Synergistic effects of hybrid macro basalt fibers and micro fibers on the mechanical properties of UHPC
This study aims to optimize the mechanical properties of ultra-high performance concrete (UHPC) reinforced with macro basalt fibers (MBFs). Six types of fibers, containing micro fibers and macro fibers, were employed to reinforce UHPC by mono or hybrid method. The micro fibers contained micro basalt...
Saved in:
Published in | Archives of Civil and Mechanical Engineering Vol. 23; no. 4; p. 264 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
09.11.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2083-3318 1644-9665 2083-3318 |
DOI | 10.1007/s43452-023-00807-3 |
Cover
Abstract | This study aims to optimize the mechanical properties of ultra-high performance concrete (UHPC) reinforced with macro basalt fibers (MBFs). Six types of fibers, containing micro fibers and macro fibers, were employed to reinforce UHPC by mono or hybrid method. The micro fibers contained micro basalt fiber, polypropylene fiber, and polyvinyl alcohol fiber corresponding to the modulus of 90, 3.5, and 41 GPa, respectively. The macro fibers contained MBF, macro polypropylene fiber, and polyvinyl alcohol fiber corresponding to the modulus of 43, 2.9, and 23 GPa, respectively. The flowability, and compressive and flexural behavior of UHPC were tested and analyzed. The micro fibers with high modulus effectively restricted microcracks owing to the dense fiber distribution and strong restraint, thereby significantly enhanced the mechanical properties of UHPC before cracking; thus, UHPC with 0.3% micro basalt fiber showed the highest compressive and flexural strength of 132.6 and 26.10 MPa. The macro fibers showed pullout failure and consumed energy during fiber pullout process, leading to a ductile failure and enhancement in mechanical properties of UHPC after cracking. UHPC with 3% MBFs had the highest compressive, flexural first-cracking and post-cracking strength of 151.8, 24.97, and 26.32 MPa, owing to the great energy consumption, low damage to fiber–matrix interface and strong macrocrack resistance supported by MBFs. For UHPC with hybrid fibers, UHPC with 3% MBFs and 0.3% micro fibers had the best comprehensive performance, corresponding to the flexural first-cracking and post-cracking strength of 27.95 and 28.01 MPa. It was because that MBF and micro basalt fibers with proper content, which had the highest modulus, synergistically limited microcracks and macrocracks before and after UHPC cracked. The principle, choosing the fiber combination with high modulus and proper content, applies to the improvement of mechanical properties of UHPC with different mixture in practice. |
---|---|
AbstractList | This study aims to optimize the mechanical properties of ultra-high performance concrete (UHPC) reinforced with macro basalt fibers (MBFs). Six types of fibers, containing micro fibers and macro fibers, were employed to reinforce UHPC by mono or hybrid method. The micro fibers contained micro basalt fiber, polypropylene fiber, and polyvinyl alcohol fiber corresponding to the modulus of 90, 3.5, and 41 GPa, respectively. The macro fibers contained MBF, macro polypropylene fiber, and polyvinyl alcohol fiber corresponding to the modulus of 43, 2.9, and 23 GPa, respectively. The flowability, and compressive and flexural behavior of UHPC were tested and analyzed. The micro fibers with high modulus effectively restricted microcracks owing to the dense fiber distribution and strong restraint, thereby significantly enhanced the mechanical properties of UHPC before cracking; thus, UHPC with 0.3% micro basalt fiber showed the highest compressive and flexural strength of 132.6 and 26.10 MPa. The macro fibers showed pullout failure and consumed energy during fiber pullout process, leading to a ductile failure and enhancement in mechanical properties of UHPC after cracking. UHPC with 3% MBFs had the highest compressive, flexural first-cracking and post-cracking strength of 151.8, 24.97, and 26.32 MPa, owing to the great energy consumption, low damage to fiber–matrix interface and strong macrocrack resistance supported by MBFs. For UHPC with hybrid fibers, UHPC with 3% MBFs and 0.3% micro fibers had the best comprehensive performance, corresponding to the flexural first-cracking and post-cracking strength of 27.95 and 28.01 MPa. It was because that MBF and micro basalt fibers with proper content, which had the highest modulus, synergistically limited microcracks and macrocracks before and after UHPC cracked. The principle, choosing the fiber combination with high modulus and proper content, applies to the improvement of mechanical properties of UHPC with different mixture in practice. This study aims to optimize the mechanical properties of ultra-high performance concrete (UHPC) reinforced with macro basalt fibers (MBFs). Six types of fibers, containing micro fibers and macro fibers, were employed to reinforce UHPC by mono or hybrid method. The micro fibers contained micro basalt fiber, polypropylene fiber, and polyvinyl alcohol fiber corresponding to the modulus of 90, 3.5, and 41 GPa, respectively. The macro fibers contained MBF, macro polypropylene fiber, and polyvinyl alcohol fiber corresponding to the modulus of 43, 2.9, and 23 GPa, respectively. The flowability, and compressive and flexural behavior of UHPC were tested and analyzed. The micro fibers with high modulus effectively restricted microcracks owing to the dense fiber distribution and strong restraint, thereby significantly enhanced the mechanical properties of UHPC before cracking; thus, UHPC with 0.3% micro basalt fiber showed the highest compressive and flexural strength of 132.6 and 26.10 MPa. The macro fibers showed pullout failure and consumed energy during fiber pullout process, leading to a ductile failure and enhancement in mechanical properties of UHPC after cracking. UHPC with 3% MBFs had the highest compressive, flexural first-cracking and post-cracking strength of 151.8, 24.97, and 26.32 MPa, owing to the great energy consumption, low damage to fiber–matrix interface and strong macrocrack resistance supported by MBFs. For UHPC with hybrid fibers, UHPC with 3% MBFs and 0.3% micro fibers had the best comprehensive performance, corresponding to the flexural first-cracking and post-cracking strength of 27.95 and 28.01 MPa. It was because that MBF and micro basalt fibers with proper content, which had the highest modulus, synergistically limited microcracks and macrocracks before and after UHPC cracked. The principle, choosing the fiber combination with high modulus and proper content, applies to the improvement of mechanical properties of UHPC with different mixture in practice. |
ArticleNumber | 264 |
Author | Liu, Jianxun Chen, Zhiyuan Wang, Xin Huang, Huang Ding, Lining Jiang, Kaidi Wu, Zhishen |
Author_xml | – sequence: 1 givenname: Zhiyuan surname: Chen fullname: Chen, Zhiyuan organization: Key Laboratory of C & PC Structures Ministry of Education, Southeast University, National and Local Unified Engineering Research Center for Basalt Fiber Production and Application Technology, Southeast University – sequence: 2 givenname: Xin orcidid: 0000-0003-4504-8502 surname: Wang fullname: Wang, Xin email: xinwang@seu.edu.cn organization: Key Laboratory of C & PC Structures Ministry of Education, Southeast University, National and Local Unified Engineering Research Center for Basalt Fiber Production and Application Technology, Southeast University – sequence: 3 givenname: Lining surname: Ding fullname: Ding, Lining organization: School of Civil Engineering, Nanjing Forestry University – sequence: 4 givenname: Kaidi surname: Jiang fullname: Jiang, Kaidi organization: Key Laboratory of C & PC Structures Ministry of Education, Southeast University, National and Local Unified Engineering Research Center for Basalt Fiber Production and Application Technology, Southeast University – sequence: 5 givenname: Huang surname: Huang fullname: Huang, Huang organization: Department of Urban and Civil Engineering, Ibaraki University – sequence: 6 givenname: Jianxun surname: Liu fullname: Liu, Jianxun organization: National and Local Unified Engineering Research Center for Basalt Fiber Production and Application Technology, Southeast University – sequence: 7 givenname: Zhishen surname: Wu fullname: Wu, Zhishen organization: Key Laboratory of C & PC Structures Ministry of Education, Southeast University, National and Local Unified Engineering Research Center for Basalt Fiber Production and Application Technology, Southeast University |
BookMark | eNp9kEtLQzEQhYNUsNb-AVcB11cnSe8jSylqhYKCdh3S3Emb0ubWJC76700foLjoKsPhfJM555r0fOeRkFsG9wygfogjMSp5AVwUAA3UhbggfQ6NKIRgTe_PfEWGMa4AgEHNWVX2yeJj5zEsXEzOULQWTYq0s3S5mwfX0o02oaNzHfU6UevmGCLVPutur5-EztO0RLpBs9TeGb2m29BtMSSHh12zyfv4hlxavY44PL0DMnt--hxPiunby-v4cVoYwWQqrGxZ05bAmrI2RluhsW5ribWscoY5Ni1jwjADAmUNzI5GpeSywZZVlbS2EgNyd9ybT_j6xpjUqvsOPn-puOQ5NgO-dzVHV04RY0CrjEs6uc6noN1aMVD7ZtWxWZWbVYdmlcgo_4dug9vosDsPiSMUs9kvMPxedYb6AY7-jNQ |
CitedBy_id | crossref_primary_10_3390_ma17235990 crossref_primary_10_1016_j_jobe_2024_109277 crossref_primary_10_1016_j_jobe_2024_109188 crossref_primary_10_1016_j_engstruct_2025_120044 crossref_primary_10_1016_j_jobe_2025_111850 crossref_primary_10_1002_suco_202400057 crossref_primary_10_1016_j_conbuildmat_2025_140080 crossref_primary_10_1016_j_jobe_2023_108382 crossref_primary_10_1016_j_conbuildmat_2024_135011 crossref_primary_10_1016_j_conbuildmat_2025_139901 crossref_primary_10_1007_s43452_024_01101_6 crossref_primary_10_1016_j_cscm_2024_e03989 crossref_primary_10_3390_su16031068 crossref_primary_10_1617_s11527_025_02607_y crossref_primary_10_1016_j_engstruct_2024_119173 crossref_primary_10_1016_j_engfracmech_2023_109759 |
Cites_doi | 10.1016/j.conbuildmat.2019.117709 10.1016/j.cemconcomp.2013.10.018 10.1016/j.conbuildmat.2018.11.181 10.1016/j.conbuildmat.2019.07.063 10.1016/j.conbuildmat.2016.08.009 10.1016/S0008-8846(01)00732-3 10.1016/j.jobe.2022.104922 10.3390/ma13132948 10.1016/j.jobe.2023.106160 10.1016/j.matdes.2014.01.056 10.1016/j.conbuildmat.2023.131107 10.1016/j.jobe.2022.105234 10.1016/j.conbuildmat.2013.09.040 10.4028/www.scientific.net/AMR.893.610 10.1016/j.compositesb.2019.107021 10.1016/j.cemconres.2018.12.008 10.1016/j.compstruct.2017.04.069 10.1016/j.conbuildmat.2015.11.028 10.15554/PCIJ.09011999.60.71 10.1016/j.conbuildmat.2020.119114 10.1016/j.cemconres.2006.03.009 10.1016/j.compstruct.2013.07.033 10.1016/j.conbuildmat.2022.128952 10.1016/j.cemconcomp.2017.09.006 10.1016/j.conbuildmat.2015.10.006 10.1617/s11527-009-9562-3 10.1016/j.compstruct.2016.02.075 10.1016/j.conbuildmat.2018.07.089 10.1016/j.cemconcomp.2022.104422 10.1016/j.jobe.2022.104370 10.1016/j.jobe.2023.107435 10.1016/j.istruc.2021.07.035 10.1016/j.conbuildmat.2023.132922 10.1016/j.engstruct.2021.113269 |
ContentType | Journal Article |
Copyright | Wroclaw University of Science and Technology 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Nov 2023 |
Copyright_xml | – notice: Wroclaw University of Science and Technology 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Nov 2023 |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s43452-023-00807-3 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central (ProQuest) Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2083-3318 |
ExternalDocumentID | 10_1007_s43452_023_00807_3 |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2022YFB3706503 funderid: http://dx.doi.org/10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 52278244 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --M .~1 0R~ 1~. 23M 2JY 4.4 406 457 4G. 5GY 7-5 8P~ AACDK AACTN AAEDT AAEPC AAHNG AAIKJ AAJBT AALRI AAOAW AASML AATNV AAUYE ABAKF ABECU ABJCF ABJNI ABMQK ABTEG ABTKH ABTMW ABXRA ACAOD ACDAQ ACDTI ACGFS ACHSB ACPIV ACZOJ ADBBV ADEZE ADTZH AECPX AEFQL AEKER AEMSY AENEX AESKC AFBBN AFKRA AFQWF AFTJW AGHFR AGMZJ AGQEE AGUBO AGYEJ AIGIU AILAN AJOXV AJZVZ AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMXSW AMYLF BENPR BGLVJ BLXMC CCPQU DPUIP EBLON EBS ESX FDB FEDTE FIGPU FIRID FNPLU GBLVA HCIFZ HVGLF IKXTQ IWAJR JJJVA LLZTM M7S MAGPM MO0 NPVJJ NQJWS O-L O9- OAUVE P-8 P-9 P2P PC. PT4 PTHSS Q38 RSV SDF SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW SSZ T5K Y2W ~G- AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JZLTJ PHGZM PHGZT ROL 8FE 8FG ABRTQ DWQXO I-F L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO TUS |
ID | FETCH-LOGICAL-c319t-f9d18d501857ccaf3ae7d79e796083be8d113c1c03e9701f4459298ed1669ff63 |
IEDL.DBID | 8FG |
ISSN | 2083-3318 1644-9665 |
IngestDate | Sat Aug 23 14:57:28 EDT 2025 Tue Jul 01 04:16:41 EDT 2025 Thu Apr 24 23:03:10 EDT 2025 Fri Feb 21 02:47:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Mechanical properties UHPC Macro basalt fiber Synergistic effect Hybrid fibers |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-f9d18d501857ccaf3ae7d79e796083be8d113c1c03e9701f4459298ed1669ff63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4504-8502 |
PQID | 2921071026 |
PQPubID | 6587200 |
ParticipantIDs | proquest_journals_2921071026 crossref_citationtrail_10_1007_s43452_023_00807_3 crossref_primary_10_1007_s43452_023_00807_3 springer_journals_10_1007_s43452_023_00807_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-09 |
PublicationDateYYYYMMDD | 2023-11-09 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Wrocław |
PublicationTitle | Archives of Civil and Mechanical Engineering |
PublicationTitleAbbrev | Archiv.Civ.Mech.Eng |
PublicationYear | 2023 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | K Jiang (807_CR36) 2023; 401 S Grzeszczyk (807_CR19) 2020; 13 C Wen (807_CR22) 2022; 52 Z Wu (807_CR29) 2016; 103 Z Chen (807_CR6) 2023; 377 L Scheinherrová (807_CR11) 2019; 117 D Ravichandran (807_CR17) 2022; 57 Z Chen (807_CR27) 2023; 77 C Su (807_CR3) 2021; 248 SJ Barnett (807_CR12) 2010; 43 807_CR7 807_CR8 C Jiang (807_CR31) 2014; 58 807_CR9 807_CR26 S Pyo (807_CR15) 2019; 224 807_CR25 807_CR28 XM Gao (807_CR20) 2013 DY Yoo (807_CR32) 2013; 106 K Jiang (807_CR35) 2023; 68 Z Algin (807_CR1) 2018; 186 DY Yoo (807_CR38) 2017; 174 S Kang (807_CR24) 2016; 145 807_CR4 S Pyo (807_CR14) 2017; 84 N Banthia (807_CR37) 2014; 48 K Jiang (807_CR5) 2022; 351 Y Yang (807_CR39) 2020; 108 Z Yu (807_CR21) 2022; 61 J Branston (807_CR2) 2016; 124 807_CR10 807_CR13 AB Kizilkanat (807_CR23) 2015; 100 807_CR34 DH Wang (807_CR33) 2019; 197 807_CR16 807_CR18 N Kabay (807_CR30) 2014; 50 |
References_xml | – ident: 807_CR16 doi: 10.1016/j.conbuildmat.2019.117709 – volume: 48 start-page: 91 year: 2014 ident: 807_CR37 publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2013.10.018 – volume: 197 start-page: 464 year: 2019 ident: 807_CR33 publication-title: Construct Build Mater. doi: 10.1016/j.conbuildmat.2018.11.181 – volume: 224 start-page: 206 year: 2019 ident: 807_CR15 publication-title: Construct Build Mater. doi: 10.1016/j.conbuildmat.2019.07.063 – volume: 124 start-page: 878 year: 2016 ident: 807_CR2 publication-title: Construct Build Mater. doi: 10.1016/j.conbuildmat.2016.08.009 – ident: 807_CR9 doi: 10.1016/S0008-8846(01)00732-3 – volume: 57 year: 2022 ident: 807_CR17 publication-title: J Build Eng doi: 10.1016/j.jobe.2022.104922 – volume: 13 start-page: 2948 year: 2020 ident: 807_CR19 publication-title: Abrasion Porosity Mater. doi: 10.3390/ma13132948 – volume: 68 year: 2023 ident: 807_CR35 publication-title: J Build Eng. doi: 10.1016/j.jobe.2023.106160 – volume: 58 start-page: 187 issue: 1 year: 2014 ident: 807_CR31 publication-title: Mater Design. doi: 10.1016/j.matdes.2014.01.056 – volume: 377 year: 2023 ident: 807_CR6 publication-title: Construct Build Mater. doi: 10.1016/j.conbuildmat.2023.131107 – volume: 61 year: 2022 ident: 807_CR21 publication-title: J Build Eng. doi: 10.1016/j.jobe.2022.105234 – volume: 50 start-page: 95 year: 2014 ident: 807_CR30 publication-title: Construct Build Mater. doi: 10.1016/j.conbuildmat.2013.09.040 – ident: 807_CR18 doi: 10.4028/www.scientific.net/AMR.893.610 – ident: 807_CR34 doi: 10.1016/j.compositesb.2019.107021 – ident: 807_CR25 – volume: 117 start-page: 45 year: 2019 ident: 807_CR11 publication-title: Concr Res doi: 10.1016/j.cemconres.2018.12.008 – ident: 807_CR8 – volume-title: Effect of steel fiber on the performance of ultra-high performance concrete year: 2013 ident: 807_CR20 – volume: 174 start-page: 375 year: 2017 ident: 807_CR38 publication-title: Compos Struct doi: 10.1016/j.compstruct.2017.04.069 – volume: 103 start-page: 8 year: 2016 ident: 807_CR29 publication-title: Construct Build Mater. doi: 10.1016/j.conbuildmat.2015.11.028 – ident: 807_CR10 doi: 10.15554/PCIJ.09011999.60.71 – ident: 807_CR13 doi: 10.1016/j.conbuildmat.2020.119114 – ident: 807_CR7 doi: 10.1016/j.cemconres.2006.03.009 – volume: 106 start-page: 742 year: 2013 ident: 807_CR32 publication-title: Compos Struct doi: 10.1016/j.compstruct.2013.07.033 – volume: 351 year: 2022 ident: 807_CR5 publication-title: Construct Build Mater. doi: 10.1016/j.conbuildmat.2022.128952 – volume: 84 start-page: 175 year: 2017 ident: 807_CR14 publication-title: Concr Res doi: 10.1016/j.cemconcomp.2017.09.006 – volume: 100 start-page: 218 year: 2015 ident: 807_CR23 publication-title: Construct Build Mater. doi: 10.1016/j.conbuildmat.2015.10.006 – volume: 43 start-page: 1009 year: 2010 ident: 807_CR12 publication-title: Mater Struct doi: 10.1617/s11527-009-9562-3 – volume: 145 start-page: 37 year: 2016 ident: 807_CR24 publication-title: Compos Struct doi: 10.1016/j.compstruct.2016.02.075 – volume: 186 start-page: 678 year: 2018 ident: 807_CR1 publication-title: Construct Build Mater. doi: 10.1016/j.conbuildmat.2018.07.089 – volume: 108 year: 2020 ident: 807_CR39 publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2022.104422 – volume: 52 year: 2022 ident: 807_CR22 publication-title: J Build Eng. doi: 10.1016/j.jobe.2022.104370 – volume: 77 year: 2023 ident: 807_CR27 publication-title: J Build Eng. doi: 10.1016/j.jobe.2023.107435 – ident: 807_CR26 – ident: 807_CR4 doi: 10.1016/j.istruc.2021.07.035 – ident: 807_CR28 – volume: 401 year: 2023 ident: 807_CR36 publication-title: Construct Build Mater. doi: 10.1016/j.conbuildmat.2023.132922 – volume: 248 year: 2021 ident: 807_CR3 publication-title: Eng Struct doi: 10.1016/j.engstruct.2021.113269 |
SSID | ssj0001072165 |
Score | 2.3925881 |
Snippet | This study aims to optimize the mechanical properties of ultra-high performance concrete (UHPC) reinforced with macro basalt fibers (MBFs). Six types of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 264 |
SubjectTerms | Basalt Carbon Cement Civil Engineering Compressive strength Concrete Construction Corrosion Cracking (fracturing) Ductile fracture Ductility Energy consumption Engineering Fiber pullout Fiber-matrix interfaces Fibers Flexural strength Mechanical Engineering Mechanical properties Microcracks Original Article Particle size Polymers Polypropylene Polyvinyl alcohol Reinforced concrete Strain hardening Structural Materials Synergistic effect Ultra high performance concrete |
Title | Synergistic effects of hybrid macro basalt fibers and micro fibers on the mechanical properties of UHPC |
URI | https://link.springer.com/article/10.1007/s43452-023-00807-3 https://www.proquest.com/docview/2921071026 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7xWGBAPEV5VB7YwFDXTmJPCBClQgIhoBJblMY2DJAWWgYWfjt3xqGABEsGx3Gku7Pvs333HcBOghC10FZxZVJ8yJbmWhnHRSZsUaYlmgQlOF9cpt2eOr9L7uKB2yiGVdZrYlio7aCkM_KDtsHNCbnD9HD4zKlqFN2uxhIa0zAr0NOQnevO2eSMhci_QjVJ3BQoIqJMYt5MyJ5TUiVtjk6LE27CufbTN00A56870uB6OouwEDEjO_pU8hJMuWoZ5r8xCa7A_c0bJfEF1mUWYzTYwLOHN8rIYk8F_pGhxyoex8xTkMiIFRW2Uzhe3TCoGKJB9uQoGZh0x4Z0Uv9ClKs0Vq97dbIKvc7p7UmXxxoKvMTJNebeWKEtsfYlGSrLy8JlNjMuw52Lln2nrRCyFGVLOpO1hFcqQcCknRVparxP5RrMVIPKrQNDqNI2SdY3hRHYS2pf9FOflabtEcS1bANELb28jATjVOfiMf-iRg4Sz1HieZB4Lhuw-_XN8JNe49_eW7VS8jjVRvnEMBqwVytq8vrv0Tb-H20T5qi0fMg7NFswM355ddsIQMb9Jkzvv4tmsLUmzB6fXl5dfwAHbNXr |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB5BOcAeEE9R6C4-wAks6th5-IBWSxdUXhUCKnELaWyzh5IWWoT6p_iNO5MmFJDgxiUHx3Gi8Tjz-fF9A7DlI0RNIqO40gFeZD3ikdKWi1CYJA1SdAkiOJ-3gmZbndz4N1PwUnJh6Fhl-U_Mf9Sml9Ia-Z6ncXJC4TD43X_glDWKdlfLFBpjtzi1o2ecsg32j_9i_2573tHhdaPJi6wCPEV3G3KnjYgM6dj5IX6-k4kNTahtiFg-kh0bGSFkKtK6tDqsC6eUjxAiskYEgXYukNjuNMwoYrRWYObgsHVxOVnVIbmxPH8lTkMUSV_6BVMn5-spqXyPY5jkhNRwdL-PhhOI-2FXNg92RwswX6BU9mfsVoswZbMl-PFGu3AZ7q5GRBvMdZ5ZcSqE9Rz7NyIOGLtP8I0MY2TSHTJHx1IGLMmwnA4AlgW9jCH-ZPeW6MfkLaxPewOPJPJKbbWbF40VaH-LfVehkvUyuwYMwZGn_bCjEy2wloxc0glcmGrPIWysmyqI0npxWkiaU2aNbvwqxpxbPEaLx7nFY1mFnddn-mNBjy9r18pOiYvBPYgnrliF3bKjJrc_b23969Y2YbZ5fX4Wnx23TjdgjhLb56xHXYPK8PHJ_kT4M-z8KnyOwe13u_l_OYsRBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+effects+of+hybrid+macro+basalt+fibers+and+micro+fibers+on+the+mechanical+properties+of+UHPC&rft.jtitle=Archives+of+Civil+and+Mechanical+Engineering&rft.date=2023-11-09&rft.pub=Springer+Nature+B.V&rft.issn=1644-9665&rft.eissn=2083-3318&rft.volume=23&rft.issue=4&rft.spage=264&rft_id=info:doi/10.1007%2Fs43452-023-00807-3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-3318&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-3318&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-3318&client=summon |