtq4W-Eb5FJ1Ec0JV4LLAfP76_94OF_d2CmuN7lM7ajc7rSNY1-Xps5i1KpTT8Yc8Vk5Myk8Mcyx4XjZVvwEJqP64 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaIwYAeuEG0Nmma9DgB03ho4sCk3aqkScUBumkU8fdJ0scGAiRulepEqpPYTu3vM8C5VlEoZCQRwbGPjD_WSAhMEVFMGVPIMyIc2-coGo7DuwmdLKH4XbV7nZIsMQ2WpSkvejOV9Rrgm2OaQ7a8wIIzjZ1dhTVjjgO7r8e43-QRTHDjAuDA3JUs5rOCzfw8x1fXtIg3v6VInecZ7MBWFTJ6_XKNd2FF523YrtsxeNXpbMPmErfgHuC-Qyx4She6fLK_XL3iY4osPkS8ejp_dun_SmQ634fx4ObpaoiqBgkoNZ9aoEwGfkoDFQfcF5EwSg4VoUpwP8WSapUprJiMfSJ5qGKaRVQxbBntWchTQgQ5gFY-zfUheCTicRr6tuhThowJqRVljEusMpxJJToQ1LpJ0oo93DaxeEka3mOnz8ToM3H6THgHLpoxs5I740_pbq3ypDpHbwk2t0kTwBmj0oHLehkWr3-f7eh_4mew_ng9SB5uR_fHsGFbypd1Zl1oFfN3fWICj0Keur31CSP6zAo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Action+detection+with+two-stream+enhanced+detector&rft.jtitle=The+Visual+computer&rft.au=Zhang%2C+Min&rft.au=Hu%2C+Haiyang&rft.au=Li%2C+Zhongjin&rft.au=Chen%2C+Jie&rft.date=2023-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=39&rft.issue=3&rft.spage=1193&rft.epage=1204&rft_id=info:doi/10.1007%2Fs00371-021-02397-8&rft.externalDocID=10_1007_s00371_021_02397_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |