Multi-component Nonlinear Schrödinger Equations with Nonzero Boundary Conditions: Higher-Order Vector Peregrine Solitons and Asymptotic Estimates

The any multi-component nonlinear Schrödinger (alias n -NLS) equations with nonzero boundary conditions are studied. We first find the fundamental and higher-order vector Peregrine solitons (alias rational rogue waves (RWs)) for the n -NLS equations by using the loop group theory, an explicit n + 1...

Full description

Saved in:
Bibliographic Details
Published inJournal of nonlinear science Vol. 31; no. 5
Main Authors Zhang, Guoqiang, Ling, Liming, Yan, Zhenya
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The any multi-component nonlinear Schrödinger (alias n -NLS) equations with nonzero boundary conditions are studied. We first find the fundamental and higher-order vector Peregrine solitons (alias rational rogue waves (RWs)) for the n -NLS equations by using the loop group theory, an explicit n + 1 -multiple root of a characteristic polynomial of degree ( n + 1 ) related to the Benjamin–Feir instability, and inverse functions. Particularly, the fundamental vector rational RWs are proved to be parity-time-reversal symmetric for some parameter constraints and classified into n cases in terms of the degree of the introduced polynomial. Moreover, a systematic approach is proposed to study the asymptotic behaviors of these vector RWs such that the decompositions of RWs are related to the so-called governing polynomials F ℓ ( z ) , which pave a powerful way in the study of vector RW structures of the multi-component integrable systems. The vector RWs with maximal amplitudes can also be determined via the parameter vectors, which are interesting and useful in the study of RWs for multi-component nonlinear physical systems.
AbstractList The any multi-component nonlinear Schrödinger (alias n-NLS) equations with nonzero boundary conditions are studied. We first find the fundamental and higher-order vector Peregrine solitons (alias rational rogue waves (RWs)) for the n-NLS equations by using the loop group theory, an explicit n+1-multiple root of a characteristic polynomial of degree (n+1) related to the Benjamin–Feir instability, and inverse functions. Particularly, the fundamental vector rational RWs are proved to be parity-time-reversal symmetric for some parameter constraints and classified into n cases in terms of the degree of the introduced polynomial. Moreover, a systematic approach is proposed to study the asymptotic behaviors of these vector RWs such that the decompositions of RWs are related to the so-called governing polynomials Fℓ(z), which pave a powerful way in the study of vector RW structures of the multi-component integrable systems. The vector RWs with maximal amplitudes can also be determined via the parameter vectors, which are interesting and useful in the study of RWs for multi-component nonlinear physical systems.
The any multi-component nonlinear Schrödinger (alias n -NLS) equations with nonzero boundary conditions are studied. We first find the fundamental and higher-order vector Peregrine solitons (alias rational rogue waves (RWs)) for the n -NLS equations by using the loop group theory, an explicit n + 1 -multiple root of a characteristic polynomial of degree ( n + 1 ) related to the Benjamin–Feir instability, and inverse functions. Particularly, the fundamental vector rational RWs are proved to be parity-time-reversal symmetric for some parameter constraints and classified into n cases in terms of the degree of the introduced polynomial. Moreover, a systematic approach is proposed to study the asymptotic behaviors of these vector RWs such that the decompositions of RWs are related to the so-called governing polynomials F ℓ ( z ) , which pave a powerful way in the study of vector RW structures of the multi-component integrable systems. The vector RWs with maximal amplitudes can also be determined via the parameter vectors, which are interesting and useful in the study of RWs for multi-component nonlinear physical systems.
ArticleNumber 81
Author Zhang, Guoqiang
Ling, Liming
Yan, Zhenya
Author_xml – sequence: 1
  givenname: Guoqiang
  surname: Zhang
  fullname: Zhang, Guoqiang
  organization: Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
– sequence: 2
  givenname: Liming
  surname: Ling
  fullname: Ling, Liming
  organization: School of Mathematics, South China University of Technology
– sequence: 3
  givenname: Zhenya
  orcidid: 0000-0002-9475-3753
  surname: Yan
  fullname: Yan, Zhenya
  email: zyyan@mmrc.iss.ac.cn
  organization: Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, School of Mathematical Sciences, University of Chinese Academy of Sciences
BookMark eNp9kEFuGyEYRlGUSnXSXqArpKxJf2AwM9klltNUSptKabtFhPnHJrLBAUaRfYwephfoxYrjSN11hYTe90DvhByHGJCQDxzOOYD-mAGkFAwEZ9BpqdjuiEx4U694M9XHZAKdbFnb6eYtOcn5EYBrJcWE_PoyropnLq431RgK_RrDyge0id67Zfrzu_dhgYnOn0ZbfAyZPvuy3FM7TJFexTH0Nm3pLIbevwAX9MYvlpjYXerr8Ce6EhP9hgkXqYrpfVz5shfZ0NPLvF1vSize0Xkufm0L5nfkzWBXGd-_nqfkx_X8--yG3d59-jy7vGVO8q6wQfNeWeFAgBuclg9T2Q3w0FhABda14HreKStxwK5RFUbsuXJuqoVolUN5Ss4O3k2KTyPmYh7jmEJ90gildKt4w6FS4kC5FHNOOJhNqv9MW8PB7NubQ3tT25uX9mZXR_IwyhXe9_un_s_qL3vSjk8
CitedBy_id crossref_primary_10_1063_5_0191956
crossref_primary_10_1016_j_chaos_2021_111495
crossref_primary_10_4213_tmf10314
crossref_primary_10_1063_5_0163821
crossref_primary_10_1016_j_physd_2023_133922
crossref_primary_10_1111_sapm_12657
crossref_primary_10_1103_PhysRevE_105_054202
crossref_primary_10_1016_j_padiff_2022_100342
crossref_primary_10_1007_s12346_022_00704_9
crossref_primary_10_1063_5_0192741
crossref_primary_10_1002_mma_9502
crossref_primary_10_1016_j_physd_2022_133192
crossref_primary_10_1007_s11071_023_08627_z
crossref_primary_10_1088_1572_9494_ac6799
crossref_primary_10_1134_S0040577923020034
crossref_primary_10_1016_j_physd_2021_133150
crossref_primary_10_1063_5_0148086
crossref_primary_10_1016_j_cnsns_2022_106382
crossref_primary_10_1007_s00332_023_09971_5
crossref_primary_10_1016_j_physleta_2023_129244
crossref_primary_10_1016_j_physd_2021_133152
crossref_primary_10_1016_j_aml_2021_107735
crossref_primary_10_1016_j_physd_2022_133430
crossref_primary_10_1098_rspa_2021_0670
Cites_doi 10.1103/PhysRevE.80.026601
10.1103/PhysRevE.88.013207
10.1103/PhysRevLett.111.114101
10.1103/PhysRevE.89.041201
10.1038/nphys1740
10.1103/PhysRevE.85.026607
10.1088/0031-8949/25/5/015
10.1016/j.cnsns.2015.08.023
10.1063/1.5048512
10.1103/PhysRevE.87.052914
10.1103/PhysRevLett.106.204502
10.1088/1751-8113/44/49/495202
10.1140/epjst/e2010-01247-6
10.1103/PhysRevE.90.022918
10.1088/1464-4266/7/5/R02
10.1016/j.cnsns.2019.01.008
10.1007/s00222-010-0283-6
10.1103/PhysRevE.84.056611
10.1063/1.4937925
10.1017/S002211206700045X
10.1103/PhysRevE.92.012917
10.1103/PhysRevE.87.013201
10.1002/(SICI)1097-0312(200001)53:1<1::AID-CPA1>3.0.CO;2-U
10.1103/PhysRevE.87.032910
10.1007/978-3-540-69969-9
10.1007/978-3-319-12748-4
10.1103/PhysRevE.96.022211
10.1103/PhysRevE.88.023202
10.1088/0951-7715/28/9/3101
10.1103/PhysRevE.89.032914
10.1088/0256-307X/28/11/110202
10.1002/sapm1967461133
10.1215/00127094-2019-0066
10.1016/j.euromechflu.2003.09.002
10.1016/j.aml.2020.106670
10.1098/rspa.2017.0243
10.1016/j.aop.2013.04.004
10.1063/1.4931594
10.1103/PhysRevE.57.2398
10.1016/j.physleta.2008.12.036
10.1140/epjb/e2002-00294-6
10.1016/j.physleta.2009.11.030
10.1103/PhysRevE.85.026601
10.1016/0022-247X(76)90201-8
10.1109/JQE.1987.1073308
10.1007/BF00913182
10.1103/PhysRevLett.81.4632
10.1137/0131013
10.1016/j.physleta.2012.03.032
10.1063/1.4972111
10.1088/0253-6102/54/5/31
10.1016/j.physd.2021.132850
10.1063/1.4947113
10.1016/0022-1236(87)90044-9
10.1063/5.0048922
10.1002/cpa.21819
10.1093/oso/9780198565079.001.0001
10.1038/nature06402
10.1103/PhysRevLett.113.034101
10.1098/rspa.2018.0625
10.1017/S0334270000003891
10.1103/PhysRevLett.107.255005
10.1007/BF01626517
10.1063/1.4726510
10.1017/CBO9780511623998
10.1515/9783110470574
10.1103/PhysRevE.81.046602
10.1103/PhysRevE.95.042201
10.4007/annals.2011.174.2.2
10.1103/PhysRevLett.109.044102
10.1016/j.physd.2017.11.001
10.1103/PhysRevE.86.036604
10.1016/j.physleta.2011.09.026
10.1016/j.cnsns.2018.02.008
10.1103/PhysRevE.91.022919
10.1007/978-3-662-00922-2
10.1364/JOSAB.29.003119
10.1088/0266-5611/17/4/328
10.1088/1751-8113/48/21/215202
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s00332-021-09735-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1432-1467
ExternalDocumentID 10_1007_s00332_021_09735_z
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11771151
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11925108; 11731014
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7U
Z83
Z8W
ZMTXR
ZWQNP
~8M
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c319t-f71d5a2c020cfc73b639f0b4a0e50ac80cd195a3efe94571deed15cc672285ce3
IEDL.DBID AGYKE
ISSN 0938-8974
IngestDate Thu Oct 10 17:22:35 EDT 2024
Sat Sep 14 00:50:59 EDT 2024
Sat Dec 16 12:09:30 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Parity-time-reversal symmetry
Multi-component NLS equations
Lax pair
Loop group method
35Q55
Asymptotic estimates
37K40
35Q51
37K10
Nonzero boundary conditions
Darboux transform
35Q15
Governing polynomial
Higher-order vector Peregrine solitons
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f71d5a2c020cfc73b639f0b4a0e50ac80cd195a3efe94571deed15cc672285ce3
ORCID 0000-0002-9475-3753
PQID 2557851410
PQPubID 2043730
ParticipantIDs proquest_journals_2557851410
crossref_primary_10_1007_s00332_021_09735_z
springer_journals_10_1007_s00332_021_09735_z
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of nonlinear science
PublicationTitleAbbrev J Nonlinear Sci
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References TerngC-LUhlenbeckKBäcklund transformations and loop group actionsCommun. Pure. Appl. Math.20005311031.37064
KaupDJClosure of the squared Zakharov–Shabat eigenstatesJ. Math. Anal. Appl.1976548498644138770333.34020
Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: J. Opt. B Quantum Semiclassical Opt. 7, R53 (2005)
ManakovSVOn the theory of two-dimensional stationary self-focusing of electromagnetic wavesSov. Phys.-JETP197438248253
ZhangGYanZWenXYThree-wave resonant interactions: multi-dark-dark-dark solitons, breathers, rogue waves, and their interactions and dynamicsPhysica D2018366274237544561381.35014
KedzioraDJAnkiewiczAAkhmedievNClassifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutionsPhys. Rev. E201388013207
KrausDBiondiniGKovačičGThe focusing Manakov system with nonzero boundary conditionsNonlinearity201528310134033921330.35406
YehCBergmanLEnhanced pulse compression in a nonlinear fiber by a wavelength division multiplexed optical pulsePhys. Rev. E1998572398
KaupDJA perturbation expansion for the Zakharov–Shabat inverse scattering transformSIAM J. Appl. Math.1976311211334101470334.47006
PelinovskyEKharifCExtreme Ocean Waves20162New YorkSpringer1348.86003
WangLYanZRogue wave formation and interactions in the defocusing nonlinear Schrödinger equation with external potentialsAppl. Math. Lett.20211111066701451.35201
ZhangGYanZWangLThe general coupled Hirota equations: modulational instability and higher-order vector rogue wave and multi-dark soliton structuresProc. R. Soc. A2019475201806253925326
ZakharovVEShabatABExact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear mediaSov. Phys. JETP19723462406174
HeJZhangHWangLPorsezianKFokasASGenerating mechanism for higher-order rogue wavesPhys. Rev. E201387052914
WenXYYanZMalomedBAHigher-order vector discrete rogue-wave states in the coupled Ablowitz–Ladik equations: exact solutions and stabilityChaos20162612311035826901378.35284
BailungHSharmaSKNakamuraYObservation of Peregrine solitons in a multicomponent plasma with negative ionsPhys. Rev. Lett.2011107255005
SolliDRRopersCKoonathPJalaliBOptical rogue wavesNature20074501054
ChenSSongL-YRogue waves in coupled Hirota systemsPhys. Rev. E201387032910
WenXYYanZModulational instability and dynamics of multi-rogue wave solutions for the discrete Ablowitz–Ladik equationJ. Math. Phys.20185907351138346391414.35212
LingLZhaoLCModulational instability and homoclinic orbit solutions in vector nonlinear Schrödinger equationCommun. Nonlinear Sci. Numer. Simul.20197244947139027891464.35328
MartelYMerleFDescription of two soliton collision for the quartic gKdV equationAnn. Math.201117475785728311081300.37045
YanZNonautonomous “rogons” in the inhomogeneous nonlinear Schrödinger equation with variable coefficientsPhys. Lett. A20103746726791235.35266
ZhangGYanZThree-component nonlinear Schrödinger equations: modulational instability, N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}th-order vector rational and semi-rational rogue waves, and dynamicsCommun. Nonlinear Sci. Numer. Simul.201862117133378351007265198
AkhmedievNAnkiewiczASolitons: Nonlinear Pulses and Beams1997LondonChapman and Hall1218.35183
YangYYanZMalomedBARogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equationChaos20152510311234015821374.35392
AkhmedievNAnkiewiczASoto-CrespoJMRogue waves and rational solutions of the nonlinear Schrödinger equationPhys. Rev. E200980026601
ChanHNChowKWKedzioraDJGrimshawRHJDingERogue wave modes for a derivative nonlinear Schrödinger modelPhys. Rev. E201489032914
ChabchoubAHoffmannNPAkhmedievNRogue wave observation in a water wave tankPhys. Rev. Lett.2011106204502
FaddeevLTakhtajanLHamiltonian Methods in the Theory of Solitons1987BerlinSpringer1111.37001
GuoB-LLingL-MRogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equationsChin. Phys. Lett.201128110202
KharifCPelinovskyEPhysical mechanisms of the rogue wave phenomenonEur. J. Mech. B Fluids20032260363420238631058.76017
StraussWAExistence of solitary waves in higher dimensionsCommun. Math. Phys.1977551491624543650356.35028
SulemCSulemPLThe Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse1999New YorkSpringer0928.35157
YangBYangJUniversal patterns of rogue wavesPhysica D2021419132850
ZakharovVEStability of periodic waves of finite amplitude on the surface of a deep fluidJ. Appl. Mech. Tech. Phys.19689190194
YanZVector financial rogue wavesPhys. Lett. A2011375427442791254.91190
HasegawaAKodamaYSolitons in Optical Communications1995OxfordOxford University Press0840.35092
ChowduryAKedzioraDJAnkiewiczAAkhmedievNBreather solutions of the integrable quintic nonlinear Schrödinger equation and their interactionsPhys. Rev. E20159102291934186121374.35381
AnkiewiczASoto-CrespoJMAkhmedievNDiscrete rogue waves of the Ablowitz–Ladik and Hirota equationsPhys. Rev. E2010810466022736231
Zhang, G., Ling, L., Yan, Z., Konotop, V.V.: Parity-time-symmetric rational vector rogue wave solutions in any n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-component nonlinear Schrödinger models. Chaos 31, 063120 (2021)
BludovYVKonotopVAkhmedievNVector rogue waves in binary mixtures of Bose–Einstein condensatesEur. Phys. J. Spec. Top.2010185169180
ZhangGYanZWenXYModulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equationsProc. R. Soc. A2017473201702431404.35424
HeJZhangHWangLPorsezianKFokasAGenerating mechanism for higher-order rogue wavesPhys. Rev. E201387052914
ScottACThe vibrational structure of Davydov solitonsPhys. Scr.1982256516586596501063.37583
AgrawalGPNonlinear Fiber Optics1995New YorkAcademic Press1024.78514
BaronioFConfortiMDegasperisALombardoSRogue waves emerging from the resonant interaction of three wavesPhys. Rev. Lett.2013111114101
AblowitzMJClarksonPASolitons, Nonlinear Evolution Equations and Inverse Scattering1991CambridgeCambridge University Press0762.35001
LingLZhaoL-CYangZGuoBGeneration mechanisms of fundamental rogue wave spatial-temporal structurePhys. Rev. E2017960222113814958
BilmanDMillerPDA robust inverse scattering transform for the focusing nonlinear Schrödinger equationCommun. Pure Appl. Math.201972172218051435.35343
Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, New York (1991)
PitaevskiiLStringariSBose–Einstein Condensation2003OxfordOxford University Press1110.82002
LiLWuZWangLHeJHigh-order rogue waves for the Hirota equationAnn. Phys.201333419821130632371284.35405
AkhmedievNAnkiewiczATakiMWaves that appear from nowhere and disappear without a tracePhys. Lett. A20093736751227.76010
BaronioFDegasperisAConfortiMWabnitzSSolutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue wavesPhys. Rev. Lett.2012109044102
PeregrineDWater waves, nonlinear Schrödinger equations and their solutionsJ. Aust. Math. Soc. B Appl. Math.198325160526.76018
BaronioFConfortiMDegasperisALombardoSOnoratoMWabnitzSVector rogue waves and baseband modulation instability in the defocusing regimePhys. Rev. Lett.2014113034101
ChenSTwisted rogue-wave pairs in the Sasa–Satsuma equationPhys. Rev. E201388023202
FibichGThe Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse2015New YorkSpringer1351.35001
GerdjikovVSGrahovskiGGIvanovRIKostovNAN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-wave interactions related to simple lie algebras. Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Z}}}_2$$\end{document}-reductions and soliton solutionsInv. Probl.20011799910150988.35143
WenXYYanZModulational instability and higher-order rogue waves with parameters modulation in a coupled integrable AB system via the generalized Darboux transformationChaos20152512311534356501374.37092
TaoYHeJMultisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformationPhys. Rev. E201285026601
KivsharYSAgrawalGPOptical Solitons: From Fibers to Photonic Crystals2003New YorkAcademic Press
GerdjikovVSGrahovskiGGKostovNAOn N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-wave type systems and their gauge equivalentEur. Phys. J. B20022924324819499581219.37051
LingLZhaoL-CGuoBDarboux transformation and classification of solution for mixed coupled nonlinear Schrödinger equationsCommun. Nonlinear Sci. Numer. Simul.201632285304340164607246583
ZhaoL-CLiuJRogue-wave solutions of a three-component coupled nonlinear Schrödinger equationPhys. Rev. E2013871013201
MenyukCRNonlinear pulse propagation in birefringent optical fibersIEEE J. Quantum Electron.198723174
ZhaoL-CLiuJLocalized nonlinear waves in a two-mode nonlinear fiberJ. Opt. Soc. Am. B20122931193127
BenjaminTBFeirJEThe disintegration of wave trains on deep waterJ. Fluid Mech.1967274170144.47101
ZhaoL-CXinG-GYangZ-YRogue-wave pattern transition induced by relative frequencyPhys. Rev. E201490022918
OhtaYYangJKRogue waves in the Davey–Stewartson I equationPhys. Rev. E201286036604
Guo, B., Tian, L., Yan, Z., Ling, L., Wang,
CR Menyuk (9735_CR55) 1987; 23
L Ling (9735_CR46) 2014; 89
VE Zakharov (9735_CR81) 1972; 34
L-C Zhao (9735_CR89) 2013; 87
S Xu (9735_CR72) 2012; 53
G Zhang (9735_CR85) 2017; 473
F Baronio (9735_CR12) 2013; 111
DJ Kedziora (9735_CR39) 2013; 88
C Kharif (9735_CR40) 2003; 22
L Wang (9735_CR67) 2021; 111
U Bandelow (9735_CR10) 2012; 376
LA Ostrowskii (9735_CR57) 1967; 24
Z Yan (9735_CR73) 2010; 54
HN Chan (9735_CR20) 2014; 89
J He (9735_CR34) 2013; 87
DJ Kaup (9735_CR36) 1976; 54
Y Martel (9735_CR51) 2011; 174
B Guo (9735_CR31) 2012; 85
N Akhmediev (9735_CR5) 1998; 81
L-C Zhao (9735_CR88) 2012; 29
D Kraus (9735_CR43) 2015; 28
G Zhang (9735_CR83) 2018; 62
MJ Ablowitz (9735_CR2) 2004
L Ling (9735_CR47) 2016; 32
G Fibich (9735_CR26) 2015
S Chen (9735_CR21) 2013; 88
9735_CR32
WA Strauss (9735_CR63) 1977; 55
L Ling (9735_CR48) 2017; 96
Y Matsuno (9735_CR53) 2011; 44
N Akhmediev (9735_CR6) 2009; 373
N Akhmediev (9735_CR4) 1997
L Li (9735_CR44) 2013; 334
Y Yang (9735_CR77) 2015; 25
DJ Kaup (9735_CR37) 1976; 31
L-C Zhao (9735_CR90) 2014; 90
B-L Guo (9735_CR30) 2011; 28
M Grillakis (9735_CR29) 1987; 74
D Peregrine (9735_CR59) 1983; 25
DR Solli (9735_CR62) 2007; 450
C-L Terng (9735_CR66) 2000; 53
F Baronio (9735_CR13) 2014; 113
(9735_CR58) 2016
XY Wen (9735_CR68) 2015; 25
SV Manakov (9735_CR50) 1974; 38
DJ Kedziora (9735_CR38) 2011; 84
L Ling (9735_CR45) 2019; 72
VE Zakharov (9735_CR79) 1968; 9
L-C Zhao (9735_CR91) 2016; 57
G Zhang (9735_CR86) 2018; 366
G Zhang (9735_CR84) 2017; 95
H Bailung (9735_CR9) 2011; 107
A Chabchoub (9735_CR19) 2011; 106
9735_CR82
VS Gerdjikov (9735_CR27) 2001; 17
L Pitaevskii (9735_CR60) 2003
N Akhmediev (9735_CR7) 2009; 80
F Baronio (9735_CR11) 2012; 109
J He (9735_CR35) 2013; 87
L Faddeev (9735_CR25) 1987
Y Ohta (9735_CR56) 2012; 86
GP Agrawal (9735_CR3) 1995
9735_CR49
VS Gerdjikov (9735_CR28) 2002; 29
A Ankiewicz (9735_CR8) 2010; 81
D Bilman (9735_CR16) 2019; 72
A Chowdury (9735_CR24) 2015; 91
XY Wen (9735_CR70) 2015; 92
B Yang (9735_CR76) 2021; 419
AC Scott (9735_CR61) 1982; 25
XY Wen (9735_CR71) 2016; 26
Y Martel (9735_CR52) 2011; 183
9735_CR54
G Zhang (9735_CR87) 2019; 475
D Bilman (9735_CR17) 2020; 169
S Chen (9735_CR23) 2013; 87
Z Yan (9735_CR74) 2010; 374
S Chen (9735_CR22) 2015; 48
YS Kivshar (9735_CR42) 2003
Y Tao (9735_CR65) 2012; 85
A Hasegawa (9735_CR33) 1995
B Kibler (9735_CR41) 2010; 6
Z Yan (9735_CR75) 2011; 375
VE Zakharov (9735_CR80) 2009; 238D
D Benney (9735_CR15) 1967; 46
C Sulem (9735_CR64) 1999
C Yeh (9735_CR78) 1998; 57
XY Wen (9735_CR69) 2018; 59
TB Benjamin (9735_CR14) 1967; 27
YV Bludov (9735_CR18) 2010; 185
MJ Ablowitz (9735_CR1) 1991
References_xml – volume: 80
  start-page: 026601
  year: 2009
  ident: 9735_CR7
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.026601
  contributor:
    fullname: N Akhmediev
– volume: 88
  start-page: 013207
  year: 2013
  ident: 9735_CR39
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.013207
  contributor:
    fullname: DJ Kedziora
– volume: 111
  start-page: 114101
  year: 2013
  ident: 9735_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.114101
  contributor:
    fullname: F Baronio
– volume: 89
  start-page: 041201
  year: 2014
  ident: 9735_CR46
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.041201
  contributor:
    fullname: L Ling
– volume: 6
  start-page: 790
  year: 2010
  ident: 9735_CR41
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1740
  contributor:
    fullname: B Kibler
– volume: 85
  start-page: 026607
  year: 2012
  ident: 9735_CR31
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.026607
  contributor:
    fullname: B Guo
– volume: 25
  start-page: 651
  year: 1982
  ident: 9735_CR61
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/25/5/015
  contributor:
    fullname: AC Scott
– volume: 32
  start-page: 285
  year: 2016
  ident: 9735_CR47
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2015.08.023
  contributor:
    fullname: L Ling
– volume: 59
  start-page: 073511
  year: 2018
  ident: 9735_CR69
  publication-title: J. Math. Phys.
  doi: 10.1063/1.5048512
  contributor:
    fullname: XY Wen
– volume: 87
  start-page: 052914
  year: 2013
  ident: 9735_CR34
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.052914
  contributor:
    fullname: J He
– volume: 106
  start-page: 204502
  year: 2011
  ident: 9735_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.204502
  contributor:
    fullname: A Chabchoub
– volume: 44
  start-page: 495202
  year: 2011
  ident: 9735_CR53
  publication-title: J. Phys. A Math. Theor.
  doi: 10.1088/1751-8113/44/49/495202
  contributor:
    fullname: Y Matsuno
– volume: 185
  start-page: 169
  year: 2010
  ident: 9735_CR18
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2010-01247-6
  contributor:
    fullname: YV Bludov
– volume: 90
  start-page: 022918
  year: 2014
  ident: 9735_CR90
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.022918
  contributor:
    fullname: L-C Zhao
– ident: 9735_CR49
  doi: 10.1088/1464-4266/7/5/R02
– volume: 72
  start-page: 449
  year: 2019
  ident: 9735_CR45
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2019.01.008
  contributor:
    fullname: L Ling
– volume: 183
  start-page: 563
  year: 2011
  ident: 9735_CR52
  publication-title: Invent. Math.
  doi: 10.1007/s00222-010-0283-6
  contributor:
    fullname: Y Martel
– volume: 84
  start-page: 056611
  year: 2011
  ident: 9735_CR38
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.056611
  contributor:
    fullname: DJ Kedziora
– volume: 25
  start-page: 123115
  year: 2015
  ident: 9735_CR68
  publication-title: Chaos
  doi: 10.1063/1.4937925
  contributor:
    fullname: XY Wen
– volume: 27
  start-page: 417
  year: 1967
  ident: 9735_CR14
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211206700045X
  contributor:
    fullname: TB Benjamin
– volume: 92
  start-page: 012917
  year: 2015
  ident: 9735_CR70
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.012917
  contributor:
    fullname: XY Wen
– volume: 87
  start-page: 013201
  issue: 1
  year: 2013
  ident: 9735_CR89
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.013201
  contributor:
    fullname: L-C Zhao
– volume: 38
  start-page: 248
  year: 1974
  ident: 9735_CR50
  publication-title: Sov. Phys.-JETP
  contributor:
    fullname: SV Manakov
– volume: 53
  start-page: 1
  year: 2000
  ident: 9735_CR66
  publication-title: Commun. Pure. Appl. Math.
  doi: 10.1002/(SICI)1097-0312(200001)53:1<1::AID-CPA1>3.0.CO;2-U
  contributor:
    fullname: C-L Terng
– volume: 87
  start-page: 032910
  year: 2013
  ident: 9735_CR23
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.032910
  contributor:
    fullname: S Chen
– volume-title: Hamiltonian Methods in the Theory of Solitons
  year: 1987
  ident: 9735_CR25
  doi: 10.1007/978-3-540-69969-9
  contributor:
    fullname: L Faddeev
– volume-title: The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse
  year: 2015
  ident: 9735_CR26
  doi: 10.1007/978-3-319-12748-4
  contributor:
    fullname: G Fibich
– volume: 96
  start-page: 022211
  year: 2017
  ident: 9735_CR48
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.022211
  contributor:
    fullname: L Ling
– volume: 88
  start-page: 023202
  year: 2013
  ident: 9735_CR21
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.023202
  contributor:
    fullname: S Chen
– volume-title: Bose–Einstein Condensation
  year: 2003
  ident: 9735_CR60
  contributor:
    fullname: L Pitaevskii
– volume: 28
  start-page: 3101
  year: 2015
  ident: 9735_CR43
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/28/9/3101
  contributor:
    fullname: D Kraus
– volume: 89
  start-page: 032914
  year: 2014
  ident: 9735_CR20
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.032914
  contributor:
    fullname: HN Chan
– volume: 28
  start-page: 110202
  year: 2011
  ident: 9735_CR30
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/28/11/110202
  contributor:
    fullname: B-L Guo
– volume: 46
  start-page: 133
  year: 1967
  ident: 9735_CR15
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm1967461133
  contributor:
    fullname: D Benney
– volume-title: Solitons: Nonlinear Pulses and Beams
  year: 1997
  ident: 9735_CR4
  contributor:
    fullname: N Akhmediev
– volume: 169
  start-page: 671
  year: 2020
  ident: 9735_CR17
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2019-0066
  contributor:
    fullname: D Bilman
– volume: 22
  start-page: 603
  year: 2003
  ident: 9735_CR40
  publication-title: Eur. J. Mech. B Fluids
  doi: 10.1016/j.euromechflu.2003.09.002
  contributor:
    fullname: C Kharif
– volume: 34
  start-page: 62
  year: 1972
  ident: 9735_CR81
  publication-title: Sov. Phys. JETP
  contributor:
    fullname: VE Zakharov
– volume-title: Nonlinear Fiber Optics
  year: 1995
  ident: 9735_CR3
  contributor:
    fullname: GP Agrawal
– volume: 111
  start-page: 106670
  year: 2021
  ident: 9735_CR67
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106670
  contributor:
    fullname: L Wang
– volume: 473
  start-page: 20170243
  year: 2017
  ident: 9735_CR85
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2017.0243
  contributor:
    fullname: G Zhang
– volume: 334
  start-page: 198
  year: 2013
  ident: 9735_CR44
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2013.04.004
  contributor:
    fullname: L Li
– volume: 25
  start-page: 103112
  year: 2015
  ident: 9735_CR77
  publication-title: Chaos
  doi: 10.1063/1.4931594
  contributor:
    fullname: Y Yang
– volume: 57
  start-page: 2398
  year: 1998
  ident: 9735_CR78
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.57.2398
  contributor:
    fullname: C Yeh
– volume: 373
  start-page: 675
  year: 2009
  ident: 9735_CR6
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2008.12.036
  contributor:
    fullname: N Akhmediev
– volume: 29
  start-page: 243
  year: 2002
  ident: 9735_CR28
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2002-00294-6
  contributor:
    fullname: VS Gerdjikov
– volume: 374
  start-page: 672
  year: 2010
  ident: 9735_CR74
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2009.11.030
  contributor:
    fullname: Z Yan
– volume: 85
  start-page: 026601
  year: 2012
  ident: 9735_CR65
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.026601
  contributor:
    fullname: Y Tao
– volume: 54
  start-page: 849
  year: 1976
  ident: 9735_CR36
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(76)90201-8
  contributor:
    fullname: DJ Kaup
– volume: 23
  start-page: 174
  year: 1987
  ident: 9735_CR55
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.1987.1073308
  contributor:
    fullname: CR Menyuk
– volume: 24
  start-page: 797
  year: 1967
  ident: 9735_CR57
  publication-title: Sov. Phys. JETP
  contributor:
    fullname: LA Ostrowskii
– volume: 9
  start-page: 190
  year: 1968
  ident: 9735_CR79
  publication-title: J. Appl. Mech. Tech. Phys.
  doi: 10.1007/BF00913182
  contributor:
    fullname: VE Zakharov
– volume: 238D
  start-page: 540
  year: 2009
  ident: 9735_CR80
  publication-title: Physica (Amsterdam)
  contributor:
    fullname: VE Zakharov
– volume: 81
  start-page: 4632
  year: 1998
  ident: 9735_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.4632
  contributor:
    fullname: N Akhmediev
– volume: 31
  start-page: 121
  year: 1976
  ident: 9735_CR37
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0131013
  contributor:
    fullname: DJ Kaup
– volume-title: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse
  year: 1999
  ident: 9735_CR64
  contributor:
    fullname: C Sulem
– volume: 376
  start-page: 1558
  year: 2012
  ident: 9735_CR10
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2012.03.032
  contributor:
    fullname: U Bandelow
– volume: 26
  start-page: 123110
  year: 2016
  ident: 9735_CR71
  publication-title: Chaos
  doi: 10.1063/1.4972111
  contributor:
    fullname: XY Wen
– volume: 54
  start-page: 947
  year: 2010
  ident: 9735_CR73
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/54/5/31
  contributor:
    fullname: Z Yan
– volume: 419
  start-page: 132850
  year: 2021
  ident: 9735_CR76
  publication-title: Physica D
  doi: 10.1016/j.physd.2021.132850
  contributor:
    fullname: B Yang
– volume: 57
  start-page: 043508
  year: 2016
  ident: 9735_CR91
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4947113
  contributor:
    fullname: L-C Zhao
– volume: 87
  start-page: 052914
  year: 2013
  ident: 9735_CR35
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.052914
  contributor:
    fullname: J He
– volume: 74
  start-page: 160
  year: 1987
  ident: 9735_CR29
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(87)90044-9
  contributor:
    fullname: M Grillakis
– ident: 9735_CR82
  doi: 10.1063/5.0048922
– volume: 72
  start-page: 1722
  year: 2019
  ident: 9735_CR16
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21819
  contributor:
    fullname: D Bilman
– volume-title: Solitons in Optical Communications
  year: 1995
  ident: 9735_CR33
  doi: 10.1093/oso/9780198565079.001.0001
  contributor:
    fullname: A Hasegawa
– volume: 450
  start-page: 1054
  year: 2007
  ident: 9735_CR62
  publication-title: Nature
  doi: 10.1038/nature06402
  contributor:
    fullname: DR Solli
– volume: 113
  start-page: 034101
  year: 2014
  ident: 9735_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.034101
  contributor:
    fullname: F Baronio
– volume: 475
  start-page: 20180625
  year: 2019
  ident: 9735_CR87
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2018.0625
  contributor:
    fullname: G Zhang
– volume-title: Extreme Ocean Waves
  year: 2016
  ident: 9735_CR58
– volume-title: Optical Solitons: From Fibers to Photonic Crystals
  year: 2003
  ident: 9735_CR42
  contributor:
    fullname: YS Kivshar
– volume: 25
  start-page: 16
  year: 1983
  ident: 9735_CR59
  publication-title: J. Aust. Math. Soc. B Appl. Math.
  doi: 10.1017/S0334270000003891
  contributor:
    fullname: D Peregrine
– volume: 107
  start-page: 255005
  year: 2011
  ident: 9735_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.255005
  contributor:
    fullname: H Bailung
– volume: 55
  start-page: 149
  year: 1977
  ident: 9735_CR63
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01626517
  contributor:
    fullname: WA Strauss
– volume: 53
  start-page: 063507
  year: 2012
  ident: 9735_CR72
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4726510
  contributor:
    fullname: S Xu
– volume-title: Solitons, Nonlinear Evolution Equations and Inverse Scattering
  year: 1991
  ident: 9735_CR1
  doi: 10.1017/CBO9780511623998
  contributor:
    fullname: MJ Ablowitz
– ident: 9735_CR32
  doi: 10.1515/9783110470574
– volume: 81
  start-page: 046602
  year: 2010
  ident: 9735_CR8
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.81.046602
  contributor:
    fullname: A Ankiewicz
– volume: 95
  start-page: 042201
  year: 2017
  ident: 9735_CR84
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.95.042201
  contributor:
    fullname: G Zhang
– volume: 174
  start-page: 757
  year: 2011
  ident: 9735_CR51
  publication-title: Ann. Math.
  doi: 10.4007/annals.2011.174.2.2
  contributor:
    fullname: Y Martel
– volume: 109
  start-page: 044102
  year: 2012
  ident: 9735_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.044102
  contributor:
    fullname: F Baronio
– volume: 366
  start-page: 27
  year: 2018
  ident: 9735_CR86
  publication-title: Physica D
  doi: 10.1016/j.physd.2017.11.001
  contributor:
    fullname: G Zhang
– volume: 86
  start-page: 036604
  year: 2012
  ident: 9735_CR56
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.86.036604
  contributor:
    fullname: Y Ohta
– volume: 375
  start-page: 4274
  year: 2011
  ident: 9735_CR75
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2011.09.026
  contributor:
    fullname: Z Yan
– volume: 62
  start-page: 117
  year: 2018
  ident: 9735_CR83
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.02.008
  contributor:
    fullname: G Zhang
– volume-title: Discrete and Continuous Nonlinear Schrödinger Systems
  year: 2004
  ident: 9735_CR2
  contributor:
    fullname: MJ Ablowitz
– volume: 91
  start-page: 022919
  year: 2015
  ident: 9735_CR24
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.91.022919
  contributor:
    fullname: A Chowdury
– ident: 9735_CR54
  doi: 10.1007/978-3-662-00922-2
– volume: 29
  start-page: 3119
  year: 2012
  ident: 9735_CR88
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.29.003119
  contributor:
    fullname: L-C Zhao
– volume: 17
  start-page: 999
  year: 2001
  ident: 9735_CR27
  publication-title: Inv. Probl.
  doi: 10.1088/0266-5611/17/4/328
  contributor:
    fullname: VS Gerdjikov
– volume: 48
  start-page: 215202
  year: 2015
  ident: 9735_CR22
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/48/21/215202
  contributor:
    fullname: S Chen
SSID ssj0017532
Score 2.4565094
Snippet The any multi-component nonlinear Schrödinger (alias n -NLS) equations with nonzero boundary conditions are studied. We first find the fundamental and...
The any multi-component nonlinear Schrödinger (alias n-NLS) equations with nonzero boundary conditions are studied. We first find the fundamental and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
SubjectTerms Analysis
Asymptotic properties
Boundary conditions
Classical Mechanics
Economic Theory/Quantitative Economics/Mathematical Methods
Group theory
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Nonlinear systems
Parameters
Polynomials
Schrodinger equation
Solitary waves
Theoretical
Title Multi-component Nonlinear Schrödinger Equations with Nonzero Boundary Conditions: Higher-Order Vector Peregrine Solitons and Asymptotic Estimates
URI https://link.springer.com/article/10.1007/s00332-021-09735-z
https://www.proquest.com/docview/2557851410
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTuMwEB7xc2EP_O6KslD5wA2M8meScGtRCwJRVoKu2FNkT5xdCdFCEg70MfZheAFejLGTtFpgD5wzmcT2jOdLZuYzwG6AnqI44_MAU4cHEmOudORyjWmmMJWIvmlwvhgcng6DsxtxM-vjtsXuTUbSbtTTXjdz6pjHTUWBYZgRfDIPi3Xj6WLn5Nd5b5o8IARukwcx-XJEeLnulflYy7_xaAYy3-RFbbjpr8B107RTVZncHjyW6gAn7zkcPzOSVViu4SfrVPayBnN6tA4rNRRltaMX6_DlYkrnWmzAX9umy035-XhEUYoNKoINmdMtf_KX59Q-n_UeKuLwgpnfu0ZqovMx69qjm_Indjw2CXIjcMSqAhN-aag_2U-bO2A_dK5_m3ZEdmXK8owiOUpZp3i6uy_H9C6sRzvSnYHHX2HY710fn_L6MAeO5OUlz0I3FdJDgqeYYegrgkaZowLpaOFIjBxM3VhIX2c6DgQJU_B2BeJh6HmRQO1_g4URjXETWChTQ0GjlM7CQGQqjtGXEakKQyeW0m_BXrOkyX3F2ZFM2Znt5Cc0-Ymd_GTSgu1m1ZPaf4uEPrRCwqKB67Rgv1nF2eX_a9v6nPh3WPKMIdjqwG1YKPNHvUMop1Rtsup-tzto19bdhvmh13kFbaz7sA
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB7R5dD2AJQWdSlQH3prjfJjb5LeFrSwFHZbqWxFT5E9cUCq2KVJOLCPwcPwAn2xjp1kEag9cM5k4r_xfPHMfAb4IDDQ5GdCLjDzuFCYcG1inxvMco2ZQgxtgfNo3BtOxJczedYUhZVttnsbknQ79aLYzV47FnCbUmApZiSfP4NlEfi9oAPL_cOfx4NF9IAguIseJGTMMQHmpljm31oeOqR7lPkoMOr8zcEqTNqW1mkmv3avK72L80ckjk_tyhqsNACU9esV8wqWzHQdVhswyhpTL9fh5WhB6Fq-hltXqMttAvpsSn6KjWuKDVXQKxfFn7vMfZ8NftfU4SWzB7xWam6KGdtzlzcVN2x_ZkPkVuAzq1NM-FdL_sl-uOgB-2YKc24LEtl3m5hnFalpxvrlzeVVNaO2sAHtSZcWIL-BycHgdH_Im-scOJKdVzyP_EyqAAmgYo5RqAkc5Z4WyjPSUxh7mPmJVKHJTSIkCZP79iViLwqCWKIJN6AzpT6-BRapzJLQaG3ySMhcJwmGKiZVUeQlSoVd-NjOaXpVs3akC35mN_gpDX7qBj-dd2Grnfa0seAypV-tiNCo8L0ufGpn8f7x_7VtPk38PTwfno5O0pOj8fE7eBHYReFyBbegUxXXZpswT6V3miX-F2BM_R8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BVkJwoFBALBTwgRu4zSZxk3Bbyi6F0qUSFJVTZI8dkFCzS5Ieuo_Bw_ACvBgzTrKFCg6IcyYT_4w9XzwznwEexxga8jORjNEGMtaYSePSkXRoC4NWI0Zc4Hww29k7il8fq-Nfqvh9tnsfkmxrGpilqWy2F7bYXhW-8RVkoeT0AqabUXJ5GdZiZkYawNr45cf9ySqSQHDcRxIyWtgpgeeucObPWn53TueI80KQ1Pue6TrovtVtysmXrdPGbOHyAqHj_3TrBlzvgKkYt5Z0Ey65cgPWO5Aqui2g3oBrByui1_oWfPMFvJIT0-clfUjMWuoNXdErn6sf361vi5h8bSnFa8EHvyy1dNVcPPeXOlVnYnfOoXMWeCba1BP5lklBxQcfVRCHrnKfuFBRvOOEPVakSyvG9dnJoplTW8SE9qoTBs634Wg6eb-7J7trHiTS-m9kkYys0iEScMUCk8gQaCoCE-vAqUBjGqAdZUpHrnBZrEiY3PpIIe4kYZgqdNEdGJTUx7sgEm2ZnMYYVySxKkyWYaRTUpUkQaZ1NIQn_fzmi5bNI1_xNvvBz2nwcz_4-XIIm70J5N3KrnP6BUsIpZKxDeFpP6Pnj_-u7d6_iT-CK4cvpvmbV7P9-3A1ZJvwKYSbMGiqU_eAoFBjHnbW_hMHIAYS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-component+Nonlinear+Schr%C3%B6dinger+Equations+with+Nonzero+Boundary+Conditions%3A+Higher-Order+Vector+Peregrine+Solitons+and+Asymptotic+Estimates&rft.jtitle=Journal+of+nonlinear+science&rft.au=Zhang%2C+Guoqiang&rft.au=Ling%2C+Liming&rft.au=Yan%2C+Zhenya&rft.date=2021-10-01&rft.issn=0938-8974&rft.eissn=1432-1467&rft.volume=31&rft.issue=5&rft_id=info:doi/10.1007%2Fs00332-021-09735-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00332_021_09735_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-8974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-8974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-8974&client=summon