Multi-component Nonlinear Schrödinger Equations with Nonzero Boundary Conditions: Higher-Order Vector Peregrine Solitons and Asymptotic Estimates
The any multi-component nonlinear Schrödinger (alias n -NLS) equations with nonzero boundary conditions are studied. We first find the fundamental and higher-order vector Peregrine solitons (alias rational rogue waves (RWs)) for the n -NLS equations by using the loop group theory, an explicit n + 1...
Saved in:
Published in | Journal of nonlinear science Vol. 31; no. 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The any multi-component nonlinear Schrödinger (alias
n
-NLS) equations with nonzero boundary conditions are studied. We first find the fundamental and higher-order vector Peregrine solitons (alias rational rogue waves (RWs)) for the
n
-NLS equations by using the loop group theory, an explicit
n
+
1
-multiple root of a characteristic polynomial of degree
(
n
+
1
)
related to the Benjamin–Feir instability, and inverse functions. Particularly, the fundamental vector rational RWs are proved to be parity-time-reversal symmetric for some parameter constraints and classified into
n
cases in terms of the degree of the introduced polynomial. Moreover, a systematic approach is proposed to study the asymptotic behaviors of these vector RWs such that the decompositions of RWs are related to the so-called governing polynomials
F
ℓ
(
z
)
, which pave a powerful way in the study of vector RW structures of the multi-component integrable systems. The vector RWs with maximal amplitudes can also be determined via the parameter vectors, which are interesting and useful in the study of RWs for multi-component nonlinear physical systems. |
---|---|
AbstractList | The any multi-component nonlinear Schrödinger (alias n-NLS) equations with nonzero boundary conditions are studied. We first find the fundamental and higher-order vector Peregrine solitons (alias rational rogue waves (RWs)) for the n-NLS equations by using the loop group theory, an explicit n+1-multiple root of a characteristic polynomial of degree (n+1) related to the Benjamin–Feir instability, and inverse functions. Particularly, the fundamental vector rational RWs are proved to be parity-time-reversal symmetric for some parameter constraints and classified into n cases in terms of the degree of the introduced polynomial. Moreover, a systematic approach is proposed to study the asymptotic behaviors of these vector RWs such that the decompositions of RWs are related to the so-called governing polynomials Fℓ(z), which pave a powerful way in the study of vector RW structures of the multi-component integrable systems. The vector RWs with maximal amplitudes can also be determined via the parameter vectors, which are interesting and useful in the study of RWs for multi-component nonlinear physical systems. The any multi-component nonlinear Schrödinger (alias n -NLS) equations with nonzero boundary conditions are studied. We first find the fundamental and higher-order vector Peregrine solitons (alias rational rogue waves (RWs)) for the n -NLS equations by using the loop group theory, an explicit n + 1 -multiple root of a characteristic polynomial of degree ( n + 1 ) related to the Benjamin–Feir instability, and inverse functions. Particularly, the fundamental vector rational RWs are proved to be parity-time-reversal symmetric for some parameter constraints and classified into n cases in terms of the degree of the introduced polynomial. Moreover, a systematic approach is proposed to study the asymptotic behaviors of these vector RWs such that the decompositions of RWs are related to the so-called governing polynomials F ℓ ( z ) , which pave a powerful way in the study of vector RW structures of the multi-component integrable systems. The vector RWs with maximal amplitudes can also be determined via the parameter vectors, which are interesting and useful in the study of RWs for multi-component nonlinear physical systems. |
ArticleNumber | 81 |
Author | Zhang, Guoqiang Ling, Liming Yan, Zhenya |
Author_xml | – sequence: 1 givenname: Guoqiang surname: Zhang fullname: Zhang, Guoqiang organization: Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences – sequence: 2 givenname: Liming surname: Ling fullname: Ling, Liming organization: School of Mathematics, South China University of Technology – sequence: 3 givenname: Zhenya orcidid: 0000-0002-9475-3753 surname: Yan fullname: Yan, Zhenya email: zyyan@mmrc.iss.ac.cn organization: Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, School of Mathematical Sciences, University of Chinese Academy of Sciences |
BookMark | eNp9kEFuGyEYRlGUSnXSXqArpKxJf2AwM9klltNUSptKabtFhPnHJrLBAUaRfYwephfoxYrjSN11hYTe90DvhByHGJCQDxzOOYD-mAGkFAwEZ9BpqdjuiEx4U694M9XHZAKdbFnb6eYtOcn5EYBrJcWE_PoyropnLq431RgK_RrDyge0id67Zfrzu_dhgYnOn0ZbfAyZPvuy3FM7TJFexTH0Nm3pLIbevwAX9MYvlpjYXerr8Ce6EhP9hgkXqYrpfVz5shfZ0NPLvF1vSize0Xkufm0L5nfkzWBXGd-_nqfkx_X8--yG3d59-jy7vGVO8q6wQfNeWeFAgBuclg9T2Q3w0FhABda14HreKStxwK5RFUbsuXJuqoVolUN5Ss4O3k2KTyPmYh7jmEJ90gildKt4w6FS4kC5FHNOOJhNqv9MW8PB7NubQ3tT25uX9mZXR_IwyhXe9_un_s_qL3vSjk8 |
CitedBy_id | crossref_primary_10_1063_5_0191956 crossref_primary_10_1016_j_chaos_2021_111495 crossref_primary_10_4213_tmf10314 crossref_primary_10_1063_5_0163821 crossref_primary_10_1016_j_physd_2023_133922 crossref_primary_10_1111_sapm_12657 crossref_primary_10_1103_PhysRevE_105_054202 crossref_primary_10_1016_j_padiff_2022_100342 crossref_primary_10_1007_s12346_022_00704_9 crossref_primary_10_1063_5_0192741 crossref_primary_10_1002_mma_9502 crossref_primary_10_1016_j_physd_2022_133192 crossref_primary_10_1007_s11071_023_08627_z crossref_primary_10_1088_1572_9494_ac6799 crossref_primary_10_1134_S0040577923020034 crossref_primary_10_1016_j_physd_2021_133150 crossref_primary_10_1063_5_0148086 crossref_primary_10_1016_j_cnsns_2022_106382 crossref_primary_10_1007_s00332_023_09971_5 crossref_primary_10_1016_j_physleta_2023_129244 crossref_primary_10_1016_j_physd_2021_133152 crossref_primary_10_1016_j_aml_2021_107735 crossref_primary_10_1016_j_physd_2022_133430 crossref_primary_10_1098_rspa_2021_0670 |
Cites_doi | 10.1103/PhysRevE.80.026601 10.1103/PhysRevE.88.013207 10.1103/PhysRevLett.111.114101 10.1103/PhysRevE.89.041201 10.1038/nphys1740 10.1103/PhysRevE.85.026607 10.1088/0031-8949/25/5/015 10.1016/j.cnsns.2015.08.023 10.1063/1.5048512 10.1103/PhysRevE.87.052914 10.1103/PhysRevLett.106.204502 10.1088/1751-8113/44/49/495202 10.1140/epjst/e2010-01247-6 10.1103/PhysRevE.90.022918 10.1088/1464-4266/7/5/R02 10.1016/j.cnsns.2019.01.008 10.1007/s00222-010-0283-6 10.1103/PhysRevE.84.056611 10.1063/1.4937925 10.1017/S002211206700045X 10.1103/PhysRevE.92.012917 10.1103/PhysRevE.87.013201 10.1002/(SICI)1097-0312(200001)53:1<1::AID-CPA1>3.0.CO;2-U 10.1103/PhysRevE.87.032910 10.1007/978-3-540-69969-9 10.1007/978-3-319-12748-4 10.1103/PhysRevE.96.022211 10.1103/PhysRevE.88.023202 10.1088/0951-7715/28/9/3101 10.1103/PhysRevE.89.032914 10.1088/0256-307X/28/11/110202 10.1002/sapm1967461133 10.1215/00127094-2019-0066 10.1016/j.euromechflu.2003.09.002 10.1016/j.aml.2020.106670 10.1098/rspa.2017.0243 10.1016/j.aop.2013.04.004 10.1063/1.4931594 10.1103/PhysRevE.57.2398 10.1016/j.physleta.2008.12.036 10.1140/epjb/e2002-00294-6 10.1016/j.physleta.2009.11.030 10.1103/PhysRevE.85.026601 10.1016/0022-247X(76)90201-8 10.1109/JQE.1987.1073308 10.1007/BF00913182 10.1103/PhysRevLett.81.4632 10.1137/0131013 10.1016/j.physleta.2012.03.032 10.1063/1.4972111 10.1088/0253-6102/54/5/31 10.1016/j.physd.2021.132850 10.1063/1.4947113 10.1016/0022-1236(87)90044-9 10.1063/5.0048922 10.1002/cpa.21819 10.1093/oso/9780198565079.001.0001 10.1038/nature06402 10.1103/PhysRevLett.113.034101 10.1098/rspa.2018.0625 10.1017/S0334270000003891 10.1103/PhysRevLett.107.255005 10.1007/BF01626517 10.1063/1.4726510 10.1017/CBO9780511623998 10.1515/9783110470574 10.1103/PhysRevE.81.046602 10.1103/PhysRevE.95.042201 10.4007/annals.2011.174.2.2 10.1103/PhysRevLett.109.044102 10.1016/j.physd.2017.11.001 10.1103/PhysRevE.86.036604 10.1016/j.physleta.2011.09.026 10.1016/j.cnsns.2018.02.008 10.1103/PhysRevE.91.022919 10.1007/978-3-662-00922-2 10.1364/JOSAB.29.003119 10.1088/0266-5611/17/4/328 10.1088/1751-8113/48/21/215202 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00332-021-09735-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1432-1467 |
ExternalDocumentID | 10_1007_s00332_021_09735_z |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11771151 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 11925108; 11731014 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7U Z83 Z8W ZMTXR ZWQNP ~8M ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c319t-f71d5a2c020cfc73b639f0b4a0e50ac80cd195a3efe94571deed15cc672285ce3 |
IEDL.DBID | AGYKE |
ISSN | 0938-8974 |
IngestDate | Thu Oct 10 17:22:35 EDT 2024 Sat Sep 14 00:50:59 EDT 2024 Sat Dec 16 12:09:30 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Parity-time-reversal symmetry Multi-component NLS equations Lax pair Loop group method 35Q55 Asymptotic estimates 37K40 35Q51 37K10 Nonzero boundary conditions Darboux transform 35Q15 Governing polynomial Higher-order vector Peregrine solitons |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-f71d5a2c020cfc73b639f0b4a0e50ac80cd195a3efe94571deed15cc672285ce3 |
ORCID | 0000-0002-9475-3753 |
PQID | 2557851410 |
PQPubID | 2043730 |
ParticipantIDs | proquest_journals_2557851410 crossref_primary_10_1007_s00332_021_09735_z springer_journals_10_1007_s00332_021_09735_z |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of nonlinear science |
PublicationTitleAbbrev | J Nonlinear Sci |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | TerngC-LUhlenbeckKBäcklund transformations and loop group actionsCommun. Pure. Appl. Math.20005311031.37064 KaupDJClosure of the squared Zakharov–Shabat eigenstatesJ. Math. Anal. Appl.1976548498644138770333.34020 Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: J. Opt. B Quantum Semiclassical Opt. 7, R53 (2005) ManakovSVOn the theory of two-dimensional stationary self-focusing of electromagnetic wavesSov. Phys.-JETP197438248253 ZhangGYanZWenXYThree-wave resonant interactions: multi-dark-dark-dark solitons, breathers, rogue waves, and their interactions and dynamicsPhysica D2018366274237544561381.35014 KedzioraDJAnkiewiczAAkhmedievNClassifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutionsPhys. Rev. E201388013207 KrausDBiondiniGKovačičGThe focusing Manakov system with nonzero boundary conditionsNonlinearity201528310134033921330.35406 YehCBergmanLEnhanced pulse compression in a nonlinear fiber by a wavelength division multiplexed optical pulsePhys. Rev. E1998572398 KaupDJA perturbation expansion for the Zakharov–Shabat inverse scattering transformSIAM J. Appl. Math.1976311211334101470334.47006 PelinovskyEKharifCExtreme Ocean Waves20162New YorkSpringer1348.86003 WangLYanZRogue wave formation and interactions in the defocusing nonlinear Schrödinger equation with external potentialsAppl. Math. Lett.20211111066701451.35201 ZhangGYanZWangLThe general coupled Hirota equations: modulational instability and higher-order vector rogue wave and multi-dark soliton structuresProc. R. Soc. A2019475201806253925326 ZakharovVEShabatABExact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear mediaSov. Phys. JETP19723462406174 HeJZhangHWangLPorsezianKFokasASGenerating mechanism for higher-order rogue wavesPhys. Rev. E201387052914 WenXYYanZMalomedBAHigher-order vector discrete rogue-wave states in the coupled Ablowitz–Ladik equations: exact solutions and stabilityChaos20162612311035826901378.35284 BailungHSharmaSKNakamuraYObservation of Peregrine solitons in a multicomponent plasma with negative ionsPhys. Rev. Lett.2011107255005 SolliDRRopersCKoonathPJalaliBOptical rogue wavesNature20074501054 ChenSSongL-YRogue waves in coupled Hirota systemsPhys. Rev. E201387032910 WenXYYanZModulational instability and dynamics of multi-rogue wave solutions for the discrete Ablowitz–Ladik equationJ. Math. Phys.20185907351138346391414.35212 LingLZhaoLCModulational instability and homoclinic orbit solutions in vector nonlinear Schrödinger equationCommun. Nonlinear Sci. Numer. Simul.20197244947139027891464.35328 MartelYMerleFDescription of two soliton collision for the quartic gKdV equationAnn. Math.201117475785728311081300.37045 YanZNonautonomous “rogons” in the inhomogeneous nonlinear Schrödinger equation with variable coefficientsPhys. Lett. A20103746726791235.35266 ZhangGYanZThree-component nonlinear Schrödinger equations: modulational instability, N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}th-order vector rational and semi-rational rogue waves, and dynamicsCommun. Nonlinear Sci. Numer. Simul.201862117133378351007265198 AkhmedievNAnkiewiczASolitons: Nonlinear Pulses and Beams1997LondonChapman and Hall1218.35183 YangYYanZMalomedBARogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equationChaos20152510311234015821374.35392 AkhmedievNAnkiewiczASoto-CrespoJMRogue waves and rational solutions of the nonlinear Schrödinger equationPhys. Rev. E200980026601 ChanHNChowKWKedzioraDJGrimshawRHJDingERogue wave modes for a derivative nonlinear Schrödinger modelPhys. Rev. E201489032914 ChabchoubAHoffmannNPAkhmedievNRogue wave observation in a water wave tankPhys. Rev. Lett.2011106204502 FaddeevLTakhtajanLHamiltonian Methods in the Theory of Solitons1987BerlinSpringer1111.37001 GuoB-LLingL-MRogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equationsChin. Phys. Lett.201128110202 KharifCPelinovskyEPhysical mechanisms of the rogue wave phenomenonEur. J. Mech. B Fluids20032260363420238631058.76017 StraussWAExistence of solitary waves in higher dimensionsCommun. Math. Phys.1977551491624543650356.35028 SulemCSulemPLThe Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse1999New YorkSpringer0928.35157 YangBYangJUniversal patterns of rogue wavesPhysica D2021419132850 ZakharovVEStability of periodic waves of finite amplitude on the surface of a deep fluidJ. Appl. Mech. Tech. Phys.19689190194 YanZVector financial rogue wavesPhys. Lett. A2011375427442791254.91190 HasegawaAKodamaYSolitons in Optical Communications1995OxfordOxford University Press0840.35092 ChowduryAKedzioraDJAnkiewiczAAkhmedievNBreather solutions of the integrable quintic nonlinear Schrödinger equation and their interactionsPhys. Rev. E20159102291934186121374.35381 AnkiewiczASoto-CrespoJMAkhmedievNDiscrete rogue waves of the Ablowitz–Ladik and Hirota equationsPhys. Rev. E2010810466022736231 Zhang, G., Ling, L., Yan, Z., Konotop, V.V.: Parity-time-symmetric rational vector rogue wave solutions in any n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-component nonlinear Schrödinger models. Chaos 31, 063120 (2021) BludovYVKonotopVAkhmedievNVector rogue waves in binary mixtures of Bose–Einstein condensatesEur. Phys. J. Spec. Top.2010185169180 ZhangGYanZWenXYModulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equationsProc. R. Soc. A2017473201702431404.35424 HeJZhangHWangLPorsezianKFokasAGenerating mechanism for higher-order rogue wavesPhys. Rev. E201387052914 ScottACThe vibrational structure of Davydov solitonsPhys. Scr.1982256516586596501063.37583 AgrawalGPNonlinear Fiber Optics1995New YorkAcademic Press1024.78514 BaronioFConfortiMDegasperisALombardoSRogue waves emerging from the resonant interaction of three wavesPhys. Rev. Lett.2013111114101 AblowitzMJClarksonPASolitons, Nonlinear Evolution Equations and Inverse Scattering1991CambridgeCambridge University Press0762.35001 LingLZhaoL-CYangZGuoBGeneration mechanisms of fundamental rogue wave spatial-temporal structurePhys. Rev. E2017960222113814958 BilmanDMillerPDA robust inverse scattering transform for the focusing nonlinear Schrödinger equationCommun. Pure Appl. Math.201972172218051435.35343 Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, New York (1991) PitaevskiiLStringariSBose–Einstein Condensation2003OxfordOxford University Press1110.82002 LiLWuZWangLHeJHigh-order rogue waves for the Hirota equationAnn. Phys.201333419821130632371284.35405 AkhmedievNAnkiewiczATakiMWaves that appear from nowhere and disappear without a tracePhys. Lett. A20093736751227.76010 BaronioFDegasperisAConfortiMWabnitzSSolutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue wavesPhys. Rev. Lett.2012109044102 PeregrineDWater waves, nonlinear Schrödinger equations and their solutionsJ. Aust. Math. Soc. B Appl. Math.198325160526.76018 BaronioFConfortiMDegasperisALombardoSOnoratoMWabnitzSVector rogue waves and baseband modulation instability in the defocusing regimePhys. Rev. Lett.2014113034101 ChenSTwisted rogue-wave pairs in the Sasa–Satsuma equationPhys. Rev. E201388023202 FibichGThe Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse2015New YorkSpringer1351.35001 GerdjikovVSGrahovskiGGIvanovRIKostovNAN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-wave interactions related to simple lie algebras. Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Z}}}_2$$\end{document}-reductions and soliton solutionsInv. Probl.20011799910150988.35143 WenXYYanZModulational instability and higher-order rogue waves with parameters modulation in a coupled integrable AB system via the generalized Darboux transformationChaos20152512311534356501374.37092 TaoYHeJMultisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformationPhys. Rev. E201285026601 KivsharYSAgrawalGPOptical Solitons: From Fibers to Photonic Crystals2003New YorkAcademic Press GerdjikovVSGrahovskiGGKostovNAOn N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-wave type systems and their gauge equivalentEur. Phys. J. B20022924324819499581219.37051 LingLZhaoL-CGuoBDarboux transformation and classification of solution for mixed coupled nonlinear Schrödinger equationsCommun. Nonlinear Sci. Numer. Simul.201632285304340164607246583 ZhaoL-CLiuJRogue-wave solutions of a three-component coupled nonlinear Schrödinger equationPhys. Rev. E2013871013201 MenyukCRNonlinear pulse propagation in birefringent optical fibersIEEE J. Quantum Electron.198723174 ZhaoL-CLiuJLocalized nonlinear waves in a two-mode nonlinear fiberJ. Opt. Soc. Am. B20122931193127 BenjaminTBFeirJEThe disintegration of wave trains on deep waterJ. Fluid Mech.1967274170144.47101 ZhaoL-CXinG-GYangZ-YRogue-wave pattern transition induced by relative frequencyPhys. Rev. E201490022918 OhtaYYangJKRogue waves in the Davey–Stewartson I equationPhys. Rev. E201286036604 Guo, B., Tian, L., Yan, Z., Ling, L., Wang, CR Menyuk (9735_CR55) 1987; 23 L Ling (9735_CR46) 2014; 89 VE Zakharov (9735_CR81) 1972; 34 L-C Zhao (9735_CR89) 2013; 87 S Xu (9735_CR72) 2012; 53 G Zhang (9735_CR85) 2017; 473 F Baronio (9735_CR12) 2013; 111 DJ Kedziora (9735_CR39) 2013; 88 C Kharif (9735_CR40) 2003; 22 L Wang (9735_CR67) 2021; 111 U Bandelow (9735_CR10) 2012; 376 LA Ostrowskii (9735_CR57) 1967; 24 Z Yan (9735_CR73) 2010; 54 HN Chan (9735_CR20) 2014; 89 J He (9735_CR34) 2013; 87 DJ Kaup (9735_CR36) 1976; 54 Y Martel (9735_CR51) 2011; 174 B Guo (9735_CR31) 2012; 85 N Akhmediev (9735_CR5) 1998; 81 L-C Zhao (9735_CR88) 2012; 29 D Kraus (9735_CR43) 2015; 28 G Zhang (9735_CR83) 2018; 62 MJ Ablowitz (9735_CR2) 2004 L Ling (9735_CR47) 2016; 32 G Fibich (9735_CR26) 2015 S Chen (9735_CR21) 2013; 88 9735_CR32 WA Strauss (9735_CR63) 1977; 55 L Ling (9735_CR48) 2017; 96 Y Matsuno (9735_CR53) 2011; 44 N Akhmediev (9735_CR6) 2009; 373 N Akhmediev (9735_CR4) 1997 L Li (9735_CR44) 2013; 334 Y Yang (9735_CR77) 2015; 25 DJ Kaup (9735_CR37) 1976; 31 L-C Zhao (9735_CR90) 2014; 90 B-L Guo (9735_CR30) 2011; 28 M Grillakis (9735_CR29) 1987; 74 D Peregrine (9735_CR59) 1983; 25 DR Solli (9735_CR62) 2007; 450 C-L Terng (9735_CR66) 2000; 53 F Baronio (9735_CR13) 2014; 113 (9735_CR58) 2016 XY Wen (9735_CR68) 2015; 25 SV Manakov (9735_CR50) 1974; 38 DJ Kedziora (9735_CR38) 2011; 84 L Ling (9735_CR45) 2019; 72 VE Zakharov (9735_CR79) 1968; 9 L-C Zhao (9735_CR91) 2016; 57 G Zhang (9735_CR86) 2018; 366 G Zhang (9735_CR84) 2017; 95 H Bailung (9735_CR9) 2011; 107 A Chabchoub (9735_CR19) 2011; 106 9735_CR82 VS Gerdjikov (9735_CR27) 2001; 17 L Pitaevskii (9735_CR60) 2003 N Akhmediev (9735_CR7) 2009; 80 F Baronio (9735_CR11) 2012; 109 J He (9735_CR35) 2013; 87 L Faddeev (9735_CR25) 1987 Y Ohta (9735_CR56) 2012; 86 GP Agrawal (9735_CR3) 1995 9735_CR49 VS Gerdjikov (9735_CR28) 2002; 29 A Ankiewicz (9735_CR8) 2010; 81 D Bilman (9735_CR16) 2019; 72 A Chowdury (9735_CR24) 2015; 91 XY Wen (9735_CR70) 2015; 92 B Yang (9735_CR76) 2021; 419 AC Scott (9735_CR61) 1982; 25 XY Wen (9735_CR71) 2016; 26 Y Martel (9735_CR52) 2011; 183 9735_CR54 G Zhang (9735_CR87) 2019; 475 D Bilman (9735_CR17) 2020; 169 S Chen (9735_CR23) 2013; 87 Z Yan (9735_CR74) 2010; 374 S Chen (9735_CR22) 2015; 48 YS Kivshar (9735_CR42) 2003 Y Tao (9735_CR65) 2012; 85 A Hasegawa (9735_CR33) 1995 B Kibler (9735_CR41) 2010; 6 Z Yan (9735_CR75) 2011; 375 VE Zakharov (9735_CR80) 2009; 238D D Benney (9735_CR15) 1967; 46 C Sulem (9735_CR64) 1999 C Yeh (9735_CR78) 1998; 57 XY Wen (9735_CR69) 2018; 59 TB Benjamin (9735_CR14) 1967; 27 YV Bludov (9735_CR18) 2010; 185 MJ Ablowitz (9735_CR1) 1991 |
References_xml | – volume: 80 start-page: 026601 year: 2009 ident: 9735_CR7 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.026601 contributor: fullname: N Akhmediev – volume: 88 start-page: 013207 year: 2013 ident: 9735_CR39 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.013207 contributor: fullname: DJ Kedziora – volume: 111 start-page: 114101 year: 2013 ident: 9735_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.114101 contributor: fullname: F Baronio – volume: 89 start-page: 041201 year: 2014 ident: 9735_CR46 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.041201 contributor: fullname: L Ling – volume: 6 start-page: 790 year: 2010 ident: 9735_CR41 publication-title: Nat. Phys. doi: 10.1038/nphys1740 contributor: fullname: B Kibler – volume: 85 start-page: 026607 year: 2012 ident: 9735_CR31 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.026607 contributor: fullname: B Guo – volume: 25 start-page: 651 year: 1982 ident: 9735_CR61 publication-title: Phys. Scr. doi: 10.1088/0031-8949/25/5/015 contributor: fullname: AC Scott – volume: 32 start-page: 285 year: 2016 ident: 9735_CR47 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2015.08.023 contributor: fullname: L Ling – volume: 59 start-page: 073511 year: 2018 ident: 9735_CR69 publication-title: J. Math. Phys. doi: 10.1063/1.5048512 contributor: fullname: XY Wen – volume: 87 start-page: 052914 year: 2013 ident: 9735_CR34 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.052914 contributor: fullname: J He – volume: 106 start-page: 204502 year: 2011 ident: 9735_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.204502 contributor: fullname: A Chabchoub – volume: 44 start-page: 495202 year: 2011 ident: 9735_CR53 publication-title: J. Phys. A Math. Theor. doi: 10.1088/1751-8113/44/49/495202 contributor: fullname: Y Matsuno – volume: 185 start-page: 169 year: 2010 ident: 9735_CR18 publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2010-01247-6 contributor: fullname: YV Bludov – volume: 90 start-page: 022918 year: 2014 ident: 9735_CR90 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.022918 contributor: fullname: L-C Zhao – ident: 9735_CR49 doi: 10.1088/1464-4266/7/5/R02 – volume: 72 start-page: 449 year: 2019 ident: 9735_CR45 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2019.01.008 contributor: fullname: L Ling – volume: 183 start-page: 563 year: 2011 ident: 9735_CR52 publication-title: Invent. Math. doi: 10.1007/s00222-010-0283-6 contributor: fullname: Y Martel – volume: 84 start-page: 056611 year: 2011 ident: 9735_CR38 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.056611 contributor: fullname: DJ Kedziora – volume: 25 start-page: 123115 year: 2015 ident: 9735_CR68 publication-title: Chaos doi: 10.1063/1.4937925 contributor: fullname: XY Wen – volume: 27 start-page: 417 year: 1967 ident: 9735_CR14 publication-title: J. Fluid Mech. doi: 10.1017/S002211206700045X contributor: fullname: TB Benjamin – volume: 92 start-page: 012917 year: 2015 ident: 9735_CR70 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.92.012917 contributor: fullname: XY Wen – volume: 87 start-page: 013201 issue: 1 year: 2013 ident: 9735_CR89 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.013201 contributor: fullname: L-C Zhao – volume: 38 start-page: 248 year: 1974 ident: 9735_CR50 publication-title: Sov. Phys.-JETP contributor: fullname: SV Manakov – volume: 53 start-page: 1 year: 2000 ident: 9735_CR66 publication-title: Commun. Pure. Appl. Math. doi: 10.1002/(SICI)1097-0312(200001)53:1<1::AID-CPA1>3.0.CO;2-U contributor: fullname: C-L Terng – volume: 87 start-page: 032910 year: 2013 ident: 9735_CR23 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.032910 contributor: fullname: S Chen – volume-title: Hamiltonian Methods in the Theory of Solitons year: 1987 ident: 9735_CR25 doi: 10.1007/978-3-540-69969-9 contributor: fullname: L Faddeev – volume-title: The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse year: 2015 ident: 9735_CR26 doi: 10.1007/978-3-319-12748-4 contributor: fullname: G Fibich – volume: 96 start-page: 022211 year: 2017 ident: 9735_CR48 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.022211 contributor: fullname: L Ling – volume: 88 start-page: 023202 year: 2013 ident: 9735_CR21 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.023202 contributor: fullname: S Chen – volume-title: Bose–Einstein Condensation year: 2003 ident: 9735_CR60 contributor: fullname: L Pitaevskii – volume: 28 start-page: 3101 year: 2015 ident: 9735_CR43 publication-title: Nonlinearity doi: 10.1088/0951-7715/28/9/3101 contributor: fullname: D Kraus – volume: 89 start-page: 032914 year: 2014 ident: 9735_CR20 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.032914 contributor: fullname: HN Chan – volume: 28 start-page: 110202 year: 2011 ident: 9735_CR30 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/28/11/110202 contributor: fullname: B-L Guo – volume: 46 start-page: 133 year: 1967 ident: 9735_CR15 publication-title: J. Math. Phys. doi: 10.1002/sapm1967461133 contributor: fullname: D Benney – volume-title: Solitons: Nonlinear Pulses and Beams year: 1997 ident: 9735_CR4 contributor: fullname: N Akhmediev – volume: 169 start-page: 671 year: 2020 ident: 9735_CR17 publication-title: Duke Math. J. doi: 10.1215/00127094-2019-0066 contributor: fullname: D Bilman – volume: 22 start-page: 603 year: 2003 ident: 9735_CR40 publication-title: Eur. J. Mech. B Fluids doi: 10.1016/j.euromechflu.2003.09.002 contributor: fullname: C Kharif – volume: 34 start-page: 62 year: 1972 ident: 9735_CR81 publication-title: Sov. Phys. JETP contributor: fullname: VE Zakharov – volume-title: Nonlinear Fiber Optics year: 1995 ident: 9735_CR3 contributor: fullname: GP Agrawal – volume: 111 start-page: 106670 year: 2021 ident: 9735_CR67 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2020.106670 contributor: fullname: L Wang – volume: 473 start-page: 20170243 year: 2017 ident: 9735_CR85 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2017.0243 contributor: fullname: G Zhang – volume: 334 start-page: 198 year: 2013 ident: 9735_CR44 publication-title: Ann. Phys. doi: 10.1016/j.aop.2013.04.004 contributor: fullname: L Li – volume: 25 start-page: 103112 year: 2015 ident: 9735_CR77 publication-title: Chaos doi: 10.1063/1.4931594 contributor: fullname: Y Yang – volume: 57 start-page: 2398 year: 1998 ident: 9735_CR78 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.57.2398 contributor: fullname: C Yeh – volume: 373 start-page: 675 year: 2009 ident: 9735_CR6 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2008.12.036 contributor: fullname: N Akhmediev – volume: 29 start-page: 243 year: 2002 ident: 9735_CR28 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2002-00294-6 contributor: fullname: VS Gerdjikov – volume: 374 start-page: 672 year: 2010 ident: 9735_CR74 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2009.11.030 contributor: fullname: Z Yan – volume: 85 start-page: 026601 year: 2012 ident: 9735_CR65 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.026601 contributor: fullname: Y Tao – volume: 54 start-page: 849 year: 1976 ident: 9735_CR36 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(76)90201-8 contributor: fullname: DJ Kaup – volume: 23 start-page: 174 year: 1987 ident: 9735_CR55 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.1987.1073308 contributor: fullname: CR Menyuk – volume: 24 start-page: 797 year: 1967 ident: 9735_CR57 publication-title: Sov. Phys. JETP contributor: fullname: LA Ostrowskii – volume: 9 start-page: 190 year: 1968 ident: 9735_CR79 publication-title: J. Appl. Mech. Tech. Phys. doi: 10.1007/BF00913182 contributor: fullname: VE Zakharov – volume: 238D start-page: 540 year: 2009 ident: 9735_CR80 publication-title: Physica (Amsterdam) contributor: fullname: VE Zakharov – volume: 81 start-page: 4632 year: 1998 ident: 9735_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.4632 contributor: fullname: N Akhmediev – volume: 31 start-page: 121 year: 1976 ident: 9735_CR37 publication-title: SIAM J. Appl. Math. doi: 10.1137/0131013 contributor: fullname: DJ Kaup – volume-title: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse year: 1999 ident: 9735_CR64 contributor: fullname: C Sulem – volume: 376 start-page: 1558 year: 2012 ident: 9735_CR10 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2012.03.032 contributor: fullname: U Bandelow – volume: 26 start-page: 123110 year: 2016 ident: 9735_CR71 publication-title: Chaos doi: 10.1063/1.4972111 contributor: fullname: XY Wen – volume: 54 start-page: 947 year: 2010 ident: 9735_CR73 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/54/5/31 contributor: fullname: Z Yan – volume: 419 start-page: 132850 year: 2021 ident: 9735_CR76 publication-title: Physica D doi: 10.1016/j.physd.2021.132850 contributor: fullname: B Yang – volume: 57 start-page: 043508 year: 2016 ident: 9735_CR91 publication-title: J. Math. Phys. doi: 10.1063/1.4947113 contributor: fullname: L-C Zhao – volume: 87 start-page: 052914 year: 2013 ident: 9735_CR35 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.052914 contributor: fullname: J He – volume: 74 start-page: 160 year: 1987 ident: 9735_CR29 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(87)90044-9 contributor: fullname: M Grillakis – ident: 9735_CR82 doi: 10.1063/5.0048922 – volume: 72 start-page: 1722 year: 2019 ident: 9735_CR16 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.21819 contributor: fullname: D Bilman – volume-title: Solitons in Optical Communications year: 1995 ident: 9735_CR33 doi: 10.1093/oso/9780198565079.001.0001 contributor: fullname: A Hasegawa – volume: 450 start-page: 1054 year: 2007 ident: 9735_CR62 publication-title: Nature doi: 10.1038/nature06402 contributor: fullname: DR Solli – volume: 113 start-page: 034101 year: 2014 ident: 9735_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.034101 contributor: fullname: F Baronio – volume: 475 start-page: 20180625 year: 2019 ident: 9735_CR87 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2018.0625 contributor: fullname: G Zhang – volume-title: Extreme Ocean Waves year: 2016 ident: 9735_CR58 – volume-title: Optical Solitons: From Fibers to Photonic Crystals year: 2003 ident: 9735_CR42 contributor: fullname: YS Kivshar – volume: 25 start-page: 16 year: 1983 ident: 9735_CR59 publication-title: J. Aust. Math. Soc. B Appl. Math. doi: 10.1017/S0334270000003891 contributor: fullname: D Peregrine – volume: 107 start-page: 255005 year: 2011 ident: 9735_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.255005 contributor: fullname: H Bailung – volume: 55 start-page: 149 year: 1977 ident: 9735_CR63 publication-title: Commun. Math. Phys. doi: 10.1007/BF01626517 contributor: fullname: WA Strauss – volume: 53 start-page: 063507 year: 2012 ident: 9735_CR72 publication-title: J. Math. Phys. doi: 10.1063/1.4726510 contributor: fullname: S Xu – volume-title: Solitons, Nonlinear Evolution Equations and Inverse Scattering year: 1991 ident: 9735_CR1 doi: 10.1017/CBO9780511623998 contributor: fullname: MJ Ablowitz – ident: 9735_CR32 doi: 10.1515/9783110470574 – volume: 81 start-page: 046602 year: 2010 ident: 9735_CR8 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.81.046602 contributor: fullname: A Ankiewicz – volume: 95 start-page: 042201 year: 2017 ident: 9735_CR84 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.95.042201 contributor: fullname: G Zhang – volume: 174 start-page: 757 year: 2011 ident: 9735_CR51 publication-title: Ann. Math. doi: 10.4007/annals.2011.174.2.2 contributor: fullname: Y Martel – volume: 109 start-page: 044102 year: 2012 ident: 9735_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.044102 contributor: fullname: F Baronio – volume: 366 start-page: 27 year: 2018 ident: 9735_CR86 publication-title: Physica D doi: 10.1016/j.physd.2017.11.001 contributor: fullname: G Zhang – volume: 86 start-page: 036604 year: 2012 ident: 9735_CR56 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.86.036604 contributor: fullname: Y Ohta – volume: 375 start-page: 4274 year: 2011 ident: 9735_CR75 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2011.09.026 contributor: fullname: Z Yan – volume: 62 start-page: 117 year: 2018 ident: 9735_CR83 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.02.008 contributor: fullname: G Zhang – volume-title: Discrete and Continuous Nonlinear Schrödinger Systems year: 2004 ident: 9735_CR2 contributor: fullname: MJ Ablowitz – volume: 91 start-page: 022919 year: 2015 ident: 9735_CR24 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.91.022919 contributor: fullname: A Chowdury – ident: 9735_CR54 doi: 10.1007/978-3-662-00922-2 – volume: 29 start-page: 3119 year: 2012 ident: 9735_CR88 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.29.003119 contributor: fullname: L-C Zhao – volume: 17 start-page: 999 year: 2001 ident: 9735_CR27 publication-title: Inv. Probl. doi: 10.1088/0266-5611/17/4/328 contributor: fullname: VS Gerdjikov – volume: 48 start-page: 215202 year: 2015 ident: 9735_CR22 publication-title: J. Phys. A doi: 10.1088/1751-8113/48/21/215202 contributor: fullname: S Chen |
SSID | ssj0017532 |
Score | 2.4565094 |
Snippet | The any multi-component nonlinear Schrödinger (alias
n
-NLS) equations with nonzero boundary conditions are studied. We first find the fundamental and... The any multi-component nonlinear Schrödinger (alias n-NLS) equations with nonzero boundary conditions are studied. We first find the fundamental and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
SubjectTerms | Analysis Asymptotic properties Boundary conditions Classical Mechanics Economic Theory/Quantitative Economics/Mathematical Methods Group theory Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Nonlinear systems Parameters Polynomials Schrodinger equation Solitary waves Theoretical |
Title | Multi-component Nonlinear Schrödinger Equations with Nonzero Boundary Conditions: Higher-Order Vector Peregrine Solitons and Asymptotic Estimates |
URI | https://link.springer.com/article/10.1007/s00332-021-09735-z https://www.proquest.com/docview/2557851410 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTuMwEB7xc2EP_O6KslD5wA2M8meScGtRCwJRVoKu2FNkT5xdCdFCEg70MfZheAFejLGTtFpgD5wzmcT2jOdLZuYzwG6AnqI44_MAU4cHEmOudORyjWmmMJWIvmlwvhgcng6DsxtxM-vjtsXuTUbSbtTTXjdz6pjHTUWBYZgRfDIPi3Xj6WLn5Nd5b5o8IARukwcx-XJEeLnulflYy7_xaAYy3-RFbbjpr8B107RTVZncHjyW6gAn7zkcPzOSVViu4SfrVPayBnN6tA4rNRRltaMX6_DlYkrnWmzAX9umy035-XhEUYoNKoINmdMtf_KX59Q-n_UeKuLwgpnfu0ZqovMx69qjm_Indjw2CXIjcMSqAhN-aag_2U-bO2A_dK5_m3ZEdmXK8owiOUpZp3i6uy_H9C6sRzvSnYHHX2HY710fn_L6MAeO5OUlz0I3FdJDgqeYYegrgkaZowLpaOFIjBxM3VhIX2c6DgQJU_B2BeJh6HmRQO1_g4URjXETWChTQ0GjlM7CQGQqjtGXEakKQyeW0m_BXrOkyX3F2ZFM2Znt5Cc0-Ymd_GTSgu1m1ZPaf4uEPrRCwqKB67Rgv1nF2eX_a9v6nPh3WPKMIdjqwG1YKPNHvUMop1Rtsup-tzto19bdhvmh13kFbaz7sA |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB7R5dD2AJQWdSlQH3prjfJjb5LeFrSwFHZbqWxFT5E9cUCq2KVJOLCPwcPwAn2xjp1kEag9cM5k4r_xfPHMfAb4IDDQ5GdCLjDzuFCYcG1inxvMco2ZQgxtgfNo3BtOxJczedYUhZVttnsbknQ79aLYzV47FnCbUmApZiSfP4NlEfi9oAPL_cOfx4NF9IAguIseJGTMMQHmpljm31oeOqR7lPkoMOr8zcEqTNqW1mkmv3avK72L80ckjk_tyhqsNACU9esV8wqWzHQdVhswyhpTL9fh5WhB6Fq-hltXqMttAvpsSn6KjWuKDVXQKxfFn7vMfZ8NftfU4SWzB7xWam6KGdtzlzcVN2x_ZkPkVuAzq1NM-FdL_sl-uOgB-2YKc24LEtl3m5hnFalpxvrlzeVVNaO2sAHtSZcWIL-BycHgdH_Im-scOJKdVzyP_EyqAAmgYo5RqAkc5Z4WyjPSUxh7mPmJVKHJTSIkCZP79iViLwqCWKIJN6AzpT6-BRapzJLQaG3ySMhcJwmGKiZVUeQlSoVd-NjOaXpVs3akC35mN_gpDX7qBj-dd2Grnfa0seAypV-tiNCo8L0ufGpn8f7x_7VtPk38PTwfno5O0pOj8fE7eBHYReFyBbegUxXXZpswT6V3miX-F2BM_R8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BVkJwoFBALBTwgRu4zSZxk3Bbyi6F0qUSFJVTZI8dkFCzS5Ieuo_Bw_ACvBgzTrKFCg6IcyYT_4w9XzwznwEexxga8jORjNEGMtaYSePSkXRoC4NWI0Zc4Hww29k7il8fq-Nfqvh9tnsfkmxrGpilqWy2F7bYXhW-8RVkoeT0AqabUXJ5GdZiZkYawNr45cf9ySqSQHDcRxIyWtgpgeeucObPWn53TueI80KQ1Pue6TrovtVtysmXrdPGbOHyAqHj_3TrBlzvgKkYt5Z0Ey65cgPWO5Aqui2g3oBrByui1_oWfPMFvJIT0-clfUjMWuoNXdErn6sf361vi5h8bSnFa8EHvyy1dNVcPPeXOlVnYnfOoXMWeCba1BP5lklBxQcfVRCHrnKfuFBRvOOEPVakSyvG9dnJoplTW8SE9qoTBs634Wg6eb-7J7trHiTS-m9kkYys0iEScMUCk8gQaCoCE-vAqUBjGqAdZUpHrnBZrEiY3PpIIe4kYZgqdNEdGJTUx7sgEm2ZnMYYVySxKkyWYaRTUpUkQaZ1NIQn_fzmi5bNI1_xNvvBz2nwcz_4-XIIm70J5N3KrnP6BUsIpZKxDeFpP6Pnj_-u7d6_iT-CK4cvpvmbV7P9-3A1ZJvwKYSbMGiqU_eAoFBjHnbW_hMHIAYS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-component+Nonlinear+Schr%C3%B6dinger+Equations+with+Nonzero+Boundary+Conditions%3A+Higher-Order+Vector+Peregrine+Solitons+and+Asymptotic+Estimates&rft.jtitle=Journal+of+nonlinear+science&rft.au=Zhang%2C+Guoqiang&rft.au=Ling%2C+Liming&rft.au=Yan%2C+Zhenya&rft.date=2021-10-01&rft.issn=0938-8974&rft.eissn=1432-1467&rft.volume=31&rft.issue=5&rft_id=info:doi/10.1007%2Fs00332-021-09735-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00332_021_09735_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-8974&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-8974&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-8974&client=summon |