Synergistic effects of hybrid macro basalt fibers and micro fibers on the mechanical properties of UHPC

This study aims to optimize the mechanical properties of ultra-high performance concrete (UHPC) reinforced with macro basalt fibers (MBFs). Six types of fibers, containing micro fibers and macro fibers, were employed to reinforce UHPC by mono or hybrid method. The micro fibers contained micro basalt...

Full description

Saved in:
Bibliographic Details
Published inArchives of Civil and Mechanical Engineering Vol. 23; no. 4; p. 264
Main Authors Chen, Zhiyuan, Wang, Xin, Ding, Lining, Jiang, Kaidi, Huang, Huang, Liu, Jianxun, Wu, Zhishen
Format Journal Article
LanguageEnglish
Published London Springer London 09.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2083-3318
1644-9665
2083-3318
DOI10.1007/s43452-023-00807-3

Cover

Abstract This study aims to optimize the mechanical properties of ultra-high performance concrete (UHPC) reinforced with macro basalt fibers (MBFs). Six types of fibers, containing micro fibers and macro fibers, were employed to reinforce UHPC by mono or hybrid method. The micro fibers contained micro basalt fiber, polypropylene fiber, and polyvinyl alcohol fiber corresponding to the modulus of 90, 3.5, and 41 GPa, respectively. The macro fibers contained MBF, macro polypropylene fiber, and polyvinyl alcohol fiber corresponding to the modulus of 43, 2.9, and 23 GPa, respectively. The flowability, and compressive and flexural behavior of UHPC were tested and analyzed. The micro fibers with high modulus effectively restricted microcracks owing to the dense fiber distribution and strong restraint, thereby significantly enhanced the mechanical properties of UHPC before cracking; thus, UHPC with 0.3% micro basalt fiber showed the highest compressive and flexural strength of 132.6 and 26.10 MPa. The macro fibers showed pullout failure and consumed energy during fiber pullout process, leading to a ductile failure and enhancement in mechanical properties of UHPC after cracking. UHPC with 3% MBFs had the highest compressive, flexural first-cracking and post-cracking strength of 151.8, 24.97, and 26.32 MPa, owing to the great energy consumption, low damage to fiber–matrix interface and strong macrocrack resistance supported by MBFs. For UHPC with hybrid fibers, UHPC with 3% MBFs and 0.3% micro fibers had the best comprehensive performance, corresponding to the flexural first-cracking and post-cracking strength of 27.95 and 28.01 MPa. It was because that MBF and micro basalt fibers with proper content, which had the highest modulus, synergistically limited microcracks and macrocracks before and after UHPC cracked. The principle, choosing the fiber combination with high modulus and proper content, applies to the improvement of mechanical properties of UHPC with different mixture in practice.
AbstractList This study aims to optimize the mechanical properties of ultra-high performance concrete (UHPC) reinforced with macro basalt fibers (MBFs). Six types of fibers, containing micro fibers and macro fibers, were employed to reinforce UHPC by mono or hybrid method. The micro fibers contained micro basalt fiber, polypropylene fiber, and polyvinyl alcohol fiber corresponding to the modulus of 90, 3.5, and 41 GPa, respectively. The macro fibers contained MBF, macro polypropylene fiber, and polyvinyl alcohol fiber corresponding to the modulus of 43, 2.9, and 23 GPa, respectively. The flowability, and compressive and flexural behavior of UHPC were tested and analyzed. The micro fibers with high modulus effectively restricted microcracks owing to the dense fiber distribution and strong restraint, thereby significantly enhanced the mechanical properties of UHPC before cracking; thus, UHPC with 0.3% micro basalt fiber showed the highest compressive and flexural strength of 132.6 and 26.10 MPa. The macro fibers showed pullout failure and consumed energy during fiber pullout process, leading to a ductile failure and enhancement in mechanical properties of UHPC after cracking. UHPC with 3% MBFs had the highest compressive, flexural first-cracking and post-cracking strength of 151.8, 24.97, and 26.32 MPa, owing to the great energy consumption, low damage to fiber–matrix interface and strong macrocrack resistance supported by MBFs. For UHPC with hybrid fibers, UHPC with 3% MBFs and 0.3% micro fibers had the best comprehensive performance, corresponding to the flexural first-cracking and post-cracking strength of 27.95 and 28.01 MPa. It was because that MBF and micro basalt fibers with proper content, which had the highest modulus, synergistically limited microcracks and macrocracks before and after UHPC cracked. The principle, choosing the fiber combination with high modulus and proper content, applies to the improvement of mechanical properties of UHPC with different mixture in practice.
This study aims to optimize the mechanical properties of ultra-high performance concrete (UHPC) reinforced with macro basalt fibers (MBFs). Six types of fibers, containing micro fibers and macro fibers, were employed to reinforce UHPC by mono or hybrid method. The micro fibers contained micro basalt fiber, polypropylene fiber, and polyvinyl alcohol fiber corresponding to the modulus of 90, 3.5, and 41 GPa, respectively. The macro fibers contained MBF, macro polypropylene fiber, and polyvinyl alcohol fiber corresponding to the modulus of 43, 2.9, and 23 GPa, respectively. The flowability, and compressive and flexural behavior of UHPC were tested and analyzed. The micro fibers with high modulus effectively restricted microcracks owing to the dense fiber distribution and strong restraint, thereby significantly enhanced the mechanical properties of UHPC before cracking; thus, UHPC with 0.3% micro basalt fiber showed the highest compressive and flexural strength of 132.6 and 26.10 MPa. The macro fibers showed pullout failure and consumed energy during fiber pullout process, leading to a ductile failure and enhancement in mechanical properties of UHPC after cracking. UHPC with 3% MBFs had the highest compressive, flexural first-cracking and post-cracking strength of 151.8, 24.97, and 26.32 MPa, owing to the great energy consumption, low damage to fiber–matrix interface and strong macrocrack resistance supported by MBFs. For UHPC with hybrid fibers, UHPC with 3% MBFs and 0.3% micro fibers had the best comprehensive performance, corresponding to the flexural first-cracking and post-cracking strength of 27.95 and 28.01 MPa. It was because that MBF and micro basalt fibers with proper content, which had the highest modulus, synergistically limited microcracks and macrocracks before and after UHPC cracked. The principle, choosing the fiber combination with high modulus and proper content, applies to the improvement of mechanical properties of UHPC with different mixture in practice.
ArticleNumber 264
Author Liu, Jianxun
Chen, Zhiyuan
Wang, Xin
Huang, Huang
Ding, Lining
Jiang, Kaidi
Wu, Zhishen
Author_xml – sequence: 1
  givenname: Zhiyuan
  surname: Chen
  fullname: Chen, Zhiyuan
  organization: Key Laboratory of C & PC Structures Ministry of Education, Southeast University, National and Local Unified Engineering Research Center for Basalt Fiber Production and Application Technology, Southeast University
– sequence: 2
  givenname: Xin
  orcidid: 0000-0003-4504-8502
  surname: Wang
  fullname: Wang, Xin
  email: xinwang@seu.edu.cn
  organization: Key Laboratory of C & PC Structures Ministry of Education, Southeast University, National and Local Unified Engineering Research Center for Basalt Fiber Production and Application Technology, Southeast University
– sequence: 3
  givenname: Lining
  surname: Ding
  fullname: Ding, Lining
  organization: School of Civil Engineering, Nanjing Forestry University
– sequence: 4
  givenname: Kaidi
  surname: Jiang
  fullname: Jiang, Kaidi
  organization: Key Laboratory of C & PC Structures Ministry of Education, Southeast University, National and Local Unified Engineering Research Center for Basalt Fiber Production and Application Technology, Southeast University
– sequence: 5
  givenname: Huang
  surname: Huang
  fullname: Huang, Huang
  organization: Department of Urban and Civil Engineering, Ibaraki University
– sequence: 6
  givenname: Jianxun
  surname: Liu
  fullname: Liu, Jianxun
  organization: National and Local Unified Engineering Research Center for Basalt Fiber Production and Application Technology, Southeast University
– sequence: 7
  givenname: Zhishen
  surname: Wu
  fullname: Wu, Zhishen
  organization: Key Laboratory of C & PC Structures Ministry of Education, Southeast University, National and Local Unified Engineering Research Center for Basalt Fiber Production and Application Technology, Southeast University
BookMark eNp9kEtLQzEQhYNUsNb-AVcB11cnSe8jSylqhYKCdh3S3Emb0ubWJC76700foLjoKsPhfJM555r0fOeRkFsG9wygfogjMSp5AVwUAA3UhbggfQ6NKIRgTe_PfEWGMa4AgEHNWVX2yeJj5zEsXEzOULQWTYq0s3S5mwfX0o02oaNzHfU6UevmGCLVPutur5-EztO0RLpBs9TeGb2m29BtMSSHh12zyfv4hlxavY44PL0DMnt--hxPiunby-v4cVoYwWQqrGxZ05bAmrI2RluhsW5ribWscoY5Ni1jwjADAmUNzI5GpeSywZZVlbS2EgNyd9ybT_j6xpjUqvsOPn-puOQ5NgO-dzVHV04RY0CrjEs6uc6noN1aMVD7ZtWxWZWbVYdmlcgo_4dug9vosDsPiSMUs9kvMPxedYb6AY7-jNQ
CitedBy_id crossref_primary_10_3390_ma17235990
crossref_primary_10_1016_j_jobe_2024_109277
crossref_primary_10_1016_j_jobe_2024_109188
crossref_primary_10_1016_j_engstruct_2025_120044
crossref_primary_10_1016_j_jobe_2025_111850
crossref_primary_10_1002_suco_202400057
crossref_primary_10_1016_j_conbuildmat_2025_140080
crossref_primary_10_1016_j_jobe_2023_108382
crossref_primary_10_1016_j_conbuildmat_2024_135011
crossref_primary_10_1016_j_conbuildmat_2025_139901
crossref_primary_10_1007_s43452_024_01101_6
crossref_primary_10_1016_j_cscm_2024_e03989
crossref_primary_10_3390_su16031068
crossref_primary_10_1617_s11527_025_02607_y
crossref_primary_10_1016_j_engstruct_2024_119173
crossref_primary_10_1016_j_engfracmech_2023_109759
Cites_doi 10.1016/j.conbuildmat.2019.117709
10.1016/j.cemconcomp.2013.10.018
10.1016/j.conbuildmat.2018.11.181
10.1016/j.conbuildmat.2019.07.063
10.1016/j.conbuildmat.2016.08.009
10.1016/S0008-8846(01)00732-3
10.1016/j.jobe.2022.104922
10.3390/ma13132948
10.1016/j.jobe.2023.106160
10.1016/j.matdes.2014.01.056
10.1016/j.conbuildmat.2023.131107
10.1016/j.jobe.2022.105234
10.1016/j.conbuildmat.2013.09.040
10.4028/www.scientific.net/AMR.893.610
10.1016/j.compositesb.2019.107021
10.1016/j.cemconres.2018.12.008
10.1016/j.compstruct.2017.04.069
10.1016/j.conbuildmat.2015.11.028
10.15554/PCIJ.09011999.60.71
10.1016/j.conbuildmat.2020.119114
10.1016/j.cemconres.2006.03.009
10.1016/j.compstruct.2013.07.033
10.1016/j.conbuildmat.2022.128952
10.1016/j.cemconcomp.2017.09.006
10.1016/j.conbuildmat.2015.10.006
10.1617/s11527-009-9562-3
10.1016/j.compstruct.2016.02.075
10.1016/j.conbuildmat.2018.07.089
10.1016/j.cemconcomp.2022.104422
10.1016/j.jobe.2022.104370
10.1016/j.jobe.2023.107435
10.1016/j.istruc.2021.07.035
10.1016/j.conbuildmat.2023.132922
10.1016/j.engstruct.2021.113269
ContentType Journal Article
Copyright Wroclaw University of Science and Technology 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Nov 2023
Copyright_xml – notice: Wroclaw University of Science and Technology 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Nov 2023
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s43452-023-00807-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central (ProQuest)
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2083-3318
ExternalDocumentID 10_1007_s43452_023_00807_3
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFB3706503
  funderid: http://dx.doi.org/10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 52278244
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --M
.~1
0R~
1~.
23M
2JY
4.4
406
457
4G.
5GY
7-5
8P~
AACDK
AACTN
AAEDT
AAEPC
AAHNG
AAIKJ
AAJBT
AALRI
AAOAW
AASML
AATNV
AAUYE
ABAKF
ABECU
ABJCF
ABJNI
ABMQK
ABTEG
ABTKH
ABTMW
ABXRA
ACAOD
ACDAQ
ACDTI
ACGFS
ACHSB
ACPIV
ACZOJ
ADBBV
ADEZE
ADTZH
AECPX
AEFQL
AEKER
AEMSY
AENEX
AESKC
AFBBN
AFKRA
AFQWF
AFTJW
AGHFR
AGMZJ
AGQEE
AGUBO
AGYEJ
AIGIU
AILAN
AJOXV
AJZVZ
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMXSW
AMYLF
BENPR
BGLVJ
BLXMC
CCPQU
DPUIP
EBLON
EBS
ESX
FDB
FEDTE
FIGPU
FIRID
FNPLU
GBLVA
HCIFZ
HVGLF
IKXTQ
IWAJR
JJJVA
LLZTM
M7S
MAGPM
MO0
NPVJJ
NQJWS
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
PT4
PTHSS
Q38
RSV
SDF
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
SSZ
T5K
Y2W
~G-
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JZLTJ
PHGZM
PHGZT
ROL
8FE
8FG
ABRTQ
DWQXO
I-F
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
TUS
ID FETCH-LOGICAL-c319t-f9d18d501857ccaf3ae7d79e796083be8d113c1c03e9701f4459298ed1669ff63
IEDL.DBID 8FG
ISSN 2083-3318
1644-9665
IngestDate Sat Aug 23 14:57:28 EDT 2025
Tue Jul 01 04:16:41 EDT 2025
Thu Apr 24 23:03:10 EDT 2025
Fri Feb 21 02:47:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Mechanical properties
UHPC
Macro basalt fiber
Synergistic effect
Hybrid fibers
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f9d18d501857ccaf3ae7d79e796083be8d113c1c03e9701f4459298ed1669ff63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4504-8502
PQID 2921071026
PQPubID 6587200
ParticipantIDs proquest_journals_2921071026
crossref_citationtrail_10_1007_s43452_023_00807_3
crossref_primary_10_1007_s43452_023_00807_3
springer_journals_10_1007_s43452_023_00807_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-09
PublicationDateYYYYMMDD 2023-11-09
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Wrocław
PublicationTitle Archives of Civil and Mechanical Engineering
PublicationTitleAbbrev Archiv.Civ.Mech.Eng
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References K Jiang (807_CR36) 2023; 401
S Grzeszczyk (807_CR19) 2020; 13
C Wen (807_CR22) 2022; 52
Z Wu (807_CR29) 2016; 103
Z Chen (807_CR6) 2023; 377
L Scheinherrová (807_CR11) 2019; 117
D Ravichandran (807_CR17) 2022; 57
Z Chen (807_CR27) 2023; 77
C Su (807_CR3) 2021; 248
SJ Barnett (807_CR12) 2010; 43
807_CR7
807_CR8
C Jiang (807_CR31) 2014; 58
807_CR9
807_CR26
S Pyo (807_CR15) 2019; 224
807_CR25
807_CR28
XM Gao (807_CR20) 2013
DY Yoo (807_CR32) 2013; 106
K Jiang (807_CR35) 2023; 68
Z Algin (807_CR1) 2018; 186
DY Yoo (807_CR38) 2017; 174
S Kang (807_CR24) 2016; 145
807_CR4
S Pyo (807_CR14) 2017; 84
N Banthia (807_CR37) 2014; 48
K Jiang (807_CR5) 2022; 351
Y Yang (807_CR39) 2020; 108
Z Yu (807_CR21) 2022; 61
J Branston (807_CR2) 2016; 124
807_CR10
807_CR13
AB Kizilkanat (807_CR23) 2015; 100
807_CR34
DH Wang (807_CR33) 2019; 197
807_CR16
807_CR18
N Kabay (807_CR30) 2014; 50
References_xml – ident: 807_CR16
  doi: 10.1016/j.conbuildmat.2019.117709
– volume: 48
  start-page: 91
  year: 2014
  ident: 807_CR37
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2013.10.018
– volume: 197
  start-page: 464
  year: 2019
  ident: 807_CR33
  publication-title: Construct Build Mater.
  doi: 10.1016/j.conbuildmat.2018.11.181
– volume: 224
  start-page: 206
  year: 2019
  ident: 807_CR15
  publication-title: Construct Build Mater.
  doi: 10.1016/j.conbuildmat.2019.07.063
– volume: 124
  start-page: 878
  year: 2016
  ident: 807_CR2
  publication-title: Construct Build Mater.
  doi: 10.1016/j.conbuildmat.2016.08.009
– ident: 807_CR9
  doi: 10.1016/S0008-8846(01)00732-3
– volume: 57
  year: 2022
  ident: 807_CR17
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2022.104922
– volume: 13
  start-page: 2948
  year: 2020
  ident: 807_CR19
  publication-title: Abrasion Porosity Mater.
  doi: 10.3390/ma13132948
– volume: 68
  year: 2023
  ident: 807_CR35
  publication-title: J Build Eng.
  doi: 10.1016/j.jobe.2023.106160
– volume: 58
  start-page: 187
  issue: 1
  year: 2014
  ident: 807_CR31
  publication-title: Mater Design.
  doi: 10.1016/j.matdes.2014.01.056
– volume: 377
  year: 2023
  ident: 807_CR6
  publication-title: Construct Build Mater.
  doi: 10.1016/j.conbuildmat.2023.131107
– volume: 61
  year: 2022
  ident: 807_CR21
  publication-title: J Build Eng.
  doi: 10.1016/j.jobe.2022.105234
– volume: 50
  start-page: 95
  year: 2014
  ident: 807_CR30
  publication-title: Construct Build Mater.
  doi: 10.1016/j.conbuildmat.2013.09.040
– ident: 807_CR18
  doi: 10.4028/www.scientific.net/AMR.893.610
– ident: 807_CR34
  doi: 10.1016/j.compositesb.2019.107021
– ident: 807_CR25
– volume: 117
  start-page: 45
  year: 2019
  ident: 807_CR11
  publication-title: Concr Res
  doi: 10.1016/j.cemconres.2018.12.008
– ident: 807_CR8
– volume-title: Effect of steel fiber on the performance of ultra-high performance concrete
  year: 2013
  ident: 807_CR20
– volume: 174
  start-page: 375
  year: 2017
  ident: 807_CR38
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2017.04.069
– volume: 103
  start-page: 8
  year: 2016
  ident: 807_CR29
  publication-title: Construct Build Mater.
  doi: 10.1016/j.conbuildmat.2015.11.028
– ident: 807_CR10
  doi: 10.15554/PCIJ.09011999.60.71
– ident: 807_CR13
  doi: 10.1016/j.conbuildmat.2020.119114
– ident: 807_CR7
  doi: 10.1016/j.cemconres.2006.03.009
– volume: 106
  start-page: 742
  year: 2013
  ident: 807_CR32
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2013.07.033
– volume: 351
  year: 2022
  ident: 807_CR5
  publication-title: Construct Build Mater.
  doi: 10.1016/j.conbuildmat.2022.128952
– volume: 84
  start-page: 175
  year: 2017
  ident: 807_CR14
  publication-title: Concr Res
  doi: 10.1016/j.cemconcomp.2017.09.006
– volume: 100
  start-page: 218
  year: 2015
  ident: 807_CR23
  publication-title: Construct Build Mater.
  doi: 10.1016/j.conbuildmat.2015.10.006
– volume: 43
  start-page: 1009
  year: 2010
  ident: 807_CR12
  publication-title: Mater Struct
  doi: 10.1617/s11527-009-9562-3
– volume: 145
  start-page: 37
  year: 2016
  ident: 807_CR24
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.02.075
– volume: 186
  start-page: 678
  year: 2018
  ident: 807_CR1
  publication-title: Construct Build Mater.
  doi: 10.1016/j.conbuildmat.2018.07.089
– volume: 108
  year: 2020
  ident: 807_CR39
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2022.104422
– volume: 52
  year: 2022
  ident: 807_CR22
  publication-title: J Build Eng.
  doi: 10.1016/j.jobe.2022.104370
– volume: 77
  year: 2023
  ident: 807_CR27
  publication-title: J Build Eng.
  doi: 10.1016/j.jobe.2023.107435
– ident: 807_CR26
– ident: 807_CR4
  doi: 10.1016/j.istruc.2021.07.035
– ident: 807_CR28
– volume: 401
  year: 2023
  ident: 807_CR36
  publication-title: Construct Build Mater.
  doi: 10.1016/j.conbuildmat.2023.132922
– volume: 248
  year: 2021
  ident: 807_CR3
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.113269
SSID ssj0001072165
Score 2.3925881
Snippet This study aims to optimize the mechanical properties of ultra-high performance concrete (UHPC) reinforced with macro basalt fibers (MBFs). Six types of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 264
SubjectTerms Basalt
Carbon
Cement
Civil Engineering
Compressive strength
Concrete
Construction
Corrosion
Cracking (fracturing)
Ductile fracture
Ductility
Energy consumption
Engineering
Fiber pullout
Fiber-matrix interfaces
Fibers
Flexural strength
Mechanical Engineering
Mechanical properties
Microcracks
Original Article
Particle size
Polymers
Polypropylene
Polyvinyl alcohol
Reinforced concrete
Strain hardening
Structural Materials
Synergistic effect
Ultra high performance concrete
Title Synergistic effects of hybrid macro basalt fibers and micro fibers on the mechanical properties of UHPC
URI https://link.springer.com/article/10.1007/s43452-023-00807-3
https://www.proquest.com/docview/2921071026
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7xWGBAPEV5VB7YwFDXTmJPCBClQgIhoBJblMY2DJAWWgYWfjt3xqGABEsGx3Gku7Pvs333HcBOghC10FZxZVJ8yJbmWhnHRSZsUaYlmgQlOF9cpt2eOr9L7uKB2yiGVdZrYlio7aCkM_KDtsHNCbnD9HD4zKlqFN2uxhIa0zAr0NOQnevO2eSMhci_QjVJ3BQoIqJMYt5MyJ5TUiVtjk6LE27CufbTN00A56870uB6OouwEDEjO_pU8hJMuWoZ5r8xCa7A_c0bJfEF1mUWYzTYwLOHN8rIYk8F_pGhxyoex8xTkMiIFRW2Uzhe3TCoGKJB9uQoGZh0x4Z0Uv9ClKs0Vq97dbIKvc7p7UmXxxoKvMTJNebeWKEtsfYlGSrLy8JlNjMuw52Lln2nrRCyFGVLOpO1hFcqQcCknRVparxP5RrMVIPKrQNDqNI2SdY3hRHYS2pf9FOflabtEcS1bANELb28jATjVOfiMf-iRg4Sz1HieZB4Lhuw-_XN8JNe49_eW7VS8jjVRvnEMBqwVytq8vrv0Tb-H20T5qi0fMg7NFswM355ddsIQMb9Jkzvv4tmsLUmzB6fXl5dfwAHbNXr
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB5BOcAeEE9R6C4-wAks6th5-IBWSxdUXhUCKnELaWyzh5IWWoT6p_iNO5MmFJDgxiUHx3Gi8Tjz-fF9A7DlI0RNIqO40gFeZD3ikdKWi1CYJA1SdAkiOJ-3gmZbndz4N1PwUnJh6Fhl-U_Mf9Sml9Ia-Z6ncXJC4TD43X_glDWKdlfLFBpjtzi1o2ecsg32j_9i_2573tHhdaPJi6wCPEV3G3KnjYgM6dj5IX6-k4kNTahtiFg-kh0bGSFkKtK6tDqsC6eUjxAiskYEgXYukNjuNMwoYrRWYObgsHVxOVnVIbmxPH8lTkMUSV_6BVMn5-spqXyPY5jkhNRwdL-PhhOI-2FXNg92RwswX6BU9mfsVoswZbMl-PFGu3AZ7q5GRBvMdZ5ZcSqE9Rz7NyIOGLtP8I0MY2TSHTJHx1IGLMmwnA4AlgW9jCH-ZPeW6MfkLaxPewOPJPJKbbWbF40VaH-LfVehkvUyuwYMwZGn_bCjEy2wloxc0glcmGrPIWysmyqI0npxWkiaU2aNbvwqxpxbPEaLx7nFY1mFnddn-mNBjy9r18pOiYvBPYgnrliF3bKjJrc_b23969Y2YbZ5fX4Wnx23TjdgjhLb56xHXYPK8PHJ_kT4M-z8KnyOwe13u_l_OYsRBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+effects+of+hybrid+macro+basalt+fibers+and+micro+fibers+on+the+mechanical+properties+of+UHPC&rft.jtitle=Archives+of+Civil+and+Mechanical+Engineering&rft.date=2023-11-09&rft.pub=Springer+Nature+B.V&rft.issn=1644-9665&rft.eissn=2083-3318&rft.volume=23&rft.issue=4&rft.spage=264&rft_id=info:doi/10.1007%2Fs43452-023-00807-3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-3318&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-3318&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-3318&client=summon